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Introduction

Le point de départ de cette these repose sur les travaux de Ramanujan ([RA15]),
publiés vers 1915, concernant la fonction d(n), nombre de diviseurs de l'entier n. Ramanujan
étudia cette fonction en introduisant les nombres hautement composés et hautement composés
supérieurs.

Les grandes valeurs de d(n) ont déja été étudiées par Nicolas [NI71], Robin [RO83a],
[RO83b]. Des fonctions similaires intéressérent Alaoglu, Erdos [AE44] (o(n), somme des
diviseurs de n), Erdos [ER44] et Nicolas [NI71].

Dans ce travail, nous nous intéresserons aux grandes valeurs des fonctions dg(n),
nombre de manieres d'éerire l'entier n comme produit de k facteurs. On se propose de trouver
des majorations etfectives de di(n).

Nous nous sommes basés sur la these de doctorat de Robin en 1983 qui obtenait entre

autre des majorations de d(n) = d,(n) et de ds(n).

Le premier chapitre contient les définitions des fonctions dg(n), leurs principales
propriétés et certaines majorations simples. Nous présentons les ordres moyens et normaux de
ces fonctions.

Nous avons également rappelé les travaux de Nicolas ([NI0]) sur le comportement
asymptotique d'une classe de fonctions arithmétiques qui permet de déterminer l'ordre

maximal de dy(n).

On définit au second chapitre les nombres k-hautement composés (k-h.c.) et k-

hautement composés supérieurs (k-h.c.s.).

Dans le troisiéme chapitre, nous déterminons les majorations eftectives de ces
fonctions en utilisant notamment les propriétés des nombres k-h.c.s. En effet, les couples
(log N, log dg(N)) pour N k-h.c.s. forment l'enveloppe convexe de l'ensemble des points
(log n, log dyg(n)) ; les majorations de dy(n) découlent de cette propriété. Nous obtenons

notamment que, pour tout k entier et pour toutn 2 3, on a
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log 4 (n) <2202 Jog? kOB
log 2 log log n

et

3
logdk(n)<logk_ﬁ’ﬂ_[l+l% k 1,65 J

log log n log” 2 loglogn

Nous avons généralisé un algorithme du a Robin ([RO83a]) permettant d'obtenir les
premiers nombres k-h.c.s. On en déduit des majorations de dy(n) pour k allant de 2 a 25. On
obtient des résultats effectifs pour ces petites valeurs de k.

Nous montrons aussi que nos résultats sont meilleurs que la majoration due 4 Norton
([NO8S5]).

On cherche au quatriéme chapitre la torme des nombres k-h.c.s. pour k suffisamment
grand, pour lesquels les majorations trouvées sont atteintes. Ils sont de la forme 22.3P pour la

premiére majoration, et 22.3b.5¢,7d pour la seconde. On obtient :

A () = Max log log N log dy(N)  log k
1) = Ne N log k log N 4 log 2

2 2
_ Max  (loglog N)” log d\ (N) 4log°k
ot M =ye N log k log N “loglog N =g log 2

On peut étendre la définition des fonctions dg(n) dans les cas réel et complexe grice a
la fonction £ de Riemann. Nous obtenons une majoration simple du module de dy(n) :
|dy (n)] < dyyy (n).

Le cinquieme chapitre est quant i lui consacré A 1'étude des fonctions dg(n) (notées
dy.j,2) dans les progressions arithmétiques dont nous proposons, grice aux travaux de
McCurley, une majoration. Nous donnons l'ordre maximal de ces fonctions, puis nous
définissons les nombres k-(j,£)-hautement composés supérieurs pour en déduire des
majorations. Pour cela nous utilisons une méthode analogue A celle permettant de majorer
dk(n) dans le troisieéme chapitre.

Des résultats plus précis sont obtenus pour le cas des progressions arithmétiques de

raison 3.

Nous présentons en annexe quelques résultats complémentaires.
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La premicre annexe comporte des encadrements des fonctions Ei(x) et Li(x). Ceux-ci
se déduisent des comportements asymptotiques de ces fonctions. La fonction Li(x) intervenant
de maniére importante lors des majorations des fonctions di(n), nous avons débuté notre étude
par des majorations de ce type, et obtenu quelques résultats, méme si ceux-ci n'interviennent
pas directement dans notre travail. Ils ont cependant un intérét certain, indépendamment des

chapitres précédents.

La seconde annexe est constituée d'un programme de recherche des nombres k-

hautement composés supérieurs et k,(j,4)-hautement composés supérieurs.






Chapitre 1

GRANDES VALEURS DES FONCTIONS dg(n)

La fonction d(n), nombre de diviseur de n, a été abondamment étudiée notamment par
Wigert, Ramanujan, Nicolas et Robin. Dans ce chapitre nous présentons les fonctions dy qui
généralisent la fonction d et qui composent 'essentiel de notre travail.

. Pour obtenir le comportement asymptotique des grandes valeurs de ces fonctions, nous
utilisons les résultats de Heppner et de Nicolas que nous présentons au paragraphe 3.

Nous terminons ce chapitre en présentant quelques majorations élémentaires de ces fonctions.

I.1. LA FONCTION d(n)

On considére la fonction d(n) = d,(n) = Z 1 qui représente le nombre de diviseurs de n.
51 n

Cette fonction est multiplicative, c’est-a-dire que si (a,b) = 1 alors d(ab) = d(a).d(b). Or

r

d(p*) = (& - 1), dob,siN =[] pj,alors d(N) = J] (e + D).

La premiére majoration du nombre de diviseurs de 'entier N de cette fonction provient du fait
qu’il y a autant de diviseurs compris entre 1 et N qu'entre \/N et N. On a donc

d(N) < 24/N.

On appelle ordre maximal d’une fonction arithmétique f(IN), la fonction g(n) telle que
lim f(N)/g(N) =1

log N
log log N

(1 +¢g),

Wigert [WI06] a montré que I'ordre maximal de d(N) était O[ ] , puis que

log d(N) < log 2log N
log log N
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pour tout ¢ positif et pour N suffisamment grand,

dou d(N)< NO pour tout d positif et pour tout N suffisamment grand,

Recherchons l'ordre maximal ;

d(n) = H (1+a) < H (1+ o). H 2% (pour tout paramétre t compris entre 2 et n.)
P

“iln ptlin péliln
pst pot

IA

(carlog p> logt)

[Ip

log 2/logt
a }

t
(1+ o). T 2¢0emest < {1 5 5 “] [

pdiln log 2 p%iln
p>t
log21
< exp[ t(2 + log log n)+ M] :
log t
En choisissant t = ﬂl—g , on obtient
(loglogn)
log (i) < log 2log n 1+O[logloglogn] | (1)

log log n log log n

Il nous reste a trouver une minoration de log d(n). Si 'on choisit les entiers de la forme
k

n, = H P; Pj désignant le jiéme nombre premier, on a d(nk) = 2¥. Donc
i=1
logn, = 6(p,) = Y logp < 7(p, )log p, = klog p, .

PEpy

log 2 logn,

On obtient log d(pk) = klog2 2
log Py

Or (E)(pk Jet p, sont équivalents. Ceci implique que

21 1
log d(n,) 2 log 2 logny 1+ O — | |. (2)
loglog n, log log n,

(1) et (2) conduisent au résultat.

L’ordre minimal de d(n), c’est-a-dire la fonction h(n) telle que rlqlln__ d(N)/h(N) =1, s’obtient

facilement. I1 vaut 2, car our tout p premier, d(p) = 2.
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On a également

log2log N

log d(N) > (1-¢),

log log N

pour tout £ positil et pour une infinité de valeurs de N.

Ramanujan [RA15b] a obtenu de meilleurs résultats :

pour tout N,

y 2 y v
log d(N) < log2log N L0 log N .
loglog N (log log N)

et

log2logN log N
log d(N) > +0(- 3
B dM) loglog N ((10{; log N)z)

pour une infinité de valeurs de N.

Sil'on a en outre des renseignements sur N, on peut affiner cette majoration. Ainsi, si I'on
connait la décomposition en facteurs premiers de N, on peut montrer que
1 n
(Hlo}g (P1 -+ Pn N))
log p1 ... log py

siN = sz",ulors d(N) <
i=1
- 1 : 1
En effet, Hlog (p1...paN) = H((l +0o)logpr+... + (L +0ay,)log pn)

; 1/n
>((l + o) (L +oy) ... (1 +0oy)logp, ... log pn)
qui conduit au résultat voulu, puisque, par définition, d(N) = (1 + ap) (I + o) ... (1 + o).

Si l'on ne connait que le nombre n de diviseurs premiers distincts de N, nous pouvons obtenir

la majoration suivante :

(% log (2.3 «. p N))n
log2.log 3 ...16¢ p

d(N) < ol p désigne le ni®M¢ nombre premier.

Cette formule provient immédiatement de la précédente si l'on s'apergoit que, pour tout (py, Pz,

.., Pn)s premiers deux a deux distincts, on a

Gmg (B wv By N))“ (nl]og (2, 8 .0 bil N))ﬂ
log py ... log py s log 2. log 3 ... logp

ol p désigne ici le ni*Mm¢ nombre premier.



Les grandes valeurs de cette fonction ont été étudiées aprés Ramanujan principalement par
Nicolas [NI71], Robin [RO83a], [RO83b].

Nicolas et Robin ont prouvé ([NR83]) que, pour tout entier n = 3

logn
< L BN
log d(n) £1,5379 log 2 AT
logn 1,9349

’ _logn T
log d(n) < log 2 fog Tog n {1+ log log 7

Dans le cadre du second chapitre, nous généralisons leur démonstration pour démontrer le

théoreme I11.1.1.

I.2. LES FONCTIONS dy(n)

Dans tout ce qui suit, sauf au paragraphe 1V.2, k représente un entier supérieur ou égal a 2.

Dans notre travail, nous aborderons plus généralement les fonctions

dy(n) = Z I .

5,.8,..5, =n

dy(n) représente le nombre de maniéres d’écrire I'entier n comme produit de k facteurs.

On peut en déduire facilement que

d, (n) = de_l[%].

bln

Ces fonctions sont multiplicatives, alors si (a,b) = 1 on a dk(ab) = dk(a).dk(b),

En effet, comme nous I'avons vu, d = d, est une fonction multiplicative. Supposons que di soit

B .
multiplicative. Soient a et b entiers tels que (a,b) = 1. d,,,(ab) = z dk[ %] . Ecrivons
& lab

3=203..0, avec D) laetd, | b.

ab a b
Alors d,, ,(ab) = d {——-—-]= d[-——].d [—J,
k! E “ld, 4, dz Ld )

d,,,(ab) = E dk[di]' Z dk[ﬁ%] = d;,,(a).d,,,(b).
1

dTa d,Tb

16



or

dk(pa)= [a;kl-l] d'ou, sin= Hp?i, d, (n) = H[aﬁk—l}

i=1 i=1 k-1

On peut voir facilement que si N = n.p avec p premier et a = vp(n), valuation p-adique de n,

(i. e. a est tel que p? |l n), alors

a S s : B e .
est inférieur ou égal a k et décroit en fonction de a.

Bien siir,
a+t

Ces fonctions peuvent également étre définies a partir de la fonction { de Riemann telle que

+o0

C(s) = E n* , grace a la relation
n=1

{s9)* =Y d(n)n
n=1

En effet, {(s)* = H : ] IP—I = ) nz=l :
b

Cette relation permet de définir di(n) pour k complexe. Nous y reviendrons plus tard.

r r k-1
Soit n = H p,',alors logd(n) = Z log dk(p?‘) avec log dk(pf‘) =¥ log[ P
i=1 i=1 i=1 J

o+ j
La fonction o — J—log[ j } est décroissante pour o = |, donc

o
+ i 1
l“’g[aj J] < ‘°g[l’}u}

Par conséquent, L log dk(pf") < log [llt—kf——l] #e log[l—%g} +...t log2=logk,
%

et log dk(pf‘ ) < o log k.
En outre, dk(pi“') 2 dk(p.) =k

On obtient donc [ y 1} log k = log d(n) [ Y o }log k,

i=1 i=1

17



w(n) log k = log dy(n) = Q(n) log k, (1)

avec les notations w(n) = ¥ 1 et Q(n)= Y ;
pin P lin

alors kw(n) < dy(n) = kQn) |

1 ;
I1 est facile de voir que (n) =< To_é—f (oylog2+aylog3 +... +a logp.)s 12?; , d’ou
log k logn
logd (n) = —————.
g k( ) og 0

L’ordre normal d’une fonction arithmétique a été défini par Hardy et Ramanujan [HR17] : on
dit qu'une fonction arithmétique f est d’ordre normal g si g est une fonction monotone telle que,
pour chaque ¢ positif, on ait
(1-¢)g(n) = fln) =(1+¢) gn)
pour un ensemble d’entiers n de densité 1. On peut écrire
f(n) = (1 + o(n)) g(n) presque partout.

De I'encadrement (1), on peut déduire 'ordre normal des fonctions d(n).

Nous savons ([HW60]) que 'ordre normal de w(n) et de Q(n) est log log n. On en déduit
que l'ordre normal de log dy(n) est log k log log n.

L’ordre moyen d’une fonction arithmétique f est g si 'on a

Y £(0) ~ gn).

1
n t<n

11 est facile de montrer que I'ordre moyen de d(n) est log n (Cf [HW60], p 263), carona

Y d(t) =nlogn+(2y - )n +O(\/H)

tsn

ou y est la constante d’Euler.

Le probléme de 'ordre moyen de di(n) a été d’abord étudié par Piltz (voir [DI71a]). Hafner

([HA82]) a montré que
E d,(t) ~ ¢, n log* ™ n

t<n

avec ¢ constante positive.

On en déduit que 'ordre moyen de di(n) est log® " n

18



1.3. COMPORTEMENT ASYMPTOTIQUE D'UNE CERTAINE CLASSE DE
FONCTIONS ARITHMETIQUES

E. Heppner, [HE73], a montré le théoreme suivant

Théoreme 1.3.1.

Soit f une fonction multiplicative vérifiant :
(1) f(p*) = g(x)
Q) VxeN,gx)2l et 3peN,gP)>1;
(3) log g(x) = 0( X J

log x

Alors il existe A tel que pour tout n on ait :
logt(n) < log g(A) Li( loin ] + O(log n cxp(—cﬁ/log log n))

oll ¢ est une constante positive. L'égalité a lieu pour une infinité de valeurs de n.

I est facile de remarquer alors que le théoréme d'Heppner s'applique aux fonctions
dk(n).
En effet, posons f(pX) = dx(pX), done g(x) = log di(p*). (2) est vérili¢e pour tout k = 3 puisque

k+x-1 X
dg(pX) =2 k, pour tout x et pour tout k. log log =0 .
k-1 log x

Par conséquent, il existe A tel que pour tout n on ait
log
logd, (n) < loglogd, (A) Li( 0; L ) + ()(log n cxp(—cq/log logn ))

ol ¢ est une constante positive. L'égalité a licu pour une infinité de valeurs de n.

Nicolas ([NI80]) a prolongé les travaux d'Heppner en démontrant le résultat suivant :

Théoréeme 1.3.2.
Soit f une fonction multiplicative vénliant :
(1) £(p*) = g(x) 5
() Vxe N,gx)21 et 3peN,gP) > 1

(3) lim CL%) <t log2 avec L, = max Glx)

X xzl X
log x

avec G(x) = log g(x), alors, si A est le plus grand x pour lequel t; =

G(x)

, On a pour tout n

I'inégalité

1Y



; (log ,
logf(n) < log g(A)Ll( 0;“ ] + (,)(l(‘)g n exp(—c«/log logn ))

ol ¢ est une constante positive. L'égalité a licu pour une infinité de valeurs de n.

Dans le cas des fonctions dg(n), on obtient A =1 et

logd, (n) < logk Li(log(n)) + O, ((10g n) exp(ucxilog logn ))

Or on sait que Li (x) = 2 xq +0 xl ;
logx log™ x log” x

On obtient donc que
3 logklogn

logd, (n) < —=——2— 4 o[

logk logn
log logn

(log log n)’

et

logd, (n) < logklogn 4 logklogn +O( log k logn J

loglogn  (loglogn)’ (log log n)’

De maniére analogue au cas ot k = 2, ((RO83b]), Robin a montré que, pourk =3 :

log d, (n) < 1, 59141 83 10g 0
‘ loglogn

logd.tny < 1283 108D 11 0 1og33 L08R
) log log n log log n



Chapitre II

LES NOMBRES k-HAUTEMENT COMPOSES
ET k-HAUTEMENT COMPOSES SUPERIEURS

Ramanujan a basé son étude des grandes valeurs de d(n) sur les nombres hautement
composés. Erdos, Nicolas et Robin ont repris ses travaux. Nous présentons les résultats
principaux dans le premier paragraphe.

Au paragraphe 2, nous donnons la définition des nombres k-hautement composés, au
paragraphe 3 celle des nombres k-hautement composés supérieurs qui nous permettrons
d'obtenir des majorations de dy(n) dans le cas général et de déterminer des résultats numériques
pour k < 25.

Nous présentons au paragraphe 4 les premicéres majorations de d(n) utilisant les

nombres hautement composés supérieurs.

ILI. LES NOMBRES HAUTEMENT COMPOSES

Ces nombres turent définis et étudiés par Ramanujan en 1915 ((RA 15b]).

Définition I1.1.1.

Un entier N est dit hautement composé (h.c.) s'il a plus de diviseurs que les entiers

qui le précedent. C'est-2-dire N hautement composé est équivalent 2
n<N = dn) <d(N).

Proposition II.1.1.

Si N est hautement composé alors N est de la forme
} Iml
PR L

w(N)
avec O 2 0y 2...2 Uy

Preuve.
Al o, 1 (S Ny .
Ns2Y.5%... Pi - Pist -+ Payy  AVEC O 2 O, 2.2 Qs

i

. 5 3 t_ A Ly t; LNy ooty 1o s s . -
Supposons que N'= 2% 3% p' pl L poed soit k-hautement composé.



Orona d(N)=d(N") et _g, = Bin

[T
Pi 7 Pint

Comme 041 = o4, on a N' > N, donc N' n'est pas h.c. ce qui est en contradiction avec

I'hypothese. |

Remarque.
Si n est hautement composé alors gy = 1, sauf pour n =4 ou n = 36. ([RA15b])

Soit Q(x) le nombre de nombre hautement composés inférieurs ou égaux a x. Ramanujan
[RA15bb] a démontré que

Définition I1.1.2. (Ramanujan [RAIL5b])
Un entier N est dit hautement composé supérieur (h.c.s.) s'il existe e € R, tel

o log d(n ;
que la fonction _I—E;Tg(T) - g¢logn admette un maximum enn = N.

Apres avoir été détinis par Ramanujan (RA15b], les nombres hautement composés et les
nombres hautement composés supérieurs furent étudiés principalement par Alaoglu, Erdos
[AE44], Erdos [ER44] et Nicolas [NI71].

I1.2. LES NOMBRES k-HAUTEMENT COMPOSES

Maintenant, généralisons la notion de nombres hautement composés, pour les fonctions di(n).

Définition I1.2.1.

Un entier N est dit k-hautement composé (k-h.c.) si et seulement si
n<N = di(n) <d(N).

Un entier hautement composé est 2-h.c.

(8]
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Robin a explicité des algorithmes permettant d'obtenir la liste des nombres hautement composés
sur des intervalles donnés ([RO8&3]), ce qui nous permettra de faire des calculs. On peut

généraliser ces algorithmes pour déterminer les nombres k-hautement composés.

2 3 4 5 6 7 8 9 10
2 2 2 2 2 2 2 2 2

4 4 4 4 4 4 4 4 4

6 6 6 6 6 6 6 6 6

12 8 8 8 8 8 8 8 8

24 12 12 12 12 12 12 12 12
36 24 24 24 24 16 16 16 16
48 36 36 36 36 24 24 24 24
60 48 48 48 48 36 36 36 36
120 60) 60 60 72 48 48 48 48
180 72 72 72 96 gy pi) 72 72
240 96 96 96 120) 96 96 96 96
360 120 120 120 144 120 120 120 120
720 180 144 144 192 144 144 144 144
840) 240 180) 180 216 192 192 192 192

1260 360 240) 216 240) 216 216 216 240
1620 430 360) 240) 288 240) 240 24() 288

2520 720 43() 288 360 288 288 288 360
5040 1080 720) 36() 430 360 360 36() 432
7560 1260 1080 48() 576 432 432 432 480
10080 1440 1440 120) 720 430 430 430) 576
15120 1680 2160 1080 960 576 576 576 720
20160 2160 2520 144() 1080 720 720 720 864
25200 2520 2880 2160 1440 960 960 864 960)

2772() 3360 3360 2520 2160 1080 1080 960 1152
45360 4320) 4320 2880 2880 1440 1152 1080 1440
50400 5040 5040) 4320 4320 2160 1440 1152 2160
55440 7560 7560 5040 5040 2830 216(0) 1440 2880
83160 10080 864() 7200 5760 432() 288() 2160 4320
110880 | 15120 10080 756() 7200 5040 432() 2880 5760
166320 | 20160 15120 864(0) 7560 5760 576() 4320 8640
221760 | 25200 | 20160 1000 8640 7200) 7200 5760 11520
277200 | 30240 | 25200 15120 10080 864() 8640 3640 12960




332640 | 40320 [ 30240 | 20160 | 14400 10080 | 10080 10080 14400
498960 | 45360 | 40320 | 30240 | 15120 12960 | 11520 11520 15120
554400 | 50400 | 45360 | 40320 | 17280 14400 | 12960 12960) 17280
66528() | 55440 | 50400 [ 50400 | 20160 15120 | 14400 14400 | 20160
720720 | 60480 | 60480 | 60480 | 30240 17280 | 15120 1&120 - | 25920
1081080 [ 75600 | 75600 [ 80640 | 40320 | 20160 | 17280 17280 | 30240
1441440 | 907200 | 90720 | 90720 | 50400 | 25920 | 20160 | 20160 | 34560
2161260 | 100800 | 100800 [ 100800 | 60480 | 30240 | 25920 | 25920 | 40320
2882880 | 110880 [ 110880 | 120960 | 80640 | 40320 | 30240 | 30240 | 60480
3603600 [ 151200 | 120960 [ 151200 | 90720 | 50400 | 34560 | 34560 [ 80640
4324320 | 166320 | 151200 | 181440 | 100800 | 60480 | 40320 | 40320 [ 90720
6486480 | 221760 | 181440 | 201600 | 120960 | 80640 | 50400 | 60480 | 100800
7207200 | 277200 | 201600 | 221760 | 151200 | 90720 | 60480 | 80640 | 120960
8648640 [ 302400 | 221760 | 241920 | 181440 | 100800 | 80640 | 90720 | 161280
108108001 332640 | 277200 | 302400 | 241920 | 120960 [ 90720 | 100800 | 181440
14414400 443520 | 302400 | 362880 | 302400 | 151200 | 100800 | 120960 | 241920
17297280 | 498960) | 332640 | 44352() | 362880 | 181440 | 120960 | 161280 | 302400
21621600| 554400 | 443520 | 453600 | 453600 | 241920 | 151200 | 181440 | 362880
32432400 665280 | 453600 | 554400 | 483840 | 302400 | 181440 | 241920 | 483840
36756720 831600 | 554400 | 604800 | 544320 | 362880 | 241920 | 302400 | 604800
43243200 997920 | 604800 | 665280 | 604800 | 453600 | 302400 | 362880 | 725760
61261200 1108800 | 665280 | 887040) | 725760 | 483840 | 362880 | 483840 [ 907200
735134401 1335600 [ 831600 | 907200 | 907200 | 544320 | 453600 | 604800 [ 967680

Liste des premiers nombres k-hautement composés, pour k variant de 2 a 10.

Proposition I1.2.1.

Si N est k-hautement composé alors N est de la forme
—_ 1, XNy
N =2".3" .. . Puts

avee o 2 0, 2.2 O, y,-

Preuve.
La démonstration est analogue A celle de la proposition I1.1.1 en remplagant 2 par k. W

Proposition 11.2.2.

Pour tout entier x 2 1, il existe au moins un nombre k-hautement composé N tel que
x <N < 2x.



Preuve.
Comme dg(N) < dg(2N), alors il existe M k-h.c. tel que N <M = 2N
Ceci implique la proposition. =

I1.3. LES NOMBRES k-HAUTEMENT COMPOSES SUPERIEURS

Définissons maintenant un sous-ensemble des nombres k-hautement composés, sous-ensemble
qui nous intéresse plus particulierement pour majorer les fonctions di(n). Clest une

généralisation des nombres hautement composés supérieurs décrits au paragraphe 11.1..

Définition I1.3.1.
Un entier N est dit k-hautement composé supérieur (k-h.c.s.) s'il existe € & IR:

tel que, pour tout n on ait :
dy(n) _ d(N)
= .

n® NE

Ceci revient a dire que N est appelé k-hautement composé supérieur s'il existe ¢ & R. tel

que, pour tout n on ait :

lgig_o-gl-(%n—)" - €¢logn slof—odgk(ki)— - € log N.
log d{n)
3.2 o _ _
24 AT |
1.6 : E __”“”“" :
: - I | | | | | -
0 1 2 3 4 2 5 7 lozn

representation du nombre de diviseurs des entiers n
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L'enveloppe convexe des points (log n, log di.(n)) est une ligne brisée concave dont les

sommets ont pour abscisses les valeurs de log N, ot N est k-hautement composé supérieur.

log d(n)
1 1 1 1 1 1
3.2 + -
24 -+ —
1.6 - i
0.8 - L8
O I 1 I T I I
0 I 2 5 < 5 6 7 logn
graphe de l'enveloppe convexe des points (log n, log d(n)).
2 3 4 5 6 7 8 9 10
2 s 2 2 2 2 2 2 2
6 6 4 4 4 4 4 4 4
12 12 12 12 12 12 12 12 12
60 24 24 24 24 24 24 24 24
120 120 120) 120 48 48 48 48 48
360 360) 360 360 144 144 144 144 144
2520 720 720 720 72() 720 72() 288 288
5040 5040 5040) 1440 1440 144() 1440 1440 1440
55440 L0080 | 10080 [ 10080 | 10080 | 10080 2880 2880 2880
720720 | 30240 | 30240 [ 30240 | 30240 | 30240 8640) 8640) 8640
1441440 | 332640 | 60480 [ 60480 | 60480 | 60480 | 60480 | 60480 | 17280
4324320 | 1663200 665280 | 302400 | 302400 | 120960 | 120960 | 120960 | 120960

Liste des premiers nombres k-hautement composés supérieurs, pour k variant de 2 a 10.



On peut remarquer qu'un nombre k-h.c.s. est forcément k-h.c.. En effet,
n &
n<N = dn) < (f\?) d(N) £ dp(N) .

Remarque :

Si N est k-h.c., alors N n'est pas forcément (k + 1)-h.c. (par exemple, 840 est 2-h.c. sans étre
3-h.c.).

Si N est k-h.c., alors N n'est pas torcément (k - 1)-h.c. (par exemple, 8 est 3-h.c. sans étre 2-
h.c.).

Ceci est également vrai pour les nombres k-h.c.s. (6 est 2-h.c.s. sans Etre 3-h.c.s., 24 est 3-

h.c.s. sans étre 2-h.c.s.).

Lemme [1.3.1.
Soit N,, un nombre k-hautement composé supéricur associé€ 2 g,, soit Ny > N et
d,(n) - d, (N))

ntl NiEl

g, > 0 tels que pour tout n 2 N, , alors N est k-hautement composé

supérieur associ¢ A €, et €, S €.

Preuve.
Comme N, est k-hautement compos€ supérieur pour €, on a
d (N » d(Ny)
€n go
N, Ny

D'apres les hypothéses, pour n = Ny,
di(Np) » d(N})

N,°! NE1

(1)

On en déduit

Nivep o &N Ny
Ny ) 7 di(Ny) = N,

ce qui entraine €, <€, .
dy (n) - d (N))

n€l NIEl

Il reste & montrer que pour tout n < Ny, , ce qui prouvera que N, est k-h.c.s.

Pour n < NO,

dy(n) - d (N

nE“ NUSU

et grice A (1),



< :
Nisl NlEl

]EO-EI dk(Nl) dk(Nl)

Lemme 11.3.2.
Soit g(n) une fonction multiplicative. On suppose que Jim g(p*) = 0, alors g est
p -t

bornée et
max, ¢ y 8(n) = H max;., g(p').

p premier

Preuve.
I1 suffit de décomposer n en facteurs premiers pour obtenir le résultat. |

Lemme I11.3.3.
Etant donné € et k = 2, soit N, le nombre k-hautement composé supérieur associ¢ a €,

| I ] )

Pskl/s

avec I(p,g) =
Mk'l} ou[k'1 -1} si k'IIEN

Preuve. (Cf[RA15b])
Appliquons le lemme I1.3.2 a la fonction g(n) =

d i
On a alors LI\EIG) = J] maxy, k(i}: )

€ p premier P
d, (n) k-1+i k-1
K Ccroit avec i tant que ——— & I, 801t 1 s . 1,(:e qui donne le lemme. H
n L.p p& =

dk(n)

nE

Pour simplifier les écritures, définissons x et v; , [ et G(x) tels que

x=kEet v, = log-ﬁk_—-l/logk, (3)
i
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log x
- €Y

T'est le plus grand entier i tel que x'iz2,

G(x) = m(x) log x - B(x) (5)
avec

T(X) = z I et BX) = 2 log p.
PSX. p premier PSX, p premier
Lemme I1.3.4.
Les nombres premiers p qui interviennent dans la décomposition de N, 4 la puissance i

sonttels que  x'*l < p < xVi

Preuve.
pi Il N signifie, d'apres le lemme 11.2.3, que [Il:‘c’ '_ l:| =i 801t 1< R < i+l
y llog (k+1-1) -logi
- /€ N log k ) ;
La premiere inégalité conduitd p < (k———%—f——l = k(e e = xVi
llog(k+1)-log(i+1)
} k + 1 l/e (_ log k ) Vi

La seconde inégalité conduit i p > (i = [) =k \E =x i+l
|

Théoréme I1.3.1.

- vi v; Vi
log dk(Ng) - € log NE =& Z (m(x Dlogx - B(x "))

i=1

=g GxY.

i=1

Preuve.
x"! majore le plus grand premier p tel que p' intervienne dans la décomposition de N, .

\Y : b i .
Donc x ! = x majore le plus grand premier divisant N, . Avec les notations du lemme I1.2.3,
m(NEJ

I
N= [T o' = IT IT»

i=1 1=1 V.
p<x



SOit,

I I
log NE = 2 Z logp = 2 B(XVi). (1)

i=1 - i=1
1

p<x
De maniére analogue,
o(N) Y
€ ‘ N [ ) Tx )
l(p..e) + k-1 k+i-1
dk(NE) = H ] ) = H ( l j
i=1 l(pi,s) i=1
car n(xvi) représente le nombre de premiers p tels que pi I M.
Ceci conduit 2
. 1 | (k +1-1
. og :
I B v k+1—l)_ log k Vi i
log dk(NE) = z,l n(x ) log ( i = Ton % Z‘] m(x ) gk log x,
1 v v
log dk(NE) = EZ m(x ) log x . (ii)
i=l
On obtient le théoréme en soustrayant (ii) de (1). |

Théoréme 11.3.2.

[
. , log n 1 vi
" ¥ < y PREE  HEe s sy y
Pour tout entier n, log d,(n) < logk orlom ( [ + logn E,IG(I();: n)}

olog logn _ |

k-1 i+k-1
JVGLI—[——];)E—R“—““} et Vi_ 10g—i——/logk,

Preuve.
log dy(n) - elogn < logd(N) - elogN

i1

donc log dy(n) < E(lng n + Z G(xvi) }

- ’ log k s 5
Il suffit, pour n donné, de prendre € = g o o dans le théoreme I1.2.1, car, par définition

de I, pour tout i > I, x1<2 et G(xvi) =L H
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Le probleéme de la majoration de dy(n) — nous le verrons lors du prochain chapitre — se

ramene d majorer le second membre de 1'inégalité de ce théoreme.

Autres résultats sur _les nombres k-hautement composés supérieurs

Proposition I1.3.1.

5

Pour k fixé, pour tout € et €' réels positifs, Ng représentant le nombre k-h.c.s. associé a
g,0na
g df=y N, B N,

Preuve.

Avec les notations du lemme I1.3.3, €’ < € implique que

k-1 k-1 ;
I(p.e) = | = = B =1(p,g").
Pl p =1
et en outre
klfr. < kl/r"
Le lemme 11.3.3 conduit au résultat. B

Proposition 11.3.2.

L'ensemble des nombres k-hautement composés supérieurs, pour k fixé, est infini.

Preuve.
y . .. Ll log k
Soit N le nombre k-hautement composé supérieur associé€ a €. Posons €, = a
log p;
avec pj représentant le i#me nombre premier, Les N, sont distincts deux d deux. I1'y en a done
une infinité, puisqu'il y a une intinité¢ de nombres premiers. u
. a+k-1 ; ; e \
Soient €na = log ———— /log p, avec p premier et & entier positif, et E l'ensemble de ces
’ o
nombres.

Erdés et Nicolas ([EN75]) ont montré qu'il ne peut exister p, g et r premiers distinets tels qu'il
existe o, B ety de sorte que l'on ait €n.0 = Eqp = &y POUT UN k fixé. Compte-tenu de cela, on

démontre le résultat suivant :

3



Lemme I1.3.5.
Soit € réel positl :

sie e E, alors il existe un seul nombre hautement composé supérieur associé A €.
sig= €, o POUr UNE seule valeur de p, alors il existe deux nombres h.c.s. associés d €.

SIE=E pour g différent de p, alors il existe quatre nombres h.c.s. associés i €.

o= &qp

Preuve.
D'aprés le lemme I1.3.3, on constate que pour € fixé, il ne peut y avoir plusieurs

nombres h.c.s. que st est entier. Cela revient A dire qu'il existe o entier tel que

i - 1
l'on ait o = , so0it £ = log e 1/Iog p, donc pour € € E. Dans ce cas, sie =€,
pt -1 o P,
pour p unique, alors I(p,g) = l ou ! - 1|, ce qui donne deux nombres h.c.s
p uniq P oF - 1 pE - 1 q
- ; — B 1 1
distincts. Si € = €p0 = €y, POUr g diftérent de p, 1(p,e) -l:pe - J ou [pe 5 lil et
I(g,e) = [ EI ] ou { L 1}, conduisant & quatre nombres h.c.s. distincts. |
qf - 1 q* - 1

II.4. PREMIERES MAJORATIONS DE d(n)

D'apres la définition des nombres 2-hautement composés supérieurs, on peut, 4 l'instar de
Ramanujan [RA15b], trouver des majorations de d(n).

Soit N un nombre hautement composé. Ecrivons-le sous la forme :

.2 (ou?2.3).

D'aprés le postulat de Bertrand (si x 2 1, il existe au moins un nombre premier p tel que
x < p < 2 x), on peut éerire, pour tout i compris entre 1 et r = 0(N),
o, 2r-1+ 1,

ai+l _<. r- i-



E

. |
Grice au lemme 11.2.3, on a, pourk=2, o= {-—-——J
Pi —

. ) 1 4
Comme o; 2r-1+ 1, r-i1+1 < [—;——lj,smt
pi —

¢ 1
By r—1+1

1 I/e
), S|l +—] .
Pi ( r—i+l)

l /e
g |1+ .
p|+l ( l__i_'_l)

Comme pj,| est le nombre premier suivant p;, on en déduit que p; est le plus grand premier

I

+ 1,

De méme, nous obtenons

/e
lus petit que (1-}-———] ;
SR r—i+1

1fe
Par conséquent, py est le plus grand premier plus petit que [l + —) , P2 est le plus grand
7

I/e

. . i ; . :
premier plus petit que (1 + —l] » «oo 2 Pr-1 €St le plus grand premier plus petit que (5) y
l‘ —

pr est le plus grand premier plus petit que ot

3

pEx
P premier

e I/e
N est ainsi de la forme cxp(@(f") + 8(;] ¥ B(E) +J avec 0(x) = Z log p.

3 4\

(3)" a3
d(N) est de la forme 2“(2”[}'(3) 3 (%] Yo avee n(x) = Zl
& pEx

p prelnier

@) _ dN)

Comme, pour tout n,
n NE&

)

; » . I 1 1 1
Si I'on choisit pour € successivement les valeurs 3> 3> 7 Ctz nous obtenons, pour tout n,

d{n) £ \3n,
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. 3n
d(n) < 83/22
(n) 35
d(n)S%# /.
50500
d(n) < 192 3226250
1910089906

On aura I'égalité dans la premiére formule pour n = 2°.3 = 12, dans la seconde pour n =
2*.3%.5.7 = 2520, dans la troisidme pour n = 2°.3%.5*.7.11.13 = 21621600, et dans la
dernidre pour n = 2°.3*.5%.7°.11.13.19.23.29.31.
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Chapitre III

MAJORATION DES FONCTIONS dy(n)

Dans ce chapitre, nous proposons différentes majorations des fonctions di(n) en
fonction de k et de n entiers. Pour cela nous utilisons les nombres k-h.c.s. présentés dans le
chapitre précédent. En effet, les couples (log N, log dg(N)) pour N k-h.c.s. forment
l'enveloppe convexe de l'ensemble des points (log n, log dy(n)) ; les majorations de dy(n)
découlent de cette propriété. Nous obtenons notamment que, pour tout k entier et pour tout
nz=3, ona

logn

1 )
logd, (n) < 5 log™ k
log?2 loglogn

et

3
logd, (n) < log k—2B1 (1+1°*~>k 1,65 )

loglog n log® 2 loglogn
Nous obtenons de meilleurs résultats pour k inférieur ou gal a 25.

Au second paragraphe, nous montrons que ces résultats sont meilleurs que la majoration
due a Norton ([NOS8S5]).

ITL1. INTRODUCTION

Comme nous l'avons vu (théoréme 1.3.2)
logd, (n) € logkli(log(n)) + Ok((log n)cxp(—c«/log log n))

Par suite, il existe des fonctions kl(k) et A4 (k), telles que, pour tout n,

log
log dy(n) <A, (k) logk el (1)

log log n’
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log n 7\'z(k)
log log n Licth log log n

log d (n) < logk %

Le but de notre travail est d'obtenir de bonnes estimations de A (k) et A (k).

log log N log dy (N)
log klog N
(log log N)? log dy(N)
log k log N

On pose A (kN) =

et Ay (kK N) = - log log N,

alors M(K) = MUK AN et Ay) = N

Ay (KN) .

Nous nous proposons de démontrer les résultats effectifs suivants :

Théoréme ITI1.1.1.

log® k
2: ), on a

Pour tout k = 11 et pour log n > exp (Iog 5

5 logn
logd, (n) < =logk
gdy(n) 4 € log logn

et
2

log d. (@) <logk —2 (14> )
0g dyn) <log loglogn +10g log n”

Nous pouvons obtenir une majoration plus générale.

Théoréme II1.1.2.

Pour tout k entier et pour toutn 23, on a

logn

logd, (n) < A log’ k —=——
log 2 loglogn

et

3
log n (l_l_lo;ck 1,65 J

logd, (n) < logk 3
Bdy () < log log log n log® 2 loglogn

log* k]

Le théoréme II1.1.1 signifie que pour tout k 211 et pour logn > exp( o5
0og

36
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Al(k,n)<§ et A,(k,n) < 2.

Le théoréme III. 1.2 signifie que pour tout k entier,

1462 logk et A,(k)<

Ay (k) <
166 log 2 log

1,65 1
—log" k.
gt 2 8

Le tableau du paragraphe 4 donne de meilleures estimations que le théoréme pour k < 25 et pour
tout n, permettant ainsi de retrouver les résultats de Robin ([RO83b]) pour k = 2 et 3.

I1.2. COMPARAISON AVEC LE RESULTAT DE NORTON

Norton ([NO85]) montre que, pour tout k = log n,
logd, (n) <k +2logn.

Pour cela, il utilise la fonction de Riemann de la manidre suivante : comme
+oa

E(s) = de(n)n'“, ona {(s) > n~"d, (n) pour s réel, ce qui revient A dire que
n=1

logd, (n) < slogn + klog{(s).

Pour x supérieur & -1, on a

FUSN +on

+
Ju“du < Z nt <1+ Ju“"du.
1 n=| 1
Hnn -x+1
- u |
Or ju “du = =
; = L b x—1
D'ot, pour tout x > 1,
1 | X
SOx) <1+ = .
x -1 x=-1 x-1
s . l+s-1 : —_
En conclusion, pour touts > 1,ona {(s) < 1 ce qui permet d'écrire

logd, (n) <slogn+klog{(s) <slogn-klog(s —1)+k log(l+ s —1).

Pour tout x < -1, log (1 + x) est intéricur ou égal i x, done, pour toutk > 1, s> letn> |,
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logd, (n) < slogn—=klog(s - 1)+ k(s = 1).

Il ne reste plus qu'd minimiser le terme de droite en fonction de s

La dérivée de t(s) = slogn — klog(s — 1) + k(s = 1) vaut logn+k - qui est positive

S —
k . N
pour § > 1 + ———— . Le minimum de t(s) est donc atteint pour s = 1 + ———k—— d'ou
logn + k logn+k
k log o k
logd,(n) < logn+ logn + K = ] =
logn+k logn+k logn+k

log
=10gn+k+klog(1+ Oin).

.. g log . Bl
La majoration logd,(n) < logn+k +k log(i + Oli = ) est vraie pour tout k supérieur a 1 et

pour tout n supérieur ou égal 4 1. Si l'on se restreint & k = log n, elle devient

1ogdk(n)<k+1ogn+klog(1+m%“]<k+21ogn. m

On montre que la majoration du théoréme II1.1.2 est meilleure que celle-ci dés que
k> 103;2'58 n, et que pour tout B > 1, il existe N tel qu'elle soit meilleure pour k > log8 netn

= N. On peut calculer N pour des valeurs de 3 :

B N
2,58 3
2,52 20

2.5 24
2,25 172

B 32261
1,75 30

1.5 e521

tableau III.1

Pour établir cela, tout d'abord on écrit le résultat du théoréme II1.1.2 sous la forme :

pour tout n >3 et pour tout k,

l9g R Lo 10g2k = 2381 logzk—ﬁgn—

log dy(n) < log log n log 2 log log n’

38



i log2 k

- ToElog n] logn >0 (avec

On cherche alors dans quels cas on aura H(k,n) = k + [2

k>log n et c = 2,381), ce qui revient a dire que la majoration du théoréme I11.1.2 est
meilleure que celle de Norton. On montre que H(k,n) est croissante suivant k pour k = log5 n.
On vérifie ensuite que H(log5 n,n) est positive, ce qui est vrai. Ceci prouve que, pour N = 3,
B =35 convient. Mais on peut avoir de meilleurs résultats en remarquant que, si
log"n<k< log¥"n,avecl <u<v <54 alors

log® !n-cv(loglogn)?+2 < log” " ! n - cu (log log n)* + 2.

H(k,n) _
log n

I1 ne reste plus qua étudier cet encadrement pour u et v convenablement choisis. De cette
maniére, on montre notamment que H(k,n) est toujours positif dés que logz’58 n <k <log’n,

ainsi que les autres résultats du tableau III.1.
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Représentation de I(k,n) = k + 2 log n et de j(k,n) = %g% log k

logn
log log v

II1.3. ORGANISATION DE LA PREUVE

Nous allons montrer, avec les notations du paragraphe 1, que les maxima 7\1(k) et 7\2(k)

sont atteints pour des nombres k-hautement composés supérieurs. Il suffira ensuite de majorer
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A; (k.N) et Ay (k,N) pour les N k-h.c.s. assez "grands” et vérifier par le calcul numérique pour
k fixé (k variera de 2 A 25) que les maxima seront atteints pour I'un des autres entiers k-h.c.s.

C'est une généralisation de la démonstration pour k = 2 dans [NR&3]).

Lemme II1.3.1.

{
e b -1
= - —5—¢', alors pour t 2 2, on a

Soit b un réel supérieur A 2, soit Fy(t) = 3
b

Fy(t) < Fy(b)

Preuve.
t

Ona Fy(t :#(b- 1)(b-1) (t ol b l)‘“" comme b > 2, il vient b [<2

La fonction F(t) est donc croissante jusqu'd t = b, puis décroissante. |

Lemme I11.3.2.
On suppose que le maximum ll(k) est atteint en N, alors N est un nombre k-hautement

composé supérieur associé a
log log N - 1

(log log N)2 :

e =A (k) log k

Preuve.
Soit N' le nombre k-h.c.s. immédiatement supérieur i exp(exp 2). Nous allons montrer
que le maximum A, (k) est atteint pour un nombre k-h.c.s. supérieur ou égal a N', ou pour un

entier inférieur 2 N'.

D'aprés le lemme I1.3.1, il suftit de démontrer que, pour tout n > N',
log di(n) - elogn < log di(N) - € log N.

Comme n est supérieur 3 N, log log n sera supérieur 3 2. On peut écrire

log d(n) - € log n =(10g d(n) - Aq(K) log k —of R )

log log n

, log n ) ,
+(7L1(k) log k—*;—log fn - o n}

La premiére parenthése est négative (par définition de A (k) qui est un maximum). La seconde

parenthése vaut A, (k) log k Fy(log log n) avec les notations du lemme HI.3.1 etb=1oglog N.

On a donc
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lo

N
log log N ~ elogN = log di(N) - e log N. ]

log d(n) - elogn < A (k) log k

Lemme IT1.3.3.
Soient f et g deux fonctions C2 définies sur R* 2 valeurs dans R telles que f soit
strictement croissante pour t = t et gut‘l concave sur l'intervalle [£(ty), + o[ pour t 2 t,. Si X

et x sont supérieurs a t, alors

£X)

20 - Fi 100 < 200 - 5 100,

t'(X)

Preuve.
gof™! étant concave, on peut écrire pour y et Y 2 (),
got™! (y) - gof ' (V) < (y - Y) (got™)'(Y).
Il suffit alors de poser y = t(x) et Y = {(X) pour obtenir

g2(x) - g(X) 2 (f(x) - {(X)) f(%)

qui donne le résultat. |

Lemme II1.3.4.

‘ o 3 ) G % i
Soient f et g deux fonctions C2 définies sur N* A valeurs dans R avec g croissante

positive. Supposons que
1) N maximise f(n) - €' g(n) sur N* pour €' > (),
2) il existe M > N et € > () tels que pour tout n supérieur ou égal A N,
f(M) - £ g(M) 2 f(n) - € g(n),
alors M maximise f(n) - € g(n) sur N*

Preuve.

La deuxiéme condition implique que M maximise f(n) - € g(n) pour n 2 N. Il reste i le
montrer pour n < N.
Dans ce cas, il suffirait de montrer que t(n) - € g(n) < f(N) - € g(N), puisque d'aprés 2) pour
n= N,

f(N) - € g(N) < f((M) - & g(M). (a)

D'apres 1), on a f(M) - &' g(M) < f(N) - &' g(N). (b)
En sommant (a) et (b) nous obtenons € (g(M) - g(N)) < &' (g(M) -g(N)), soit €' -& >0, car
gM) 2 g(N).

On sait que f(n) - €' g(n) < f(N) - €' g(N). Puisque (&' - €) g(n) < (' - €) g(N), on obtient :
t(n) - &' g(n) + (&' - €) g(n) St(N)- ¢ g(N) + (¢'-¢) g(N)
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et donc f(n) - € g(n) < t(N) - € g(N) < (M) - & g(M). |

Lemme III.3.5.

Si f(t) =-—l— et g(t) = 19 alors gnt"' est concave sur l'intervalle [£(t,), +e=[ pour
log t log~ t

tg = exp(2 + V2).

Preuve.

Démonstration immédiate |

Lemme II1.3.6.
Soit A > 1. Si N maximise

(2) log dy.(n) log n log n
(n) = el st i
log k log log n (log log n)

alors il existe M tel que si N > M, alors N maximise

(1) log dy(n) , logn
g )= logk " loglogn

log log N -
log log N (log log N - 1)

avec A'=1+A

Preuve.

On peut écrire ;: (n) = 5(2) (n) + (g_.“) (n) - 5(2) (n)).

D ) - @ () _logdy(m) . logn log dy(n) ,_logn 5 logn
B\ = By T logk 7 loglogn logk log log n (log log n)>
Y log n log log N - 2 log n

- ((log log n)2 “log log N (log log N - 1) log log n )

avec A' donné dans l'énoncé.

et, grice au lemme

(x) =
IOE X log?(x)

2.1IL.6, on a xy = exp (2 + V2). On pose aussi x = log n et X = log N. Soit M le plus petit
(1

On utilise alors le lemme 2.I1.4 en posant f(x) =
nombre tel que log M > x, et maximisant 5 (n) pour une valeur de W, alors si n et N sont
supérieurs i M, le maximum de L (n) - ﬂ (n) sur les n supérieurs a4 M, se trouve en N.

Ceci implique que le maximum de g A (n) sur les n supérieurs & M est atteint en N. Donc,

d'apres le lemme I1.8, N maximise gl, (n) sur tous les n. |



Démontrons maintenant la croissance des fonctions k — 7\,1(1{) et k— 7\.2(]() :

Lemme IIL.3.7.

avec b 2d, alors IIWQ&—‘L < I—Q*g—&“
ogb T logd

o=
=|C

Soient a, b, ¢, d réels tels que

Preuve.

% ‘j implique log% < Iog% et b=dimplique log b= log d, ce qui entraine que
log % log LE loga < loge loga _ logce
Togb Zlogd "t Tog b "1 S Tagg - L-etparsuite, 0% < {5pa u

Proposition I11.3.1.

log dy(n)

est croissante.
log k

Pourtoutn e N, n> 1, la fonction k —

Sin est sans facteur carré, cette fonction est constante, sinon elle est strictement croissante.

Preuve.
Posons a=d(n), c=k. b=di (), d=k+1let n= I pi-
i=1

Ona d(n) <d (), k<k+1 et di, )2k +1 (avee I'égalité uniquement dans le cas

dk(“)

deqn) — k + D
log dy(n) _ _ logk
log dyyq(n) = log (k + 1)

ol n est premier) ; donc, si on a avec le lemme précédent,

dy (n) k .
dk+](“) < g soit

11 reste donc 4 montrer

= k (k+l)_..(ocl+k-1)

ﬁ ozi+k- | H
dk(n) j=1 k-1 i=1 &i! f[ k H k
dk+i(n) —_— — i = b

- (a. 5§ (k+1) (k+2)...( +k) i=1k+a.  i=1k+a,
1
i=1

i=1

C(l
*

k k k
< <

i=1k+0ti - k+oci _k+1'

k

w(n)

=

or

Ceci impligue la proposition.
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w(n)
Si n est sans facteur carré, i.e. n= HP'. , alors
i=1
w(n)
& o log d,(n)
d (n) = H (k l) = k™™ etil vient W = w(n), indépendant de k. |

i=1

Corollaire TI1.3.1.
Pour tout entier N strictement supérieur 3 1, k— A; (k,N) et k= A, (k,N) sont

croissantes. Si N est sans facteur carré, ces fonctions sont constantes, sinon elles sont

strictement croissantes.

Preuve.

Le corollaire découle immédiatement de la proposition précédente, puisque N est fixé. H

Corollaire ITI1.3.2.
k= A(k) et k— Ay(k) sontcroissantes.

Preuve.
En effet, pour tout k, supposons que les maxima A (k) et A, (k+1) soient respectivement

atteints en N eten N

On a par conséquent, pour tout entier n distinct de N,
A(k+1) = Ay (k+1.N") > Ay (k+1,n)

et donc notamment, A;(k+1) > A (k+1.N). (iii)
De plus, d'aprés le corollaire II1.3.1, pour n fixé, A (k,n) est croissante, donc pour n = N
A (k+1,N) > A (k,N) = A (k) (iv)

(iii) et (iv) entrafnent que A (k+1) >4 (k), et ce quel que soit k.
On procede de maniere identique pour A, (k). &

II1.4. RESULTATS EXPERIMENTAUX

Nous allons, grice aux lemmes II1.3.2 et II1.3.6, donner des majorations de dy (n) pour k
compris entre 2 et 25. Dans tout le paragraphe, nous considérerons k inférieur ou égal a 25 et

x = k'€ supérieur a 4000.
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Lemme III1.4.1.
Soit N; un nombre k-hautement composé supérieur relatif 2 e, alors ona:
logN, < cx=ck!®

avec ¢ défini dans le tableau 1 ci-apres, en fonction de k.

Preuve.

On a calcul€ la valeur I(p,e) dans le lemme I11.3.2. On en déduit que :
I(p,e) < ke- : < el puisque e" - 1 > u.
p-- 1 elogp

Il vient

k-1
logN =2, I(pe)logp < () + 2 —
£

P <X
prv2
8(x)+(k-l) k (X I e(x %
On majore alors n(xvz) :
x'2
X2 ot 8(x"2 A
r = 2L, j s [LU)'} : }
log ) t log log V2 ogt
e(xvz) " 2,5 ax’2
log x'2 (log xv2)2
en posant a = 1,000081 et en utilisant la majoration 8(t) <a t ([SC76]).
11 vient donc
") V2
k=il BT, 2.85a%x *° %)
log N < B(x) + Tog 2 + > - B(x"9)
Y5
soit, logN< ax | 1 s IR L +klli 22’5
V2 vzlog k 08 v; log x

La partie entre crochets décroit suivant x, done, comme on a x > 400X), il vient

logNSax[l g ot (El - l)+k10_gé 725 :I
apnpv2 | Wvlog k v5 log 4000

On obtient log N < ¢ x, avec ¢ donné par le tableau 1, pour 2 < k < 25.

Lemme T11.4.2.
Pour tous les entiers N k-h.c.s. relatits d g, on a
Ay (k,NE) < L,

avec Ly donné en fonction de k dans le tableau I11.2.
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Remarque.
Ces majorations sont loin d'éure les meilleures possibles, mais elles suffisent pour la

suite.

Preuve.
A partir du lemme I11.3.2, avec x = k18 on déduit ;
loglog N, < logx+a
ot o a pour valeur log ¢, avec ¢ donné par le tableau précédent, suivant k.
2

t
t-1

La fonction t — est croissante pour t 2 2, or log log N, > 2.
2 : 2
e (loglog Ny) (log x + o)
Tog kK Tog 1og N, -1 = fag v1(
0F g 10g INg (log x)(log x + o - 1)

(t + o0)? o 1
avec Hy=———— = |1 + = |1 + ————
e B tt+ o - 1) ( " t)( +t+0t-l)

On a donc = H(log x),

H(t) est décroissante dés que t> 1 - o, on en déduit pour x > 4000,

pour k <25, H(log x) < H(log 4000) < L;. |

k c L, L2 k c L, LE

2 1,087649 | 1,147040 | 1,431274 || 14 | 2,125113 | 1,226437 | 2,404222
3 1,152962 | 1,153943 | 1,510311 || 15 | 2,221622 | 1,231710 | 2,473780
4 1,226452 | 1,161259 | 1,595237 || 16 | 2,318654 | 1,236786 | 2,541326
5 1,305588 | 1,168665 | 1,682413 || 17 | 2,416135 | 1,241676 | 2,606946
6 1,388814 | 1,175987 | 1,769792 || 18 | 2,514005 | 1,246392 | 2,670727
7 1,475115 | 1,183131 | 1,856204 || 19 | 2.612210 | 1,250944 | 2,732754
8 1,563791 | L1,190051 | 1,940984 || 20 | 2,710708 | 1,255342 | 2,793110
9 1,654346 | 1,196726 | 2,023762 || 21 | 2,809461 | 1,259594 | 2,851874
10 | 1,746413 | 1,203149 | 2,104353 || 22 | 2,908437 | 1,263708 | 2,909122
11 | 1,839715 | 1,209323 | 2,182681 || 23 | 3,007608 | 1,267693 | 2,964924
12 | 1,934038 | 1,215255 | 2,258741 || 24 | 3,106949 | 1,271556 | 3,019348
13 | 2,029216 | 1,220956 | 2,332567 || 25 | 3,206440 | 1,275303 | 3,072459

Tableau III.2

11 suffit alors de calculer les valeurs de A | pour tous les entiers N k-hautement composés pour

k variant de 3 a 25, et tels que k€ < 4000. On s'apergoil alors que le maximum est atteint pour
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l'une des valeurs que 1'on a calculées. Les résultats obtenus au lemme 111.4.2 pour les grandes

valeurs de N sont inférieurs au maximum trouvé sur l'intervalle étudié expérimentalement.

On procede d'une maniere analogue pour A, (k)

Lemme II1.4.3.
Pour tous les entiers NE k-h.c.s. relatifs A €, on a
Ay (k,NE) < L,

avec L2 donné en fonction de k dans le tableau II1.2.

Preuve.
Si N est k-h.c.s., pour x > 4000, on a, d'apres les lemmes I11.3.6 et I11.3.2,
_ log log N - 2 log log N ~1 . .

_ _ 4 o . log log N log log N
Onobtient A, (k,N,) = (105 log N ( log x 1) ¥ 1) loglog N - 2

log log N
log log N -2

N —=log log N (M - l) + | est croissante et N — est décroissante.

log x

On a log N > 8(x) > 0,970 x, pour x = 4000 ([RS62]).

2
C 2 i .
Donce, A, (k,NE) S(Iog e 1) (1 + Tog % - 2‘()3()459) , avec ¢ donné dans le

tableau 1 en fonction de k. On en déduit les valeurs de L,. |
Pour k variant de 2 4 25, on obtient les résultats du tableau et du graphe ci-apres.

Description du tableau IIL3.

Pour k fixé, on a
o d, Th0% . logi 2B |
o= e log log n’

On a I'égalité pour le Q "™ nombre k-hautement composé supérieur N; (donc Q(N;) = Q).

En outre, o(N;) = o,.

Pour k fixé, on a aussi

logn l2

+ .
log log n log log n)
On a 1'égalité pour le Q""" nombre k-hautement composé supérieur N; (donc Q(N;) = 2,).

log d (n) < log k

En outre, o(N,) = m,.
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On aura

log d,(n) < logk OER a2 5 ©)
= " loglogn log logn
pour tous les entiers supérieurs au ™ nombre k-h.c.s. qui est peu différent de ¢
Plus précisément, (6) est véritide pour tout n tel que logn >t

k 7\,] Q1 o) lz Qg W, r t

2 1,537940) 15 8 1,934851 39|23 - 0

3 1,591410 14 6 2,108741 41 2] 33 258,106

4 1,633729 16 2,262774 4() 18 131 472,272

b 1,671436 16 2,397857 4() 16 179 703,429

6 1,702925 17 6 2,516797 4() 15 230) 964,250)

7 1,729944 17 6 2,623119 42 15 281 1245,516

8 1,754853 17 5 2,720396 44 15 385 1537,471

9 1,778192 17 5 2,811159 48 15 389 1850,378
10) 1,799313 19 5 2,896447 49 15 446 21 79,352
11 1.819757 19 5 2,975690 5() 14 504 2520,528
12 1,838195 19 | 5 3,051010 51 | 14 564 2864,949
13 1,855306 2() 5 3,122778 48 12 622 3246,159
14 1,871651 19 4 3,190852 48 12 683 3632,683
1S 1,888000 19 4 3.256273 51 12 747 40)39,874
16 1,902959 19 4 3,319475 52 12 808 4435,086
17 1,916874 20 | 4 3.379595 51 ¢ 11 873 4859,265
18 1,930498 2(0) 4 3,437606 52 11 939 5295,116
19 1,943268 20 | 4 3,493201 54 | 11 1006 5753,693
20 1,955274 2() 4 3,546798 54 11 1074 6198.,453
21 1,967050 22 4 3.598219 55 11 1141 6664,362
22 1,978588 22 4 3,647277 56 11 1209 7143,669
23 1,989525 22 4 3,695379 57 11 1278 7615,688
24 1,99996() 23 4 3,741739 58 11 1346 8117,174
25 2,010263 23 4 3,787142 64 11 1424 8627,824

Tableau 1I11.3
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38 1 1 1 | 1 1
3.4 - L
A2

. -
2.6 o -
2.2 - -

Al

1.8 o /’/ =
1.4 - »

1 1 i 1 1 T 1

0 4 8 12 16 20 24 2g k

I1L.5. RESULTATS PRELIMINAIRES

Lemme III.5.1.
a) Pour tout x 2 exp (1 /0,09),

; 2,95 x
Li (x) < l x, x2 + PR
OE X Jogx  log’ x
b) Pour tout x = exp (9),
. X 3 X
Li(x) < + = .
logx = 2 10:2 "
¢) Pour tout x 2 exp (9,5),
_ 4 X
Li(x) < + = )
logx 3 log2 5
Preuve.
. X X 2,95x C .. 177
Li(x) - oo 5 + - est une fonction décroissante pour X > exp 10
0og x l()g X log” x
Li (x) z + 2 2 est une fonction décroissante pour X > e(’
log x 2 Iog2 X .
., X 4 X : . . 8
Li(x) - o6 — = est une fonction décroissante pour X >e°.
QX 3 log~ x
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Grice aux tables du logarithme intégral, on remarque que ces fonctions sont négatives deés que,
respectivement, x = exp (1 /0,09) = 66910, x = exp (9) = 8103,1 et x = exp (9,5) = 13359,8. 1

Lemme IT1.5.2.

Avec G(x) =m(x) log x - 8(x) on a, pour tout x = 2,
X 2,9502 x

Olx) = +
= log x log>x
) X
G(x) £ 1,61 Tog x
Preuve.
On vérifie 4 la main pour x <exp (1/0,075) = xy= 617437 Pour x 2 X, on écrit
X X0 X
Bt B(t B(t
IG(X): ()2 dt = ()2 dt + ()2 dt.
0g X tlog“t tlog“t tlog“ t
2 2 X(
D'aprés Schoenfeld [SC76], 8(t) <t pour tout t < 10 ¢
’ t
8O < L+ ey avee o = 0,000081.
On obtient ainsi :
i X
1G(,x) < dt2 o dg
ug% log~ t log” t
o
= Li(0) - gyx+te fo+e
avee T =e LI - oo - =2V b g Li(D)s Slleg) <0
2 ( log X~ 12 x) log 2 0 :

Le lemme II1.5.1 implique que
G(s) < X, 2,95 x
log x ™ op2x logx

2.93 %

’
lng?’x

o
3

X 2,901 %
+ ]
log x log?x

d'on G(x) <

La seconde inégalité se déduit directement de celle-ci pour tout x = 137. On vérifie A la main

pour x < 137. u
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Nous allons maintenant définir une fonction A(L) qui nous permettra de majorer 2 G(x"i)
i2i
0

Lemme II1.5.3.

L-1
. log (m+ 1)
Soit A(L) = m%;l:(m) (——h)—gm——— -1 }
a) Pour tout L = 3
AL) < 21883 - L T
oh_
b) Pour tout L = 42()
A(L) < 102 ZLL‘
g
¢) Pour tout L 2 903
15 L
A5 Iog2 L
d) PourtoutL =23
L 6,0391
AL) < ( :
log? L log L
Preuve.
Pour L > e(), on &crit
4
e ) L-1 ‘
, log (m + 1) , log (m + 1)
A(L)-—mzzzﬂ:(_m) (“TE)E-I-I]_—- I) + Z in(ln) ("Ing—m" 1}
m=e¢ +
| L-1
~ slog(m+ 1) m(m)
il N P
Qi % n(m)( log m 1)_ 2; m log m
m=e + 1 m=e¢ + 1
L-1 e
1 3 1
< —_ L]
$% g 3 -
m= <,+10L m m=e +10E‘ m
eci ¢ (145> [RS62
ceci car m(x) < HET ( + 3 Tog x) [RS62],
s0it
L L-l
- log (m + 1) | 3 1 , oy
z Tt(m)(f—l)g ( = +7‘ 3 ]dx:t((L—l)'t(e)
m=etel fg \ log™x log” x
. . X
avec f(x) = Li (x) - O& (le !OL S
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4

€

4 log (m + 1)
En outre on constate que f(e’) > Z n(m) | ———— - 1)
S log m

3
D'apres le lemme IIL5.1, Li(x) = l—(é—x + i -——xﬂ,— pour x > e?,

log= x
On obtient, par conséquent, que  A(L) < I(L) = A Li + : I% , Soit, pour tout
2 log® L 8 log” L
L>ed, A € 2 —5—.
log® L
log” L

La fonction OL A(L) croitde L =32 L =85, puis décroit de L=852L =8103 (= 69)
72 72

pourLentier. SiLe N, ELAQ) < i [L][L] A(IL]) .

Ceci permet de véritier (a), (b) et (¢) grice au caleul des valeurs de A(L) pour L entier variant de

1 4 903.

X 2,95 x
+

3

5 (lemme lc), pour
log© x log” x

Démontrons (d). En majorant Li(x) par 10); X

L = [exp(1/0,09)] on obtient :

AL S HD) € —5— + 1205 —&
log= L log” L
= +5,2
10g2 L 10g3 L

Pour L compris entre 3 et [exp(1/0,09)] = 66910, le maximum est atteint pour L = 405 et est
inférieur a 6,0391. |

Lemme II1.5.4.

Vi ) k-1 1 XVi{)
2 2, Glx Y < 2,1883
i2i,

logk 2 logx
V.
)

b) Pour tout X et iy, vérifiant x" 10 > 419

V.

Z G( Vi) <2 k -1 X 0
X - 5 i

oy log k .

o

I
2 logx



¢) Pour tout x et iy vérifiant xVio > 902

Z Gl < 15 k-1 [ x
X = — :
{5y 8 logk V.l log x

0

V.
10

V.
§ T o e k-1 1 %° |, 60391
X s —_— +
i>i, log k v2 logx( v. log x}

; 1
in 0

Preuve.
. Vi
SoitL =[x""0]+ 1. Pour toutm,2<m<L- 1, on pose

B, =card {i/m <x"i<L).

G est une fonction croissante donc

m<x'l<m+1 = Gm)<G(x")<Gm+1)

m+ 1

zG(xvi)S Z B i([—)d

; 2 m
12 0 m=
m

n+1

Z B, m(m) log

m=

Puisque v; log x = log x 10LL log k, x> m est équivalent 3 v;log x > log m,
1
i+k-1 T k-1 o s oo =1
dong log ————— > elogm ce quiimplique —— > elog m, soit i<——— ¢t
i i e log m
5 k-1
finalement, f,, < ——.
€ log m
On obtient
m + 1
Z L-1i log -
G(W( b m) —————
> i Ezlz = log m

D'apres le lemme I11.5.3 a), on a :
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v k-1
¥ Glx ) € —— 2,1883

12 € log2 L’
Yig
T Gl < 21883 .~ X
oy -7 logk VZ log x°

io
D'apres le lemme I11.5.3 b), on a, pour iy et X tels que xVi0 > 419 ;

k-1 | x

V.
1
<
i§ Gl = 210gk 2 log x
=10 V.
10

D'aprés le lemme I11.5.3 ¢), on a, pour ij et x tels que xVi0 > 903 ;

ZG(vi)<15k-l I x
X ) & — ;
{2 g logk v? log x

V.
10

D'aprés le lemme I11.5.3 d), on a:

S ol 2 oL Iox |, 60391
X = _ *
i log k V2 log x [ v, log x]

Remarque.
Sil'on prend iy =l alors v| = L et le lemme II1.5.4 devient :
k-1 x

oy Y05 Y € IRES e
isi -7 logk log x

b) Pour tout x 2419 :

z G(xvi) < k-1 X

2 — :
e log k log x

¢) Pourtout x 2902 :

=

ZG vi 15 k-1
i ) 8 logk log x’

A

d) Pour tout x =2 :

Vi k-1 x 6,0391
ZG(X ) < (l + )

31 log k log x log x



Proposition II1.5.1.
Ona

X l 29502 1,61 2,19 (k-1)
log dy(n) < logk log x L+ log x L+ log x ¥ 1-vy * 2 1y
VX v310g k x
k+1 k+2
log o) log =
avec x =logn, \2) “Togk ° Vq = Tog K

Preuve.

On utilise directement les lemmes [I1.5.2 (pour majorer G(xvl) et G(sz) ) et I11.5.4a)

pour les autre termes de la somme provenant du théoreme 11.3.2, d'ol

Y X 2,9502 1,61 k-1 1
ZG(K)SI— L+ + +2,1883 — .
i2iy 0g X 0g X L-v, log 2 1-v,
v, X v,
2 3
Remarque.
Z G B = k-1 x 6,0391
> 4= [ogklogx( * Iogx)

A partir du (d) de la remarque provenant du lemme I11.5.4, et grice au théoréme 11.3.2, on peut
en déduire que pour tout A > 1, il existe N tel que, pour tout n > N, on ait

log n k-1 A

¥ o o S S ia—
log d(n) < log k log log n * log k log log n)'

I1.6. DEMONSTRATION DU THEOREME I11.1.1
Le théoréme IIL. 1.1 est une conséquence simple du théoréme suivant qui est un peu plus fin.

Théoréme I1L.6.1.

log® k - 0,609511 log k
Pourk>13 et logn>exp( £ . = )

’

10g2-—k—



N o logn ( 2 )
Ogiylm) <iog log log n +log log n*”
Preuve.

Pour démontrer ce théoréme, il sutfit, grice & la proposition II1.5.1, de trouver pour

chaque k l'ensemble des x tels que

2,9502 1,61 2,48 (k="1)
+

+ +
log x lvg 2 L-v

3
Vv, X v, X log k

: . logZ k + Alog k A
Soit A tel que l'on ait x=logn>exp g * 105 . Ceci implique que
log 2 - k

(1-v,)logx=logk + A, et donc que x1-Y2)2 ke

q
Nous obtenons (1 - v,) log Egl—(—l = (L-vy) log ¢ -_ko '

2k
gy
dot (1-vy)logx 2 —aK (logk + A).
log 3
Par conséquent, on a
2,9502 1,61 2,19 (k- 1)
+ + <
log x Lvy 5 9,
VX vylogkx °
29502 (log k - log =1
2302 (logk-log ——=) | 41 ook 2,19 (k - 1) log k
logk+ A)log K +1 kil T 3K
o K +2 )
log eXP | —53— (logk + A)
log =7

log 3k - log (k+ 2)

L6llogk 219k 's-beleD o0y -
log(ak) log k * k+1 T log 3k - log (k+ 2) (
ka lOg 2 2 k log 2k - log (k + 1)
= log 3 @

k+1
2,9502 (log k - log —2—)

ol a=c¢.



Appelons f(k) la fonction du second membre de I'inégalité (7) : le lemme II1.6.1 ci-

dessous nous permet de conclure.

Etant donné que I'on connait, grice aux résultats expérimentaux, les valeurs de ?Ll(k) et de
lz(k) pour k allant de 2 4 25, il suftit donc de trouver a convenable pour k supérieur ou égal a

20, donc a tel que :

log 78 - log 28

1,61 log 26 2,19.26 32-10827 15096 .
log(26a) log 26 7 o e
26 10g 7 id IOgZ % ulug 52 - log 27

27
2,9502 (log 26 - log 7)

On trouve alors a = 0,543617, soit A =- 0,60951 1.
Il suffit de vérifier ensuite, grice aux résultats expérimentaux, la validité de la formule énoncée
dans le théoréme, pour 13 < k < 25. |

Lemme II1.6.1.

t est une tonction décroissante de k.

Preuve.

Démontrons que chacun des termes de f est décroissant :

- Premier terme :

log k+1
95() 2 2 : ; ;
T%*’é%&% (A -W sont décroissante en fonction de k..
k+1
2,9502 (log k - log )
donc REED o B est décroissante suivant k.
- Second terme :
1_01%_1_(_ et ——kl——_;—l sont décroissantes, par suite, 1,61 log kl est donc
g = kalog =—

décroissante en fonction de k.
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- Troisiéme terme :

gk . est décroissante pour tout k entier, et, comme
log2(k/3)
k2> 1
TkY4 3 & Kred
3k 5 2k
k+2 7 k+1

log — K jop 2K
8% + 2 Ex + 1°
les deux fonctions suivantes sont décroissantes :
log 3k - log (k+ 2) log 3k - log (k+ 2)
El- log 2k - log (k + 1) et k log 2k - log (k+ 1) )
Etant le produit de trois fonctions décroissantes de méme signe,
log 3k - log (k+ 2)

2119 Kk log 2k - log (k+ 1) 10?_1 k ) ) ‘ .
est également décroissante pour tout k entier naturel.

log 3k - log (k+ 2)

ke :
10g2 ? alnb 2k - log (k + 1)

Ceci termine la démonstration du lemme II1.6. 1.

Preuve du théoreme IIL.1.1.
Cherchons B tel que, pour tout k supérieur ou égal i 26,

log2 k - 0,609511 log k

< Blog? k,

log 2 - lK
[ - 0,609511
soit g(k) = l"glk < B.
log 2 - K
log” k

La dérivée de g est positive si 0,609511 log 2 > —p—.
Des que k > 19, g'(k) est positive, done [ est croissante, par conséquent
0,609511

log k 1
“log 2

lim
k =5+

B =

|
log 2 - K
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Ceci implique la premiere inégalité du théoréme, puisque le résultat est vrai pour 11 £k £ 25

grice aux résultats expérimentaux.

2

Comme log n > exp (llig—k} on a
S og 2
7 2log?2 5
1 + onlosn < l 4—=— <7,
og logn log” k 4
ce qui donne la deuxieme inégalité du théoréme IIL1.1. |

II1.7. DEMONSTRATION DU THEOREME I1l.1.2

Dans ce qui suit, on suppose k = 26. Pour k < 25, on utilise directement les résultats

expérimentaux pour vérifier le théoréme.

Soit & tel que N, le nombre k-hautement composé supérieur associé d €, maximise

Ly Ma
M) =10 g AN

2
a) Si log log Ng > %Z—zk alors ll(k) < % (d'apres le théoreme III.1.1).

b) Si loglog Ny < T'log k, avec I" =1,65,

, log d, (N;) log log N, log log N, log k
gl = Ak = log k log N = log 2 =T log 2

‘ . log k log N,
(car log d (N) € Q(N) log k < —~———)

log 2

log2 k
log 2

¢)Si I'logk < loglog N <

1 (log log NE)2
log x log log N - 1

d'apres le lemme II1.3.2, on sait que A (k) = avec x = k17

l l log4 k
log X602 2 10g? k
log 2

ce qui implique que A (k) <

car log log N < 10g2 £ Uog log N)?

< roit dés que log log N > 2.
e Tog 2 et Tog Tog N - 1 croit dés que log log N
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‘14 ¥
Nous allons montrer en fait que i l‘ 11 2105 k ST llm; 12< .
0€ X Jog©2 log” k- log2 og

3 2k -log
Ceci signifie que log x > = 210& : ; dou < =T log k2 log 2
["log© k- log 2 log= k
2
(] - I_Oqg
log© k
I
Onalog Ny = ze(x"’i)
i=1
1 log? k k -1 k
avec log x' = = 5 €t1=[5v }< log 2 i
[log®k-1log?2 25 -1 1“(1_—1:,—‘-‘ )
2 log™ k./ _ 1

1

< 0.532, donc I < dk.
1"(1 ) lng-Z)
2 log™ kJ _ 1

On pose d =

Par conséquent, log N < 16(x")  (car pour tout 1, X'l <x)
< dkox'  (carB(x) < o x pour tout x, avec o = 1,01624 ([RS62])
Lo
< 0.532k. k[r log? k - log 2] < (532 kMO,

On a donc log N < k' < log N, d'ol Ngo< Ng cequiimplique € < €',

On procede dittéremment pour la seconde majoration.

2 2
, log“k log” k
* S log n<exp ('Eég—z) alors log 2 1%)g log n

(log log n)2 log dy(n)
log k log n

log log n log di(n)
-1
log k log n }

- loglogn = loglogn (

2y y
En majorant log log n par log & et log dy (n) par A log® k ——————1% : , on obtient
; glognp 7 gd n)p £
log log?2 loglogn

log log n log dy(n) 1) . Iogzk( logk 1) . log” k

g log n( log k logn log 2 log 2 log2 2
-
* Stlognzexp (%%Tk)ctkz L1,

6()



; ¥ 2 - 1 3 K
logd, (n) < 10ng 1 + & log n L4T 0‘%0 1 ,
log log n log logn log logn log” k loglogn

d'apres le théoreme L 1. 1.

Si 2 <k < 11, il sulfit de véritier expérimentalement, et I'on obtient la seconde partie du

théoréme.
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Chapitre 1V

COMPLEMENTS SUR LES FONCTIONS d, (n)

Dans ce chapitre, nous montrons que pour k sutfisamment grand fixé, les fonctions
A(nk) et A,y(nk), définies au troisiéme chapitre, ont pour maxima des nombres
respectivement de la forme 2230 et 24.30.5¢.7d, On en déduit des équivalents de A (k) et de
(k)

2
log k : 4log”k
M)~ Togz o M0~ 3705472

Nous avons vu dans le premier chapitre que les fonctions dg(n) peuvent €tre délinies
grice A la fonction £ de Riemann, ce qui permet de définir dg(n) pour k réel ou complexe. A
partir de cette définition, on obtient une majoration élémentaire du module de dg(n), ainsi

qu'une majoration pour k réel.

IV.1. ZL_l(k) ET A,(k) A L'INFINI

Comengons par étudier la forme des entiers maximisant A (n,k) et Ay(n.k) pour k fixé

suffisamment grand.

Théoréme 1V.1.1.
Pour k suffisamment grand, le nombre N, k-hautement composé supérieur maximisant

. log k
A;(nk) est atteint pour € = 1—0—;*-&
. I - k-1
Il est alors de la forme NE =21 3.2 avec Il = [\/1'(1? - IJ et 12 =[k1”g 3/ log 4 J :

Théoreme 1V.1.2.

Pour k suftisamment grand, le nombre N, k-hautement composé supérieur maximisant

i log k
Ay(nk) estatteint pour € = Wé_x

: L ol als of k-1 k=1
Hestdclul‘m'meNE:Z‘.3-.5-.7*avchl=[1———}.12={k10g3“0g3_J,

63



L = k -1 § T k -1
3"[klog5/iog8 ) J v 4—[k]c)g7/lng8 ) J'

On peut déduire directement des €quivalents de A (k) et de A, (k) & partir des théorémes

précédents :

Théoreme IV.1.3.

log k

ME& ~ 70z 2

et
4 log? k

ME ~ 3T Teg 2

Preuve du théoreme IV.1.1.

Dfapres le lemme II1.3.2, si N, est le nombre k-hautement composé supérieur

maximisant A;(k,n) pour n entier, alors pour tout N, on aura

~ 1 (log log NE)?'
~ log x loglog N, -1~

AyN) € A (k)

I
Or log N, = Z B(X"i) < Tax (carB(x) <ax pourtout x, avec o = 1,01624 [RS62]).
i=1
X = kll’e
log 2

I= L <Bkl_1°g"<[3k
- klog 2/ log x

Onaaf<e.

1

Nous obtenons log N, <e k' e , ce qui implique que log log No< 1 + (i + L) log k.
&

2

)2
L_ll+lopk + log ©) (car la fonction t — : t_ I croit dés que t > 2)

log x log k + log x

MK <

1 1
. Iogx(logk+logx+2 +log k + log X}
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bmuintenant, T = k-1 B e log2
Soit maintenant J = [kl"g 37 Tog 3 _ J - 1\[3, avee fp=1- log 3°

log dk(Z'I) log log 7 '
log k log 2!

alors A (k) = A(k,2") =

comme J ~ kP, ona log 2! ~ kP log2 et loglog2 ~ Blogk;

B B
log dk(2j) ~ log (k lk_Bl' 1) ~ klog L3 T{k + kP log k;Bk

~ KP(1-P)logk

(1-B)Plogk
log 2 ’

dod A (k2" ~

On en déduit que, pour k suffisamment grand,

1 log 2
M) 2 (mg 3 7 log?3

)lug k> %-log k.

On a donc, pour k > K¢ grand,

1 1 |
log x(log K+ log + 2 +logk + log x) >3 log k.

Pour k = 1073, il faut avoir log x < 3,1 pour que l'inégalité soit vérifice.

Cela signifie que pour k grand, ¢'est-a-dire k > max (K(,107), le maximum sur N de A (kN)
ne peut étre atteint que pour log x < 3,1, soit x < e>! #22.2 : seuls les nombres premiers 2, 3,
5,7, 11, 13, 17 et 19 peuvent donc intervenir dans la décomposition en facteurs premiers de

N.,.

~Jozk alors

Soit x' < 22,2. On appelle N(X.) le nombre k-h. ¢. s. associé d €' = log X’

T I I' ! ; : ! :
Nyy=2"'.32.5 v T st 170 ol

k-1 .
avec = Gl 7 si X' Zph
1 - i
k log x'
=) sinon.

log p,
I =m0 log p;
=k log X" Posons Bj=1- EP1

log x'-
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k ll(k) m A (k) Kz(k)
log k log? k
2 1,53794() 2,218778 1,934851 4,027139
3 1,591410 1,448564 2,108741 1,747167
4 1,633729 1,178486 2,262774 1,177417
5 1,671436 1,038522 2,397857 0,925710
6 1,10028925 (,952421 2,516797 0,783951
7 1,729944 (),889015 2,623119 (0,692743
8 1,754853 (),843906 2,7200396 (0,629128
9 1,778192 (),809290) 2,81.1:1:89 (),582286
10 1,799313 (),781432 2,896447 (),540364
11 18197537 (),758899 2,975690) 0517521
12 1,838195 (),739784 3,051010 (0,494110
13 1,855306 (),72333() 3,122778 (0,474661
14 1,871651 0709212 3,190852 (),458151
15 1,888000 (),697180 3,256273 (0,444025
16 1,902959 (),686340 3,319475 (),431816
17 1,916874 (0,676572 5, 48385 (0,421023
18 1,930498 (),66760)6 3,437606 (),411480
19 1,943268 (659979 3,493201 (),40292()
20) 1,955274 (),652686 3,546798 (),395212
21 1,967050 (),646095 3,598219 (),388194
22 1,978588 (),640104 3,647277 (),381732
23 1,989525 (),634517 3,695379 (),375878
24 1,999960 (),629303 3,741739 (),376468
25 2,010263 (),624523 3787142 (),366513
239 2,635362 0,481216
24() 2,636632 (0,48 1081
52745 4,431465 (),407558
oo - (),360673 - (,213733

Tableau TV.1
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4 L
3 - B
9 .- n
| Ay ()
X oy 2
log2k
O 1 T I T T T
0 4 8 12 16 20 24 25 k
A,(k) A,(k)

en fonction de k.

Représentation de o et de Toi? &

k+I -1 kI, <
log[ k-ll ]+...+10g[ kI-Sl 1J}log(j’llog2+,,,+[’810g19)

log k (I’llog 2 Funntl'g 1OF 19)

A(KNey) ~

) (kﬁl(l By) log k + ... + K31 -Bg) log k) log (kﬁ‘_l_gg 2+ ..+ k"% log _12
log k (kﬁl lag 2. + ... + k58 log 19)
k"1 -p1) log k log (kﬁl log 2)
log k kﬁ1 log 2

_(1-B1)Bilogk
log 2

o1 log 2
~ log x’[l " log x’] log k.

La fonction X — %[1 - Ioi 2] est croissante dés que X < 2 log 2.

Par conséquent, le maximum de A,(k,N(x,)) pour k grand sera atteint pour X’ = 4. o
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Preuve du théoréme 1V.1.2.

L'on procede de maniere analogue au théoréme précédent en utilisant le lemme I11.3.6
qui implique que, si N est le nombre k-hautement composé supérieur maximisant A4(k,n) pour

n entier, alors pour tout N,

log log N 1) . ) log log N,

AykN) < Ay(k) = (log log W, ( log x log log N, -2~

2 ; 92
On utilise alors le fait que A,(k) ~ Tlgz_xk (l - l{—:i;—%) . Cette fonction admet son maximum

en x = §, ce qui conduit au résultat. N

Preuve du théoréeme 1V.1.3

X ; ; L, wly
Puisque A (k), pour k suftisamment grand, est atteint pour N.=21'.3% avec

o ) L P o k - 1 |
1_[&“ J et 2—[k1()g3/lng4_ l],()n._l

log k
ll(k) ~ 3 log 2 # 0,36067 log k.

; , T S
Puisque A,(k), pour k suffisamment grand, est atteint pour N, =2"'.37%.5%.7*

.‘I—k-l I, = LES Iy = e
avece 1= v R _[klng 3/log 8 1:|‘ l _[kl()g 5/1log 8 _ l] .

3
vk - 1
I, = iz 1 - ,ona
2 clog 7/1log 8
4log® k 5
Ay(k) ~ 37 log 2 # 0213733 log” k. [ |

IV.2. LES FONCTIONS dy(n) POUR k REEL OU COMPLEXE

a) Définition de di(n) pour k complexe.

Les fonctions di(n) peuvent done étre délinies & partir de la fonction € de Riemann donnée par

4o
la formule C(s) = Z n~", grice a la relation

n=1
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+o

dONEDY —“‘_dkn(:])-

4on

En effet, {(s)* = H—l—k = Hz@ = z d“(in)_
P (I—LJ p a=u p n=1 n
p.‘i
Or pour tout k complexe, on a
] ; & : 3
— 1 - 1+kx+...+k(l‘-"1)(k+“)"'(k+Ot 1)x"+... .
(1-x)* o!

Par identification dans la tormule précédente, il suffit alors de poser pour k complexe, a

premier et pour tout p premier,

. gf k(k+1)k+2)...(k+a-1
gy gy = KEEH DK +2) )

dk(n) est multiplicative.

On vérifie aisément que si 'on se restreint A k entier positif, on retrouve la définition de di(n)

vue au premier chapitre.

Pour certaines valeurs de k, nous pouvons retrouver des tonctions connues :

lsin =1 : .
dy(n) = {() ) d,(n) = 8(n), avec d(n) identité pour le produit de convolution.
sinon

d,(n) = 1, pour tout n.

lsin =1
d_ (n) = 1 (=™ si n est sans facteur carré
()sinon

aq.

1

. a; k 2 HE P T ’ .«
d_ (n)=u.(n)= H (=] lorsque n = H p.", pour k positif. Celles-ci turent étudiées
1=1

i=l

par A. Fleck [DI71b].
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b) Majorarion élémentaire du module de di(n).

Il est facile d'établir une majoration simple du module de dg(n) :

Proposition I1V.2.1.

Pour tout k complexe et pour tout n entier,
|dk(n)| < dlkl(n)‘

Preuve.
|d ( u)l _ |k + 1K + 2.onll Ftt~1)] [k||k + L[k +2|...]k + & =1
AP = o! - o!
B R B (- S
= , = dm(P )
!
soit, pour tout k complexe et pour tout n entier, |dk(n)| < dm(“)- |

¢) Une majoration de di(n) pour k réel positif.

Proposition IV.2.1.

Pour tout k réel positif et pour tout n,
logd,(n) < logn+ 2k loglogn.

Preuve.
D'apres la relation définissant les fonctions di(n) & partir de la fonction € nous avons :
1 < d, (p*
K = z k(u[: )'
( l J a=n P
| ——=
"
On peut en déduire d"(‘f ) < l £
pS
. 1
soit logd, (p") < uslogp—klng{l—~—s—].
P

Le second terme sera minimum pour s = 1 :
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logd, (n) < E [ai log p; - klog[l - —l-H

pilin i

logd,(n) < logn - Z klog[l : —~l—]
p

pilin i

P
<logn+k log[ ]
?m p -1

p premier
1
Or Iog[ E ] < .
p-1 p-1

1 2 1
Pour tout p, —— < —, donc —xL2 -,
p-1 p pm p -1 pln P

p premier ppremier

1 1
Mais, il vient X - < g_ — < log log vn .
pm P p<da P

p premier p premier

|
Dot Z —— < 2loglogn - 2log2 < 2loglogn.
pta P - 1

P premier

On obtient log d,(n) < logn + 2k log log n
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Chapitre V

QUELQUES RESULTATS
SUR LES FONCTIONS dx(n) DANS LES
PROGRESSIONS ARITHMETIQUES

Nous allons maintenant appliquer la méthode que nous avons développée au cours du
chapitre III, aux fonctions dy;j, ¢, analogues aux fonctions di, mais ne faisant intervenir que les
nombres premiers d’'une progression arithmétique, pour obtenir des majorations de ces
fonctions.

Nous donnons au paragraphe 2 un ordre maximal de ces fonctions, puis nous
définissons les nombres k-(j,£)-hautement composés supérieurs pour en déduire des
majorations, de maniére analogue a di(n).

En utilisant les mémes propriétés, nous affinons ces résultats pour le cas des

progressions arithmétiques de raison 3.

V.1. DEFINITION DE d,.; ,«(n)

On pose pour (j,£) = 1,
k+a-1

p=2mod j
p premier

dy.;, ¢ est une fonction multiplicative.

C'est une généralisation de dy(n), puisque
dy (n) = dy0(n).

Nous allons appliquer a ces fonctions la méthode qui nous a permis de trouver des majorations

de di(n).
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V.2. COMPORTEMENT ASYMPTOTIQUE DE dmﬂm

Commencons par chercher le comportement asymptotique des fonctions dy;j ¢ (n).

Définissons 7 (x; j, 2) = Z I et 6(x;j,2)= Y logp

p=x p<x
p=2mod j p=Amod j
ppremier p premier

Soit ¢(j) la fonction d’Euler, c’est-a-dire le nombre d’entiers naturels plus petits que j et

premiers avec lui,

Théoréeme V.2.1.

log k 1
Un ordre maximal de log dy;, ¢ (n) est M.
log logn
Preuve.
Nous allons d'abord majorer dy » (n) :
k+a-1 k+o -1 «
dk;j.l(n)= pHn [ k-1 ]S p]‘:;l[n [ k=1 ] p]:IJIink ’
peimad ] p= 2mod | p=dmod j
p premier pst pst
pour tout parametre t compris entre 2 et n.
k+a -1
yye(n) € [ i ] T e
p* lin
p=2mod]
pst
logk/logt
k+o-1
< ) k(alosp)n‘logt & (1 + G)(k'])t. pcx]
[ k-1 ] pHn |:;l’:IIn
p=2mod |
pst
1 k-1t logk /logt
ogn a
<1+ ] . P .
[ log 2 [;H ]
. log klog n
On obtient  log dk,“(n) <(k - Dtl2 + log logn) + -~—1—t——
|, og
. log n
En choisissantt = ————, ona
(loglog n)
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logklogn[1+o[ logloglogn”l 0

logd,. ,(n) <
& Qe log log n log log n

Il nous reste a trouver une minoration de log dy;; » (n). Si 'on choisit les entiers de la forme
r

n, = p,» pidésignant le ime nombre premier, on a log dy.; 2(nr) = k*®49 Donc
L

p=jmod 2
logn, = B(p[;j,ﬁ) £ Tr(pr;j,,ﬁ )log .

log k log n,

On obtient log d, . 2
i gd.;,(n) oo,

t

Or, pour x grand, il existe t inférieur a I tel que E)(pr ;j,JE) —pJ- (Cf[MC84a]).
@(j)

Donc log p, < log[ 9% log nr] .

Ceci implique que

log k log n 1
log dy;,(n ) 2 —==—=— 1+ O] =———1|. ’
o8 dy;j.(n,) log log n, [ [108108 HH ?

(1) et (2) conduisent au résultat. [ |

V.3. LES NOMBRES k-(j,2)-HAUTEMENT COMPOSES SUPERIEURS

Nous généralisons maintenant les nombres k-h.c.s. pour les progressions arithmétiques

puis nous en déduisons la forme de majorations des fonctions dyj, ¢ (n).

Définition V.3.1.
Un entier N est ditk,(j, £2)-hautement composé supérieur, s'il existe ¢ réel positif

logd,  ,(n)
tel que la fonction ——=2— _ ¢ log n admette un maximum en n = N.

log k

L’enveloppe convexe des points (log n, log dy; » (n)) est une ligne brisée concave dont les
sommets on pour abscisses les valeurs de log N ou N est k,(j,£)-h.c.s. Nous allons donc

majorer dy; » (n) de l]a méme maniére que dy (n).

On peut généraliser le programme de recherche des nombres k-h.c.s. pour ainsi trouver les
nombres k,(j,£)-h.c.s. (Cf annexe 2).
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Lemme V.3.1.
Ftant donné ¢ et k = 2, soit N, le nombre k,(j, £)-hautement composé supérieur associé

a e, alors

NE= H pl(p,E)

pSkUE

=£ mod j

A

avec l(p,e) = [-—I:I ou [k -1} si 1(5.11 eN et p=£mod j

P -1 P
0 sinon
Preuve.
Il suffit, comme pour le lemme II.3.3, d’appliquer le lemme I[1.3.2 a la fonction
n°

Lemme V.3.2.
Les nombres premiers p qui interviennent dans la décomposition de N, a la puissance i

sont tels que  x'i*l < p < x"i, pourp = £ mod j.

Preuve.
La démonstration est identique a celle du lemme I1.3.4, avec les mémes notations. [

logd,, ,(N.) - elogN_ =) G(x";j2)
i=l

avec G(x";j,2) = n(x";j,2) logx" - 6(x";j, £)

Preuve.
La démonstration est identique a celle du théoréme I1.3.1. - |

Théoréme V.3.1.

log n :
Pour tout n entier, log d,., ,(n) < log k & 1+ Z G(log® n;j, £)
e log log n log n
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log k i

el = b7 v, = logl+ll{- 1/logk,
zloglogn_ 1

Preuve.

log di;j,2 (n) - elogn = logdy; e (N) - €log N
I

donc logdyjz(n) = ¢f logn+ Y G(x";j,42)|.
i

i=l

log k

On choisit alors € = dans le lemme précédent pour conclure. |

log log n

V.4. MAJORATION DE d, .. 4n)

Nous obtenons le résultat suivant :

Théoréme V.4.1.
Pour tout n tel que log log n = ¢ log? j et pour toutj = 10, on a

d,..,(n) < logk
ki () g log log n log k @(j)| loglogn  (log log n)

logn [Hk-l 2 [ ! +4,9+B(j)]
avec B(j) = 0,784 ((j) - 2) (log ¢ + 2 log log j) log (log ¢ + 2 log log j)
et ¢ donné par McCurley [MC84] p 266.

On peut choisir, par exemple, pour tout j = 10, ¢ = 34,13 et pour tout j = 100, ¢ = 20,62.

Soit x(j) = exp(c log? j).

2
McCurley a montré ([MC84a]) que pour tout x = x(j), 8(x; j, £) < ""’“(X,) X
e\

Lemme V.4.1.
Pour tout x = x(j), on a
2 [ x X . 2,95x e
- + e 3 +11 - - 3 — 5 il
@()Llogx log"x log x o(j) L log? x(j)  log® x(j)

m(xj,42) <

X



Preuve.

. 0(x;j,4 B(t;j,2
s, 2] = (x;j,4) J‘( A
log x b tlog”t

Dong, si x = x(j), on obtient

x(j) x
(i 8) < 2. X, B(tz b 2 dt
¢(j) logx tlog™t (i) ;) log’ t
x(j)

D’apres le lemme I11.5.2, f 9(t) G(X(J)) x() 2 95x(j) , ce qui conduit

) tlog* t log x(j) log2 X(_]) log? x(j)’

au lemme. |

Posons F(j) = [1 2 ][ x(G) |2 95K(J)}

o Liog?x(@ g x()
x, log(m + 1)
et A(L;j2)=Y | n(m;j2) ——— - l] :
=2 log m
Lemme V.4.2.
Pour tout x = x(j), on a
AL;j2) € = [ Lerl, 9+B(”)L]
() log L’ log® L
avec B(j) = 0,784 (¢(j) - 2) (log ¢ + 2 log log j) log (log ¢ + 2 log log j)
et ¢ donné par McCurley [MC84a] p 266.
Preuve.
[x(®]-1 L-l
AL )= ¥ [ﬂ(m;j,/e)[M - 1H ' [n(m:j,z)[w - 1”
s log m W] log m

L-1 b Iy
?: [n(m;j,,g){w ) 1“ < ; m(m; j,4)
) log m m{x(p] M logm

L-1 L-1 L-1 L-1
2 [ 1 1 2,95 ]+F(j) I

& —— ; — + — + ; - ?:
®(J) tnlog'm  fylog”m A7y log  m m=Tx()] M log m

L-1 L-1

1 95 d

< [ ot ]dx+F(J>j -
(i) L] log"x log” x log* x (56 1xlogx
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On utilise le théoréme V.3.1 et le lemme V.4.3 pour conclure.

V.5. MAJORATION DE d, ; ,(n)

Grice aux majorations de McCurley [MC84b], nous pouvons obtenir des majorations plus

précises pourj = 3.

Théoréme V.5.1.
Pour tout n = exp (884),

-1 1
log d,.;,(n) < logk Lo [l+ . ]
o log log n log k log logn

Théoréme V.4.2.

Pour toutn= 2,

logdk;a,z(ﬂ)élogk£[1+£k-1 1 ],

log log n 10 logk log log n

l 4 k-1 1
logdk;3J(n)SIogk&[l+— J

log logn 5 log k log log n
2=1 2=2
7 2
91 4
1729 20
12103 40
375193 80
13882141 880
596932063 1760

Liste des premiers nombres 2-(3,4)-h.c.s.

Pour démontrer ce théoréme, nous allons procéder de maniére analogue a la démonstration du
théoreme V.4.1 dans le cas particulier de j = 3 en remplacant les résultats des lemmes V.4.1,
V.4.2 et V.4.3 par les lemmes suivants,

Nous utiliserons les résultats de McCurley ([MC84b] p288) :
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Pour tout x positif, 6(x;3,2) < T1,.x avec T, = 0,5040354¢t 1, = 0,50933118.

Lemme V.5.1.
Pour tout x = e?5# 13360, on a

X 4 x
T 5 TZ{ log x 2 3 10g2 x] :

Preuve.

X

0(x;3,2) +Ie(t;3;'e)dt.
logx tlog 't

n(x 3,2) =

2
La majoration de McCurley nous permet d’écrire

Cm(x3,8) < T,| — + dtz ST}[ B 2
log x log” t logx 3

z pour tout x = e%5,
log® x

4 x
Car, d’aprés le lemme II1.5.1, pour tout x = e%5, Li(x) < 2 s
logx 3 log”“x

L-1

Posons comme précédemment A(L;3,2) = z [ m(m;3,48 ){

m= 2!

log(m +1) l”

log m

Lemme V.5.2.
Pour tout L = 884,

A(L;3,2) < ;
( ) log’ L
Pour tout L,
L
A(L;3,2) £ 1,254 ——,
log” L
4 L
L;31) <= ;
A ) 51log*L
Preuve.
[e*]1 log(m + 1) ke log(m + 1)
A(L;3,8) = E m(m;3,48) — - 1] + ;" 7(m;3,8)| —————= - 1] )
m=2 log m m=]e] log m
L-1 05|
| 3,4
{ﬂ(m;&.&)[ log(m + 1) _ IH < el
a1 log m el ] m log m
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L-1

l
+ —
4[log m 3 logsm]
m= e]

L
J.[ +— 5 ]dx
log’x 3 log’x

< 1,(f(L) - f(e*))

l/\

I/\

pour tout L = €95 d’apreés le lemme précédent

avec f(x) = Li(x) - = +3[Ll(} XZ ]
logx 3 logx log”® x

me=2 log m

[e*]1
En constatant que T, fe*) > E [Tr(m;3,,~°.)[ligM . lH dx, on obtient

4 L
ML3ﬂ_U[ il L]
370g’L 3 3log’L

I4L
910L

ceci pour tout L = ¢%53,

LR, =

Pour L < €95, on vérifie expérimentalement que :

pour tout L = 884, A(L;3,2) <

log* L’
L . log? L g
pourtout L, A(L;3,2)< 1,254 v (le maximum de A(L:3,2) estatteint pour
0g
L = 64),
2
gL A(L;3,1) est atteint pour
L =905).
Pour cette derniére inégalité, on voit que 0,781 < %T, < %, d’ou les résultats. |
Lemme V.5.3.
Pour tout x = 884,
Y G(x"i3,2) < z
log k log x’
pour tout L,
EG(x :3,2) < 1, 254k LA
log k logx’
¥ O(x'i3,) < X
5 Iog k log x
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Preuve.

Comme Y G(x";3,1) < 54
il log k

log x A(x;3,1) (Cflemme V.5.3), les inégalités du lemme se

déduisent directement. |

Il ne reste plus qu'a combiner le lemme précédent et le théoreme V.3.1 pour obtenir les

majorations du théoréeme.
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Annexe 1

ENCADREMENTS DE Li(x) ET DE Ei(x)

De nombreux problémes font intervenir la fonction logarithme intégral. Aussi est-il
intéressant de posséder des encadrements 2 la fois simples et précis de cette fonction. Ceux-ci

se déduisent des comportements asymptotiques de Li(x) et de Ei(x), l'exponentielle intégrale..

A.1. INTRODUCTION

On désire donc trouver des encadrements du logarithme intégral défini par :
X
dt

pour tout x > 1, Li(x) = Int

0
X

ou ~J-— désigne la valeur principale de 'intégrale indéfinie.

0
Pour ce faire, on encadrera l'exponentielle intégrale Ei (x) définie par :
X
o
pour tout x > (), Ei(x) = j[ T dt
=00

puisque, pour X > 1, Li(x) =Ei (log x) o log x désigne le logarithme népérien de x.

On peut généraliser la définition en posant, pour tout x négatif
X
t

Ei(x) = jert

-0

Nous obtenons le développement asymptotique de Ei(x) :

X X
et K-1 o et
Zdt o= D (k-Dl— + (K-D!'] = de
t = k K
X {
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- -10.9

=5 -3.78 =2.35

-1.91—

l'exponentielle intégrale pour x négatif

30



Nous nous proposons de démontrer les résultats suivants :

K-1

Y e ' 1y ¢é
Posons fK(x)~k=1(k—1).x—E + Ko -1+ <

avec o # 1,484081.

Théoréme A.1.1.

Pour tout K entier non nul et pour tout x réel positif, on a
Ei(x) £ [(x)

Remarque.
fx (x) est une meilleure majoration de Ei(x) que fe.) () (Le. f(x) S | (x) ) dés que
|
x= K+
o, - IK

X
Ei(x) et f)(x) = 1484081
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g)iT e.[
Ei(x) et f5(x) e + [,7842 =3
2 X

Il existe une minoration similaire.

K-1 ex 1 ex
Onpose  hy(x) = 2 (k- DE— et ggx)= - K!(B]+1-K) —
k=1 X X

avec B # 0,151682.

Théoreme A.1.2,

Pour tout K entier non nul et pour tout x réel positif, on a
Ei(x) 2 hg(x) + gg(x).

Il est également intéressant de rechercher dans quelles conditions on peut avoir
Ei(x) 2 hy(x).

Théoréme A.1.3.

: y 1
Pour tout K entier non nul et pour tout réel x =2 K+2 + K ona

Ei(x) 2 hy(x).

De méme dans le cas ol x est négatif, on peut montrer
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De méme dans le cas ol x est négatif, on peut montrer

Lemme A.l.1.

Pour tout K entier non nul et pour tout réel x négatif, on a

hyp(x) < Ei(x) € hyy, (X).
D'ou on déduit le théoréme suivant ;

Théoreme A.1.4.

Pour tout réel x négatif, on a

hoy (%) = Ei(x) £ hyy, ,(x)

t:thl_)(+l

2

,ou [yl (plafond de y) représente la partie entiere

X
avec M = ‘— 5

de (y + 1) si y n'appartient pas & 2, y sinon.
Remarques.

IO = 8 L8 ‘% ‘

+%, sinon M = N.

IN

9]
(Sl

< -

2) Dans le lemme 1.1, lorsque l'on tait varier K de 1 & M, on obtient des encadrements de plus
en plus précis. Au deld de M, les deux sommes s'éloignent de Ei(x), (cf le graphe de la page

suivante).
Grice au changement de variable x — In x, on obtient :

Théoréme A.1.5.

Pour tout K entier non nul et pour tout réel x > 1, on a

K-
. 1 X 1 X
Lit) - 2 (k- 1)l —— < K!(al-l+i) i
k=1 (In x) (In x)
Théoreme A.1.6.
Pour tout K entier non nul et pour tout réel x > [, on a
K-1 " [y .
Li(x) - 2 (k- 1)1 kz-K!(Bl+l-fJ "
k= (In x) (In x)
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Ei(x) et hy{x) = Z (k - 1)/ =

k=1

Théoréeme A.1.7.

. ; l
Pour tout K entier non nul et pour tout réel x 2 1In (K + 2 + K)’ on a

Li(x) 2 Z k- 1!

k=l (In x)

Théoréeme A.1.8.

’ - %
Pour tout réel positif x < 1, ona,avec M = I- 3

2M -1

> k- D! < Litx) € Z - 1)l
k=1 (In x) = (In x)

9(0)



A.2. CALCULS PRELIMINAIRES

On considere la fonction Ei(x) pour des valeurs positives de x et I'on recherche o et By des
constantes telles que

B ‘ c]( BX
Ei(x) - 2, (k-D!=— < Kl o — )
k= X X

v
-

-1 .
Ei() - 2 (k-1)!= 2 -K! B, —
k=1 X

X

(2)

~

On s'intéresse d'abord  la premicre indgalité.
Ni

a i ‘ c
En intégrant par parties f T dt

X

entre [ et x et en simplifiant, on obtient

et x i Ct
— 2 k-D!'S + K-D! | e
t o= | X< t
1 1
On en déduit que
K-1 o * " K]
e
Ei(x) = z(k 1)'— + (K- D! —Edt +Ei(l)—e2(k-1)!
=1 t k=1

soit, en remplagant dans (1) Ei (x) par sa valeur et en simplifiant ensuite par (K - 1)!, on trouve
que (1) est équivalent &

X
t
e et Ei (1) (k- ! .
Rt - Koy <+ oy - e ZI(K—l)' <0 ®
1
avec Ei (1) # 1,8951178.
Posons alors I'K) = %
(k- D!
S(K) = Zl o sL=0
X
t:l Cx
AK(X) = [—Kdt - KCLK x_K + I'(K) - es(K)

et (3) est équivalente & Ag(x)

IN
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De maniére analogue, on définit lK, relatit 3 Py :

! t X
¢ e
kK(x) = L_Kdt + KBK ;}—( + I'(K) - es(K)
|
I'(K) . i .
On remarque que T'(K+1) = K et que T(K) est strictement décroissante deI'(2) =Ei(l)
alim T(K) =0%.
K— o
En outre, (K + 1) - s(K) = — Z k-1 - 1!
k=1 =
1 K K
=—[Z k- 1)! - Z(k-l)'}
'k=1 =
K
([Z (k - 1)'](1—K)+(K-1)'}
K! —
=1—I'<K— s(K) + % <0,

car $(K) > ﬁ pour K > 1.

$(K) + 1 . el
-—%—— et s(K) est strictement décroissante

Par conséquent, pour tout K =3, s(K + 1) =

pour K = 3, de s(3) = 1 2 lim s(K) = 0.

K= oo

Etude de A ,‘_{(X) pour x positif :

X X
La dérivée A'g(x) = _xK - Koy —_;?_K (xX - KxX 1) est positive dés que l'on a
2 2
ag K ar K

x € ——. Ainsi, A(x) atteint son Maximum pour X = Xy = :
Kog -1 Kog -1

Il suffit donc, pour trouver oy convenable pour la majoration quel que soit x, de le chercher tel

que Ag(xg) =0. On véritie que, pour K =1, 0y = 1,484081 (si l'on prenait o) = 1,484080
alors Ay(x;) serait positif).

A.3. RESULTATS EXPERIMENTAUX

Pour calculer Ei(x), on utilise la formule, (¢t [HW60]),



TR ol

X

Ei(x) = y+Inx + Z HE
i=1"

oty désigne la constante d'Euler (v # (0,577215665).

Le tableau suivant donne les valeurs des constantes Ok vérifiant (3)

K K

1 1,484081
2 (),8921
3 0,6735
4 ,5556
5 00,4799
6 ,4268
7 (),3870)
8 (),356(0)
9 (),33009
10 00,3102
11 00,2926
12 00,2776
13 (0,2645
14 (),2530
15 (),2428

De méme,

K Bk
l (0,151682

A.4. PREUVE DES THEOREMES A.1.1 ET A.1.2

Nous allons démontrer ces théorémes par récurrence.

Supposons que l'on ait Ag(xy) <0, c'est-d-dire

XK
t K

e _ e
—K-dt + I'(K) - es(K) - Ko, — <0

K
t Xy
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Ol K2
avee Xg = T
KocK -1

Cela entraine que, pour tout x positif, A (x) est négatil, ce que l'on désire. C'est donc vrai en
P K

Gy (K + 1)°

particulier pour Xxg,; = % . | 1 A condition que l'on ait xg,; > 0, soit
| (K+ D)oy, -

Ck+1 K + 1 -

XK+1
o exK+l
donc — dt + [(K) - es(K) - Koy i & 0 4)
t XK+1
L
Or, par intégration par parties, nous obtenons :
X X
¢ F}x | =4
i« i e
L L
ce qui entraine
XK+l
R XK+l
K B dt + T(K) - es(K)- ¢ - (Ko -1) —— = 0
t X+
L
soit, en simplifiant :
*K+1
t XK+l
© [(K+1 (K + 1 TR <0
mdt%‘ (K+1) - es( +)-L-(O(.K'-I<—)—K‘—_ 2
t XK+l
1
Or on cherche oy, tel que
*K+1
t XK+l
° (K (K K+1 = <0
ﬁdt+()-c,.s()-{+)otm]-—m_.
l t k41
Il suftit donc d'avoir
K+l CXKH
- < - R, Fis
(K+1)o¢KH =3 = (OLK K)

XK+l XK+l
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) 04 1 1
K+1 =
soit XK+ - K+ 1 (0 - K)

l
donc Ogyp 2 Oy - m ;

Par conséquent, pour tout K, il suftit de prendre
K-1
> a2 L by
O 2 -~ mrp =% 1t g

i=1

donc oy 2 oy - 1 +% convient.

Og = O - | + % permet donc de majorer Ei(x) puisque l'on connait une valeur approchée
de .

On procéde de maniére similaire avec Ak (x) et I'on trouve B =2 -¢-By -1+ %) avec

B = 0.151682. i

A.5. DEMONSTRATION DU THEOREME A.1.3

Dans l'expression de Ak (x) (paragraphe II), on suppose BK = () pour tout K, soit :
X
t

e _
KK(x) = —[—}Edt + IN(K) - e s(K).
l

On cherche alors pour quels x on aura A.K(x) > ().

t
Comme K ©st positive pour tout t positit, ).K(x) est croissante en fonction de x, donc
t

l'ensemble des x tels que Ag(x) 2 ) est de la forme [xk » +eol.

On suppose connu xy tel que pour tout x supérieur ou égal i Xicr A (%) 2 0.

Ceci revient A dire que, pour tout x > xg
X
t

Zdt + TK) - esK) 2 0.
tK
1
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Par intégration par parties, on obtient

X
! 1 e*
S - es A
o dt + T(K+1) - es(K+1) + < I = ()
L
et donc en particulier pour X = Xy
XK
o! *K
g LR pn E ey D
K+idt + ['(K+1) - es(K+1) + T K 2 0.
t Xk
L

Or on souhaiterait avoir Ag_(x) 2 (). pour tout x supéricur ou égal & xg 1. Soit x| tel que
AR+l
t

& ,
ﬁdt + I'(K+1) - es(K+1) = 0.

l
1
Il suffit de trouver xg, ¢ tel que
K+l
t X
o Gl e 1 5
R .
XK
L
el ¢! ¢!
Dérivons K+l ce qui donne [_K (t - K - 1). Pour t positil, la fonction ?KJ“_I est donc

décroissante jusqu'd t = K + 1, puis croissante.

Par conséquent, en supposant xg 2 K + 1, on obtient

XK+1
t XK
c dt > e
K+1 b P ® XK) K+1
t Xy
XK
*K XK
. T e e
D'ou (5) est impliqué par  (Xy, ;| - Xk) e, » =20
Xg K xy
e*K

ce qui sera vérifi€, puisque 7 estpositf, des lors que I'on aura

X
(XK_H - XK - ?K) >0

K+
R
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X K+ I K+ 1
}I((I:I > K et donce XK+] 2—K~— X -

soit
Comme on a supposé x> K + L alors xo ., 20+ D?
omme on a suppos¢ Xy = K+ L, alors Xy, | 2=—p——.
K2
Il ne reste plus & vérifier que x; = 4 convient et que pour tout K = 2, Xk, =g -1 oSt

supérieur ou égal & K + [, ce qui termine la démonstration du théoréme 1.3. El

A.6. ENCADREMENTS DE Ei(x) POUR x NEGATIF (THEOREME A.1.4)

Démontrons tout d'abord le lemme A.1.1.

Par intégrations par parties successives, on obtient pour tout x négatif

K-1 X N t
. (v ) e
Eix)= 2, (k- ) — + (K- ! —dt-
k=1 xk d

Comme on peut véritier facilement que, pour x négatif et K impair

X
X t
© < © dt £0
K- | K
X t
et que pour x négatif et K pair,
X
t X
() < © dt < ©
= K5 T K
L X
nous obtenons
X K-1 X
¢ . = . . ;
(K- D! = < Ei(x) - 2 (k- ! — < 0, siKestimpair,
X k=1 X
et
K-1 %
_ e B . ,
0 < Ei(x) - 2, (k-D!— < (K-DI=., siKestpai.
k=1 X X

Par conséquent, pour tout K entier non nul et pour tout réel x négatif, on a

2K - 1 X 2K X
e | , e

Y k-1)'= < Eix) £ 2, (k-1
k k

k=1 X e | X
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On remarque alors que hyge, ((x) > hye ((x) si x + 2K - 1 est positif, soit lorsque

l-x X + |

5 .En posant N = ‘—

K>

ona hypg, () 2 By 1 (%) pour tout K et hypg, 1(X)

S8

donne donc la meilleure majoration.
= et B 2-%
De méme hyp(x) < hyp 5(x) lorsque x + 2K - 2 est positil, soit lorsque K > 5 En posant

X

M= 3

s 1L vient hyp(x) € hy e (x) pour tout K et hyy,(x) donne la meilleure minoration.

Ceci termine la démonstration du théoréeme A.1.4. @
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Annexe 2

PROGRAMME DE RECHERCHE DES NOMBRES
k-HAUTEMENTS COMPOSES SUPERIEURS ET
k,(j,2)-HAUTEMENTS COMPOSES SUPERIEURS

Voici un programme écrit en Think Pascal permettant de rechercher les nombres
k,(j,£)-hautement composés supéricurs et donc, en prenant j = I et £ = (), des nombres
k-h.c.s.

{ liste des nombres hautement composés supérieurs dans une progression arithmétique )
{ Think Pascal 4 - version 3.1 )

program HCSUP;

const

MAX = 2000;
type

HCS = array[1. MAX] of integer;
var

N: HCS:

TP: array(1..1000] of boolean:

PREM: array[1..MAX] of longint;

EPSILON, EPS1, EPS2, EP, ESTI, MAXLI1: extended;

L, R, OMEGA, OM, MAXOM, PRECED, [, I, K, MAXI, MINI: integer;
IP, P: longin;

B, B2: boolean;

Car: char;

NOM: string[107];

F: text;

function PREMIER (N: longint): boolean;
{ Sortie : true si N est premier, false sinon )
var

T: longint;
B: boolean:
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begin
B = true:
if N =1 then
B := false
else if (N =2) or (N = 3) then
B := uue
else
tfor T := 2 to round(sqrt(N)) do
it Nmod T = () then
B := lulse;
PREMIER := B
end;

procedure PREMSUIVANT (It integer; var IP: longint);

begin
repest
IP:=1P+]
until PREMIER(IP);
end;

function ESTIME (N: HCS): extended;

var
IL 1: integer;
PROD: extended;
begin
PROD :=1;
=1
while (N[JI] <> ) and (JJ <= MAX) do
begin
for I := 1 to N[II] do
PROD := PROD * PREM[]1]];
W=7+ 1,
end;
ESTIME := PROD;
end;

tunction LAMBDA (N: HCS; OM: integer): extended:

var
L, L1, LD, FACT: extended;
P: longint;
T, U: integer;
begin
L:=0,
LD :=0;

FACT = 1;
forT:=2t0K-1do
FACT = FACT * T:
FACT := I(FACT);
tor T:= 1t I do
begin
P = PREM[TI;
L:=L + (N[T] * In(P);
forU:=1wK-1do
LD := LD+ In(N[T] + U);
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LD :=LD-FACT
end;
L1:=LD *In(L) /L / ln(K);
LAMBDA :=L1;
if L1 > MAXL1 then

begin
MAXLI :=L1;
MAXOM := OM:
end;

end;

procedure IMPRIME (N: HCS; OM: integer: EPS: real);

var
IT: integer;

begin
it TP{OM] then
begin
=1
write(OM, "ieme *, 'C, T: 1, ), L1, K: 1, “hecs. ')
write(F, OM, "ieme ', '(, T L L LY, KL “hes, 9
while (N[1]] <> () and (J] <= MAX) do
begin
write(' ', N[IJ] : 2);
write(F, "', N[IT] : 2);
JI=11+1
end;
TP[OM] := fulse;
it B then
begin
write("  Lambdal =', LAMBDA(N, OM): 7: 6);
write(l, ' Lambdal =", LAMBDA(N, OM) : 7 ; 6);
end;
if B2 then
begin
write("  Eps=" EPS:7:6)
write(I, ' Eps =", EPS : 7: 6);
end;
ESTI ;= ESTIME(NY;
if ESTI < IE1Y then
begin
writeln(’ -> ", ESTIME(N) : 1 : O);
writeln(F, ' --> ", ESTIME(N) : 1 : O);
end
else
begin
writeln;
writeln(l):
end;
end
end;

procedure PUISHCS (EPS: real: var OM: integer; var N: HCS);

Vvl
II: integer;

begin

OM :=1();
for 11 := 1 to MAX do
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N[II] := ();
tor Il := 1 o I do

begin
- N[I] := trunc((K - 1) / (exp(EPS * In(K) * In(PREM([II])) - 1));
OM = OM + N[II};
end;

IMPRIME(N, OM, EPS);
end;

procedure RECHERCHE (EPS 1, EPS2: real; OMEG, PREC: integer);

begin
if (OMEG > PREC + 1) and (EPS1 - EPS2 > 0.000001) then
begin
EP := (EPS1 + EPS2)/ 2;
PUISHCS(EP, OM, N);
RECHERCHE(EP, EPS2, OMEG, OM);
RECHERCHE(EPS 1, EP, OM, PREC);
end
end;

begin
{ assignation des fichiers et initialisation }

writeln(’ Nombres k-h.c.s dans la progression arithmdtique jx + 193
writeln('Entrer k, j et 1 séparés par des blances’);
readln(k, j, D;
writeln('Nombre minimum (généralement 1) puis maximum de nombres premiers désirés pour
tabriquer les k-hes (<, MAX 0 1, )');
readln(MINI, MAXI);
writeln('Entrer le nom du fichier contenant le résultat’);
readln(NOM),
rewrite(FF, NOM);
writeln('Voulez-vous calculer Lambdal 7 (O/N)");
readIn(Car);
it (Car ='0" or (Car = '0') then
B :=true
else
B := false;
writeln('Voulez-vous connaitre epsilon correspondant & N k-hes 7 (O/MN));
readin(Car);
if (Car ='0" or (Car = '0") then
B2 := true
else
B2 := fulse;
MAXLI1 = ()
tor I:=1 to 1000 do
TP(I] := true;
writeln(" Liste des nombres (L, J: 1, L 1Y, K@ 1, -hautement composés supérieurs’);
writeln(F, " Liste des nombres (', I:1,"," [,")', K: 1,' - hautement composés supérieurs ');
writeln(F);
writeln([9);
PRECED := ()
write(' DR
write(T, 'Nb premiers consdérés — ');
IP:=L;
if not (PREMIER(L)) then
PREMSUIVANT(, IP):
for I:= 110 MAXi do
begin
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end.

write(IP : 3, "' ");
write(F, 1P : 3, " ");
PREMII] := [P;
PREMSUIVANT(, [P):
end;
PREM[MAXI + 1] := IP;
writeln;
writeln(IF);
writeln(F);
P := PREM[MINI];
for I := MINI to MAXI + 1 do
begin
IP := PREM[I];
PUISHCS(1 / In(IP), OMEGA, N);
EPSI =1/ In(P);
EPS2 := 1/ In(IP);
RECHERCHE(EPS I, EPS2, OMEGA, PRECED);
P :=1P;
end;
writeln{('Maximum de Lambdal : ', MAXLI1 : 7:6, "au ', MAXOM : 1, 'icme khes));
writeln(F, 'Maximum de Lambdal : ', MAXL1: 7: 6, "au ', MAXOM : 1, 'itme khes'):
close(F);
note(500, 100, 10);
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Notations

p désigne un nombre premier.

n, N désignent des nombres entiers.
aln a divise n.

p*ll n  p*divise n et p**! ne divise pas n.

log x  logarithme népérien de x.

[x] partie entiere de X.
[x7] plafond de x : partie entiére de (x + 1) si x n'appartient pas a Z, X sinon.
| x plancher de x.
n n n!
coefficient binomial : = —_—
r r rl(n - r)!

vp(n)  valuation p-adique de n, c’est-a-dire o tel que p2 [l n.
N¢ désigne un nombre k-hautement composé supérieur relatif au réel €.

d(n) nombre de diviseurs de n.
di(n)  nombre de maniére d’écrire n comme produit de k facteurs. dy (n) =

+ o0
L(s) = 2 n* , fonction de Riemann.
n=]

w(n) = El.

pin
Q(n) = Z .

f*lin
x = ke,

i+k-1
v; = loglf/logk.

1

k-1 k-1
I= |i € } = log 2

2°-1 k]ogx

471

m(x)= Y I.

pp?e_:'tier
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0(x) = 1 ’
(% p}_;xogp

ppremier

G(x) = m(x) log x - 6(x).

log log N log d}(N)

Ay (N) =

log k log N
(log log N)?2 log d, (N)
Ay (kN) = ]ogk]ogNk - log log N.
M
MK = 0 AN
M
) = (T AN
k+a-1
d,. = :
(1) ﬂn [ kil ]
pEdmod j
p premier

m(xj4) = Y 1.
p<x

p=Lmod j
p premier

0(x;5,2) = Y logp.
p=x

p=Amod j
p premier

G(x;j,2) =n(x;j,2)logx - 0(x;],4).

®() fonction d’Euler, c’est-a-dire le nombre d’entiers naturels plus petits que j et premiers

avec lui.

X

j— f partie principale de l'intégrale de f{t).

X
Li(x) logarithme intégral ; Li(x) = {— fédgLE'
0
X
t
Ei(x) exponentielle intégrale ; Ei(x) = i» eT dt.
Y désigne la constante d’Euler (y # 0,577215665).

108



Résumé :

Le but de cette thése est d’étudier la fonction qui compte le nombre de fagons de
représenter un entier comme produit de k facteurs et notamment d’obtenir des majorations
de celle-ci.

Le premier chapitre présente les définitions, principales propriétés et majorations
simples de cette fonction. Nous déterminons ses ordres moyen, normal et maximal.

Le second chapitre contient les définitions et quelques propriétés des nombres k-
hautement composés et k-hautement composés supérieurs. L'utilisation de propriétés de
ces derniers permet, au troisiéme chapitre, de déterminer des majorations effectives de la
fonction étudiée.

Le quatriéeme chapitre étudie la forme des nombres pour lesquels les majorations
trouvées sont atteintes, lorsque k est grand.

On généralise également la fonction étudiée pour k réel et complexe, et 'on obtient
une majoration simple dans ce cas.

Nous €tudions au cinquiéme chapitre le nombre de fagons de représenter un entier
comme produit de k facteurs lorsque ceux-ci ont des diviseurs premiers dans une
progression arithmétique donnée.

En annexe sont présentés des encadrements des fonctions logarithme intégral et
exponentielle intégrale, ainsi qu'un programme de recherche des nombres k-hautement
composés supérieurs.

Mots-Clés :
Théorie des nombres Fonctions arithmétiques
Nombre de diviseurs d’un entier Ramanujan
Nombres hautement composés Logarithme intégral
Majorations Progressions arithmétiques
Title :

Study of the function number of ways to represente an integer as a product of k
factors.

Abstract :

The aim of this thesis is to study the function who counts the number of ways to
represente an integer as a product of k factors and especialy to find its upper bounds .
The first chapter exposes definitions, principal properties and some simple upper bounds.
We determine its average, normal and maximal orders.
The second chapter contains definitions and some properties of the k-highly composite
numbers and k-superior highly composite numbers. The use of the properties of these
numbers allows in the third chapter to deteminate the effective upper bounds of the
studied function.
The fourth chapter presents the form of the k-superior highly composite numbers for wich
the found upper bounds are reached, for all sufficiently large values of k.
We generalize the studied function for k real and complex, and we obtain a simple upper
bound in this case.
We study in the fifth chapter the number of ways to represente an integer as a product of k
factors when these have got their prime factors in a given arithmetic progression.

In appendixes are presented upper bounds and lower bounds of the functions integral
logarithm and integral exponential, and a program of searching the k-superior highly
composite numbers.






