Références

[AH09]
P. Albers and H. Hofer On the Weinstein conjecture in higher dimensions Comment. Math. Helv. 84 (2009), no. 2, 429–436
[Ben83]
D. Bennequin Entrelacements et équations de Pfaaf Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982), Astérisque, vol. 107, Soc. Math. France, Paris, 1983, pp. 87–161
[BvK10]
F. Bourgeois and O. van Koert Contact homology of left-handed stabilizations and plumbing of open books Commun. Contemp. Math. 12 (2010), no. 2, 223–263
[CGH09]
V. Colin, E. Giroux, and K. Honda Finitude homotopique et isotopique des structures de contact tendues Publ. Math. Inst. Hautes Études Sci. 109 (2009), no. 1, 245–293
[EGH00]
Y. Eliashberg, A. Givental, and H. Hofer Introduction to symplectic field theory Geom. Funct. Anal. (2000), no. Special Volume, Part II, 560–673, GAFA 2000 (Tel Aviv, 1999)
[EH02]
J. Etnyre and K. Honda Tight contact structures with no symplectic fillings Invent. Math. 148 (2002), no. 3, 609–626
[Eli89]
Y. Eliashberg Classification of overtwisted contact structures on 3-manifolds Invent. Math. 98 (1989), no. 3, 623–637
[Eli90]
o3em Filling by holomorphic discs and its applications Geometry of low-dimensional manifolds, 2 (Durham, 1989), London Math. Soc. Lecture Note Ser., vol. 151, Cambridge Univ. Press, Cambridge, 1990, pp. 45–67
[Eli96]
o3em Unique holomorphically fillable contact structure on the 3–torus Internat. Math. Res. Notices (1996), no. 2, 77–82
[Gay06]
D. Gay Four-dimensional symplectic cobordisms containing three-handles Geom. Topol. 10 (2006), 1749–1759 (electronic)
[Gei94]
H. Geiges Symplectic manifolds with disconnected boundary of contact type Internat. Math. Res. Notices (1994), no. 1, 23–30
[Gir94]
E. Giroux Une structure de contact, même tendue, est plus ou moins tordue Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 6, 697–705
[Gir99]
o3em Une infinité de structures de contact tendues sur une infinité de variétés Invent. Math. 135 (1999), no. 3, 789–802
[Gro85]
M. Gromov Pseudo holomorphic curves in symplectic manifolds Invent. Math. 82 (1985), 307–347
[Hof93]
H. Hofer Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three Invent. Math. 114 (1993), no. 3, 515–563
[McD91]
D. McDuff Symplectic manifolds with contact type boundaries Invent. Math. 103 (1991), no. 3, 651–671
[MNW]
P. Massot, K. Niederkrüger, and C. Wendl, Weak and strong fillability of higher dimensional contact manifold arxiv:1111.6008
[Nie06]
K. Niederkrüger The plastikstufe - a generalization of the overtwisted disk to higher dimensions Algebr. Geom. Topol. 6 (2006), 2473–2508
[NvK07]
K. Niederkrüger and O. van Koert Every contact manifold can be given a nonfillable contact structure Int. Math. Res. Not. IMRN (2007), no. 23, Art. ID rnm115, 22

Ce document a été traduit de LATEX par HEVEA