ANR-10-JCJC 0102
Références
-
[AH09]
-
P. Albers and H. Hofer
On the Weinstein conjecture in
higher dimensions
Comment. Math. Helv. 84
(2009), no. 2, 429–436
-
[Ben83]
-
D. Bennequin
Entrelacements et équations de
Pfaaf
Third Schnepfenried geometry
conference, Vol. 1 (Schnepfenried, 1982), Astérisque, vol. 107,
Soc. Math. France, Paris, 1983, pp. 87–161
-
[BvK10]
-
F. Bourgeois and O. van
Koert
Contact homology of
left-handed stabilizations and plumbing of open books
Commun. Contemp. Math.
12 (2010), no. 2, 223–263
-
[CGH09]
-
V. Colin, E. Giroux, and
K. Honda
Finitude homotopique et
isotopique des structures de contact tendues
Publ. Math. Inst. Hautes Études
Sci. 109 (2009), no. 1, 245–293
-
[EGH00]
-
Y. Eliashberg, A. Givental,
and H. Hofer
Introduction to symplectic
field theory
Geom. Funct. Anal. (2000),
no. Special Volume, Part II, 560–673, GAFA 2000 (Tel Aviv,
1999)
-
[EH02]
-
J. Etnyre and K. Honda
Tight contact structures with
no symplectic fillings
Invent. Math. 148 (2002),
no. 3, 609–626
-
[Eli89]
-
Y. Eliashberg
Classification of overtwisted
contact structures on 3-manifolds
Invent. Math. 98 (1989),
no. 3, 623–637
-
[Eli90]
-
o3em
Filling by holomorphic discs
and its applications
Geometry of low-dimensional
manifolds, 2 (Durham, 1989), London Math. Soc. Lecture Note
Ser., vol. 151, Cambridge Univ. Press, Cambridge, 1990,
pp. 45–67
-
[Eli96]
-
o3em
Unique holomorphically
fillable contact structure on the 3–torus
Internat. Math. Res. Notices
(1996), no. 2, 77–82
-
[Gay06]
-
D. Gay
Four-dimensional symplectic
cobordisms containing three-handles
Geom. Topol. 10 (2006),
1749–1759 (electronic)
-
[Gei94]
-
H. Geiges
Symplectic manifolds with
disconnected boundary of contact type
Internat. Math. Res. Notices
(1994), no. 1, 23–30
-
[Gir94]
-
E. Giroux
Une structure de contact, même
tendue, est plus ou moins tordue
Ann. Sci. École
Norm. Sup. (4) 27 (1994), no. 6, 697–705
-
[Gir99]
-
o3em
Une infinité de structures de
contact tendues sur une infinité de variétés
Invent. Math. 135 (1999),
no. 3, 789–802
-
[Gro85]
-
M. Gromov
Pseudo holomorphic curves in
symplectic manifolds
Invent. Math. 82
(1985), 307–347
-
[Hof93]
-
H. Hofer
Pseudoholomorphic curves in
symplectizations with applications to the Weinstein conjecture
in dimension three
Invent. Math. 114 (1993),
no. 3, 515–563
-
[McD91]
-
D. McDuff
Symplectic manifolds with
contact type boundaries
Invent. Math. 103
(1991), no. 3, 651–671
-
[MNW]
-
P. Massot, K. Niederkrüger,
and C. Wendl,
Weak and strong fillability of
higher dimensional contact manifold
arxiv:1111.6008
-
[Nie06]
-
K. Niederkrüger
The plastikstufe - a
generalization of the overtwisted disk to higher
dimensions
Algebr. Geom. Topol. 6
(2006), 2473–2508
-
[NvK07]
-
K. Niederkrüger and O. van
Koert
Every contact manifold can be
given a nonfillable contact structure
Int. Math. Res. Not. IMRN
(2007), no. 23, Art. ID rnm115, 22
Ce document a été traduit de LATEX par
HEVEA