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Présentation du modèle

Un état de jonglage, hauteur h = 8, nombre d'espaces libres k = 4,
nombre de balles ` = h − k = 4 :

On note Sth,k l'ensemble des états de jonglage de hauteur h
présentant k espaces libres.
Si on �xe xi = 1

k+1
pour tout i , on retrouve le modèle étudié par

G.S. Warrington dans son article Juggling Probabilities.
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Exemple

Figure: St4,2 (notation abusive). Les �èches noires représentent les
transitions de probabilité 1, les rouges x0, vertes x1, bleues x2.

La matrice de transition de cette chaîne de Markov dans la base
(• • ◦◦, • ◦ •◦, • ◦ ◦•, ◦ • •◦, ◦ • ◦•, ◦ ◦ ••) :

x0 x1 x2 0 0 0
x0 0 0 x1 x2 0
0 x0 0 x1 0 x2
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0


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Un vecteur propre (à gauche) de cette matrice est :

(1, x1 + x2, x2, (x1 + x2)2, x2(x1 + x2), x22 )



Exemple

(
• • ◦◦ • ◦ •◦ • ◦ ◦• ◦ • •◦ ◦ • ◦• ◦ ◦ ••
1 x1 + x2 x2 (x1 + x2)2 x2(x1 + x2) x22

)



Le théorème

On suppose dans la suite que x0 > 0 (unicité de la classe
communicante et apériodicité).
Soit B ∈ Sth,k , on l'écrit comme un mot B = b1 . . . bh sur
l'alphabet {◦, •}.

Théorème
La distribution stationnaire π de Sth,k est donnée par :

π(B) =
1

Zh,k

∏
i∈{1,...,h}

bi=•

(
xEi (B) + · · ·+ xk

)

où Ei (B) = #{j < i , bj = ◦}

Remarques :
• Cette formule s'exprime plus simplement en termes de partitions
d'entiers
• On aimerait savoir interpréter chacun des monômes qui
apparaissent dans cette formule
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Partitions d'entiers

Bijection naturelle entre Sth,k et Park,(h−k) les partitions d'entiers
dont le diagramme de Young rentre dans un rectangle de taille
k ∗ (h − k)



Partitions d'entiers

On pose, pour tout 0 ≤ i ≤ k , yi =
∑k

j=i xi .

Théorème
La distribution stationnaire de la chaîne de Markov induite par Sth,k
sur Park,` est donné par :

π(λ) =
1

Zh,k

∏̀
i=1

yλi



Remarques :

• Zh,k s'exprime de manière simple comme un polynôme symétrique
en les yi .

• Le Théorème s'étend naturellement au cas où les partitions ne
sont pas con�nées dans un rectangle. Celà correspond à jongler
sans limite de hauteur et/ou à faire tendre le nombre de balles vers
l'in�ni.
• Dans le cas d'un nombre in�ni d'espaces libres, la mesure
stationnaire est �nie si et seulement si

∑
i≥0 ixi =

∑
i≥0 yi <∞.

• Si on �xe xi = (1− q)qi , une partition de taille n sera de poids
qn/F (q) avec F est la série génératrice des partitions d'entiers.
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Chaîne enrichie sur les partitions d'ensembles

1 2 3 4
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ψ x21
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Entrelacement

On pose H = h + 1 et K = k + 1 On note SH,K l'ensemble des
partitions de H éléments en K parties et (abus) la chaîne de
Markov décrite dessus.

Théorème
Soit σ ∈ SH,K Une mesure stationnaire non normalisée de la chaîne

de Markov enrichie est donnée par :

w̃(σ) =
∏

(s,t) arche de σ

xK−Cσ(s,t).

Remarque

• Les termes ainsi obtenus sont bien des monômes en les xi .
• Prochaîne étape : que se passe-t-il si on ne �xe plus le nombre de
parties ?
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Jonglage avec un nombre variable de balles

Nombre de balles variable compris entre 0 et h = 8.
On se donne (zi )1≤i≤h et a des réels positifs avec a +

∑h
i=1 zi = 1.

Le modèle d'.
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Jonglage avec un nombre variable de balles

Nombre de balles variable compris entre 0 et h = 8.
On se donne (zi )1≤i≤h et a des réels positifs avec a +

∑h
i=1 zi = 1.

z1
a+z1+z2+z3+z4+z5

a
a+z1+z2+z3+z4+z5

Le modèle d'add-drop.



Jonglage avec un nombre variable de balles

Nombre de balles variable compris entre 0 et h = 8.
On se donne (zi )1≤i≤h et a des réels positifs avec a +

∑h
i=1 zi = 1.

z1

z2
z3

z4z5

a+ z6 + z7 + z8

Le modèle d'annihilation.



Jonglage avec un nombre variable de balles

Figure: Le graphe de transition pour h = 2.

Avec le modèle d'annihilation, on observe un phénomène de
convergence ultrarapide : l'état stationnaire est atteint en un
nombre �ni d'étapes.
Le modèle enrichi ne fait pas apparaître les monômes que l'on
aimerait avoir. On va, dans la suite, enrichir davantage la chaîne.
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Théorème
La mesure stationnaire du modèle d'annihilation est donnée par

Π(B) =
h∏

i=1
bi=•

(
z1 + · · ·+ zψi (B)+1

) k∏
j=1

(zj+1 + · · ·+ zh + a), (1)

pour B = b1 . . . bh ∈ Sth,k , avec ψi (B) = #{j : i < j ≤ h, bj = ◦}.
De même, la distribution stationnaire de la chaine enrichie est

donnée par

Π̃(σ) =
∏

(s,t) arch of σ

zCσ(s,t)

K−1∏
i=1

(zi+1 + · · ·+ zH−1 + a), (2)

avec σ ∈ S(H) et K son nombre de blocs. Il n'y a pas de facteur de

normalisation, car Π et Π̃ sont déjà de norme 1 pour

z1 + · · ·+ zh + a = 1.
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