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Définition basic

Langage : L = {F ,R,C} (qui contient toujours l’égalité)

F : une famille de fonctions
R : une famille de relations
C : une famille de constantes

Exemples :

L = {<}
LG = {+,0}
Lan = {+,−, ·,0,1}

Structure :M = (M; FM,RM,CM)

Exemples :

(Q, <)
(Q; +,0)
(Q; +,−, ·,0,1)
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Formule

Formule sans variable libre (énoncé) :

Exemples :
∀x∃y (x · y = 1) (existence d’un inverse)
∀x∀y (x · y = y · x) (commutativité)
∀x∀y (x ≤ y ∨ y ≤ x) (ordre linéaire)
∀x∀y [(x ≤ y ∧ y ≤ x)→ x = y ]

Théorie : un ensemble T d’énoncés cohérents
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Formule

Formule avec des variables libres

Exemples :
φ(x̄ ; y) =

∨n
i=1(xi · y = y · xi)) (y ∈ C(x1, . . . , xn))

ψ(x) = ∃z (zn = x) (x a une racine neme)

Formule avec des paramètre (dans une structure M)

Exemples :
φ(x̄ ; a) : xi commute avec l’élément a
φ(ā; y) : y est un élément de C(a1, . . . ,an)

Satisfaction : On écritM |= φ(ā) si φ(ā) est vrai dansM

Modèle :M |= φ pour tout φ ∈ T

En revanche, pour une structureM, Th(M) = {φ :M |= φ}
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Ensemble définissable

Definition
Soit φ(x1, . . . , xn; ā) une formule etM = (M; FM,RM,CM) une
structure. Alors,

φ(M, ā) = {m̄ ∈ Mn :M |= φ(m̄)}

est un ensemble définissable de Mn.

Une fonction est dite définissable si son graphe est un ensemble
définissable.

Propriétés des ensembles définissables :
clos par intersections et unions finis
clos par complément
clos par projections
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Soit φ(x1, . . . , xn; ā) une formule etM = (M; FM,RM,CM) une
structure. Alors,

φ(M, ā) = {m̄ ∈ Mn :M |= φ(m̄)}

est un ensemble définissable de Mn.

Une fonction est dite définissable si son graphe est un ensemble
définissable.

Propriétés des ensembles définissables :
clos par intersections et unions finis
clos par complément
clos par projections

Nadja Hempel Théorie des modèle des corps Mai 2014 5 / 18



Ensemble définissable

Definition
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Soit φ(x1, . . . , xn; ā) une formule etM = (M; FM,RM,CM) une
structure. Alors,
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Groupes et corps définissables

Un groupe définissable dans une structureM est un ensemble
G ⊂ Mn définissable tel que + est une fonction définissable sur G.

Analogue, on peut considérer un corps définissable.

Nadja Hempel Théorie des modèle des corps Mai 2014 6 / 18



Groupes et corps définissables

Un groupe définissable dans une structureM est un ensemble
G ⊂ Mn définissable tel que + est une fonction définissable sur G.

Analogue, on peut considérer un corps définissable.

Nadja Hempel Théorie des modèle des corps Mai 2014 6 / 18



But

On veux étudier la connexion entre les propriétés de la théorie du
premier ordre d’une structure et les propriétés algébrique des corps
définis dedans.
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Théorie stable

On ne peut pas définir un ordre linéaire.

c-à-d : il n’existe pas une formule φ(x , y ; b̄) et une suite de paramètres
(ai : i ∈ N) tel que :

φ(ai ,aj , b̄)⇔ i < j

Non Exemple :
(R,+, ·,0,1) φ(x , y) = ∃z (x + z2 = y) (n : n ∈ N)

φ(n,m)↔ n < m

Exemples :
corps algébriquement clos ou séparablement clos
espace vectoriel infini
groupe libre
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Corps algébriquement clos

Théorème (Macintyre et Cherlin-Shelah)
Un corps K définissable dans une théorie stable avec SU(K ) <∞
(notion rudimentaire de dimension) est algébriquement clos.

Par contre, on peut montrer que tout corps K qui est algébriquement
clos est stable et satisfait SU(K ) <∞. Alors :

Corollaire
La théorie d’un corps K est stable avec SU(K ) <∞ si et seulement si
il est algébriquement clos.
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Extensions d’Artin-Schreier

Soit K un corps de caractéristique p > 0.

Definition
On dit qu’une extension de corps L/K est une extension
d’Artin-Schreier si L = K (a) avec ap − a ∈ K . Un corps est dit
Artin-Schreier clos si jamais il n’admet pas d’extensions propres
d’Artin Schreier.
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Corps stable

Théorème (Scanlon)
Un corps K définissable dans un théorie stable est Artin-Schreier clos.

Conjecture
La théorie d’un corps est stable si et seulement si il est séparablement
clos.
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Théorie simple

On ne peut pas définir d’arbre tel que tout noeud a un nombre infini de
successeurs

c-à-d : il n’existe pas une formule φ(x , y ; b̄) et des paramètres
(aσ�n : n ∈ N, σ : N→ N) tels que :

{φ(x ,aσ�n; b̄) : n ∈ N, σ : N→ N} est consistent

et pour toute n ∈ N et σ : N→ N

{φ(x ,a(σ�n)ˆi ; b̄) : i ∈ N} est inconsistent

Exemples :
graphe aléatoire
corps algébriquement clos avec un automorphisme
corps pseudo fini
espace vectoriel avec une forme bilinéaire
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Corps pseudo algébriquement clos

Definition
Un corps est pseudo algébriquement clos (PAC) si chaque variété
absolument irreéductible défini sur K a un point K -rationnel.

Definition
On dit qu’un corps est borné si pour tout n il admet qu’un nombre fini
d’extension de degrés n.
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Corps simple avec SU(K ) <∞

Théorème (Hrushovski)
La théorie d’un corps PAC, parfait et borné est simple avec
SU(K ) <∞.

Par contre :

Théorème (Pillay, Poizat)
Un corps K définissable dans une théorie simple avec SU(K ) <∞ est
parfait et borné.

Conjecture
La théorie d’un corps est simple avec SU(K ) <∞ si et seulement si il
est PAC, parfait et borné.
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Corps simple

Théorème (Kaplan, Scanlon, Wagner)
Un corps K définissable dans une théorie simple a qu’un nombre fini
d’extensions d’Artin-Schreier.
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Théorie NIP

On ne peut pas définir tous les sous ensembles d’un ensemble infini.

c-a-d il n’existe pas une formule φ(x , y ; c̄), des paramètres (ai : i ∈ N)
et des paramètres (bI : I ⊂ N) tels que :

φ(ai ,bI ; c̄)⇔ i ∈ I

les théories stables
corps valués algébriquement clos
groupes ordornnés abeliens
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Théorie NIPn

On ne peut pas définir tous les sous ensembles de Nn

c-a-d il n’existe pas une formule φ(x1, . . . xn, y ; c̄), des paramètres
(aj

i : 1 < j < n, i ∈ N) et des paramètres (bI : I ⊂ Nn) tels que :

φ(a1
i1 , . . . ,a

n
in ,bI ; c̄)⇔ (i1, . . . , in) ∈ I

Remarque
Les théories NIP1 coincident avec les théories NIP
Toute théorie NIPn est NIPn+1

Exemples :
Le graphe sans triangle est NIP2

Le n-hyper graphe aléatoire est NIPn

Nadja Hempel Théorie des modèle des corps Mai 2014 17 / 18



Théorie NIPn

On ne peut pas définir tous les sous ensembles de Nn

c-a-d il n’existe pas une formule φ(x1, . . . xn, y ; c̄), des paramètres
(aj

i : 1 < j < n, i ∈ N) et des paramètres (bI : I ⊂ Nn) tels que :

φ(a1
i1 , . . . ,a

n
in ,bI ; c̄)⇔ (i1, . . . , in) ∈ I

Remarque
Les théories NIP1 coincident avec les théories NIP
Toute théorie NIPn est NIPn+1

Exemples :
Le graphe sans triangle est NIP2

Le n-hyper graphe aléatoire est NIPn

Nadja Hempel Théorie des modèle des corps Mai 2014 17 / 18



Théorie NIPn

On ne peut pas définir tous les sous ensembles de Nn

c-a-d il n’existe pas une formule φ(x1, . . . xn, y ; c̄), des paramètres
(aj

i : 1 < j < n, i ∈ N) et des paramètres (bI : I ⊂ Nn) tels que :

φ(a1
i1 , . . . ,a

n
in ,bI ; c̄)⇔ (i1, . . . , in) ∈ I

Remarque
Les théories NIP1 coincident avec les théories NIP
Toute théorie NIPn est NIPn+1

Exemples :
Le graphe sans triangle est NIP2

Le n-hyper graphe aléatoire est NIPn

Nadja Hempel Théorie des modèle des corps Mai 2014 17 / 18



Théorie NIPn

On ne peut pas définir tous les sous ensembles de Nn

c-a-d il n’existe pas une formule φ(x1, . . . xn, y ; c̄), des paramètres
(aj

i : 1 < j < n, i ∈ N) et des paramètres (bI : I ⊂ Nn) tels que :

φ(a1
i1 , . . . ,a

n
in ,bI ; c̄)⇔ (i1, . . . , in) ∈ I

Remarque
Les théories NIP1 coincident avec les théories NIP
Toute théorie NIPn est NIPn+1

Exemples :
Le graphe sans triangle est NIP2

Le n-hyper graphe aléatoire est NIPn

Nadja Hempel Théorie des modèle des corps Mai 2014 17 / 18



Théorie NIPn

On ne peut pas définir tous les sous ensembles de Nn

c-a-d il n’existe pas une formule φ(x1, . . . xn, y ; c̄), des paramètres
(aj

i : 1 < j < n, i ∈ N) et des paramètres (bI : I ⊂ Nn) tels que :

φ(a1
i1 , . . . ,a

n
in ,bI ; c̄)⇔ (i1, . . . , in) ∈ I

Remarque
Les théories NIP1 coincident avec les théories NIP
Toute théorie NIPn est NIPn+1

Exemples :
Le graphe sans triangle est NIP2

Le n-hyper graphe aléatoire est NIPn

Nadja Hempel Théorie des modèle des corps Mai 2014 17 / 18



Théorie NIPn

On ne peut pas définir tous les sous ensembles de Nn

c-a-d il n’existe pas une formule φ(x1, . . . xn, y ; c̄), des paramètres
(aj

i : 1 < j < n, i ∈ N) et des paramètres (bI : I ⊂ Nn) tels que :

φ(a1
i1 , . . . ,a

n
in ,bI ; c̄)⇔ (i1, . . . , in) ∈ I

Remarque
Les théories NIP1 coincident avec les théories NIP
Toute théorie NIPn est NIPn+1

Exemples :
Le graphe sans triangle est NIP2

Le n-hyper graphe aléatoire est NIPn

Nadja Hempel Théorie des modèle des corps Mai 2014 17 / 18



Théorie NIPn

On ne peut pas définir tous les sous ensembles de Nn

c-a-d il n’existe pas une formule φ(x1, . . . xn, y ; c̄), des paramètres
(aj

i : 1 < j < n, i ∈ N) et des paramètres (bI : I ⊂ Nn) tels que :

φ(a1
i1 , . . . ,a

n
in ,bI ; c̄)⇔ (i1, . . . , in) ∈ I

Remarque
Les théories NIP1 coincident avec les théories NIP
Toute théorie NIPn est NIPn+1

Exemples :
Le graphe sans triangle est NIP2

Le n-hyper graphe aléatoire est NIPn

Nadja Hempel Théorie des modèle des corps Mai 2014 17 / 18



Corps NIPn

Théorème (Kaplan, Scanlon, Wagner)
Un corps définissable dans une théorie NIP est Artin-Schreier clos.

Théorème (H)
Un corps définissable dans une théorie NIPn pour n’importe quel
n ∈ N est Artin-Schreier clos.

Théorème (H)
La théorie d’un corps PAC non separablement clos n’est pas NIPn
pour tout n ∈ N.
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