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Définition basic
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Définition basic

@ Langage : £ = {F,R,C} (quicontient toujours I'égalité)

F : une famille de fonctions
R : une famille de relations
C : une famille de constantes

Exemples :

o L={<}
Qo £G={+,0}
@ Lop={+,—,,0,1}
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Définition basic

@ Langage : £ = {F,R,C} (quicontient toujours I'égalité)

F : une famille de fonctions
R : une famille de relations
C : une famille de constantes

Exemples :
o L={<}
° ‘CG = {+a 0}
° ﬁan = {+7_7'7071}
@ Structure : M = (M; FM RM CM)
Exemples :
° (Q,<)
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F : une famille de fonctions
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Définition basic

@ Langage : £ = {F,R,C} (quicontient toujours I'égalité)

F : une famille de fonctions
R : une famille de relations
C : une famille de constantes

Exemples :

o L={<}
o Lg={+,0}
@ Lop={+,—,,0,1}

@ Structure : M = (M; FM RM CM)

Exemples :

° (Q,<)
o (Q;+,0)
° (Q;+a_a‘7071)
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Formule

Formule sans variable libre (énoncé) :
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Formule

Formule sans variable libre (énoncé) :

Exemples :
@ Vx3dy (x -y = 1) (existence d'un inverse)
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Formule

Formule sans variable libre (énoncé) :

Exemples :
@ Vx3dy (x -y = 1) (existence d'un inverse)
@ VxVy (x -y =y - x) (commutativité)
@ VxVy (x <y Vy < x) (ordre linéaire)
@ VXYY [(Xx<yAy<x)—x=y]|

Nadja Hempel Théorie des modele des corps Mai 2014 3/18



Formule

Formule sans variable libre (énoncé) :
Exemples :
@ Vx3dy (x -y = 1) (existence d'un inverse)
@ VxVy (x -y =y - x) (commutativité)
@ VxVy (x <y Vy < x) (ordre linéaire)
@ VXYY [(Xx<yAy<x)—=x=y]

Théorie : un ensemble T d’énoncés cohérents
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Formule

Formule avec des variables libres
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Formule

Formule avec des variables libres
Exemples :
o ¢(X;y)=VLi(xi-y=y-x)) (yeC(xi,...,Xn))
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Formule

Formule avec des variables libres
Exemples :
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Formule

Formule avec des variables libres
Exemples :
o ¢(X;y)=VLi(xi-y=y-x)) (yeC(xi,...,Xn))

@ ¢(x) =3z (2" =x) (x auneracine n°"°)

Formule avec des paramétre (dans une structure M)
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Formule

Formule avec des variables libres
Exemples :

o ¢()_(;y):\/7:1(xi'y:}/'xi)) (y € C(x1,...,X%n))
@ ¢(x) =3z (2" =x) (x aune racine n°me)
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Exemples :

@ ¢(X;a) : x; commute avec I'élément a

Nadja Hempel Théorie des modele des corps Mai 2014 4/18



Formule

Formule avec des variables libres
Exemples :

o ¢()_(;y):\/7:1(xi'y:}/'xi)) (y € C(x1,...,X%n))
@ ¢(x) =3z (2" =x) (x aune racine n°me)

Formule avec des paramétre (dans une structure M)
Exemples :

@ ¢(X;a) : x; commute avec I'élément a

@ ¢(a,y):yestunéléementde C(ay,...,an)

Nadja Hempel Théorie des modele des corps Mai 2014 4/18



Formule

Formule avec des variables libres
Exemples :

o ¢()_(;y):\/7:1(xi'y:}/'xi)) (y € C(x1,...,X%n))
@ ¢(x) =3z (2" =x) (x aune racine n°me)

Formule avec des paramétre (dans une structure M)
Exemples :

@ ¢(X;a) : x; commute avec I'élément a

@ ¢(a,y):yestunéléementde C(ay,...,an)

Satisfaction : On écrit M |= ¢(a) si ¢(a) est vrai dans M
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Formule

Formule avec des variables libres

Exemples :
° ¢(X;y)=VLi(xi-y=y-x)) (yeC(x,....xa))
@ ¢(x) =3z (2" =x) (x auneracine n°"°)

Formule avec des paramétre (dans une structure M)
Exemples :

@ ¢(X;a) : x; commute avec I'élément a

@ ¢(a,y):yestunéléementde C(ay,...,an)
Satisfaction : On écrit M |= ¢(a) si ¢(a) est vrai dans M

Modele : M |= ¢ pourtoutp € T
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Formule

Formule avec des variables libres

Exemples :

o ¢()_(;y):\/7:1(xi'y:}/'xi)) (y € C(x1,...,X%n))
@ ¢(x) =3z (2" =x) (x aune racine n°me)

Formule avec des paramétre (dans une structure M)

Exemples :
@ ¢(X;a) : x; commute avec I'élément a
@ ¢(a,y):yestunéléementde C(ay,...,an)

Satisfaction : On écrit M |= ¢(a) si ¢(a) est vrai dans M

Modele : M |= ¢ pourtoutp € T
En revanche, pour une structure M, Th(M) = {¢ : M = ¢}
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Ensemble définissable

Soit ¢(xy, . .., Xp; @) une formule et M = (M; FM, RM CM) une
structure.
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Ensemble définissable

Definition

Soit ¢(xy, . .., Xp; @) une formule et M = (M; FM, RM CM) une
structure. Alors,

¢(M,a) = {me M": M |= ¢(m)}

est un ensemble définissable de M".
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Definition
Soit ¢(xy, . .., Xp; @) une formule et M = (M; FM, RM CM) une
structure. Alors,

¢(M,a) = {me M": M |= ¢(m)}
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Ensemble définissable

Definition
Soit ¢(xy, . .., Xp; @) une formule et M = (M; FM, RM CM) une
structure. Alors,

¢(M,a) = {me M": M |= ¢(m)}

est un ensemble définissable de M".

Une fonction est dite définissable si son graphe est un ensemble
définissable.

Propriétés des ensembles définissables :
@ clos par intersections et unions finis
@ clos par complément
@ clos par projections
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Groupes et corps définissables

Un groupe définissable dans une structure M est un ensemble
G C M" définissable tel que + est une fonction définissable sur G.
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Groupes et corps définissables

Un groupe définissable dans une structure M est un ensemble
G C M" définissable tel que + est une fonction définissable sur G.

Analogue, on peut considérer un corps définissable.
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But

On veux étudier la connexion entre les propriétés de la théorie du

premier ordre d’une structure et les propriétés algébrique des corps
définis dedans.
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Théorie stable

On ne peut pas définir un ordre linéaire.
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Théorie stable

On ne peut pas définir un ordre linéaire.

c-a-d : il n’existe pas une formule ¢(x, y; b) et une suite de paramétres
(aj:i€N)telque:

#(a;, aj,b) =i < j
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Théorie stable

On ne peut pas définir un ordre linéaire.

c-a-d : il n’existe pas une formule ¢(x, y; b) et une suite de paramétres
(aj:i€N)telque:

o(aj,a,b) = i<
Non Exemple :
(R, +,-,0,1)  o(x,y)=3z(x+22=y) (n:neN)

Nadja Hempel Théorie des modele des corps Mai 2014 8/18



Théorie stable

On ne peut pas définir un ordre linéaire.

c-a-d : il n’existe pas une formule ¢(x, y; b) et une suite de paramétres
(aj:i€N)telque:

#(a;, aj,b) =i < j
Non Exemple :
(R, +,-,0,1)  o(x,y)=3z(x+22=y) (n:neN)

o(n,m)<n<m

Nadja Hempel Théorie des modele des corps Mai 2014 8/18



Théorie stable

On ne peut pas définir un ordre linéaire.

c-a-d : il n’existe pas une formule ¢(x, y; b) et une suite de paramétres
(aj:i€N)telque:

#(aj,a,b) & i<j

Non Exemple :
(R, +,-,0,1)  o(x,y)=3z(x+22=y) (n:neN)

o(n,m)<n<m

Exemples :
@ corps algébriqguement clos ou séparablement clos
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Théorie stable

On ne peut pas définir un ordre linéaire.
c-a-d : il n’existe pas une formule ¢(x, y; b) et une suite de paramétres
(aj:i€N)telque:

#(aj,a,b) & i<j

Non Exemple :
(R, +,-,0,1)  o(x,y)=3z(x+22=y) (n:neN)

o(n,m)<n<m
Exemples :
@ corps algébriqguement clos ou séparablement clos

@ espace vectoriel infini
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Théorie stable

On ne peut pas définir un ordre linéaire.

c-a-d : il n’existe pas une formule ¢(x, y; b) et une suite de paramétres
(aj:i€N)telque:

#(a;, aj,b) =i < j
Non Exemple :
(R, +,-,0,1)  o(x,y)=3z(x+22=y) (n:neN)

o(n,m)<n<m

Exemples :
@ corps algébriqguement clos ou séparablement clos
@ espace vectoriel infini
@ groupe libre
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Corps algébriquement clos

Théoréme (Macintyre et Cherlin-Shelah)

Un corps K définissable dans une théorie stable avec SU(K) < co
(notion rudimentaire de dimension) est algébriquement clos.
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Corps algébriquement clos

Théoréme (Macintyre et Cherlin-Shelah)

Un corps K définissable dans une théorie stable avec SU(K) < co
(notion rudimentaire de dimension) est algébriquement clos.

Par contre, on peut montrer que tout corps K qui est algébriquement
clos est stable et satisfait SU(K) < oo. Alors :
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Corps algébriquement clos

Théoréme (Macintyre et Cherlin-Shelah)

Un corps K définissable dans une théorie stable avec SU(K) < co
(notion rudimentaire de dimension) est algébriquement clos.

Par contre, on peut montrer que tout corps K qui est algébriquement
clos est stable et satisfait SU(K) < oo. Alors :

Corollaire

La théorie d’'un corps K est stable avec SU(K) < oo si et seulement si
il est algébriquement clos.

Nadja Hempel Théorie des modele des corps Mai 2014 9/18



Extensions d’Artin-Schreier

Soit K un corps de caractéristique p > 0.
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Extensions d’Artin-Schreier

Soit K un corps de caractéristique p > 0.
Definition

On dit qu’une extension de corps L/K est une extension
d’Artin-Schreier si L = K(a) avec a&® — a € K.
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Extensions d’Artin-Schreier

Soit K un corps de caractéristique p > 0.

Definition

On dit qu’une extension de corps L/K est une extension
d’Artin-Schreier si L = K(a) avec a® — a € K. Un corps est dit
Artin-Schreier clos si jamais il n’admet pas d’extensions propres
d’Artin Schreier.
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Corps stable

Théoreme (Scanlon)
Un corps K définissable dans un théorie stable est Artin-Schreier clos.
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Corps stable

Théoreme (Scanlon)
Un corps K définissable dans un théorie stable est Artin-Schreier clos.

La théorie d’un corps est stable si et seulement si il est séparablement
clos.
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Théorie simple

On ne peut pas définir d’arbre tel que tout noeud a un nombre infini de
successeurs
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Théorie simple

On ne peut pas définir d’arbre tel que tout noeud a un nombre infini de
successeurs

c-a-d : il n’existe pas une formule ¢(x, y; b) et des paramétres
(@sin:neN,o:N—=N)tels que :

{¢(x, asin; b) : n € N,o : N — N} est consistent
etpourtoute neNeto: N— N

{o(X, ap1n)~is b) : 1 € N} est inconsistent
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On ne peut pas définir d’arbre tel que tout noeud a un nombre infini de
successeurs
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(@sin:neN,o:N—=N)tels que :
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Théorie simple

On ne peut pas définir d’arbre tel que tout noeud a un nombre infini de
successeurs

c-a-d : il n’existe pas une formule ¢(x, y; b) et des paramétres
(@sin:neN,o:N—=N)tels que :

{¢(x, asin; b) : n € N,o : N — N} est consistent

etpourtoute neNeto: N— N

{o(X, ap1n)~is b) : 1 € N} est inconsistent

Exemples :
@ graphe aléatoire
@ corps algébriqguement clos avec un automorphisme
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Théorie simple

On ne peut pas définir d’arbre tel que tout noeud a un nombre infini de
successeurs

c-a-d : il n’existe pas une formule ¢(x, y; b) et des paramétres
(@sin:neN,o:N—=N)tels que :

{¢(x, asin; b) : n € N,o : N — N} est consistent

etpourtoute neNeto: N— N

{o(X, ap1n)~is b) : 1 € N} est inconsistent

Exemples :
@ graphe aléatoire
@ corps algébriqguement clos avec un automorphisme
@ corps pseudo fini
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Théorie simple

On ne peut pas définir d’arbre tel que tout noeud a un nombre infini de
successeurs

c-a-d : il n’existe pas une formule ¢(x, y; b) et des paramétres
(@sin:neN,o:N—=N)tels que :

{¢(x, asin; b) : n € N,o : N — N} est consistent

etpourtoute neNeto: N— N

{¢(X, @y iny~ii b) : | € N} est inconsistent
Exemples :
@ graphe aléatoire
@ corps algébriqguement clos avec un automorphisme
@ corps pseudo fini
@ espace vectoriel avec une forme bilinéaire

Nadja Hempel Théorie des modele des corps Mai 2014 12/18



Corps pseudo algébriquement clos

Definition

Un corps est pseudo algébriquement clos (PAC) si chaque variété
absolument irreéductible défini sur K a un point K-rationnel.
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Corps pseudo algébriquement clos

Un corps est pseudo algébriquement clos (PAC) si chaque variété
absolument irreéductible défini sur K a un point K-rationnel.

On dit qu’un corps est borné si pour tout n il admet qu’un nombre fini
d’extension de degrés n.
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Corps simple avec SU(K) < o

Théoréme (Hrushovski)

La théorie d’un corps PAC, parfait et borné est simple avec
SU(K) < oc.
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Corps simple avec SU(K) < o

Théoreme (Hrushovski)

La théorie d’un corps PAC, parfait et borné est simple avec
SU(K) < oc.

Par contre :

Théoreme (Pillay, Poizat)

Un corps K définissable dans une théorie simple avec SU(K) < oo est
parfait et borné.
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Corps simple avec SU(K) < o

Théoreme (Hrushovski)

La théorie d’un corps PAC, parfait et borné est simple avec
SU(K) < oc.

Par contre :

Théoreme (Pillay, Poizat)

Un corps K définissable dans une théorie simple avec SU(K) < oo est
parfait et borné.

La théorie d’'un corps est simple avec SU(K) < oo si et seulement si il
est PAC, parfait et borné.
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Corps simple

Théoreme (Kaplan, Scanlon, Wagner)

Un corps K définissable dans une théorie simple a qu’'un nombre fini
d’extensions d’Artin-Schreier.

Nadja Hempel Théorie des modele des corps Mai 2014 15/18



Théorie NIP

On ne peut pas définir tous les sous ensembles d’'un ensemble infini.
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Théorie NIP

On ne peut pas définir tous les sous ensembles d’'un ensemble infini.

c-a-d il n’existe pas une formule ¢(x, y; c), des paramétres (a; : i € N)
et des parameétres (b, : I C N) tels que :

qb(a,-, by; E‘) sSiel
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Théorie NIP

On ne peut pas définir tous les sous ensembles d’'un ensemble infini.

c-a-d il n’existe pas une formule ¢(x, y; c), des paramétres (a; : i € N)
et des parameétres (b, : I C N) tels que :

qb(a,-, by; E‘) sSiel

@ les théories stables
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Théorie NIP

On ne peut pas définir tous les sous ensembles d’'un ensemble infini.

c-a-d il n’existe pas une formule ¢(x, y; c), des paramétres (a; : i € N)
et des parameétres (b, : I C N) tels que :

qb(a,-, by; E‘) sSjiel

@ les théories stables
@ corps valués algébriquement clos
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Théorie NIP

On ne peut pas définir tous les sous ensembles d’'un ensemble infini.

c-a-d il n’existe pas une formule ¢(x, y; c), des paramétres (a; : i € N)
et des parameétres (b, : I C N) tels que :

qb(a,-, by; F;) sSiel

@ les théories stables
@ corps valués algébriquement clos
@ groupes ordornnés abeliens
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Théorie NIP,
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Théorie NIP,

On ne peut pas définir tous les sous ensembles de N"
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Théorie NIP,
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Théorie NIP,

On ne peut pas définir tous les sous ensembles de N"
c-a-d il nexiste pas une formule ¢(x1,... Xn, ¥; C), des paramétres
(al:1<j<n,ieN)etdesparamétres (b, : I C N") tels que :

$(@,....al b;8) & (ir,....0n) €l

Remarque

@ Les théories NIP; coincident avec les théories NIP
@ Toute théorie NIP, est NIP, 4

Exemples :
@ Le graphe sans triangle est NIP,
@ Le n-hyper graphe aléatoire est NIP,

Nadja Hempel Théorie des modele des corps Mai 2014 17/18



Corps NIP,

Théoreme (Kaplan, Scanlon, Wagner)
Un corps définissable dans une théorie NIP est Artin-Schreier clos.
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Corps NIP,

Théoreme (Kaplan, Scanlon, Wagner)
Un corps définissable dans une théorie NIP est Artin-Schreier clos.

Théoreme (H)

Un corps définissable dans une théorie NIP, pour n’importe quel
n € N est Artin-Schreier clos.

Théoréme (H)
La théorie d’un corps PAC non separablement clos n’est pas NIP,
pour tout n € N.
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