

Parameterized Kovacic's algorithm

Thomas Dreyfus

University Paris 7

Colloque Inter'Actions 2014 en Mathématiques. 20/05/2014,
Lyon, France.

Abstract

To the parameterized equation:

$$\partial_X^2 Y(X, t) = r(X, t) Y(X, t),$$

we associate a Galois group $\textcolor{blue}{G}$ that measures the algebraic and differentials relations between the solutions. We want to explain how to compute $\textcolor{blue}{G}$.

- 1 Original Kovacic's algorithm
- 2 Parameterized differential Galois theory
- 3 Adaptation of Kovacic's algorithm in the parameterized case

- We consider: $\partial_X^2 Y(X) = r(X) Y(X)$, where $r(X) \in \mathbb{C}(X)$.
- We associate an **algebraic subgroup H** of $\mathrm{SL}_2(\mathbb{C})$ to this equation, which measure the algebraic relations between the solutions. We call H the **differential Galois group**.

Kovacic's algorithm uses the classification of the algebraic subgroups of $SL_2(\mathbb{C})$ to find the Liouvillian solutions, which are the solutions that involve exponentials, indefinite integrals and solutions of polynomial equations. There are four possibilities.

1 H is conjugated to a subgroup of

$$B = \left\{ \begin{pmatrix} a & b \\ 0 & a^{-1} \end{pmatrix}, \text{ where } a \in \mathbb{C}^*, b \in \mathbb{C} \right\} \text{ and } \exists f(X) \in \mathbb{C}(X)$$

such that $e^{\int_0^X f(u)du}$ is solution.

2 H is conjugated to a subgroup of

$$D_\infty = \left\{ \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \cup \begin{pmatrix} 0 & b^{-1} \\ -b & 0 \end{pmatrix}, \text{ where } a, b \in \mathbb{C}^* \right\} \text{ and}$$

$\exists f(X) \notin \mathbb{C}(X)$, algebraic over $\mathbb{C}(X)$ of degree two, such that $e^{\int_0^X f(u)du}$ is solution.

3 H is finite and all the solutions are algebraic over $\mathbb{C}(X)$.

4 $H = \text{SL}_2(\mathbb{C})$ and there are no Liouvillian solutions.

Let C be a differential field equipped with n commuting derivations: $\partial_1, \dots, \partial_n$ and let $\Delta = \{\partial_1, \dots, \partial_n\}$. We will assume that C is an **universal** (Δ)-field with characteristic 0. We consider the parameterized equation

$$\begin{pmatrix} \partial_X Y(X) \\ \partial_X^2 Y(X) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ r(X) & 0 \end{pmatrix} \begin{pmatrix} Y(X) \\ \partial_X Y(X) \end{pmatrix}, \text{ with } r(X) \in C(X). \quad (1)$$

The derivations in Δ could be seen as derivations with respect to the parameters.

$$\begin{pmatrix} \partial_X Y(X) \\ \partial_X^2 Y(X) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ r(X) & 0 \end{pmatrix} \begin{pmatrix} Y(X) \\ \partial_X Y(X) \end{pmatrix}, \text{ with } r(X) \in C(X). \quad (1)$$

- A parameterized Picard-Vessiot extension for (1) is a (∂_X, Δ) -differential field extension generated by the entries of an invertible solution matrix.
- This extension for (1) exists and is unic.

Let U be an invertible solution matrix of (1) and let $\widetilde{C(X)}|C(X)$ denotes the parameterized Picard-Vessiot extension.

- The **parameterized differential Galois group** \mathbf{G} , is the group of (∂_X, Δ) -differential field automorphism of $\widetilde{C(X)}$ letting $C(X)$ invariant.
- The image of $\{U^{-1}\varphi(U), \varphi \in \mathbf{G}\}$, is a **linear differential algebraic subgroup** of $\mathrm{SL}_2(\mathbb{C})$: this is the zero of a set of (Δ) -differential polynomials in 4 variables.
- The **Zariski closure** of \mathbf{G} is \mathbf{H} , the classical differential Galois group.

$$\begin{pmatrix} \partial_X Y(X) \\ \partial_X^2 Y(X) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ r(X) & 0 \end{pmatrix} \begin{pmatrix} Y(X) \\ \partial_X Y(X) \end{pmatrix}, \text{ with } r(X) \in C(X). \quad (1)$$

- The original Kovacic's algorithm can be used for equations having rational coefficient in an **algebraic closed** field.
- C **algebraically closed** \Rightarrow we apply Kovacic's algorithm to compute H .
- In each of the four cases of the algorithm, we have to find G , which is Zariski dense in H .

Using a result of Seidenberg, a finite (Δ) -differential field extension of \mathbb{Q} generated by elements of C can be interpreted as a subfield of $(\mathcal{M}_D, \partial_{t_1}, \dots, \partial_{t_n})$ of **meromorphic functions on D** , a poly-disk of \mathbb{C}^n . Then:

- The parameterized equation can be seen as an equation with coefficients in $\mathcal{M}_D(X)$.
- We will compute G as a subgroup of $SL_2(\mathcal{M}_D)$.
- The Liouvillian solutions found are defined over the algebraic closure of \mathcal{M}_D .

Case 1

Let $t = (t_1, \dots, t_n)$. $\exists f(X, t) \in \mathcal{M}_D(X)$ such that:

$g(X, t) = e^{\int_0^X f(u, t) du}$ is solution.

If $g(X, t) \in \mathcal{M}_D(X)$, we can compute explicitly another solution, $g(X, t) \int_{u=0}^X g(u, t)^{-2} du$ and G .

In the other case, there exists $M \subset \text{GL}_1(\mathcal{M}_D)$, and P_1, \dots, P_k linear differential polynomials in coefficients in \mathcal{M}_D such that

$$G \simeq \left\{ \begin{pmatrix} m(t) & a(t) \\ 0 & m(t)^{-1} \end{pmatrix}, \text{ where } m(t) \in M, P_i(a(t)) = 0, \forall i \right\}.$$

Case 1

Let $t = (t_1, \dots, t_n)$. $\exists f(X, t) \in \mathcal{M}_D(X)$ such that:

$g(X, t) = e^{\int_0^X f(u, t) du}$ is solution.

If $g(X, t) \in \mathcal{M}_D(X)$, we can compute explicitly another solution, $g(X, t) \int_{u=0}^X g(u, t)^{-2} du$ and \mathbf{G} .

In the other case, there exists $M \subset \text{GL}_1(\mathcal{M}_D)$, and P_1, \dots, P_k linear differential polynomials in coefficients in \mathcal{M}_D such that

$$\mathbf{G} \simeq \left\{ \begin{pmatrix} m(t) & a(t) \\ 0 & m(t)^{-1} \end{pmatrix}, \text{ where } m(t) \in M, P_i(a(t)) = 0, \forall i \right\}.$$

Case 1

Let $t = (t_1, \dots, t_n)$. $\exists f(X, t) \in \mathcal{M}_D(X)$ such that:

$g(X, t) = e^{\int_0^X f(u, t) du}$ is solution.

If $g(X, t) \in \mathcal{M}_D(X)$, we can compute explicitly another solution, $g(X, t) \int_{u=0}^X g(u, t)^{-2} du$ and $\textcolor{blue}{G}$.

In the other case, there exists $M \subset \text{GL}_1(\mathcal{M}_D)$, and P_1, \dots, P_k **linear** differential polynomials in coefficients in \mathcal{M}_D such that

$$\textcolor{blue}{G} \simeq \left\{ \begin{pmatrix} m(t) & a(t) \\ 0 & m(t)^{-1} \end{pmatrix}, \text{ where } m(t) \in M, P_i(a(t)) = 0, \forall i \right\}.$$

Example

Let us consider $\partial_X^2 Y(X, t) = \frac{t}{X^2} Y(X, t)$. We have two Liouvillian solutions:

$$f_1(X, t) = \sqrt{X} X^{\frac{\sqrt{1+4t}}{2}} \text{ and } f_2(X, t) = \sqrt{X} X^{-\frac{\sqrt{1+4t}}{2}}.$$

$$\begin{aligned} G &\simeq \left\{ \begin{pmatrix} be^{a(\sqrt{1+4t})} & 0 \\ 0 & b^{-1}e^{-a(\sqrt{1+4t})} \end{pmatrix}, \text{ where } a \in \mathbb{C}, b \in \mathbb{C}^* \right\} \\ &\simeq \left\{ \begin{pmatrix} \alpha(t) & 0 \\ 0 & \alpha^{-1}(t) \end{pmatrix}, \text{ where } \partial_t \left(\frac{\sqrt{1+4t} \partial_t \alpha(t)}{\alpha(t)} \right) = 0 \right\}. \end{aligned}$$

Case 2

In this case, there are two Liouvillian solutions of the form:

$$g_i(X, t) = e^{\int_0^X f_i(u, t) du}, i \in \{1, 2\}$$

where $f_i(X, t)^2 + a(X, t)f_i(X, t) + b(X, t) = 0$.

Assume $n = 1$. $\exists \widetilde{P}_1, \dots, \widetilde{P}_k$ **linear** differential polynomials with coefficients in \mathcal{M}_D such that:

$$G \simeq \left\{ \begin{pmatrix} a(t) & 0 \\ 0 & a^{-1}(t) \end{pmatrix} \cup \begin{pmatrix} 0 & b^{-1}(t) \\ -b(t) & 0 \end{pmatrix} \right\},$$

where $\widetilde{P}_i \left(\frac{\partial_t a(t)}{a(t)} \right) = \widetilde{P}_i \left(\frac{\partial_t b(t)}{b(t)} \right) = 0$ for all i .

Example

Let us consider $\partial_X^2 Y(X, t) = \left(\frac{t}{X} - \frac{3}{16X^2} \right) Y(X, t)$. We have two Liouvillian solutions:

$$f_1(X, t) = (X)^{1/4} e^{2(tX)^{1/2}} \text{ and } f_2(X, t) = (X)^{1/4} e^{-2(tX)^{1/2}}.$$

In that basis:

$$G \simeq \left\{ \begin{pmatrix} a(t) & 0 \\ 0 & a^{-1}(t) \end{pmatrix} \cup \begin{pmatrix} 0 & b^{-1}(t) \\ -b(t) & 0 \end{pmatrix}, \text{ where } a(t), b(t) \in \mathbb{C}^* \right\}.$$

Case 3

In this case where H is finite, and $H=G$.

Case 4

In this case, $\textcolor{blue}{G}$ is Zariski dense in $\text{SL}_2(\mathcal{M}_D)$. There exists $\textcolor{red}{D}$, a vectorial space spanned by the derivations such that $\textcolor{blue}{G} \simeq \text{SL}_2(\mathcal{M}_D^{\textcolor{red}{D}})$, where

$$\mathcal{M}_D^{\textcolor{red}{D}} := \{f(t) \in \mathcal{M}_D \mid \forall \partial \in \textcolor{red}{D}, \partial f(t) = 0\}.$$

Proposition (1 \Leftrightarrow 2, Cassidy/Singer, 2 \Leftrightarrow 3 \Leftrightarrow 4, D)

We have the following equivalences:

- 1 G is conjugated to $\mathrm{SL}_2(\mathcal{M}_D^{\mathbb{D}})$ over $\mathrm{SL}_2(\mathcal{M}_D)$.

2

3

4

Proposition (1 \Leftrightarrow 2, Cassidy/Singer, 2 \Leftrightarrow 3 \Leftrightarrow 4, D)

We have the following equivalences:

- 1 G is conjugated to $\mathrm{SL}_2(\mathcal{M}_D^{\mathbb{D}})$ over $\mathrm{SL}_2(\mathcal{M}_D)$.
- 2 $\exists \partial_1, \dots, \partial_k$, *commutating basis of \mathbb{D}* ,
 $\exists A_1(X, t), \dots, A_k(X, t) \in \mathrm{GL}_2(\mathcal{M}_D)$ such that $\forall 0 \leq i, j \leq k$:

$$\partial_j A_i(X, t) - \partial_i A_j(X, t) = A_j(X, t) A_i(X, t) - A_i(X, t) A_j(X, t),$$

where $A_0(X, t) = \begin{pmatrix} 0 & 1 \\ r(X, t) & 0 \end{pmatrix}$ and $\partial_0 = \partial_X$.

3

4

Proposition (1 \Leftrightarrow 2, Cassidy/Singer, 2 \Leftrightarrow 3 \Leftrightarrow 4, D)

We have the following equivalences:

- 1 G is conjugated to $\mathrm{SL}_2(\mathcal{M}_D^{\mathbb{D}})$ over $\mathrm{SL}_2(\mathcal{M}_D)$.
- 2
- 3 For all $\partial' \in \mathbb{D}$, there exists $A_1(X, t) \in \mathrm{GL}_2(\mathcal{M}_D)$ such that

$$\partial' A_0(X, t) - \partial_X A_1(X, t) = A_0(X, t)A_1(X, t) - A_1(X, t)A_0(X, t).$$

4

Proposition (1 \Leftrightarrow 2, Cassidy/Singer, 2 \Leftrightarrow 3 \Leftrightarrow 4, D)

We have the following equivalences:

- 1 *G is conjugated to $\mathrm{SL}_2(\mathcal{M}_D^{\mathbb{D}})$ over $\mathrm{SL}_2(\mathcal{M}_D)$.*
- 2
- 3
- 4 *For all $\partial' \in \mathbb{D}$, the following parameterized differential equation has a solution in $\mathcal{M}_D(X)$:*

$$\frac{\partial_X^3 b(X, t)}{2} = 2\partial_X b(X, t)r(X, t) + b(X, t)\partial_X r(X, t) - \partial' r(X, t).$$

Example

Let us consider $\partial_X^2 Y(X, t) = \left(X^{2n+1} + \sum_{i=0}^{2n} t_i X^i \right) Y(X, t)$.

We find: $\textcolor{blue}{G} \simeq \text{SL}_2 \left(\mathcal{M}_D^{\partial_{t'}} \right)$, where

$$\partial_{t'} = (2n+1)\partial_{t_{2n}} + \sum_{i=0}^{2n-1} (i+1)t_{i+1}\partial_{t_i}.$$