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Abstract

To the parameterized equation:

∂2
X Y (X , t) = r(X , t)Y (X , t),

we associate a Galois group G that measures the algebraic and

differentials relations between the solutions. We want to explain

how to compute G.
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Adaptation of Kovacic’s algorithm in the parameterized case

We consider: ∂2
X Y (X ) = r(X )Y (X ), where r(X ) ∈ C(X ).

We associate an algebraic subgroup H of SL2(C) to this

equation, which measure the algebraic relations between

the solutions. We call H the differential Galois group.
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Parameterized differential Galois theory

Adaptation of Kovacic’s algorithm in the parameterized case

Kovacic’s algorithm uses the classification of the algebraic

subgroups of SL2(C) to find the Liouvillian solutions, which are

the solutions that involve exponentials, indefinite integrals and

solutions of polynomial equations. There are four possibilities.
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1 H is conjugated to a subgroup of

B =

{(
a b

0 a−1

)
, where a ∈ C∗, b ∈ C

}
and ∃f (X ) ∈ C(X )

such that e
∫ X

0
f (u)du

is solution.

2 H is conjugated to a subgroup of

D∞ =

{(
a 0

0 a−1

)
⋃
(

0 b−1

−b 0

)
, where a, b ∈ C∗

}
and

∃f (X ) /∈ C(X ), algebraic over C(X ) of degree two, such

that e
∫ X

0
f (u)du

is solution.

3 H is finite and all the solutions are algebraic over C(X ).

4 H= SL2(C) and there are no Liouvillian solutions.
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Adaptation of Kovacic’s algorithm in the parameterized case

Let C be a differential field equipped with n commuting

derivations: ∂1, . . . , ∂n and let ∆ = {∂1, . . . , ∂n}. We will assume

that C is an universal (∆)-field with characteristic 0.

We consider the parameterized equation

(
∂X Y (X )

∂2
X Y (X )

)
=

(
0 1

r(X ) 0

)(
Y (X )

∂X Y (X )

)
, with r(X ) ∈ C(X ). (1)

The derivations in ∆ could be seen as derivations with respect

to the parameters.
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(
∂X Y (X )

∂2
X Y (X )

)
=

(
0 1

r(X ) 0

)(
Y (X )

∂X Y (X )

)
, with r(X ) ∈ C(X ). (1)

A parameterized Picard-Vessiot extension for (1) is a

(∂X ,∆)-differential field extension generated by the entries

of an invertible solution matrix.

This extension for (1) exists and is unic.
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Adaptation of Kovacic’s algorithm in the parameterized case

Let U be an invertible solution matrix of (1) and let C̃(X )|C(X )
denotes the parameterized Picard-Vessiot extension.

The parameterized differential Galois group G, is the group

of (∂X ,∆)-differential field automorphism of C̃(X ) letting

C(X ) invariant.

The image of {U−1ϕ(U), ϕ ∈ G }, is a linear differential

algebraic subgroup of SL2(C): this is the zero of a set of

(∆)-differential polynomials in 4 variables.

The Zariski closure of G is H, the classical differential

Galois group.
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Adaptation of Kovacic’s algorithm in the parameterized case

(
∂X Y (X )

∂2
X Y (X )

)
=

(
0 1

r(X ) 0

)(
Y (X )

∂X Y (X )

)
, with r(X ) ∈ C(X ). (1)

The original Kovacic’s algorithm can be used for equations

having rational coefficient in an algebraic closed field.

C algebraically closed ⇒ we apply Kovacic’s algorithm to

compute H.

In each of the four cases of the algorithm, we have to find

G, which is Zariski dense in H.
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Adaptation of Kovacic’s algorithm in the parameterized case

Using a result of Seidenberg, a finite (∆)-differential field

extension of Q generated by elements of C can be interpreted

as a subfield of (MD, ∂t1 , . . . , ∂tn) of meromorphic functions on

D, a poly-disk of Cn. Then:

The parameterized equation can be seen as an equation

with coefficients in MD(X ).

We will compute G as a subgroup of SL2(MD).

The Liouvillian solutions found are defined over the

algebraic closure of MD.
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Adaptation of Kovacic’s algorithm in the parameterized case

Case 1

Let t = (t1, . . . , tn). ∃f (X , t) ∈ MD(X ) such that:

g(X , t) = e
∫ X

0
f (u,t)du

is solution.

If g(X , t) ∈ MD(X ), we can compute explicitly another solution,

g(X , t)
∫ X

u=0 g(u, t)−2du and G.

In the other case, there exists M ⊂ GL1(MD), and P1, . . . , Pk

linear differential polynomials in coefficients in MD such that

G ≃
{(

m(t) a(t)

0 m(t)−1

)
, where m(t) ∈ M, Pi(a(t)) = 0 , ∀i

}
.
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Example

Let us consider ∂2
X Y (X , t) = t

X2 Y (X , t). We have two Liouvillian

solutions:

f1(X , t) =
√

XX
√

1+4t
2 and f2(X , t) =

√
XX −

√
1+4t
2 .

G ≃
{(

bea(
√

1+4t) 0

0 b−1e−a(
√

1+4t)

)
, where a ∈ C , b ∈ C∗

}

≃
{(

α(t) 0

0 α−1(t)

)
, where ∂t

(√
1+4t∂t α(t)

α(t)

)
= 0

}
.
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Case 2

In this case, there are two Liouvillian solutions of the form:

gi(X , t) = e
∫ X

0
fi (u,t)du , i ∈ {1, 2}

where fi(X , t)2 + a(X , t)fi (X , t) + b(X , t) = 0.

Assume n = 1. ∃P̃1, . . . , P̃k linear differential polynomials with

coefficients in MD such that:

G ≃
{(

a(t) 0

0 a−1(t)

)
⋃
(

0 b−1(t)
−b(t) 0

)}
,

where P̃i

(
∂t a(t)
a(t)

)
= P̃i

(
∂t b(t)
b(t)

)
= 0 for all i .
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Adaptation of Kovacic’s algorithm in the parameterized case

Example

Let us consider ∂2
X Y (X , t) =

(
t
X

− 3
16X2

)
Y (X , t). We have two

Liouvillian solutions:

f1(X , t) = (X )1/4e2(tX)1/2

and f2(X , t) = (X )1/4e−2(tX)1/2

.

In that basis:

G ≃
{(

a(t) 0

0 a−1(t)

)
⋃
(

0 b−1(t)
−b(t) 0

)
, where a(t), b(t) ∈ C∗

}
.
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Case 3

In this case where H is finite, and H=G.
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Adaptation of Kovacic’s algorithm in the parameterized case

Case 4

In this case, G is Zariski dense in SL2(MD). There exists D, a

vectorial space spanned by the derivations such that

G≃ SL2(MD
D
), where

MD
D := {f (t) ∈ MD|∀∂ ∈ D, ∂f (t) = 0}.
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Proposition (1 ⇔ 2, Cassidy/Singer, 2 ⇔ 3 ⇔ 4, D)

We have the following equivalences:

1 G is conjugated to SL2(MD
D
) over SL2(MD).

2

3

4
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Proposition (1 ⇔ 2, Cassidy/Singer, 2 ⇔ 3 ⇔ 4, D)

We have the following equivalences:

1 G is conjugated to SL2(MD
D
) over SL2(MD).

2 ∃∂1, . . . , ∂k , commutating basis of D,

∃A1(X , t), . . . , Ak (X , t) ∈ GL2(MD) such that ∀0 ≤ i , j ≤ k:

∂jAi(X , t) − ∂iAj(X , t) = Aj(X , t)Ai (X , t) − Ai(X , t)Aj (X , t),

where A0(X , t) =

(
0 1

r(X , t) 0

)
and ∂0 = ∂X .

3

4
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Proposition (1 ⇔ 2, Cassidy/Singer, 2 ⇔ 3 ⇔ 4, D)

We have the following equivalences:

1 G is conjugated to SL2(MD
D
) over SL2(MD).

2

3 For all ∂′ ∈ D, there exists A1(X , t) ∈ GL2(MD) such that

∂′A0(X , t)−∂X A1(X , t) = A0(X , t)A1(X , t)−A1(X , t)A0(X , t).

4
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Proposition (1 ⇔ 2, Cassidy/Singer, 2 ⇔ 3 ⇔ 4, D)

We have the following equivalences:

1 G is conjugated to SL2(MD
D
) over SL2(MD).

2

3

4 For all ∂′ ∈ D, the following parameterized differential

equation has a solution in MD(X ):

∂3
X b(X , t)

2
= 2∂X b(X , t)r(X , t)+b(X , t)∂X r(X , t)−∂′r(X , t).
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Example

Let us consider ∂2
X Y (X , t) =


X 2n+1 +

2n∑

i=0

tiX
i


Y (X , t).

We find: G ≃ SL2

(
M∂

t′

D

)
, where

∂t ′ = (2n + 1)∂t2n
+

2n−1∑

i=0

(i + 1)ti+1∂ti .
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