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Abstract

To the parameterized equation:
BY(X. 1) = (X, )Y (X, 1),

we associate a Galois group G that measures the algebraic and
differentials relations between the solutions. We want to explain
how to compute G.
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Original Kovacic’s algorithm

@ We consider: 9% Y(X) = r(X)Y(X), where r(X) € C(X).

@ We associate an algebraic subgroup H of SL,(C) to this
equation, which measure the algebraic relations between
the solutions. We call H the differential Galois group.
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Original Kovacic’s algorithm

Kovacic’s algorithm uses the classification of the algebraic

subgroups of SL,(C) to find the Liouvillian solutions, which are
the solutions that involve exponentials, indefinite integrals and
solutions of polynomial equations. There are four possibilities.
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Original Kovacic’s algorithm

@ H is conjugated to a subgroup of

B— { (g aﬂ) ,where ac C*, b e c} and 3f(X) € C(X)

X
such that elo W% is solution.

@ H is conjugated to a subgroup of

a o0 0 b! .
Doo_{<o a—1>U<—b 0>,wherea,be(c}and

3f(X) ¢ C(X), algebraic over C(X) of degree two, such
that elo @)% ig solution.
© H is finite and all the solutions are algebraic over C(X).
© H= SL,(C) and there are no Liouvillian solutions.
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Parameterized differential Galois theory

Let C be a differential field equipped with n commuting
derivations: 91,...,0, and let A = {01, ...,9,}. We will assume
that C is an universal (A)-field with characteristic 0.

We consider the parameterized equation

(50) = (18 5) (21680 - winra o 1

The derivations in A could be seen as derivations with respect
to the parameters.
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Parameterized differential Galois theory

(50) = (100 o) (o) w0 e 00, o

@ A parameterized Picard-Vessiot extension for (1) is a
(0x, A)-differential field extension generated by the entries
of an invertible solution matrix.

@ This extension for (1) exists and is unic.
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Parameterized differential Galois theory

—~—

Let U be an invertible solution matrix of (1) and let C(X)|C(X)
denotes the parameterized Picard-Vessiot extension.

@ The parameterized differential Galois group G, is the group
of (0x, A)-differential field automorphism of C(X) letting
C(X) invariant.

@ The image of {U~"p(U), ¢ € G }, is a linear differential
algebraic subgroup of SL,(C): this is the zero of a set of
(A)-differential polynomials in 4 variables.

@ The Zariski closure of G is H, the classical differential
Galois group.
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Adaptation of Kovacic’s algorithm in the parameterized case

(5008) = (8 ) (55%) win o cvo. o

@ The original Kovacic’s algorithm can be used for equations
having rational coefficient in an algebraic closed field.

@ C algebraically closed = we apply Kovacic’s algorithm to
compute H.

@ In each of the four cases of the algorithm, we have to find
G, which is Zariski dense in H.
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Adaptation of Kovacic’s algorithm in the parameterized case

Using a result of Seidenberg, a finite (A)-differential field
extension of Q generated by elements of C can be interpreted
as a subfield of (Mp, 0, ..., 0,) of meromorphic functions on
D, a poly-disk of C". Then:
@ The parameterized equation can be seen as an equation
with coefficients in Mp(X).
@ We will compute G as a subgroup of SL,(Mp).
@ The Liouvillian solutions found are defined over the
algebraic closure of Mp.
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Adaptation of Kovacic’s algorithm in the parameterized case

Case 1

Lett=(4,...,t). 3IF(X,t) € Mp(X) such that:

X
g(X. 1) = elo (D% i solution.
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Adaptation of Kovacic’s algorithm in the parameterized case

Case 1

Lett=(4,...,t). 3IF(X,t) € Mp(X) such that:

X
g(X. 1) = elo (D% i solution.

If g(X,t) € Mp(X), we can compute explicitly another solution,
a(X, t) [, g(u, t)~2du and G.
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Adaptation of Kovacic’s algorithm in the parameterized case

Case 1

Lett=(4,...,t). 3IF(X,t) € Mp(X) such that:

X
g(X. 1) = elo (D% i solution.

In the other case, there exists M € GL(Mp), and Py, ..., P
linear differential polynomials in coefficients in Mp such that

T S —
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Adaptation of Kovacic’s algorithm in the parameterized case

Example

Let us consider 9% Y (X, t) = 5% Y(X, t). We have two Liouvillian
solutions:

(X, 1) = VXXEE and (X, 1) = VXX~

pealvVTFaD) 0
G ~ 0 b1 g-alv/iTaD ,whereaec C,be C*
t v a
) { o o ’W“ereaf(%?(”)zo}'
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Adaptation of Kovacic’s algorithm in the parameterized case

Case 2

In this case, there are two Liouvillian solutions of the form:

X
(X, 1) = elo DU jc (4 2y
where f;(X, )% + a(X, )fi(X, t) + b(X, t) = 0.

Assume n=1. 3Py, ..., Py linear differential polynomials with
coefficients in Mp such that:

_Jfa) o0 0 b (1)
G—{<o a—1(t)>U<—b(t) 0 )}

where P; (%2} = P (%)) = 0 for all .
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Adaptation of Kovacic’s algorithm in the parameterized case

Example

Let us consider 9% Y(X, t) = (% — 163;(2) Y(X,t). We have two
Liouvillian solutions:
1/2

(X, t) = (X)1/462(tx)1/2 and h(X, t) = (X)1/4e—2(tX)

In that basis:

G ~ {(a(()t) a_?(t)> U <_g(t) b_;(t)> ,Where a(t), b(t) c (C*} )
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Adaptation of Kovacic’s algorithm in the parameterized case

Case 3

In this case where H is finite, and H=G.
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Adaptation of Kovacic’s algorithm in the parameterized case

Case 4

In this case, G is Zariski dense in SLy(Mp). There exists D, a
vectorial space spanned by the derivations such that
G~ SLy(MB), where

MB = {f(t) € Mp|Vd € D, df(t) = 0}.
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Adaptation of Kovacic’s algorithm in the parameterized case

Proposition (1 < 2, Cassidy/Singer, 2 < 3 < 4, D)
We have the following equivalences:
@ G is conjugated to SL,(MRB) over SL,(Mp).
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Adaptation of Kovacic’s algorithm in the parameterized case

Proposition (1 < 2, Cassidy/Singer, 2 < 3 < 4, D)
We have the following equivalences:
@ G is conjugated to SLy(MB) over SLy(Mp).

Q 304,...,0k, commutating basis of D,
JA1(X, 1), ..., A(X, t) € GLy(Mp) such thatV0 < i,j < k:

GAIX, 1) — BA(X, 1) = A(X, DAI(X, 1) — A(X, DA(X, 1),

0 1

where Ay(X,t) = <r(X f 0

) and 9p = Ox.
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Adaptation of Kovacic’s algorithm in the parameterized case

Proposition (1 < 2, Cassidy/Singer, 2 < 3 < 4, D)
We have the following equivalences:
@ G is conjugated to SLy(MB) over SLy(Mp).

© Forall & €D, there exists A(X, t) € GLy(Mp) such that

8' Ao (X, H)—dx A1 (X, ) = Ag(X, A1 (X, 1) —Aq (X, Ao (X, 1).
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Adaptation of Kovacic’s algorithm in the parameterized case

Proposition (1 < 2, Cassidy/Singer, 2 < 3 < 4, D)
We have the following equivalences:
@ G is conjugated to SLy(MB) over SLy(Mp).

@ Forall @ € D, the following parameterized differential
equation has a solution in Mp(X):

3
w — 20xb(X, )r(X, 1)+ b(X, )dxr(X, t)— &' r(X, 1).
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Adaptation of Kovacic’s algorithm in the parameterized case

Example

2n
Let us consider 9% Y(X, t) = [ X2™1 + 3 X" | Y(X,1).
i=0
We find: G ~ SL, (Mg") , Where
2n—1

Oy = (2n+1)0y,, + > (i + 1)ti110y.
i=0
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