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Diophantine numbers

• A vector is said rationally independant if

∀m ∈ Zd \ {0}, (m;ω) 6= 0.

• A vector ω ∈ Rd is said diophantine, denoted by ω ∈ DC(K , τ) if

∀m ∈ Zd , |(m;ω)| > K
|m|τ .

Rk. These sets are « large » for the Lebesgue measure.

We will take ω ∈ DC(Kω, τ)

Application. Ergodization time.
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Quasi-periodic functions

• A function f is quasiperiodic if ∃ω ∈ Rd and F ∈ C0(Td ,Rn)
such that

f (t) = F (tω) = F (tω1, tω2, . . . , tωd ).

• We consider the skew-product

S

{
X ′(t) = F (ρ)X (t)

ρ′ = ω
with F ∈ Ca

r

(
Td ,Mp(R)

)
.

• Example. The SCHRÖDINGER equation with quasiperiodic potential.

Remark. X is the fondamental matrix.
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Reducibility

• S1 and S2 are conjugated if ∃Y ∈ Ca
r

(
Td ,G

)
such that

∂ωY := (∇Y ;ω) = F1Y − YF2 (R)

• A system is said reducible if it is conjugated to a constant system

∂ωY = FY − YA, A ∈ g.

• If two systems are conjugated : X1(t) = Y (tω)X2(t),

• Reducibility implies FLOQUET solutions.

⇒ All the systems are reducible ?

⇒What can be said in the perturbative case A + εF (tω) ?
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Local picture

S

 X ′ = (λA + F )X with |F |r := sup
|=m(z)|6r

|F (z)|

ρ′ = ω ω ∈ DC(Kω, τ)

We can check in many cases (when the group is compact)

• There is ε0(r , ω, ‖A‖2, p) such that if |F |r 6 ε0 :

1 Almost all the system are reducible,

2 For every λ, there is Gδ-dense of non reducible systems.
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The Newton-K.A.M scheme

What does mean K.A.M ?
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Principle in the perturbative
case

• Step 0. We start with the system

∂tX1(t) = (A1 + F1(ϕ))X1(t), ϕ′ = ω, F1 « small ».

• Step 1. Find a conjugate Y1 such that X2 = Y1X1 and

∂tX2(t) = (A2 + F2(ϕ))X2(t), ‖F2‖ � ‖F1‖.

• Step j . And so on to cancel the perturbation...

Which implies

• Solve ∂ωYj+1 = (Aj+1 + Fj+1)Yj+1 − Yj+1(Aj + Fj ).

• The convergence of the product
n∏

j=1
Yj ⇒ Yj ∼ Ip.
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How to solve (R)?

A2 + F2 = ∂ωY1Y−1
1 + Ad(Y1)(A1 + F1)

⇓ Y1 = eY ' Ip + Y

A2 = ∂ωY (Ip − Y ) + (id + ad(Y ))(A1 + F1)

⇓

∂ωY − [A1,Y ] = A2 − A1 − F1

⇓ A2 = A1 + F̂1(0)

∂ωY = [A1,Y ] + F1 − F̂1(0)
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Small divisors problem

The simplified linearized equation is : y ∈ T 7→ C

∂ωy = αy + f with α ∈ Sp(adAj ).

• This equation can be solved in Fourier series, n ∈ Zd

ŷ(n) =
f̂ (n)

i (n;ω)− α.

• We need the diophantine conditions :

|i (n;ω)− α| >
K
|n|τ
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Diophantine case

Let A ∈ g and F ∈ Ca
r

(
Td , g

)
. We suppose that

|i (ω; n)− α| > K · |n|−τ .

Then there is Y ∈ Ca
s

(
Td , g

)
solution of

∂ωY = adA(Y ) + F − F̂ (0)

|Y |s 6 c
|F |r

K (r − s)2τ with s < r

Proposition (Resolution of the linearized equation).

Remark. The conjugate is given by

A + εF
Y1−→ A1 + ε2F1 with Y1 = eY ∼ Ip + O(ε).
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How to avoid small divisors ?

• By a choice of the matrix A

λ− µ /∈ iR∗ with λ, µ ∈ Sp(A).

• By withdrawing a small set of parameter

Ωj+1 = Ωj \ {ω : adAj 6⊂ DCω(Kj , τ)}.

• By conjugating far from identity

Yj 6∼ Ip + O(εj ) and ‖Fj+1‖ � ‖Fj‖.

• · · ·
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Examples of reducibility results
Let A ∈ g and F ∈ Ca

r (Td , g).

If the real part of the eigenvalues of A are different and if ε 6 ε∗

then the system is Ca
r/2-reducible.

Theorem (If we choose A).

⇒ If G is compact ? g = sop or up ?

There are ε∗ and a CANTOR set Πε ⊂ [0; 1]d of large measure

Lebd
(

[0; 1]d \ Πε
)
6 ε∗

Cte

such that if ω ∈ Πε and ε 6 ε∗ then the system is reducible.

Theorem (If we choose ω).
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Infinite dimension ?
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The Schrödinger equation

{
u = u(t , x) t ∈ R, x ∈ T

i ∂tu = ∆u + εP(tω, x)u

We study the growth of the SOBOLEV norm

ψ : Tm 7→ C, ‖ψ‖Hs(Tm) =

(∑
n∈Zm

〈n〉s|ψ̂(n)|2
) 1

2

with 〈n〉 = (1 + |n|2)1/2 . Then we get the system on `2(Z)

S

{
X ′ = (i D + F (ρ))X

ρ′ = ω

with F TOEPLTIZ and D diagonal.
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Conclusion

• What can be said in the Lie group ?

• Infinite dimension for others systems ?

• K.A.M and the stability of the solar system.

• ...

Thank you for your attention

L.H Eliasson, Ergodic skew-systems on Td ×SO3(R) et Almost reducibility of linear quasi-periodic systems.

Joaquim Puig, Reducibility of linear equations with quasi-periodic coefficients. A survey.

R. Krikorian, Réductibilité des systèmes produit croisé à valeurs dans les groupes compacts.

C.Fiszka, Produit croisée ergodiques sur Td ×SOp (R) et Td ×Up (C), preprint.
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