

From a microscopic model to a macroscopic model with cross-diffusion in Population Dynamics

Colloque Inter'actions, May 21st 2014

Ariane Trescases

CMLA, ENS Cachan
PhD advisor: Laurent Desvillettes

Outline

Models in Population Dynamics

Classical models and cross-diffusion
From microscopic to macroscopic

Mathematical Analysis of the systems

Well-posedness
Conclusion

Annex

Models in Population Dynamics

Classical models and cross-diffusion

From microscopic to macroscopic

Mathematical Analysis of the systems

Well-posedness

Conclusion

Annex

Classical models and cross-diffusion

Classical models

$u := u(t) \geq 0$ (and $v := v(t) \geq 0$) : densities of species at time $t \geq 0$.

$u_0 \geq 0$ (and v_0) : initial datum. Evolution of u (and v) ?

Logistic equation (~ 1840)

$$d_t u = r u (1 - u).$$

► Competition for the ressources.

Lotka-Volterra system (1925)

$$\begin{cases} d_t u = u (r_1 - r_3 v), \\ d_t v = -v (r_2 - r_4 u). \end{cases}$$

► Predator-prey interaction.

Spatial models

$u := u(t, x) \geq 0$: density of species at time $t \geq 0$, space $x \in \Omega \subset \mathbb{R}^N$,
 $u_0 := u_0(x) \geq 0$: initial datum.

Fisher-KPP equation (1938)

$$\partial_t u - D\Delta_x u = ru(1 - u).$$

The diffusion term $D\Delta_x u$ (with $D > 0$) :

- ▶ has a homogenisation effect,
- ▶ can be seen as the "limit" of a random walk.

Cross diffusions

$u := u(t, x) \geq 0$ (resp. $v := v(t, x) \geq 0$) : density of species 1 (resp. 2) at time $t \geq 0$ and space $x \in \Omega$.

Triangular Shigesada-Teramoto-Kawasaki system (1979)

$$\begin{cases} \partial_t u - \Delta_x [Du + \mathbf{u}\mathbf{v}] = u[1 - u - v], \\ \partial_t v - \Delta_x v = v[1 - v - u]. \end{cases}$$

Interactions between the two species :

- ▶ intraspecific and interspecific competitions,
- ▶ stress induced by the presence of species 2 :

$$\Delta_x [uv] = \underbrace{\nabla_x \cdot [u \nabla_x v]}_{\text{transport}} + \underbrace{\nabla_x \cdot [v \nabla_x u]}_{\text{Fickian diffusion}}.$$

Microscopic model

Iida-Mimura-Ninomiya system (2006)

$$\begin{cases} \partial_t u_A^\varepsilon - d_A \Delta_x u_A^\varepsilon = [1 - (u_A^\varepsilon + u_B^\varepsilon) - v^\varepsilon] u_A^\varepsilon + \frac{1}{\varepsilon} [k(v^\varepsilon) u_B^\varepsilon - h(v^\varepsilon) u_A^\varepsilon], \\ \partial_t u_B^\varepsilon - d_B \Delta_x u_B^\varepsilon = [1 - (u_A^\varepsilon + u_B^\varepsilon) - v^\varepsilon] u_B^\varepsilon - \frac{1}{\varepsilon} [k(v^\varepsilon) u_B^\varepsilon - h(v^\varepsilon) u_A^\varepsilon], \\ \partial_t v^\varepsilon - \Delta_x v^\varepsilon = [1 - v^\varepsilon - (u_A^\varepsilon + u_B^\varepsilon)] v^\varepsilon, \end{cases}$$

- ▶ the species 1 exists in a quiet state A and a stressed state B ($d_B > d_A$),
- ▶ the stress is induced by the presence of the species 2,
- ▶ the rate of switch is of order $1/\varepsilon \gg 1$.

Microscopic model : acceleration of the switch

Equations for the densities of species

$$\begin{cases} \partial_t(u_A^\varepsilon + u_B^\varepsilon) - \Delta_x \left[(d_A \frac{u_A^\varepsilon}{u_A^\varepsilon + u_B^\varepsilon} + d_B \frac{u_B^\varepsilon}{u_A^\varepsilon + u_B^\varepsilon})(u_A^\varepsilon + u_B^\varepsilon) \right] \\ \quad = [1 - (u_A^\varepsilon + u_B^\varepsilon) - v^\varepsilon](u_A^\varepsilon + u_B^\varepsilon), \\ \partial_t v^\varepsilon - \Delta_x v^\varepsilon = [1 - v^\varepsilon - (u_A^\varepsilon + u_B^\varepsilon)] v^\varepsilon. \end{cases}$$

Computation of the formal limit

If $(u_A^\varepsilon, u_B^\varepsilon, v^\varepsilon) \rightarrow (u_A, u_B, v)$ (in a strong sense) when $\varepsilon \rightarrow 0$ then $h(v)u_A = k(v)u_B$, i. e. $\frac{u_A}{u_A + u_B} = \frac{k(v)}{h(v) + k(v)}$ and $\frac{u_B}{u_A + u_B} = \frac{h(v)}{h(v) + k(v)}$.

Microscopic model : acceleration of the switch

Equations for the densities of species at $\varepsilon = 0$

$$\left\{ \begin{array}{l} \partial_t(u_A + u_B) - \Delta_x \left[\left(d_A \frac{k(v)}{h(v) + k(v)} + d_B \frac{h(v)}{h(v) + k(v)} \right) (u_A + u_B) \right] \\ \qquad = [1 - (u_A + u_B) - v] (u_A + u_B), \\ \partial_t v - \Delta_x v = [1 - v - (u_A + u_B)] v. \end{array} \right.$$

With accurate choices of the functions h and k , the densities $(u_A + u_B, v)$ satisfy the triangular Shigesada-Teramoto-Kawasaki system.

Models in Population Dynamics

Classical models and cross-diffusion

From microscopic to macroscopic

Mathematical Analysis of the systems

Well-posedness

Conclusion

Annex

Well-posedness

Well-posedness

- ▶ Microscopic model : existence, uniqueness, smoothness are classical.
- ▶ Macroscopic model : existence ?

Well-posedness

Macroscopic model : existence of solutions

- ▶ Compacity
- ▶ Approximation

Well-posedness

Macroscopic model : existence of solutions

- ▶ Compacity → Entropy and duality methods,
- ▶ Approximation → Microscopic model.

Conclusion

Summary

- ▶ Rigorous link between the microscopic model and the macroscopic model,
- ▶ Corollary : existence of solutions for the macroscopic model,
- ▶ Based on explicit L^p estimates.

Extensions

- ▶ Other results concerning smoothness, stability (L^2) and uniqueness,
- ▶ Valid for more general interactions (not only quadratic).

Perspectives

- ▶ Self diffusions,
- ▶ Non-triangular case (with L. Desvillettes, T. Lepoutre, A. Moussa).

Models in Population Dynamics

Classical models and cross-diffusion

From microscopic to macroscopic

Mathematical Analysis of the systems

Well-posedness

Conclusion

Annex

A more general cross-diffusion system

$$\left. \begin{aligned} \partial_t u - \Delta_x [Du + uG(v)] &= u[1 - u^a - v^b] && \text{in } \mathbb{R}_+ \times \Omega, \\ \partial_t v - \Delta_x v &= v[1 - v^c - u^d] && \text{in } \mathbb{R}_+ \times \Omega, \\ \nabla_x u(t, x) \cdot n(x) &= \nabla_x v^\varepsilon(t, x) \cdot n(x) = 0 && \forall t \geq 0, x \in \partial\Omega, \\ u(0, x) &= u_{in}(x), \quad v(0, x) = v_{in}(x) && \forall x \in \Omega. \end{aligned} \right\} \quad (1)$$

Known results

Existence of local (in time) solution [Amann, 90]. Global solutions ?

Quadratic case $a = b = c = d = 1$

- ▶ in small dimension ($N = 2$: [Lou Ni Wu, 98]),
- ▶ when $G(v) = d_G v$ with $d_G > 0$ small [Choi Lui Yamada, 03],
- ▶ in presence of self-diffusion [Choi Lui Yamada, 04].

Case $a > d$

Global strong solutions (for smooth initial data) [Yamada, 95].

Microscopic model

$$\left. \begin{aligned}
 \partial_t u_A^\varepsilon - d_A \Delta_x u_A^\varepsilon &= [1 - (u_A^\varepsilon + u_B^\varepsilon)^a - (v^\varepsilon)^b] u_A^\varepsilon + \frac{1}{\varepsilon} [k(v^\varepsilon) u_B^\varepsilon - h(v^\varepsilon) u_A^\varepsilon], \\
 \partial_t u_B^\varepsilon - d_B \Delta_x u_B^\varepsilon &= [1 - (u_A^\varepsilon + u_B^\varepsilon)^a - (v^\varepsilon)^b] u_B^\varepsilon - \frac{1}{\varepsilon} [k(v^\varepsilon) u_B^\varepsilon - h(v^\varepsilon) u_A^\varepsilon], \\
 \partial_t v^\varepsilon - \Delta_x v^\varepsilon &= [1 - (v^\varepsilon)^c - (u_A^\varepsilon + u_B^\varepsilon)^d] v^\varepsilon, \\
 \nabla_x u_A(t, x) \cdot n(x) &= \nabla_x u_B^\varepsilon(t, x) \cdot n(x) = 0 \quad \forall t \geq 0, x \in \partial\Omega, \\
 \nabla_x v^\varepsilon(t, x) \cdot n(x) &= 0 \quad \forall t \geq 0, x \in \partial\Omega, \\
 u_A(0, x) &= u_{A,in}(x), \quad u_B(0, x) = u_{B,in}(x) \quad v(0, x) = v_{in}(x) \quad \forall x \in \Omega.
 \end{aligned} \right\} \quad (2)$$

Main theorem : assumptions

Assumption A

- Ω is a smooth bounded domain of \mathbb{R}^N ,
- $d_B > d_A > 0$, $a, b, c, d > 0$,
- h, k lie in $C^1(\mathbb{R}_+, \mathbb{R}_+)$ and are lower bounded by a positive constant,
- $u_{A,in}, u_{B,in}, v_{in} \geq 0$ such that $u_{A,in}, u_{B,in} \in L^{p_0}(\Omega)$,
 $v_{in} \in L^\infty(\Omega) \cap W^{2,1+p_0/d}(\Omega)$ for some $p_0 > 1$, and
 $\nabla_x u_{A,in} \cdot n(x) = \nabla_x u_{B,in} \cdot n(x) = \nabla_x v_{in} \cdot n(x) = 0$,
- $a > d$ or ($a \leq 1$ and $d \leq 2$).

Theorem

Existence of nonnegative solutions $(u_A^\varepsilon, u_B^\varepsilon, v^\varepsilon)$ of (2) is already known.
We prove the

Theorem (Desvillettes, T.)

Under Assumption A, When $\varepsilon \rightarrow 0$, $(u_A^\varepsilon, u_B^\varepsilon, v^\varepsilon)$ converges (up to a subsequence) for almost every $(t, x) \in \mathbb{R}_+ \times \Omega$ to a limit (u_A, u_B, v) lying in $L^{p_0+a}([0, T] \times \Omega) \times L^{p_0+a}([0, T] \times \Omega) \times L^\infty([0, T] \times \Omega)$ for all $T > 0$. Furthermore, $h(v) u_A = k(v) u_B$ and $(u := u_A + u_B, v)$ is a weak solution of system (1) with $D + G(v) = \frac{d_A k(v) + d_B h(v)}{h(v) + k(v)}$ and initial data $u(0, \cdot) = u_{A,in} + u_{B,in}$, $v(0, \cdot) = v_{in}$.

Sketch of the proof

We fix $T > 0$ and consider a smooth nonnegative solution $(u_A^\varepsilon, u_B^\varepsilon, v^\varepsilon)$.

- ▶ Estimates uniformly in ε ,
- ▶ Convergence of the densities (compacity : Aubin's lemma),
- ▶ Vanishing of $h(v)u_A - k(v)u_B$.

Tool 1 : solve the equation of v^ε first

$$\partial_t v^\varepsilon - \Delta_x v^\varepsilon = [1 - v^\varepsilon - (u_A^\varepsilon + u_B^\varepsilon)] v^\varepsilon.$$

- Maximum principle : $0 \leq v^\varepsilon \leq C_T$.
- Properties of the heat kernel : for all $p > 1$,
$$\|\partial_t v^\varepsilon\|_{L^p} + \|\nabla_x^2 v^\varepsilon\|_{L^p} \leq C_T (1 + \|(u_A^\varepsilon + u_B^\varepsilon)^d\|_{L^p}).$$

Tool 2 : Entropy

For any $p > 1$, let

$$\mathcal{E}^\varepsilon(t) := \int_{\Omega} h(v^\varepsilon)^{p-1} \frac{(u_A^\varepsilon)^p}{p}(t) + \int_{\Omega} k(v^\varepsilon)^{p-1} \frac{(u_B^\varepsilon)^p}{p}(t)$$

- This functional does *not* increase *too much*,
- the terms in $O(\frac{1}{\varepsilon})$ have a (good) sign,
- consequences : estimates for $u_A^\varepsilon, u_B^\varepsilon$ in Sobolev spaces (uniformly in ε)
+ estimates for $k(v^\varepsilon) u_B^\varepsilon - h(v^\varepsilon) u_A^\varepsilon$,

if we can control the L^p norm of $u_A^\varepsilon, u_B^\varepsilon$ for some $p > 1$.

Tool 3 : Duality lemma

Lemma

If $0 < m_0 \leq M(t, x) \leq m_1$ and $u_{in} \in L^2(\Omega)$ then any solution $u \geq 0$ of

$$\begin{cases} \partial_t u - \Delta_x(Mu) \leq K \text{ in } [0, T] \times \Omega, \\ u(0, x) = u_{in}(x) \text{ in } \Omega, \\ \nabla_x(Mu)(t, x) \cdot n(x) = 0 \text{ on } [0, T] \times \partial\Omega, \end{cases}$$

satisfies $\|u\|_{L^2([0, T] \times \Omega)} \leq C_T (\|u_{in}\|_{L^2(\Omega)} + K)$.

► The total density of species 1 satisfies uniformly in ε :

$$\|u_A^\varepsilon + u_B^\varepsilon\|_{L^2} \leq C_T.$$