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l'influence de deux procesus :

e les interactions locales des espéces
e la diffusion




Introduction

Forme générale

On s’intéresse aux systemes de la forme :

ou 52u ou
5= D8x2+M8 + f(u,x,t), t>0, (1)

avec les conditions initiales
u(x,0) = up(x), xelCR, (2)
ouu=(uy,Up,....u3), M= (my,my,....mz) € R,

D = diag(dy, 0o, ...,d3), avec d; > 0, pour tout i =1,2,....n, f
est une fonction de classe C'.
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Historique

@ Durant la premiére guerre mondiale Alexander Flemming
engage des recherches sur la bactérie

@ En 1928 le fameux scientifique découvre la pénicilline

@ Les bactéries ont développé des mécanismes de
résistance.

@ Les premiers cas d’infections au staphylocoque résistant a
la pénicilline ont apparu en 1947

@ La résistance bactérienne a été observée dés les
premieres années d’utilisation de chaque nouvel
antibiotique.
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la présence des souches résistantes dans les rivieres

@ Des souches résistantes sont présentes dans I'eau potable

@ Les riviéres sont considérées comme une source
essentielle de I'eau potable

@ Létude des bactéries résistantes dans les riviéres
necessite leur dénombrement d’'une maniére plus précise
que la quantification par les méthodes traditionnelles
existantes a I’heur actuelle

@ La modélisation mathématique permet d’une part d’évaluer
le nombre des bactéries dans une riviere
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Hypoteses biologique

@ Reproduction et mortalité des bactéries
@ les populations bactériennes suivent une croissance
logistique
e un taux de mortalité supplémentaire des bactéries de la
terre
@ Transmission et perte du gene de résistance
e la loi d’action de masse pour modéliser ce contact

5} . .
e la fonction P(L) = 1 pour modéliser la perte de gene

@ la variabilité spatiale de la résistance des bactéries aux
antibiotiques
e la diffusion et le transport des bactéries dans la riviere
e |le domaine d’étude est de dimension un
@ Activités humaines au bord de la riviere modélisées par
des termes sources du systéme.
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A l'instant initial les concentrations des bactéries sont données,
nous posons donc

Rs(x,0) = up(x), Ri(x,0) = vp(x),

Ls(x,0) = wo(x), Li(x,0) = zo(x),

pour x € [0,+0); les fonctions uy, vp, Wy et zy sont positives
dans

L'(0, +00) N L>(0, 4+00).




Modele

Le modele (CDI)

De plus, on spécifie les conditions aux limites de notre
intervalle d’étude :




Modele

Le modele (CDI)

De plus, on spécifie les conditions aux limites de notre
intervalle d’étude :

dRs OR, OLs oL,
G500 =510, = 52(0.0) = ZL(0,1) =0, t € Ry,
ORs _OR _ oL oL B

@ Les conditions aux limites sont de type Neumann car les
espéces bactériennes restent dans la riviere (absence
d'immigration).
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@ F; et F; sont des fonctions positives dans
C (R+, L'(o, +oo)) qui représentent les taux des bactéries
provenant de la terre par le rivage.

@ Ces taux ne sont pas constants ils dépendent du temps et
de l'espace; Fs < ay et F; < a,, pour a; et a» des nombres
réels.

@ Il existe f; et f; des fonctions continues positives dans
L (0, +00) satisfont fs < aq et f; < ap, telles que

. oo 2

Jdm [ (R~ 0ok =0, (5)
. oo 2

Jim /0 (Fi(x, t) — fi(x)) dx = 0; (6)
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Existence locale

@ Soit F = (Fq, Fo, F3, F4) le seconde membre de (CDI) et
X = (L=(0, +00))™.

@ Gréce a la théorie standard d’existence de solutions de
Amann 1997, il existe une solution unique locale
(Rs(t,.), Ry(t,.)Ls(t,.)Ls(t,.)) du systéme (CDI) sous la
condition 0 < t < Tnax, OU Tmax dépend de ug, Vo, Wy et v.

@ Si Tiax < +oo alors

M Ty SUPyefo 400y LUK, £)] + [VX, O] + [W(x, 8)] + z(x, )]}
= +0o0.
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@ on ne s’interesse qu’a la dynamique dans la région R > 0,
R, >0,Ls >0, L, >0, qui correspond aux solutions
biologiquement significatives.
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Existence globale

@ On va monter I'existence globale des solutions de (CDI) en
établissant I'existence d’'un ensemble invariant

@ on ne s’interesse qu’a la dynamique dans la région R > 0,
R, >0,Ls >0, L, >0, qui correspond aux solutions
biologiqguement significatives.

Théoreme : ensemble invariant

Lensemble

Z—{UEO,VZO,WZO,ZZO:U+V§K,W—|—Z§a1+az}

y—Tr

est une région positivement invariante pour le systeme (CDI).

<
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LCensemble limite

Soit {S(1) }+~0 le semi groupe associé au systéme (CDI)
Définition : Trajectoire Soit x € X, alors la courbe t — S(t)x
est appelée la trajectoire de x.

Définition : Ensemble limite Soit x € X, 'ensemble

w(x) = {y € X; 3ty — +00, S(tr)x — y, quand n — 4o

est dit ensemble limite de x.
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Dans la suite, on note par w(Up) 'ensemble limite de

Uo = (up, Vo, Wo, 2o) et A 'ensemble des solutions du systéme
elliptique (CDlI)g

. BR w
_ BR w
—BR = BRt+aRs(R+L)— 4+ (‘l — R) R
L w
—BLs - fs(X) — ’)/LS—O{LS(H/ + L/)—I— I8+l1 +r (1 — R) Ls

L w
~BL, = f/(x)—fyL/+aLS(R,+L,)—L+’1 ”(1_R> L,
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LCensemble limite

avec les conditions limites:

Théoreme : Ensemble limite

Lensemble limite w du systeme (CDI) est un sous ensemble de
A
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Résultats

Solutions du probleme elliptique

@ Existence dans (0, a), ensuite dans (0, +00).

Théoréme de Leray-Schauder

Supposons que X est un espace de Banach, Q un ouvert
borné dans X et ¢ : [, k] x Q — X est donnée par ¢(r,u) =
u— T(7,u), avec T une application compacte. Supposons en
plus que

p(r,u) =u—T(r,u) 20 (7,u) € [r, k] x OQ.
Si
deg(éx,2,0) # 0,

alors u — T(7,u) = 0 admet une solution dans Q pour tout x <
7 < K.
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Solutions du probleme elliptique

Théoréme d’existence
Supposons que les conditions

28 < a?K(K/2 + 1)

et

B
K2+ )45 °

sont vérifiées pour un a > 0 fixé, alors il existe une solution

a < 1,
r

4
positive U = (u,v,w, z) € <H2(0, —|—oo)) du systéme elliptique.
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Perspectives

@ Une vitesse non constante

@ Dynamique et distribution des poissons infectés par des
bactéries résistantes aux antibiotiques dans un bassin
d’élevage
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