1. Polynômes

Soient les polynômes $A = X^7 - 11X^3 + 5$ et $B = X^3 + 7X + 1$. On cherche un polynôme $P \in \mathbb{Q}[X]$ de degré 9 tel que P + 1 soit divisible par A et P + 2 soit divisible par B.

Première méthode : prendre P arbitraire, traduire le problème en équations (utiliser rem et coeffs) et résoudre.

Seconde méthode : Déterminer U et $V \in \mathbb{Q}[X]$ tels que AU + BV = 1 (utiliser gcdex) et conclure.

2. Polynômes (bis)

Soient $P \in \mathbb{Q}[X]$ un polynôme de degré $n \geq 2$ et r_1, \ldots, r_n ses n racines dans \mathbb{C} . Le but de l'exercice est de trouver un polynôme $Q \in \mathbb{Q}[X]$ dont les racines sont les $\frac{n(n-1)}{2}$ nombres $r_i + r_j$ où $1 \leq i < j \leq n$.

- 1. On prend d'abord $P = X^5 3X^3 + 2X^2 1$.
 - a) Maple peut-il calculer les cinq racines r_1, \ldots, r_5 de ce polynôme?
 - b) Evaluer l'expression product(X-r,r=RootOf(P,X)).
 - c) En s'inspirant de b), trouver un polynôme P_1 dont les racines sont les 25 nombres $r_i + r_j$ où $1 \le i \le 5$ et $1 \le j \le 5$, puis un polynôme P_2 dont les racines sont les 5 nombres $2r_i$ où $1 \le i \le 5$.
 - d) En déduire le polynôme Q cherché (utiliser psqrt).
- 2. Donner l'expression générale de Q pour P polynôme unitaire arbitraire de degré 5.

3. Formule d'approximation de la dérivée

On cherche cinq nombres a_1, \ldots, a_5 tels que, pour toute fonction numérique f suffisamment régulière et tout point x_0 , on ait (lorsque h est petit):

$$f'(x_0) \approx \sum_{k=1}^{5} a_k \frac{f(x_0 + kh) - f(x_0 - kh)}{h}$$
 (1)

- 1. On note y le membre de droite de (1). Développer formellement l'expression $y f'(x_0)$ par taylor à l'ordre 10 au voisinage de h = 0.
- 2. Trouver les valeurs de a_1, \ldots, a_5 qui annulent un maximum de coefficients de ce développement.
- 3. Tester num'eriquement la précision de la formule (1) obtenue (par exemple avec la fonction sinus en $x_0 = 1$).

4. Développement asymptotique

Pour $n \in \mathbb{N}$, on note x_n l'unique solution de l'équation $x = \tan x$ appartenant à l'intervalle $[n\pi, n\pi + \frac{\pi}{2}]$. Montrer que :

$$\lim_{n \to \infty} (x_n - n\pi) = \frac{\pi}{2}.$$

Calculer un développement asymptotique d'ordre 5 de x_n quand $n \to \infty$. Indication : on cherchera un développement de la forme :

$$x_n = n\pi + \frac{\pi}{2} + \frac{a}{n} + \frac{b}{n^2} + \frac{c}{n^3} + \frac{d}{n^4} + \frac{e}{n^5} + o(\frac{1}{n^5})$$

et on déterminera les coefficients a, b, c, d, e en se servant de l'équation $x_n = \tan x_n$.