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Abstract

We prove that an abelian group G is a countable direct sum of finite
cyclic groups if and only if there exists a consistent existential theory Γ
of abelian groups such that G is embeddable in every model of Γ.

It is well known (cf. [4]) that a countable abelian group G is ℵ0-categorical if
and only if G is of finite exponent, which implies that G is a countable direct sum
of finite cyclic groups. What can be said about the model-theoretics properties
of countable direct sums of finite cyclic groups in general? Here we give a model-
theoretic characterization of countable direct sums of finite cyclic groups.

Let G be an abelian group. The order of an element g (of G or of any group)
is denoted by o(g). For any prime p we denote by Dp(G), or just D(p) if there is
no ambiguity, the p component of G in its primary decomposition. The cardinal
of a set X is denoted by |X|. By a 2-coloring of a set X we simply mean a map
of X into {0, 1}. By an existential theory of abelian groups we mean a set of
existential sentences consistent with abelian group theory in the usual language
of group theory with multiplication, inverse, and neutral element. We denote
by Th∃(G) the set of existential sentences true in G. We use only the rudiments
of the theory of abelian groups (cf. the beginning of [3]) and model theory (cf.
the beginning of [1]). Our result is:

Theorem 1. Let G be an abelian group. Then the following properties are
equivalent:

(1) G is a countable direct sum of finite cyclic groups.
(2) G is embeddable in every abelian group which satisfies Th∃(G).
(3) There exists an existential theory Γ of abelian groups such that G is em-

beddable in every abelian group which satisfies Γ.

We need the following lemma, which is a straightforward application of the
pigeon hole principle:
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Lemma 1. Let m, n be integers where m ≥ 1, n ≥ 1. Then there exists an
integer r(m,n) such that: for every set X such that |X| = r(m,n) and for every
finite sequence of 2-colorings ζ1, · · · , ζm of X there exists a set Y ⊆ X such
that |Y | = n and ζi|Y is constant for every i = 1, · · · ,m, i.e. a homogenous set
having n elements. ¤

Proof of Theorem 1.
(1)⇒(2). Let G be an abelian group which is a countable direct sum of

finite cyclic groups. Let H be an abelian group which is a model of Th∃(G). It
is enough to prove that Dp(G) = D(p) can be embedded in H for all p.

We write D(p) = ⊕i∈αAi where Ai is a non trivial p-primary cyclic group.
If α is finite then D(p) is finite and its isomorphism type is determined by an
existential sentence ψ, which is true in D(p), and which ’translates’ its table.
Hence if α is finite one can embed D(p) in H. So we can assume that α is
infinite and take α = N.

Let I and J be the followings sets:

I = {i ∈ N : the set {j | Ai ↪→ Aj} is finite }

J = {i ∈ N : the set {j | Ai ↪→ Aj} is infinite }
Then I ∪ J = N and I ∩ J = ∅. Therefore D(p) = (⊕i∈IAi)⊕ (⊕j∈JAj).
We begin with the following facts:

Fact 1. I is finite.
Proof. Suppose towards a contradiction that I is infinite.
Let l = min {nk : Ak = Zpnk , k ∈ I }. Let i0 be an element of I such that

Ai0 = Zpl . We have Ai0 ↪→ Ak for every k ∈ I. Since I is infinite then i0 is in
J , which contradicts I ∩ J = ∅. ¤
Fact 2. Let n, k ∈ N, where n ≥ 1, k ≥ 2. Then there exists an existential
sentence ψn,k = ∃x1 · · · ∃xnϕn,k(x1, · · · , xn) such that for every abelian group
K and every tuple a1, · · · , an ∈ K we have:

K |= ϕn,k(a1, · · · , an) if and only if (〈a1, · · · , an〉 = ⊕i=n
i=1 〈ai〉)∧

i=n∧

i=1

(o(ai) = k)

Proof. It is sufficient to take ϕn,k(x1, · · · , xn) to be the following formula:

(
∧

α∈S(k)

(
i=n∑

i=1

αixi 6= 0)) ∧
i=n∧

i=1

(
kxi = 0 ∧

∧

1≤l≤k−1

lxi 6= 0
)
,

where S(k) = {(α1, · · · , αn) ∈ Zn : 0 ≤ αi < k,
∑i=n

i=1 αi 6= 0}. ¤

Fact 3. Let s ∈ J and k = |As|. Then for every n ∈ N∗, H |= ψn,k where ψn,k

is the sentence given in Fact 2.
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Proof. Since s ∈ J , the set {j : As ↪→ Aj} is infinite. Therefore the group
(As)(ℵ0) is isomorphic to a subgroup of D(p), hence to a subgroup of G. Then
for every n ∈ N∗, there exists a tuple g1, · · · , gn in G such that:

(〈g1, · · · , gn〉 = ⊕i=n
i=1 〈gi〉) ∧

i=n∧

i=1

o(gi) = k.

Hence by Fact 2, for every n ∈ N∗, G |= ψn,k and since H |= Th∃(G) we
have for every n ∈ N∗, H |= ψn,k. ¤

Fact 4. Let s ∈ J and k = |As|. Let B be a non trivial finite subgroup of H.
Then there exists h ∈ H such that o(h) = k and 〈B, h〉 = B ⊕ 〈h〉.

Proof. Let
U = {(b, α) ∈ B × Z : 0 < α < k},

and m = |U |. By Fact 3, H |= ψr(m,2),k where r(m, 2) is the integer given in
Lemma 1. Hence, by Fact 2, H contains a tuple h1, · · · , hr(m,2) such that:

〈h1, · · · , hr(m,2)〉 = ⊕i=r(m,2)
i=1 〈hi〉 ∧

i=r(m,2)∧

i=1

(o(hi) = k).

Let X = {h1, · · · , hr(m,2)}. For every (b, α) ∈ U let ζb,α be the 2-coloring,
defined on X, by:

ζb,α(hi) =
{

1, if b + αhi 6= 0;
0, if b + αhi = 0.

Since |X| = r(m, 2) by Lemma 1, there exists in X a homogeneous subset
Y = {hi1 , hi2}, i.e. for every (b, α) ∈ U , ζb,α(hi1) = ζb,α(hi2) = 1 or ζb,α(hi1) =
ζb,α(hi2) = 0.

Suppose towards a contradiction that there exists (b, α) ∈ U such that
ζb,α(hi1) = ζb,α(hi2) = 0. Then αhi1 = αhi2 which is a contradiction as
0 < α < k, o(hi1) = o(hi2) = k and 〈hi1〉 ∩ 〈hi2〉 = 0.

Therefore for every (b, α) ∈ U we have b+αhi1 6= 0. Thus by taking h = hi1

we have o(h) = k and 〈B, h〉 = B ⊕ 〈h〉 as required. ¤
By Fact 1 I is finite thus ⊕i∈IAi is finite and, as it was remarked before,

⊕i∈IAi is embeddable in H. Without loss of generality we can assume that
⊕i∈IAi is a subgroup of H. Let J = {jt | t ∈ N}. To prove that D(p) is
embeddable in H, it is sufficient to prove that H contains a sequence (Bt : t ∈ N)
of subgroups which satisfies:

1. Bt
∼= Ajt .

2. For every n ∈ N, 〈B0, · · · , Bn,
⋃

i∈I Ai〉 = (⊕t=n
t=0Bt)⊕ (⊕i∈IAi).

To do this we argue by induction on t and we use Fact 4.

3



For t = 0.
Put B = ⊕i∈IAi. Then by Fact 4 there exists h ∈ H such that o(h) =

|Aj0 | and 〈B, h〉 = B ⊕ 〈h〉. By putting B0 = 〈h〉 we have B0
∼= Aj0 and

〈B0,
⋃

i∈I Ai〉 = 〈B0,⊕i∈IAi〉 = (B0) ⊕ (⊕i∈IAi) which are the required prop-
erties. ¤
For t + 1.

Let B0, · · · , Bt be the constructed sequence. Put B = 〈B0, · · · , Bt,⊕i∈IAi〉.
Then by Fact 4 there exists h ∈ H such that o(h) = |Ajt+1 | and 〈B, h〉 = B⊕〈h〉.
By putting Bt+1 = 〈h〉 we have Bt+1

∼= Ajt+1 and 〈B0, · · · , Bt, Bt+1,
⋃

i∈I Ai〉 =
〈Bt+1,⊕t=n

t=0Bt⊕(⊕i∈IAi)〉 = (Bt+1⊕⊕t=n
t=0Bt)⊕(⊕i∈IAi) which are the required

properties. ¤
This completes the proof of (1)⇒(2).
(2)⇒(3). Obvious.
(3)⇒(1). Let G be an abelian group and Γ an existential consistent theory of

abelian groups such that G is embeddable in every abelian group which satisfies
Γ. Let Γ = {ψi|i ∈ ω}. It is well known that every existential sentence true
in an abelian group is true in a finite abelian group, i.e. in a finite direct sum
of finite cyclic groups. Hence every ψi is true in such a finite direct sum Ki

of finite cyclic groups and Γ has as model K = ⊕i∈ωKi which is a direct sum
of finite cyclic groups. Then G is isomorphic to a subgroup of K and is by a
classical theorem (cf. Theorem 13 in [3]) a countable direct sum of finite cyclic
groups. ¤

Corollary 1. Let G be a countable direct sum of finite cyclic groups and let
H be an abelian group. Then the following properties are equivalent:
(1) G is embeddable in H.
(2) For every prime number p and for every n, dim pnG[p] ≤ dim pnH[p].
(Here for an abelian group K, pnK = {pnx : x ∈ K}; K[p] = {x ∈ K : px = 0};
and ”dim” means dimension over Z/pZ).

Proof. It is an immediate consequence of Theorem 1 and [2, Theorem 4]. ¤

Remarks.
(1) The model theory of abelian groups has been extensively studied. While

the implication (3)⇒(1) can be seen as a consequence of [2] we have been unable
to derive (1)⇒(3) or (1)⇒(2) from [2] or from other known results.

(2) Conditions (2) and (3) of the theorem make sense in a general model
theoretic setting and are investigated in [5]. For any countable theory they give
rise to two classes of countable structures. In general these classes are distinct:
it is not difficult to see (and it is shown in [5]) that they are distinct for the
theory of (all) groups, since the non trivial countable free groups satisfy (3)
(with Γ finitely axiomatizable) and do not satisfy (2).
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