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Abstract

We prove that a δ-hyperbolic group for δ < 1
2

is a free product F ∗
G1 ∗ . . . ∗Gn where F is a free group of finite rank and each Gi is a finite
group.

1 Introduction and main result

Let (X, d) be a metric space. The Gromov product (x·y)v of two points x, y ∈ X
with respect to a point v ∈ X is defined by

(x · y)v =
1
2

(d(x, v) + d(y, v)− d(x, y)).

X is termed δ-hyperbolic, where δ is positif reel number, if for any x, y, z, v ∈
X,

(x · y)v ≥ min {(x · z)v, (y · z)v} − δ.

If H is a group generated by a set S, the Cayley graph Cay(H,S) is a metric
space with the path metric and with edges of length one.

A group H is δ-hyperbolic, where δ ≥ 0, if H is generated by a finite set S
such that the Cayley graph Cay(H,S) is δ-hyperbolic as a metric space. H is
termed hyperbolic if H is δ-hyperbolic for some δ ≥ 0. It is well-known [1, 2]
that being hyperbolic does not depend on a particular generating set S, but δ
depends on S.

We define δ0(H) to be the infimum of δ for which H is δ-hyperbolic. It is a
natural question to ask when we can have δ0(H) = 0 ? We show that in general
we must have δ0(H) ≥ 1

2 . The main result of this paper is the following.

Theorem 1.1 Let H be a δ-hyperbolic group for some δ < 1
2 . Then H is a free

product F ∗G1 ∗ . . . ∗Gn where F is a free group of finite rank and each Gi is
a finite group.
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Let H be a group generated by a finite set S. For an element h ∈ H we
denote by `S(g) the shortest word w in the alphabet S±1 such that h = w in
H. For u, v ∈ H we let c(u, v) = 1

2 (`S(u) + `S(v)− `S(uv−1)). We say that `S
is δ-hyperbolic, if

c(u, v) ≥ min {c(u, z), c(z, v)} − δ, for all u, v, z ∈ H.

For u, v ∈ H we let dS(u, v) = `S(uv−1). It is well-known [1, 2] that the
metric space (H, dS) is isometrically embedded in the Cayley graph Cay(H,S).
Therefore if Cay(H,S) is δ-hyperbolic then `S is δ-hyperbolic.

If Cay(H,S) is δ-hyperbolic for some δ < 1
2 then, actually, `S is 0-hyperbolic.

Indeed. Since

c(u, v)−min {c(u, z), c(z, v)} ≥ −δ > −1
2
, for all u, v, z ∈ H,

and since the number c(u, v) − min {c(u, z), c(z, v)} is an integer or a half of
integer we get

c(u, v)−min {c(u, z), c(z, v)} ≥ 0, for all u, v, z ∈ H,

and thus `S is 0-hyperbolic.

Therefore Theorem 1.1 is a consequence of the following one.

Theorem 1.2 Let H be a group generated by a finite set S such that the word
length `S is 0-hyperbolic. Then H is a free product F ∗G1 ∗ . . . ∗Gn where F is
a free group of finite rank and each Gi is a finite group.

Note that when H = F ∗ G1 ∗ . . . ∗ Gn where F is free group with basis X
and each Gi is a finite group, if we let S = X ∪G1 . . .∪Gn then the word length
`S is 0-hyperbolic.

To prove Theorem 1.2 we follow the general line of the argument used by
R.C. Lyndon in [3]. The paper is organized as follows. We end this section
by a general lemma about hyperbolic groups. In the next section we prove
preparatory lemmas in the particular case when `S is 0-hyperbolic. In the last
section we prove Theorem 1.2.

We end this section by the following.

Lemma 1.3 Let H be a group generated by a finite set S such that the word
length `S (denoted simply `) is δ-hyperbolic for some δ ≥ 0. Let h1, h2, h3 be
elements of H satisfying

c(h1, h
−1
2 ) + c(h2, h

−1
3 ) < `(h2)− δ.

Then

|`(h1h2h3)− (
3∑

i=1

`(hi)− 2
2∑

i=1

c(hi, h
−1
i+1))| ≤ 2δ.
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In particuliar if δ < 1
2 then

`(h1h2h3) =
3∑

i=1

`(hi)− 2
2∑

i=1

c(hi, h
−1
i+1).

Proof
We have

c(h2, h
−1
3 ) =

1
2

(`(h2) + `(h3)− `(h2h3))

=
1
2

(`(h2) + `(h2)− `(h2) + `(h3)− `(h2h3))

= `(h2)− 1
2

(`(h2) + `(h2h3)− `(h3))

= `(h2)− c(h−1
2 , (h2h3)−1).

From the hypothesis c(h1, h
−1
2 ) + c(h2, h

−1
3 ) < `(h2)− δ we get

(1) c(h1, h
−1
2 ) < c(h−1

2 , (h2h3)−1)− δ.

By the δ-hyperbolicity of ` we have

c(h1, h
−1
2 ) ≥ min {c(h1, (h2h3)−1), c(h−1

2 , (h2h3)−1)} − δ,

and by (1) we get
c(h1, h

−1
2 ) ≥ c(h1, (h2h3)−1)− δ,

therefore

`(h1) + `(h2)− `(h1h2) ≥ `(h1) + `(h2h3)− `(h1h2h3)− 2δ,

and thus
`(h1h2h3) ≥ `(h2h3)− `(h2) + `(h1h2)− 2δ.

But we have
3∑

i=1

`(hi)− 2
2∑

i=1

c(hi, h
−1
i+1)

=
3∑

i=1

`(hi)−
(

(`(h1) + `(h2)− `(h1h2)) + (`(h2) + `(h3)− `(h2h3))
)

(2) = `(h2h3)− `(h2) + `(h1h2).

Therefore

(3) `(h1h2h3) ≥
3∑

i=1

`(hi)− 2
2∑

i=1

c(hi, h
−1
i+1)− 2δ.
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An other side, by the δ-hyperbolicity

c(h1, (h2h3)−1) ≥ min {c(h1, h
−1
2 ), c(h−1

2 , (h2h3)−1)} − δ,

and by (1) we find
c(h1, (h2h3)−1) ≥ c(h1, h

−1
2 )− δ.

Therefore

`(h1) + `(h2h3)− `(h1h2h3) ≥ `(h1) + `(h2)− `(h1h2)− 2δ,

and thus
`(h2h3)− `(h1h2h3) ≥ `(h2)− `(h1h2)− 2δ,

thus by (2) we get

(4) `(h1h2h3) ≤
3∑

i=1

`(hi)− 2
2∑

i=1

c(hi, h
−1
i+1) + 2δ.

By (3) and (4) we conclude

|`(h1h2h3)− (
3∑

i=1

`(hi)− 2
2∑

i=1

c(hi, h
−1
i+1))| ≤ 2δ.

Now the last assertion of the lemma follows from the fact that δ < 1
2 and

that `(h1h2h3)− (
∑3

i=1 `(hi)− 2
∑2

i=1 c(hi, h
−1
i+1)) is an integer. �

Assumption In the rest of this paper we let H to be a group generated by a
finite set S such that the word length `S is 0-hyperbolic. To simplify notations
we denote by ` the word length `S . For convenience we suppose also that 1 6∈ S
and S = S−1.

2 Preparatory lemmas

Definition 2.1 We define a relation ∼ on S by

s ∼ t if and only if c(s, t) ≥ 1
2
.

Lemma 2.2 The relation ∼ is an equivalence relation on S.

Proof
Clearly ∼ is reflexive and symmetric. Let s, t, u ∈ S such that s ∼ t and

t ∼ u. Then
c(s, t) ≥ 1

2
, c(t, u) ≥ 1

2
.

Since ` is 0-hyperbolic we get c(s, u) ≥ 1
2 and thus s ∼ u. �
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Notation. For s ∈ S we denote by q(s) the equivalence class of s under ∼.
We let

S1 = {s ∈ S | s ∼ s−1}, S2 = S \ S1.

Lemma 2.3 For each s ∈ S1 the set H(s) = (q(s)∩S1)∪{1} is a finite subgroup
of H.

Proof
Let u, v ∈ H(s) and prove that uv−1 ∈ H(s). Clearly if u = 1 or v = 1 or

u = v then uv−1 ∈ H(s). Thus we may assume that u 6= 1, v 6= 1 and u 6= v;
thus u, v ∈ q(s) ∩ S1 and uv−1 6= 1.

Since u ∼ v we have c(u, v) ≥ 1
2 and a simplification shows `(uv−1) ≤ 1. As

uv−1 6= 1 we get `(uv−1) = 1 and thus uv−1 ∈ S.
We first prove that uv−1 ∈ q(s). We have

c(s, v−1) ≥ 1
2
, as s ∼ v and v ∼ v−1,

c(v−1, uv−1) =
1
2

(`(v) + `(uv−1)− `(u−1)) =
1
2
`(uv−1) ≥ 1

2
.

Therefore s ∼ v−1 and v−1 ∼ uv−1. Thus s ∼ uv−1, so uv−1 ∈ q(s).
We prove now that uv−1 ∈ S1. From u ∼ u−1 and u ∼ uv−1 we conclude

u−1 ∼ uv−1. An another side

c(u−1, (uv−1)−1) =
1
2

(`(u) + `(uv−1)− `(v−1)) ≥ 1
2
.

Therefore u−1 ∼ uv−1 and u−1 ∼ (uv−1)−1. Thus uv−1 ∼ (uv−1)−1 and so
uv−1 ∈ S1.

Now since H(s) ⊆ S ∪ {1} and S is finite, H(s) is a finite subgroup. �

Lemma 2.4 Let ≤ be a well ordering of the set of equivalence classes of S under
∼. Then there is a well ordering � of S satisfying the following conditions:

(i) if q(s) < q(t) then s ≺ t,
(ii) if q(s) = q(t) and q(s−1) < q(t−1) then s ≺ t.

Proof
For an equivalence class q(s) we let �q(s) be a well ordering of q(s). We

define � on S by

s ≺ t if and only if

 q(s) < q(t), or;
q(s) = q(t), q(s−1) < q(t−1), or;
q(s) = q(t), q(s−1) = q(t−1), s ≺q(s) t .

The verification that � is a well ordering is left to the reader. �
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Assemption. We assume henceforth that the set of equivalence classes of S
is well ordered by a fixed ordering ≤ and S is well ordered by a fixed ordering
� satisfying the conditions (i)-(ii) of the above lemma.

Definition 2.5 For each s ∈ S we define K(s) to be the subgroup generated
by the set {t ∈ S | t ≺ s}. We let U = {s ∈ S | s 6∈ K(s)}.

Lemma 2.6 U generates H.

Proof
Let L be the subgroup generated by U . Suppose that L 6= H and let s be

the least element of S which is not in L. Then {t ∈ S | t ≺ s} ⊆ L and thus
K(s) ⊆ L. Hence s 6∈ K(s). Therefore s ∈ U , a contradiction. �

Notation. For s ∈ S we denote by s̄ the earlier in the order � of S of s and
s−1.

We note that u ∈ U±1 if and only if ū ∈ U . Indeed, if u ∈ U then u � u−1

(as if u−1 ≺ u then u ∈ K(u) contradicting u ∈ U) and thus ū = u ∈ U ; if
u ∈ U−1 then u−1 ∈ U , as before, u−1 � u and thus ū = u−1 ∈ U . Clearly if
ū ∈ U then u ∈ U±1.

We let
U1 =

⋃
{H(s) | s ∈ U ∩ S1}, U2 = (U ∩ S2)±1.

Lemma 2.7 If u, v are non-trivial elements of U1 ∪ U2 and `(uv) = 1 then
q(v−1) ≤ q(v).

Proof
We begin with the following claim.

Claim. We may assume v ∈ U2 and ū ∈ U .
Proof. If v ∈ U1 then v ∈ H(s) for some s ∈ U ∩ S1. Since H(s) =

q(s) ∩ S1 ∪ {1} and v is non-trivial we get v ∈ q(s) ∩ S1. Thus v ∼ v−1, hence
q(v) = q(v−1). So we may assume v ∈ U2.

We prove now that we may assume ū ∈ U . If ū 6∈ U then u 6∈ U2 and thus
u ∈ H(s) = q(s) ∩ S1 ∪ {1} for some s ∈ U ∩ S1. We prove that `(sv) = 1.

Since u ∈ H(s) and u is non-trivial, u ∈ q(s) ∩ S1. Therefore we have

(1) c(u, s) ≥ 1
2
.

By `(uv) = 1, we get

(2) c(u, v−1) =
1
2

(`(u) + `(v)− `(uv)) ≥ 1
2
.

By (1)-(2) we get c(s, v−1) ≥ 1
2 . After simplifications `(sv) ≤ 1. Since

v 6∈ U1 we have sv 6= 1 and thus `(sv) = 1. Thus replacing u by s if necessary
we assume that ū ∈ U .
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This ends the proof of our claim. �

Thus we suppose v ∈ U2 and ū ∈ U . Suppose now towards a contradiction
q(v) < q(v−1). By `(uv) = 1 we have

c(u, v−1) =
1
2
,

c(uv, v) =
1
2

(`(uv) + `(v)− `(u)) =
1
2
,

c((uv)−1, u−1) =
1
2

(`(uv) + `(u)− `(v)) =
1
2
,

so u ∼ v−1, uv ∼ v, (uv)−1 ∼ u−1.
Since q(uv) = q(v) < q(v−1) = q(u), by the conditions (i)-(ii) of Lemma

2.4, we have

(3) uv ≺ u, v ≺ v−1.

Since v ≺ v−1 and v ∈ U2 we get

(4) v ∈ U.

Since q((uv)−1) = q(u−1) and q(uv) < q(u), by the conditions (i)-(ii) of
Lemma 2.4, we have

(5) (uv)−1 ≺ u−1.

Thus, by (3)-(4)-(5), we conclude

uv ≺ u, v ≺ v−1, v ∈ U, (uv)−1 ≺ u−1.

Since uv ≺ u and (uv)−1 ≺ u−1 we get uv ≺ ū.
Now we treat the following cases:
• If v = ū then either u = v or u = v−1. Therefore either `(uv) = `(v2) = 1

and thus v ∈ U1, or `(uv) = `(v−1v) = 0. In both cases we have a contradiction
as v ∈ U2 and `(uv) = 1.
• If v ≺ ū then, since uv ≺ ū, we get ū ∈ K(ū). Contradiction with ū ∈ U .
• If ū ≺ v then, since uv ≺ ū ≺ v, we get v ∈ K(v). Contradiction with

v ∈ U .
So our supposition is false. Thus q(v−1) ≤ q(v). �

Lemma 2.8 Let s, t, u be non-trivial elements of U1 ∪ U2 such that `(st) = 1,
`(tu) = 1. Then t ∼ t−1 and thus t ∈ U1.

Proof
Since `(st) = 1, by Lemma 2.7 we have q(t−1) ≤ q(t). Since `(u−1t−1) = 1,

by the same lemma we have q(t) ≤ q(t−1). Therefore q(t) = q(t−1). �
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Lemma 2.9 Let s, u ∈ U2, t ∈ U1 ∪ U2 \ {1} such that `(st) = 1, `(tu) = 1.
Then `(stu) = 1.

Proof
Claim 1. `(stu) ≤ 1.

Proof. We have

(1) c(s, t−1) =
1
2

(`(s) + `(t)− `(st)) =
1
2
,

c(t−1, (tu)−1) =
1
2

(`(t) + `(tu)− `(u)) =
1
2
,

so
c(s, (tu)−1) ≥ 1

2
.

Thus s ∼ (tu)−1. A simple count shows `(stu) ≤ 1 as claimed. �

Claim 2. s ∈ U, u−1 ∈ U, t ≺ s.
Proof. We first prove

q(s) < q(s−1), q(u−1) < q(u).

Since `(t−1s−1) = 1, by Lemma 2.7, we get q(s) ≤ q(s−1). If q(s) = q(s−1)
then we get s ∼ s−1 and thus `(s2) ≤ 1. Therefore s ∈ S1 contradicting the fact
that s ∈ U2 = (U ∩ S2)±1 ⊆ S±1

2 . Therefore q(s) < q(s−1).
Since `(tu) = 1, by Lemma 2.7, we have q(u−1) ≤ q(u). If q(u) = q(u−1)

then we get u ∼ u−1 and thus `(u2) ≤ 1. Therefore u ∈ S1 contradicting the
fact that u ∈ U2 = (U ∩ S2)±1 ⊆ S±1

2 . Therefore q(u−1) < q(u).
Since q(s) < q(s−1), q(u−1) < q(u), by conditions (i)-(ii) of Lemma 2.4 we

get s ≺ s−1 and u−1 ≺ u. Therefore s ∈ U and u−1 ∈ U .
By Lemma 2.8 we have q(t) = q(t−1). By (1) we have q(s) = q(t−1). Now

since
q(s) = q(t) = q(t−1), q(t−1) = q(s) < q(s−1),

we get, by conditions (i)-(ii) of Lemma 2.4, t ≺ s.
This ends the proof of our claim. �

By Claim 1 we have `(stu) = 0 or `(stu) = 1. Suppose towards a contradic-
tion that `(stu) = 0; thus stu = 1.

Since t 6= 1 we have s 6= u−1.
• If s ≺ u−1, then, since t ≺ s and u−1 = st, we get u−1 ∈ K(u−1).

Contradiction with u−1 ∈ U .
• If u−1 ≺ s, then, since t ≺ s and s = u−1t−1, we get s ∈ K(s). Contradic-

tion with s ∈ U .
Therefore our supposition is false and thus `(stu) = 1. �

Lemma 2.10 Let u1, u2, u3 be non-trivial elements of U1∪U2 such that `(u1u2) =
1, `(u2u3) = 1, u1 6∼ u2 and u2 6∼ u3. Then u1, u3 ∈ U2, u2 ∈ U1 and
`(u1u2u3) = 1.
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Proof
By Lemma 2.8, u2 ∈ U1.
Prove u1 ∈ U2 and u3 ∈ U2. Suppose towards a contradiction u1 ∈ U1.

Then, since `(u1u2) = 1, a simple count shows c(u1, u
−1
2 ) ≥ 1

2 . Thus u1 ∼ u−1
2 .

Since u2 ∈ U1 we have u2 ∼ u−1
2 . Therefore u1 ∼ u2. Contradiction as u1 6∼ u2.

Thus u1 ∈ U2. By the same argument we get u3 ∈ U2.
By Lemma 2.9 we get `(u1u2u3) = 1. �

Definition 2.11 A sequence (u1, . . . , un) of U1 ∪ U2 is said to be pseudo-
reduced if it satisfies the following conditions:

(i) ui 6= 1, uiui+1 6= 1,
(ii) ui, ui+1 ∈ U1 ⇒ ui 6∼ ui+1.

Lemma 2.12 If (u1, . . . , un), n ≥ 2, is a pseudo-reduced sequence of U1 ∪ U2

then

`(u1 · · ·un) =
n∑

i=1

`(ui)− 2
n−1∑
i=1

c(ui, u
−1
i+1).

Proof
The proof is by induction on n. The lemma is trivial for n = 2.

For n = 3. We consider the following two cases.
Case 1. `(u1u2) = 1 and `(u2u3) = 1.

By Lemma 2.8 u2 ∈ U1. Since the sequence (u1, u2, u3) is pseudo-reduced,
u1 6∼ u2 and u2 6∼ u3. Thus, by Lemma 2.9, we have `(u1u2u3) = 1. Therefore

`(u1u2u3) = 1 = `(u1) + `(u2) + `(u3)− 2(c(u1, u
−1
2 ) + c(u2, u

−1
3 )),

and we find the desired conclusion.
Case 2. `(u1u2) = 2 or `(u2u3) = 2.

Then c(u1, u
−1
2 ) = 0 or c(u2, u

−1
3 ) = 0. Therefore

c(u1, u
−1
2 ) + c(u2, u

−1
3 ) ≤ 1

2
.

Since 1
2 < `(u2)−δ = 1 (as δ = 0), by Lemma 1.3, we get the desired conclusion.

We go from n to n+ 1. We treat the two following cases.
Case 1. `(u1u2) = 1 and `(u2u3) = 1. Put

a = u1u2, b = u3, d = u4 · · ·un+1.

We claim c(b, d−1) = c(u3, u
−1
4 ). We have

(1) c(b, d−1) =
1
2

(`(u3) + `(u4 · · ·un+1)− `(u3 · · ·un+1)).
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By induction we have

`(u3 · · ·un+1) =
n+1∑
i=3

`(ui)− 2
n∑

i=3

c(ui, u
−1
i+1),

`(u4 · · ·un+1) =
n+1∑
i=4

`(ui)− 2
n∑

i=4

c(ui, u
−1
i+1).

By replacing in (1) we get

c(b, d−1) =
1
2

(`(u3)− `(u3) + 2c(u3, u
−1
4 )) = c(u3, u

−1
4 ),

as claimed.
We claim `(u3u4) = 2 and `(u1u2u3) = 1. Since the sequence (u1, u2, u3) is

pseudo-reduced and `(u1u2) = `(u2u3) = 1, by Lemma 2.10, `(u1u2u3) = 1 and
u3 ∈ U2.

Suppose that `(u3u4) = 1. Since `(u2u3) = 1 we get, by Lemma 2.8, u3 ∈ U1.
Contradiction with u3 ∈ U2. This ends the proof of our claim.

Since `(u3u4) = 2 we have c(u3, u
−1
4 ) = 0 and thus c(b, d−1) = 0. Therefore

c(a, b−1) + c(b, d−1) =
1
2

(`(u1u2) + `(u3)− `(u1u2u3)) =
1
2
.

Since 1
2 < `(b)− δ = 1 (as δ = 0), by Lemma 1.3, we get

(2) `(abc) = `(a) + `(b) + `(c)− 2(c(a, b−1) + c(b, d−1)).

By induction we have

`(c) =
n+1∑
i=4

`(ui)− 2
n∑

i=4

c(ui, u
−1
i+1).

By replacing in (2), and since c(b, d−1) = c(u3, u
−1
4 ), `(u1 · · ·un+1) is equal to

`(u1u2) + `(u3) +
n+1∑
i=4

`(ui)− 2
n∑

i=4

c(ui, u
−1
i+1)− 2(c(u1u2, u

−1
3 ) + c(u3, u

−1
4 )).

But, since `(u1u2u3) = 1, a simple count shows

`(u1u2) + `(u3)− 2c(u1u2, u
−1
3 ) = `(u1u2u3) =

3∑
i=1

`(ui)− 2
2∑

i=1

c(ui, u
−1
i+1).

Therefore we find

`(u1 · · ·un+1) =
3∑

i=1

`(ui)−2
2∑

i=1

c(ui, u
−1
i+1)+

n+1∑
i=4

`(ui)−2
n∑

i=4

c(ui, u
−1
i+1)−2c(u3, u

−1
4 )
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=
n+1∑
i=1

`(ui)− 2
n∑

i=1

c(ui, u
−1
i+1).

Case 2. `(u1u2) = 2 or `(u2u3) = 2.
Put

a = u1, b = u2, d = u3 · · ·un+1.

We claim c(b, d−1) = c(u2, u
−1
3 ). We have

c(b, d−1) =
1
2

(`(u2) + `(u3 · · ·un+1)− `(u2 · · ·un+1)).

By induction

`(u3 · · ·un+1) =
n+1∑
i=3

`(ui)− 2
n∑

i=3

c(ui, u
−1
i+1),

`(u2 · · ·un+1) =
n+1∑
i=2

`(ui)− 2
n∑

i=2

c(ui, u
−1
i+1),

after calculating, as in the precedent case, we get c(b, d−1) = c(u2, u
−1
3 ).

Since `(u1u2) = 2 or `(u2u3) = 2, then c(u1, u
−1
2 ) = 0 or c(u2, u

−1
3 ) = 0.

Thus
c(u1, u

−1
2 ) + c(u2, u

−1
3 ) ≤ 1

2
.

We have

c(a, b−1) + c(b, d−1) = c(u1, u
−1
2 ) + c(u2, u

−1
3 ) ≤ 1

2
.

Therefore, as in the above case, by Lemma 1.3 we get

`(abc) = `(a) + `(b) + `(c)− 2(c(a, b−1) + c(b, d−1)),

thus

`(u1 · · ·un+1) = `(u1)+`(u2)+
n+1∑
i=3

`(ui)−2
n∑

i=3

c(ui, u
−1
i+1)−2(c(u1, u

−1
2 )+c(u2, u

−1
3 )).

Thus we have the desired conclusion. �

3 Proof of Theorem 1.2

We have
U1 =

⋃
{H(s) | s ∈ U ∩ S1}, U2 = (U ∩ S2)±1,

H(s) = q(s) ∩ S1 ∪ {1}.
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By Lemma 2.3, H(s) is a finite subgroup.
The set U1 can be written in the following manner

U1 = H(s1) ∪ . . . ∪H(sn),

where s1, . . . , sn are in U ∩ S1 and si 6∼ sj for i 6= j.
Let F be the subgroup generated by U2. We are going to prove that H is

the free product H(s1) ∗ · · · ∗H(sn) ∗ F and that F is free with basis U ∩ S2.
As U = (U ∩ S1) ∪ (U ∩ S2) ⊆ U1 ∪ U2, H is generated by H(s1) ∪ . . . ∪

H(sn) ∪ U2.
Now to prove that H = H(s1) ∗ · · · ∗H(sn) ∗F and that U ∩S2 is a basis of

F we must show that if (u1, . . . , un) is a sequence of H(s1) ∪ . . . ∪H(sn) ∪ U2

satisfying:
(i) ui 6= 1, uiui+1 6= 1,
(ii) if ui ∈ H(sj) then ui+1 6∈ H(sj),

then u1 · · ·un 6= 1.
To this end we must prove that if (u1, . . . , un) is a sequence of U1 ∪ U2

satisfying the conditions:
(i) ui 6= 1, uiui+1 6= 1,
(ii) ui, ui+1 ∈ U1 ⇒ ui 6∼ ui+1,

then u1 · · ·un 6= 1.
Thus we must prove that if (u1, . . . , un) is a pseudo-reduced sequence of

U1 ∪ U2 then u1 · · ·un 6= 1.
Now if (u1, . . . , un+1) is a pseudo-reduced sequence of U1 ∪ U2 then, by

Lemma 2.12, we have

`(u1 · · ·un+1) =
n+1∑
i=1

`(ui)− 2
n∑

i=1

c(ui, u
−1
i+1)

=
n∑

i=1

`(ui)− 2
n−1∑
i=1

c(ui, u
−1
i+1) + `(un+1)− 2c(un, un+1)

= `(u1 · · ·un) + `(unun+1)− `(un).

Since `(unun+1)− `(un) ≥ 0 we get

`(u1 · · ·un+1) ≥ `(u1 · · ·un).

Therefore by induction on n we get `(u1 · · ·un) ≥ `(u1). Since `(u1) 6= 0
then `(u1 · · ·un) 6= 0 and thus u1 · · ·un 6= 1. �
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