On hyperbolic groups

Abderezak OULD HOUCINE

Institut Girard Desargues
Université Claude Bernard Lyon-1
Bâtiment Braconnier, 21 Avenue Claude Bernard,
69622 Villeurbanne Cedex, France.
ould@igd.univ-lyon1.fr

Abstract

We prove that a δ -hyperbolic group for $\delta < \frac{1}{2}$ is a free product $F * G_1 * \ldots * G_n$ where F is a free group of finite rank and each G_i is a finite group.

1 Introduction and main result

Let (X, d) be a metric space. The *Gromov product* $(x \cdot y)_v$ of two points $x, y \in X$ with respect to a point $v \in X$ is defined by

$$(x \cdot y)_v = \frac{1}{2}(d(x, v) + d(y, v) - d(x, y)).$$

X is termed δ -hyperbolic, where δ is positif reel number, if for any $x,y,z,v\in X,$

$$(x \cdot y)_v \ge \min \{(x \cdot z)_v, (y \cdot z)_v\} - \delta.$$

If H is a group generated by a set S, the Cayley graph Cay(H, S) is a metric space with the path metric and with edges of length one.

A group H is δ -hyperbolic, where $\delta \geq 0$, if H is generated by a finite set S such that the Cayley graph Cay(H,S) is δ -hyperbolic as a metric space. H is termed hyperbolic if H is δ -hyperbolic for some $\delta \geq 0$. It is well-known [1, 2] that being hyperbolic does not depend on a particular generating set S, but δ depends on S.

We define $\delta_0(H)$ to be the infimum of δ for which H is δ -hyperbolic. It is a natural question to ask when we can have $\delta_0(H) = 0$? We show that in general we must have $\delta_0(H) \geq \frac{1}{2}$. The main result of this paper is the following.

Theorem 1.1 Let H be a δ -hyperbolic group for some $\delta < \frac{1}{2}$. Then H is a free product $F * G_1 * \ldots * G_n$ where F is a free group of finite rank and each G_i is a finite group.

Let H be a group generated by a finite set S. For an element $h \in H$ we denote by $\ell_S(g)$ the shortest word w in the alphabet $S^{\pm 1}$ such that h = w in H. For $u, v \in H$ we let $c(u, v) = \frac{1}{2}(\ell_S(u) + \ell_S(v) - \ell_S(uv^{-1}))$. We say that ℓ_S is δ -hyperbolic, if

$$c(u,v) > \min \{c(u,z), c(z,v)\} - \delta$$
, for all $u, v, z \in H$.

For $u, v \in H$ we let $d_S(u, v) = \ell_S(uv^{-1})$. It is well-known [1, 2] that the metric space (H, d_S) is isometrically embedded in the Cayley graph Cay(H, S). Therefore if Cay(H, S) is δ -hyperbolic then ℓ_S is δ -hyperbolic.

If Cay(H, S) is δ -hyperbolic for some $\delta < \frac{1}{2}$ then, actually, ℓ_S is 0-hyperbolic. Indeed. Since

$$c(u,v) - \min \left\{ c(u,z), c(z,v) \right\} \geq -\delta > -\frac{1}{2}, \quad \text{for all } u,v,z \in H,$$

and since the number $c(u,v) - \min \{c(u,z),c(z,v)\}$ is an integer or a half of integer we get

$$c(u, v) - \min \{c(u, z), c(z, v)\} \ge 0$$
, for all $u, v, z \in H$,

and thus ℓ_S is 0-hyperbolic.

Therefore Theorem 1.1 is a consequence of the following one.

Theorem 1.2 Let H be a group generated by a finite set S such that the word length ℓ_S is 0-hyperbolic. Then H is a free product $F * G_1 * ... * G_n$ where F is a free group of finite rank and each G_i is a finite group.

Note that when $H = F * G_1 * ... * G_n$ where F is free group with basis X and each G_i is a finite group, if we let $S = X \cup G_1 ... \cup G_n$ then the word length ℓ_S is 0-hyperbolic.

To prove Theorem 1.2 we follow the general line of the argument used by R.C. Lyndon in [3]. The paper is organized as follows. We end this section by a general lemma about hyperbolic groups. In the next section we prove preparatory lemmas in the particular case when ℓ_S is 0-hyperbolic. In the last section we prove Theorem 1.2.

We end this section by the following.

Lemma 1.3 Let H be a group generated by a finite set S such that the word length ℓ_S (denoted simply ℓ) is δ -hyperbolic for some $\delta \geq 0$. Let h_1, h_2, h_3 be elements of H satisfying

$$c(h_1, h_2^{-1}) + c(h_2, h_3^{-1}) < \ell(h_2) - \delta.$$

Then

$$|\ell(h_1h_2h_3) - (\sum_{i=1}^3 \ell(h_i) - 2\sum_{i=1}^2 c(h_i, h_{i+1}^{-1}))| \le 2\delta.$$

In particuliar if $\delta < \frac{1}{2}$ then

$$\ell(h_1h_2h_3) = \sum_{i=1}^{3} \ell(h_i) - 2\sum_{i=1}^{2} c(h_i, h_{i+1}^{-1}).$$

Proof

We have

$$c(h_2, h_3^{-1}) = \frac{1}{2} (\ell(h_2) + \ell(h_3) - \ell(h_2 h_3))$$

$$= \frac{1}{2} (\ell(h_2) + \ell(h_2) - \ell(h_2) + \ell(h_3) - \ell(h_2 h_3))$$

$$= \ell(h_2) - \frac{1}{2} (\ell(h_2) + \ell(h_2 h_3) - \ell(h_3))$$

$$= \ell(h_2) - c(h_2^{-1}, (h_2 h_3)^{-1}).$$

From the hypothesis $c(h_1, h_2^{-1}) + c(h_2, h_3^{-1}) < \ell(h_2) - \delta$ we get

(1)
$$c(h_1, h_2^{-1}) < c(h_2^{-1}, (h_2h_3)^{-1}) - \delta.$$

By the δ -hyperbolicity of ℓ we have

$$c(h_1, h_2^{-1}) \ge \min \{c(h_1, (h_2h_3)^{-1}), c(h_2^{-1}, (h_2h_3)^{-1})\} - \delta,$$

and by (1) we get

$$c(h_1, h_2^{-1}) \ge c(h_1, (h_2h_3)^{-1}) - \delta,$$

therefore

$$\ell(h_1) + \ell(h_2) - \ell(h_1h_2) \ge \ell(h_1) + \ell(h_2h_3) - \ell(h_1h_2h_3) - 2\delta,$$

and thus

$$\ell(h_1 h_2 h_3) \ge \ell(h_2 h_3) - \ell(h_2) + \ell(h_1 h_2) - 2\delta.$$

But we have

$$\sum_{i=1}^{3} \ell(h_i) - 2\sum_{i=1}^{2} c(h_i, h_{i+1}^{-1})$$

$$= \sum_{i=1}^{3} \ell(h_i) - \left((\ell(h_1) + \ell(h_2) - \ell(h_1h_2)) + (\ell(h_2) + \ell(h_3) - \ell(h_2h_3)) \right)$$

(2)
$$= \ell(h_2h_3) - \ell(h_2) + \ell(h_1h_2).$$

Therefore

(3)
$$\ell(h_1 h_2 h_3) \ge \sum_{i=1}^{3} \ell(h_i) - 2 \sum_{i=1}^{2} c(h_i, h_{i+1}^{-1}) - 2\delta.$$

An other side, by the δ -hyperbolicity

$$c(h_1, (h_2h_3)^{-1}) \ge \min\{c(h_1, h_2^{-1}), c(h_2^{-1}, (h_2h_3)^{-1})\} - \delta,$$

and by (1) we find

$$c(h_1, (h_2h_3)^{-1}) \ge c(h_1, h_2^{-1}) - \delta.$$

Therefore

$$\ell(h_1) + \ell(h_2h_3) - \ell(h_1h_2h_3) \ge \ell(h_1) + \ell(h_2) - \ell(h_1h_2) - 2\delta,$$

and thus

$$\ell(h_2h_3) - \ell(h_1h_2h_3) \ge \ell(h_2) - \ell(h_1h_2) - 2\delta,$$

thus by (2) we get

(4)
$$\ell(h_1 h_2 h_3) \le \sum_{i=1}^{3} \ell(h_i) - 2 \sum_{i=1}^{2} c(h_i, h_{i+1}^{-1}) + 2\delta.$$

By (3) and (4) we conclude

$$|\ell(h_1h_2h_3) - (\sum_{i=1}^3 \ell(h_i) - 2\sum_{i=1}^2 c(h_i, h_{i+1}^{-1}))| \le 2\delta.$$

Now the last assertion of the lemma follows from the fact that $\delta < \frac{1}{2}$ and that $\ell(h_1h_2h_3) - (\sum_{i=1}^3 \ell(h_i) - 2\sum_{i=1}^2 c(h_i, h_{i+1}^{-1}))$ is an integer.

Assumption In the rest of this paper we let H to be a group generated by a finite set S such that the word length ℓ_S is 0-hyperbolic. To simplify notations we denote by ℓ the word length ℓ_S . For convenience we suppose also that $1 \notin S$ and $S = S^{-1}$.

2 Preparatory lemmas

Definition 2.1 We define a relation \sim on S by

$$s \sim t$$
 if and only if $c(s,t) \ge \frac{1}{2}$.

Lemma 2.2 The relation \sim is an equivalence relation on S.

Proof

Clearly \sim is reflexive and symmetric. Let $s,t,u\in S$ such that $s\sim t$ and $t\sim u$. Then

$$c(s,t) \ge \frac{1}{2}, \quad c(t,u) \ge \frac{1}{2}.$$

Since ℓ is 0-hyperbolic we get $c(s, u) \geq \frac{1}{2}$ and thus $s \sim u$.

Notation. For $s \in S$ we denote by q(s) the equivalence class of s under \sim . We let

$$S_1 = \{ s \in S \mid s \sim s^{-1} \}, \quad S_2 = S \setminus S_1.$$

Lemma 2.3 For each $s \in S_1$ the set $H(s) = (q(s) \cap S_1) \cup \{1\}$ is a finite subgroup of H.

Proof

Let $u, v \in H(s)$ and prove that $uv^{-1} \in H(s)$. Clearly if u = 1 or v = 1 or u=v then $uv^{-1}\in H(s)$. Thus we may assume that $u\neq 1,\ v\neq 1$ and $u\neq v;$ thus $u, v \in q(s) \cap S_1$ and $uv^{-1} \neq 1$.

Since $u \sim v$ we have $c(u, v) \geq \frac{1}{2}$ and a simplification shows $\ell(uv^{-1}) \leq 1$. As $uv^{-1} \neq 1$ we get $\ell(uv^{-1}) = 1$ and thus $uv^{-1} \in S$. We first prove that $uv^{-1} \in q(s)$. We have

$$c(s, v^{-1}) \ge \frac{1}{2}$$
, as $s \sim v$ and $v \sim v^{-1}$,

$$c(v^{-1}, uv^{-1}) = \frac{1}{2}(\ell(v) + \ell(uv^{-1}) - \ell(u^{-1})) = \frac{1}{2}\ell(uv^{-1}) \ge \frac{1}{2}.$$

Therefore $s \sim v^{-1}$ and $v^{-1} \sim uv^{-1}$. Thus $s \sim uv^{-1}$, so $uv^{-1} \in q(s)$.

We prove now that $uv^{-1} \in S_1$. From $u \sim u^{-1}$ and $u \sim uv^{-1}$ we conclude $u^{-1} \sim uv^{-1}$. An another side

$$c(u^{-1},(uv^{-1})^{-1}) = \frac{1}{2}(\ell(u) + \ell(uv^{-1}) - \ell(v^{-1})) \ge \frac{1}{2}.$$

Therefore $u^{-1} \sim uv^{-1}$ and $u^{-1} \sim (uv^{-1})^{-1}$. Thus $uv^{-1} \sim (uv^{-1})^{-1}$ and so $uv^{-1} \in S_1$.

Now since $H(s) \subseteq S \cup \{1\}$ and S is finite, H(s) is a finite subgroup.

Lemma 2.4 Let \leq be a well ordering of the set of equivalence classes of S under \sim . Then there is a well ordering \leq of S satisfying the following conditions:

- (i) if q(s) < q(t) then $s \prec t$,
- (ii) if q(s) = q(t) and $q(s^{-1}) < q(t^{-1})$ then s < t.

Proof

For an equivalence class q(s) we let $\leq_{q(s)}$ be a well ordering of q(s). We define \leq on S by

$$s \prec t \text{ if and only if } \left\{ \begin{array}{ll} q(s) < q(t), & \text{or;} \\ q(s) = q(t), \ q(s^{-1}) < q(t^{-1}), & \text{or;} \\ q(s) = q(t), \ q(s^{-1}) = q(t^{-1}), s \prec_{q(s)} t \end{array} \right. .$$

The verification that \leq is a well ordering is left to the reader.

Assemption. We assume henceforth that the set of equivalence classes of S is well ordered by a fixed ordering \leq and S is well ordered by a fixed ordering \leq satisfying the conditions (i)-(ii) of the above lemma.

Definition 2.5 For each $s \in S$ we define K(s) to be the subgroup generated by the set $\{t \in S \mid t \prec s\}$. We let $U = \{s \in S \mid s \notin K(s)\}$.

Lemma 2.6 U generates H.

Proof

Let L be the subgroup generated by U. Suppose that $L \neq H$ and let s be the least element of S which is not in L. Then $\{t \in S \mid t \prec s\} \subseteq L$ and thus $K(s) \subseteq L$. Hence $s \notin K(s)$. Therefore $s \in U$, a contradiction.

Notation. For $s \in S$ we denote by \bar{s} the earlier in the order \leq of S of s and s^{-1} .

We note that $u \in U^{\pm 1}$ if and only if $\bar{u} \in U$. Indeed, if $u \in U$ then $u \leq u^{-1}$ (as if $u^{-1} \prec u$ then $u \in K(u)$ contradicting $u \in U$) and thus $\bar{u} = u \in U$; if $u \in U^{-1}$ then $u^{-1} \in U$, as before, $u^{-1} \leq u$ and thus $\bar{u} = u^{-1} \in U$. Clearly if $\bar{u} \in U$ then $u \in U^{\pm 1}$.

We let

$$U_1 = \bigcup \{ H(s) \mid s \in U \cap S_1 \}, \ U_2 = (U \cap S_2)^{\pm 1}.$$

Lemma 2.7 If u, v are non-trivial elements of $U_1 \cup U_2$ and $\ell(uv) = 1$ then $q(v^{-1}) \leq q(v)$.

Proof

We begin with the following claim.

Claim. We may assume $v \in U_2$ and $\bar{u} \in U$.

Proof. If $v \in U_1$ then $v \in H(s)$ for some $s \in U \cap S_1$. Since $H(s) = q(s) \cap S_1 \cup \{1\}$ and v is non-trivial we get $v \in q(s) \cap S_1$. Thus $v \sim v^{-1}$, hence $q(v) = q(v^{-1})$. So we may assume $v \in U_2$.

We prove now that we may assume $\bar{u} \in U$. If $\bar{u} \notin U$ then $u \notin U_2$ and thus $u \in H(s) = q(s) \cap S_1 \cup \{1\}$ for some $s \in U \cap S_1$. We prove that $\ell(sv) = 1$.

Since $u \in H(s)$ and u is non-trivial, $u \in q(s) \cap S_1$. Therefore we have

$$(1) c(u,s) \ge \frac{1}{2}.$$

By $\ell(uv) = 1$, we get

(2)
$$c(u, v^{-1}) = \frac{1}{2}(\ell(u) + \ell(v) - \ell(uv)) \ge \frac{1}{2}.$$

By (1)-(2) we get $c(s,v^{-1}) \geq \frac{1}{2}$. After simplifications $\ell(sv) \leq 1$. Since $v \notin U_1$ we have $sv \neq 1$ and thus $\ell(sv) = 1$. Thus replacing u by s if necessary we assume that $\bar{u} \in U$.

This ends the proof of our claim.

Thus we suppose $v \in U_2$ and $\bar{u} \in U$. Suppose now towards a contradiction $q(v) < q(v^{-1})$. By $\ell(uv) = 1$ we have

$$c(u, v^{-1}) = \frac{1}{2},$$

$$c(uv, v) = \frac{1}{2}(\ell(uv) + \ell(v) - \ell(u)) = \frac{1}{2},$$

$$c((uv)^{-1}, u^{-1}) = \frac{1}{2}(\ell(uv) + \ell(u) - \ell(v)) = \frac{1}{2},$$

so $u \sim v^{-1}$, $uv \sim v$, $(uv)^{-1} \sim u^{-1}$.

Since $q(uv) = q(v) < q(v^{-1}) = q(u)$, by the conditions (i)-(ii) of Lemma 2.4, we have

$$(3) uv \prec u, \quad v \prec v^{-1}.$$

Since $v \prec v^{-1}$ and $v \in U_2$ we get

$$(4) v \in U.$$

Since $q((uv)^{-1}) = q(u^{-1})$ and q(uv) < q(u), by the conditions (i)-(ii) of Lemma 2.4, we have

$$(5) (uv)^{-1} \prec u^{-1}.$$

Thus, by (3)-(4)-(5), we conclude

$$uv \prec u, \ v \prec v^{-1}, \ v \in U, \ (uv)^{-1} \prec u^{-1}.$$

Since $uv \prec u$ and $(uv)^{-1} \prec u^{-1}$ we get $\overline{uv} \prec \overline{u}$.

Now we treat the following cases:

- If $v = \bar{u}$ then either u = v or $u = v^{-1}$. Therefore either $\ell(uv) = \ell(v^2) = 1$ and thus $v \in U_1$, or $\ell(uv) = \ell(v^{-1}v) = 0$. In both cases we have a contradiction as $v \in U_2$ and $\ell(uv) = 1$.
 - If $v \prec \bar{u}$ then, since $\bar{u}\bar{v} \prec \bar{u}$, we get $\bar{u} \in K(\bar{u})$. Contradiction with $\bar{u} \in U$.
- If $\bar{u} \prec v$ then, since $\overline{uv} \prec \bar{u} \prec v$, we get $v \in K(v)$. Contradiction with $v \in U$.

So our supposition is false. Thus $q(v^{-1}) \leq q(v)$.

Lemma 2.8 Let s,t,u be non-trivial elements of $U_1 \cup U_2$ such that $\ell(st) = 1$, $\ell(tu) = 1$. Then $t \sim t^{-1}$ and thus $t \in U_1$.

Proof

Since $\ell(st) = 1$, by Lemma 2.7 we have $q(t^{-1}) \le q(t)$. Since $\ell(u^{-1}t^{-1}) = 1$, by the same lemma we have $q(t) \le q(t^{-1})$. Therefore $q(t) = q(t^{-1})$.

Lemma 2.9 Let $s, u \in U_2, t \in U_1 \cup U_2 \setminus \{1\}$ such that $\ell(st) = 1, \ell(tu) = 1$. Then $\ell(stu) = 1$.

Proof

Claim 1. $\ell(stu) \leq 1$.

Proof. We have

(1)
$$c(s,t^{-1}) = \frac{1}{2}(\ell(s) + \ell(t) - \ell(st)) = \frac{1}{2},$$
$$c(t^{-1},(tu)^{-1}) = \frac{1}{2}(\ell(t) + \ell(tu) - \ell(u)) = \frac{1}{2},$$

so

$$c(s, (tu)^{-1}) \ge \frac{1}{2}.$$

Thus $s \sim (tu)^{-1}$. A simple count shows $\ell(stu) \leq 1$ as claimed.

Claim 2. $s \in U, u^{-1} \in U, t \prec s$.

Proof. We first prove

$$q(s) < q(s^{-1}), \quad q(u^{-1}) < q(u).$$

Since $\ell(t^{-1}s^{-1}) = 1$, by Lemma 2.7, we get $q(s) \le q(s^{-1})$. If $q(s) = q(s^{-1})$ then we get $s \sim s^{-1}$ and thus $\ell(s^2) \leq 1$. Therefore $s \in S_1$ contradicting the fact that $s \in U_2 = (U \cap S_2)^{\pm 1} \subseteq S_2^{\pm 1}$. Therefore $q(s) < q(s^{-1})$.

Since $\ell(tu) = 1$, by Lemma 2.7, we have $q(u^{-1}) \leq q(u)$. If $q(u) = q(u^{-1})$ then we get $u \sim u^{-1}$ and thus $\ell(u^2) \leq 1$. Therefore $u \in S_1$ contradicting the fact that $u \in U_2 = (U \cap S_2)^{\pm 1} \subseteq S_2^{\pm 1}$. Therefore $q(u^{-1}) < q(u)$. Since $q(s) < q(s^{-1})$, $q(u^{-1}) < q(u)$, by conditions (i)-(ii) of Lemma 2.4 we get $s \prec s^{-1}$ and $u^{-1} \prec u$. Therefore $s \in U$ and $u^{-1} \in U$.

By Lemma 2.8 we have $q(t) = q(t^{-1})$. By (1) we have $q(s) = q(t^{-1})$. Now since

$$q(s) = q(t) = q(t^{-1}), \ q(t^{-1}) = q(s) < q(s^{-1}),$$

we get, by conditions (i)-(ii) of Lemma 2.4, $t \prec s$.

This ends the proof of our claim.

By Claim 1 we have $\ell(stu) = 0$ or $\ell(stu) = 1$. Suppose towards a contradiction that $\ell(stu) = 0$; thus stu = 1.

Since $t \neq 1$ we have $s \neq u^{-1}$.

- If $s \prec u^{-1}$, then, since $t \prec s$ and $u^{-1} = st$, we get $u^{-1} \in K(u^{-1})$. Contradiction with $u^{-1} \in U$.
- If $u^{-1} \prec s$, then, since $t \prec s$ and $s = u^{-1}t^{-1}$, we get $s \in K(s)$. Contradiction with $s \in U$.

Therefore our supposition is false and thus $\ell(stu) = 1$.

Lemma 2.10 Let u_1, u_2, u_3 be non-trivial elements of $U_1 \cup U_2$ such that $\ell(u_1 u_2) =$ 1, $\ell(u_2u_3) = 1$, $u_1 \nsim u_2$ and $u_2 \nsim u_3$. Then $u_1, u_3 \in U_2$, $u_2 \in U_1$ and $\ell(u_1u_2u_3)=1.$

Proof

By Lemma 2.8, $u_2 \in U_1$.

Prove $u_1 \in U_2$ and $u_3 \in U_2$. Suppose towards a contradiction $u_1 \in U_1$. Then, since $\ell(u_1u_2) = 1$, a simple count shows $c(u_1, u_2^{-1}) \ge \frac{1}{2}$. Thus $u_1 \sim u_2^{-1}$. Since $u_2 \in U_1$ we have $u_2 \sim u_2^{-1}$. Therefore $u_1 \sim u_2$. Contradiction as $u_1 \not\sim u_2$. Thus $u_1 \in U_2$. By the same argument we get $u_3 \in U_2$.

By Lemma 2.9 we get
$$\ell(u_1u_2u_3) = 1$$
.

Definition 2.11 A sequence (u_1, \ldots, u_n) of $U_1 \cup U_2$ is said to be **pseudo**reduced if it satisfies the following conditions:

- (i) $u_i \neq 1$, $u_i u_{i+1} \neq 1$,
- $(ii) u_i, u_{i+1} \in U_1 \Rightarrow u_i \not\sim u_{i+1}.$

Lemma 2.12 If (u_1, \ldots, u_n) , $n \geq 2$, is a pseudo-reduced sequence of $U_1 \cup U_2$ then

$$\ell(u_1 \cdots u_n) = \sum_{i=1}^n \ell(u_i) - 2 \sum_{i=1}^{n-1} c(u_i, u_{i+1}^{-1}).$$

Proof

The proof is by induction on n. The lemma is trivial for n=2.

For n=3. We consider the following two cases.

Case 1. $\ell(u_1u_2) = 1$ and $\ell(u_2u_3) = 1$.

By Lemma 2.8 $u_2 \in U_1$. Since the sequence (u_1, u_2, u_3) is pseudo-reduced, $u_1 \not\sim u_2$ and $u_2 \not\sim u_3$. Thus, by Lemma 2.9, we have $\ell(u_1u_2u_3)=1$. Therefore

$$\ell(u_1u_2u_3) = 1 = \ell(u_1) + \ell(u_2) + \ell(u_3) - 2(c(u_1, u_2^{-1}) + c(u_2, u_3^{-1})),$$

and we find the desired conclusion.

Case 2. $\ell(u_1u_2) = 2$ or $\ell(u_2u_3) = 2$. Then $c(u_1, u_2^{-1}) = 0$ or $c(u_2, u_3^{-1}) = 0$. Therefore

$$c(u_1, u_2^{-1}) + c(u_2, u_3^{-1}) \le \frac{1}{2}.$$

Since $\frac{1}{2} < \ell(u_2) - \delta = 1$ (as $\delta = 0$), by Lemma 1.3, we get the desired conclusion.

We go from n to n+1. We treat the two following cases.

Case 1. $\ell(u_1u_2) = 1$ and $\ell(u_2u_3) = 1$. Put

$$a = u_1 u_2, \quad b = u_3, \quad d = u_4 \cdots u_{n+1}.$$

We claim $c(b, d^{-1}) = c(u_3, u_4^{-1})$. We have

(1)
$$c(b,d^{-1}) = \frac{1}{2}(\ell(u_3) + \ell(u_4 \cdots u_{n+1}) - \ell(u_3 \cdots u_{n+1})).$$

By induction we have

$$\ell(u_3 \cdots u_{n+1}) = \sum_{i=3}^{n+1} \ell(u_i) - 2 \sum_{i=3}^{n} c(u_i, u_{i+1}^{-1}),$$

$$\ell(u_4 \cdots u_{n+1}) = \sum_{i=4}^{n+1} \ell(u_i) - 2 \sum_{i=4}^{n} c(u_i, u_{i+1}^{-1}).$$

By replacing in (1) we get

$$c(b, d^{-1}) = \frac{1}{2} (\ell(u_3) - \ell(u_3) + 2c(u_3, u_4^{-1})) = c(u_3, u_4^{-1}),$$

as claimed.

We claim $\ell(u_3u_4)=2$ and $\ell(u_1u_2u_3)=1$. Since the sequence (u_1,u_2,u_3) is pseudo-reduced and $\ell(u_1u_2)=\ell(u_2u_3)=1$, by Lemma 2.10, $\ell(u_1u_2u_3)=1$ and $u_3\in U_2$.

Suppose that $\ell(u_3u_4)=1$. Since $\ell(u_2u_3)=1$ we get, by Lemma 2.8, $u_3\in U_1$. Contradiction with $u_3\in U_2$. This ends the proof of our claim.

Since $\ell(u_3u_4)=2$ we have $c(u_3,u_4^{-1})=0$ and thus $c(b,d^{-1})=0$. Therefore

$$c(a, b^{-1}) + c(b, d^{-1}) = \frac{1}{2}(\ell(u_1 u_2) + \ell(u_3) - \ell(u_1 u_2 u_3)) = \frac{1}{2}.$$

Since $\frac{1}{2} < \ell(b) - \delta = 1$ (as $\delta = 0$), by Lemma 1.3, we get

(2)
$$\ell(abc) = \ell(a) + \ell(b) + \ell(c) - 2(c(a, b^{-1}) + c(b, d^{-1})).$$

By induction we have

$$\ell(c) = \sum_{i=4}^{n+1} \ell(u_i) - 2 \sum_{i=4}^{n} c(u_i, u_{i+1}^{-1}).$$

By replacing in (2), and since $c(b, d^{-1}) = c(u_3, u_4^{-1}), \ell(u_1 \cdots u_{n+1})$ is equal to

$$\ell(u_1u_2) + \ell(u_3) + \sum_{i=4}^{n+1} \ell(u_i) - 2\sum_{i=4}^{n} c(u_i, u_{i+1}^{-1}) - 2(c(u_1u_2, u_3^{-1}) + c(u_3, u_4^{-1})).$$

But, since $\ell(u_1u_2u_3) = 1$, a simple count shows

$$\ell(u_1u_2) + \ell(u_3) - 2c(u_1u_2, u_3^{-1}) = \ell(u_1u_2u_3) = \sum_{i=1}^{3} \ell(u_i) - 2\sum_{i=1}^{2} c(u_i, u_{i+1}^{-1}).$$

Therefore we find

$$\ell(u_1 \cdots u_{n+1}) = \sum_{i=1}^{3} \ell(u_i) - 2\sum_{i=1}^{2} c(u_i, u_{i+1}^{-1}) + \sum_{i=4}^{n+1} \ell(u_i) - 2\sum_{i=4}^{n} c(u_i, u_{i+1}^{-1}) - 2c(u_3, u_4^{-1})$$

$$= \sum_{i=1}^{n+1} \ell(u_i) - 2 \sum_{i=1}^{n} c(u_i, u_{i+1}^{-1}).$$

Case 2. $\ell(u_1u_2) = 2 \text{ or } \ell(u_2u_3) = 2.$

Put

$$a = u_1, b = u_2, d = u_3 \cdots u_{n+1}.$$

We claim $c(b, d^{-1}) = c(u_2, u_3^{-1})$. We have

$$c(b,d^{-1}) = \frac{1}{2}(\ell(u_2) + \ell(u_3 \cdots u_{n+1}) - \ell(u_2 \cdots u_{n+1})).$$

By induction

$$\ell(u_3 \cdots u_{n+1}) = \sum_{i=3}^{n+1} \ell(u_i) - 2 \sum_{i=3}^{n} c(u_i, u_{i+1}^{-1}),$$

$$\ell(u_2 \cdots u_{n+1}) = \sum_{i=2}^{n+1} \ell(u_i) - 2 \sum_{i=2}^{n} c(u_i, u_{i+1}^{-1}),$$

after calculating, as in the precedent case, we get $c(b, d^{-1}) = c(u_2, u_3^{-1})$. Since $\ell(u_1u_2) = 2$ or $\ell(u_2u_3) = 2$, then $c(u_1, u_2^{-1}) = 0$ or $c(u_2, u_3^{-1}) = 0$. Thus

$$c(u_1, u_2^{-1}) + c(u_2, u_3^{-1}) \le \frac{1}{2}.$$

We have

$$c(a, b^{-1}) + c(b, d^{-1}) = c(u_1, u_2^{-1}) + c(u_2, u_3^{-1}) \le \frac{1}{2}.$$

Therefore, as in the above case, by Lemma 1.3 we get

$$\ell(abc) = \ell(a) + \ell(b) + \ell(c) - 2(c(a, b^{-1}) + c(b, d^{-1})),$$

thus

$$\ell(u_1 \cdots u_{n+1}) = \ell(u_1) + \ell(u_2) + \sum_{i=3}^{n+1} \ell(u_i) - 2\sum_{i=3}^{n} c(u_i, u_{i+1}^{-1}) - 2(c(u_1, u_2^{-1}) + c(u_2, u_3^{-1})).$$

Thus we have the desired conclusion.

3 Proof of Theorem 1.2

We have

$$U_1 = \bigcup \{ H(s) \mid s \in U \cap S_1 \}, \quad U_2 = (U \cap S_2)^{\pm 1},$$

 $H(s) = q(s) \cap S_1 \cup \{1\}.$

By Lemma 2.3, H(s) is a finite subgroup. The set U_1 can be written in the following manner

$$U_1 = H(s_1) \cup \ldots \cup H(s_n),$$

where s_1, \ldots, s_n are in $U \cap S_1$ and $s_i \not\sim s_j$ for $i \neq j$.

Let F be the subgroup generated by U_2 . We are going to prove that H is the free product $H(s_1) * \cdots * H(s_n) * F$ and that F is free with basis $U \cap S_2$.

As $U = (U \cap S_1) \cup (U \cap S_2) \subseteq U_1 \cup U_2$, H is generated by $H(s_1) \cup \ldots \cup H(s_n) \cup U_2$.

Now to prove that $H = H(s_1) * \cdots * H(s_n) * F$ and that $U \cap S_2$ is a basis of F we must show that if (u_1, \ldots, u_n) is a sequence of $H(s_1) \cup \ldots \cup H(s_n) \cup U_2$ satisfying:

- (i) $u_i \neq 1, u_i u_{i+1} \neq 1,$
- (ii) if $u_i \in H(s_j)$ then $u_{i+1} \not\in H(s_j)$,

then $u_1 \cdots u_n \neq 1$.

To this end we must prove that if (u_1, \ldots, u_n) is a sequence of $U_1 \cup U_2$ satisfying the conditions:

- (i) $u_i \neq 1, u_i u_{i+1} \neq 1,$
- $(ii) u_i, u_{i+1} \in U_1 \Rightarrow u_i \not\sim u_{i+1},$

then $u_1 \cdots u_n \neq 1$.

Thus we must prove that if (u_1, \ldots, u_n) is a pseudo-reduced sequence of $U_1 \cup U_2$ then $u_1 \cdots u_n \neq 1$.

Now if (u_1, \ldots, u_{n+1}) is a pseudo-reduced sequence of $U_1 \cup U_2$ then, by Lemma 2.12, we have

$$\ell(u_1 \cdots u_{n+1}) = \sum_{i=1}^{n+1} \ell(u_i) - 2 \sum_{i=1}^{n} c(u_i, u_{i+1}^{-1})$$

$$= \sum_{i=1}^{n} \ell(u_i) - 2 \sum_{i=1}^{n-1} c(u_i, u_{i+1}^{-1}) + \ell(u_{n+1}) - 2c(u_n, u_{n+1})$$

$$= \ell(u_1 \cdots u_n) + \ell(u_n u_{n+1}) - \ell(u_n).$$

Since $\ell(u_n u_{n+1}) - \ell(u_n) \ge 0$ we get

$$\ell(u_1 \cdots u_{n+1}) \ge \ell(u_1 \cdots u_n).$$

Therefore by induction on n we get $\ell(u_1 \cdots u_n) \geq \ell(u_1)$. Since $\ell(u_1) \neq 0$ then $\ell(u_1 \cdots u_n) \neq 0$ and thus $u_1 \cdots u_n \neq 1$.

Acknowledgements. Many thanks to Tuna Altinel to have read an earlier version of this paper and to Gilbert Levitt for his remarks and improvements.

References

- [1] M. Coornaert, T. Delzant and A. Papadopoulos. Géométrie et théorie des groupes (Lecture Notes in Mathematics, Springer-Verlag, 1990).
- [2] M. Gromov. Hyperbolic groups. In *Essays in Group Theory* (S. M. Gersten, ed.), M.S.R.I. Pub. 8, Springer, 1987.
- [3] R.C. Lyndon. Length functions in groups. Math. Scand. 12 (1963), 209-234.