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Abstract

We prove that a d-hyperbolic group for § < % is a free product F *
G1*...% Gy where F is a free group of finite rank and each G; is a finite
group.

1 Introduction and main result

Let (X, d) be a metric space. The Gromov product (x-y), of two points z,y € X
with respect to a point v € X is defined by

(2 y) = 5(d(r,0) + dly,v) — d(z,9))

X is termed d-hyperbolic, where § is positif reel number, if for any x, y, z,v €
X,
(2 y)o = min {(z - 2)y, (y-2)o} — 0.

If H is a group generated by a set S, the Cayley graph Cay(H, S) is a metric
space with the path metric and with edges of length one.

A group H is d-hyperbolic, where 6 > 0, if H is generated by a finite set S
such that the Cayley graph Cay(H,S) is d-hyperbolic as a metric space. H is
termed hyperbolic if H is §-hyperbolic for some § > 0. It is well-known [1, 2]
that being hyperbolic does not depend on a particular generating set S, but §
depends on S.

We define do(H) to be the infimum of § for which H is §-hyperbolic. It is a
natural question to ask when we can have do(H) = 0 ? We show that in general
we must have §o(H) > % The main result of this paper is the following.

Theorem 1.1 Let H be a §-hyperbolic group for some 6 < % Then H is a free
product F'x Gy % ...x Gy, where F is a free group of finite rank and each G; is
a finite group.



Let H be a group generated by a finite set S. For an element h € H we
denote by £s(g) the shortest word w in the alphabet S*! such that h = w in
H. For u,v € H we let c(u,v) = £(ls(u) + ls(v) — Ls(uv™")). We say that (g
is 0-hyperbolic, if

c(u,v) > min {c(u, 2),c(z,v)} =6, forall u,v,z € H.

For u,v € H we let ds(u,v) = lg(uv™!). Tt is well-known [1, 2] that the
metric space (H,dg) is isometrically embedded in the Cayley graph Cay(H,S).
Therefore if Cay(H, S) is §-hyperbolic then fg is §-hyperbolic.

If Cay(H, S) is é-hyperbolic for some 6 < % then, actually, g is 0-hyperbolic.
Indeed. Since

1
c(u,v) —min {c(u, 2),c(z,v)} > =5 > —5 for all u,v,z € H,

and since the number c(u,v) — min {c(u, ), ¢(z,v)} is an integer or a half of
integer we get

c(u,v) —min {c(u, 2),c(z,v)} >0, forall u,v,z € H,
and thus g is O-hyperbolic.

Therefore Theorem 1.1 is a consequence of the following one.

Theorem 1.2 Let H be a group generated by a finite set S such that the word
length g is O-hyperbolic. Then H is a free product F + Gy * ...+ G, where F is
a free group of finite rank and each G; is a finite group.

Note that when H = F « G * ... * G,, where F is free group with basis X
and each G; is a finite group, if we let S = X UG, ... UG, then the word length
{g is O0-hyperbolic.

To prove Theorem 1.2 we follow the general line of the argument used by
R.C. Lyndon in [3]. The paper is organized as follows. We end this section
by a general lemma about hyperbolic groups. In the next section we prove
preparatory lemmas in the particular case when fg is 0-hyperbolic. In the last
section we prove Theorem 1.2.

We end this section by the following.

Lemma 1.3 Let H be a group generated by a finite set S such that the word
length ls (denoted simply ) is 6-hyperbolic for some 6 > 0. Let hy, ho, hs be
elements of H satisfying

c(hi,hy ) + c(ha, hyt) < £(hy) — 6.
Then
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In particuliar if § < % then

3

U(hahohs) =Y " 6(hi) =2 e(hi hily).

i=1

Proof
We have

cllha hg) = 3 (€(ha) + U(hs) — (hahs))
= S (0(h2) 4 U(hs) — £(ha) + £(hs) — L(hohs))

= U(hz) — G (€(hs) + Llahs) — ((hs)
= U(hy) — c(hy ', (hohs)™).
From the hypothesis c(h1, hy ') 4 c(ha, h3') < £(hy) — § we get
(1) c(hi,hyt) < c(hy?t, (hahs)™1) — 4.
By the d-hyperbolicity of £ we have
c(h1,hy ') = min {c(hy, (hohs)™"), c(hy ', (hahs) ™)} =6,

and by (1) we get
(hl, hy ) > C(hl, (hghg,) ) — 4,

therefore
f(hl) + g(hg) — g(hlhg) > é(hl) + E(hghg) - f(hlhghg) — 26,

and thus
L(hy1hahg) > €(hahs) — £(ha) + £(h1hs) — 26.

But we have X

D llh) =23 elhihih)

3
= 3 600) = ((EChn) + €)= Uah)) + (Ehe) + L) = rzhe))
(2) = U(h2h3) — {(h2) + L(h1h2).
Therefore
3 2
3) £(h1hahs) > Z Z (hi, hiily) — 26.
i=1 i=1



An other side, by the §-hyperbolicity
c(h1, (hohs)™") > min {c(h1, hy"),e(hy ", (hahs)™")} — 6,

and by (1) we find
o(h, (hahs) ™) = e(hn, hy ') = .

Therefore
L(h1) 4+ £(hohs) — l(hihahg) > €(h1) + £(h2) — £(h1ha) — 20,

and thus
L(hohs) — l(hihohg) > £(hg) — £(h1hg) — 20,

thus by (2) we get

3 2
(4) ((hahohs) <> 0(hi) =2 c(hi, hiyh) + 26,
i=1 i=1

By (3) and (4) we conclude

3 2

|€(hahahs) — (Y €(hs) — Z c(hi, hizy))| < 26.

i=1
Now the last assertion of the lemma follows from the fact that § < % and

that £(hihahs) — (X0, 0(hi) — 2320 e(hi, 7)) is an integer. O

Assumption In the rest of this paper we let H to be a group generated by a
finite set S such that the word length ¢g is 0-hyperbolic. To simplify notations
we denote by ¢ the word length £g. For convenience we suppose also that 1 ¢ .S
and S = S~1.

2 Preparatory lemmas

Definition 2.1 We define a relation ~ on S by

s ~t if and only if ¢(s,t) >

l\D\»—l

Lemma 2.2 The relation ~ is an equivalence relation on S.

Proof
Clearly ~ is reflexive and symmetric. Let s,f,u € S such that s ~ ¢t and
t ~ u. Then



Notation. For s € S we denote by ¢(s) the equivalence class of s under ~.
We let
51:{565|s~5_1}, Sy =8\ 5.

Lemma 2.3 For each s € Sy the set H(s) = (q(s)NS1)U{1} is a finite subgroup
of H.

Proof

Let u,v € H(s) and prove that uv=! € H(s). Clearly if u =1 or v =1 or
u = v then uv™! € H(s). Thus we may assume that v # 1, v # 1 and u # v;
thus u,v € ¢(s) NSy and uv™t # 1.

Since u ~ v we have c(u,v) > 3 and a simplification shows ¢(uv~!) < 1. As
uv™t # 1 we get {(uv~!) =1 and thus uv=! € S.

We first prove that uv=! € ¢(s). We have

_ 1 _
c(s,v) > =, ass~vandv~uv?
) 27 )

c(v™huv™h) = %(f(v) +l(uv™h) = LuTh) = %ﬁ(uv*) >

1

N | =

Therefore s ~ v~ and v ~ uv™!. Thus s ~ uv™
1

, so uv~t € g(s).

1

We prove now that uv™" € S;. From u ~ u~! and u ~ uv™! we conclude

u™ ! ~wv~!. An another side

| =

(™ (™) ™) = 2 (0) + L) — £07)) >

Therefore u=! ~ uv™ and u=! ~ (wv=1) 7L, Thus wv=! ~ (uv=1)~! and so
wt e s;.
Now since H(s) C SU {1} and S is finite, H(s) is a finite subgroup. O

Lemma 2.4 Let < be a well ordering of the set of equivalence classes of S under
~. Then there is a well ordering = of S satisfying the following conditions:

(i) if g(s) < q(t) then s < t,
(id) if q(s) = q(t) and q(s™') < q(t~') then s < t.
Proof

For an equivalence class ¢(s) we let =<
define < on S by

a(s) be a well ordering of ¢g(s). We

q(s) < q(t), or;
s < tif and only if { ¢(s) =q(t), q(s71) < q(t™1), or;
q(s) = q(t), a(s7") = q(t™"),5 =g t
The verification that < is a well ordering is left to the reader. O



Assemption. We assume henceforth that the set of equivalence classes of S
is well ordered by a fixed ordering < and S is well ordered by a fixed ordering
= satisfying the conditions (¢)-(i7) of the above lemma.

Definition 2.5 For each s € S we define K(s) to be the subgroup generated
by theset {t € S |t <s}. Welet U={se€S|s¢&K(s)}

Lemma 2.6 U generates H.

Proof

Let L be the subgroup generated by U. Suppose that L # H and let s be
the least element of S which is not in L. Then {t € S | t < s} C L and thus
K(s) C L. Hence s ¢ K(s). Therefore s € U, a contradiction. O

Notation. For s € S we denote by § the earlier in the order < of S of s and
s~L

We note that u € U*! if and only if @ € U. Indeed, if u € U then v < u™*
(as if u=! < u then u € K(u) contradicting v € U) and thus & = u € U; if
w € U™! then u~! € U, as before, u™' < u and thus & = v~! € U. Clearly if
@€ U then u € U,

We let

Ur=|J{H(s) | s€UNS}, Up=(UnSy*".

Lemma 2.7 If u,v are non-trivial elements of Uy U Uz and £(uv) = 1 then
g(v™") < q(v).
Proof
We begin with the following claim.
Claim. We may assume v € Uy and u € U.

Proof. If v € Uy then v € H(s) for some s € U N S;. Since H(s) =
q(s) N Sy U {1} and v is non-trivial we get v € g(s) N S;. Thus v ~ v~ hence
q(v) = q(v™1). So we may assume v € Us.

We prove now that we may assume w € U. If u ¢ U then u € Us and thus
u € H(s) =q(s) NSy U{1} for some s € U N S;. We prove that £(sv) = 1.

Since u € H(s) and w is non-trivial, u € ¢(s) N Sy. Therefore we have

(1) c(u,s) =

N~

By {(uv) = 1, we get

(2) c(u, vt = %(ﬁ(u) + 4(v) — L(uv)) >

N | —

By (1)-(2) we get c(s,v™!) >
v ¢ Uy we have sv # 1 and thus #(
we assume that @ € U.

After simplifications ¢(sv) < 1. Since
v) = 1. Thus replacing u by s if necessary

@ ol



This ends the proof of our claim. O

Thus we suppose v € Uy and u € U. Suppose now towards a contradiction
q(v) < q(v™1). By £(uv) = 1 we have

cluw,v) = 3 (€lue) + (o) — £(w)) = 5.

e((uww) L ut) = %(E(uv) +0(u) —L(v)) = %,

soun~v L uw~w, ()t ~uTh

Since q(uv) = q(v) < q(v=!) = g(u), by the conditions (i)-(ii) of Lemma
2.4, we have

(3) w <u, v<vl

Since v < v~! and v € Uy we get
(4) vel.

Since q((uv)™!) = g(u™!) and gq(uv) < g(u), by the conditions (i)-(ii) of
Lemma 2.4, we have

(5) (wv)™t < uh

Thus, by (3)-(4)-(5), we conclude

w <u, v<vt vel (w)t<u"

1
Since uv < u and (uv)~! < u™! we get wv < 4.
Now we treat the following cases:

e If v = @ then either u = v or u = v~!. Therefore either ¢(uv) = £(v?) =1
and thus v € Uy, or (uv) = £(v~v) = 0. In both cases we have a contradiction
as v € Uy and £(uv) = 1.

o If v < @ then, since uv < u, we get @ € K (). Contradiction with 4 € U.

o If 4 < v then, since w0 < @ < v, we get v € K(v). Contradiction with
vel.

So our supposition is false. Thus g(v™!) < q(v). O

Lemma 2.8 Let s,t,u be non-trivial elements of Uy U Us such that £(st) = 1,
l(tu) =1. Thent ~t~! and thust € U;.

Proof
Since £(st) = 1, by Lemma 2.7 we have g(t~!) < q(t). Since ¢(u~1t"1) =1,
by the same lemma we have ¢(t) < q(t~!). Therefore q(t) = q(t~1). O



Lemma 2.9 Let s,u € Us, t € Uy UUx \ {1} such that £(st) = 1, £(tu) = 1.
Then £(stu) = 1.

Proof
Claim 1. {(stu) <1.

Proof. We have

1) s, 171) = S (60s) + £00) — €(51)) = 5,
(7 (b)) = 5 (00 + £(tw) — £w)) = 3,
SO
ofs, (tu)~1) > %
Thus s ~ (tu)~*. A simple count shows £(stu) < 1 as claimed O

Claim 2. scU, v el t<s.
Proof. We first prove

a(s) <q(s™h), qu™) < q(u

)-
Since £(t~1s~ ) =1, by Lemma 2.7, we get ¢(s) < D). If q(s) = q(s71)

S

q(s

q(s™
then we get s ~ s~ and thus £(s?) < 1. Therefore s € S; contradicting the fact
that s € Uy = (U N Sy)*! C SE. Therefore ¢(s) < q(s™).

Since £(tu) = 1, by Lemma 2.7, we have q(u™!) < g(u). If g(u) = q(u™?!)
then we get u ~ u~! and thus ¢(u?) < 1. Therefore u € S; contradicting the
fact that u € Uy = (U N Sy)*! C SEL. Therefore g(u=") < q(u).

Since q(s) < q(s71), q(u!) < q(u), by conditions (i)-(ii) of Lemma 2.4 we
get s < s~ and u=! < u. Therefore s € U and u=! € U.

By Lemma 2.8 we have ¢(t) = ¢(t7!). By (1) we have ¢(s) = q(t™'). Now

since
q(s) = q(t) = q(t71), q(t™") = als) <al(s™"),
we get, by conditions (4)-(i7) of Lemma 2.4, ¢ < s.
This ends the proof of our claim. O

By Claim 1 we have £(stu) = 0 or {(stu) = 1. Suppose towards a contradic-
tion that ¢(stu) = 0; thus stu = 1.

Since t # 1 we have s # u ™!

o If s < u~! then, since t < s and u=! = st, we get u=! € K(u™?!).
Contradiction with u=1 € U.

o If u=! < s, then, since t < s and s = u~ 1t~ !, we get s € K(s). Contradic-
tion with s € U.

Therefore our supposition is false and thus ¢(stu) = 1. O

Lemma 2.10 Let uy,usg, uz be non-trivial elements of U1UUs such that £(ujus) =
1, l(ugus) = 1, ug % us and uy & usz. Then uj,us € U, us € Uy and
E(UNLQU?,) =1.



Proof

By Lemma 2.8, us € U;.

Prove uy € Uy and uz € Us. Suppose towards a contradiction uy € Uj.
Then, since ¢(ujuz) = 1, a simple count shows c(ul,uz_l) > % Thus u; ~ uz_l.
Since ug € Uy we have ug ~ u2_1. Therefore uy ~ uy. Contradiction as uy 7 us.
Thus u; € Us. By the same argument we get ug € Us.

By Lemma 2.9 we get £(ujugug) = 1. O

Definition 2.11 A sequence (u1,...,u,) of Uy U Us is said to be pseudo-
reduced if it satisfies the following conditions:

(1) ui # 1, wjuiyr # 1,
(ZZ) Ui, Ui41 € Ui = u; 76 Ujq1-

Lemma 2.12 If (uy,...,uy), n > 2, is a pseudo-reduced sequence of Uy U Uy
then

n n—1
i=1 =1

Proof
The proof is by induction on n. The lemma is trivial for n = 2.

For n = 3. We consider the following two cases.

Case 1. {(ujuz) = 1 and £(uqug) = 1.
By Lemma 2.8 uy € Uy. Since the sequence (u1,ue,us) is pseudo-reduced,
uy % ug and usg 7% ug. Thus, by Lemma 2.9, we have ¢(ujusus) = 1. Therefore

C(uguguz) = 1= €(ur) + L(ug) + £(uz) — 2(c(ur,uyt) + c(ua, uz ),

and we find the desired conclusion.

Case 2. {(ujug) = 2 or £(ugug) = 2.
Then c(uy,uy ") = 0 or c(ug,uz ') = 0. Therefore

c(uhugl) + c(uz,ugl) <

N

Since % < Ll(ug)—d =1 (as § =0), by Lemma 1.3, we get the desired conclusion.

We go from n to n+ 1. We treat the two following cases.
Case 1. {(ujuz) = 1 and £(ugus) = 1. Put

a=ujuz, b=wus, d=1ug - Upyi.

We claim c(b,d") = c(us,uy"'). We have

(1) ofb,d™) = 5 (Eus) + Lta =t 1) — Lot )



By induction we have

n+1 n

ug Upt1) = Z O(u;) — QZc(ui7u'£_Jrll)’
i=3 =3
n+1 n

K(U4 e un-‘,—l) = Z é(ul) — 226(’”17”1—4}1)
i=4 i=4

By replacing in (1) we get
_ 1 _ _
ob, d™") = 5 (€(us) — L(uz) + 2c(us, ug 1) = eus,uit),

as claimed.

We claim ¢(ugug) = 2 and £(ujugus) = 1. Since the sequence (uy, ug,us) is
pseudo-reduced and £(ujuz) = ¢(ugus) = 1, by Lemma 2.10, ¢(ujugus) = 1 and
uz € Us.

Suppose that £(ugus) = 1. Since £(usuz) = 1 we get, by Lemma 2.8, uz € U;.
Contradiction with usz € Us. This ends the proof of our claim.

Since £(uzug) = 2 we have c(uz,u; ') = 0 and thus ¢(b,d') = 0. Therefore
1 1
c(a,b™Y) +e(b,d™t) = i(f(uluQ) + l(uz) — l(uugus)) = 3
Since § < £(b) —d =1 (as § = 0), by Lemma 1.3, we get

(2) {(abc) = £(a) + £(b) + £(c) — 2(c(a, b~ 1) + c(b,d™1)).

By induction we have

n+1 n
Ue) = Llug) =2 eluiuily).
i=4 i=4
By replacing in (2), and since c(b,d™') = c(uz,uz"), £(uy - - - upy1) is equal to
n+1 n
Curug) + L(ug) + > L) =2 s, uy) = 2(c(urug, uz ) + eug, ui ™).
i=4 i=d

But, since £(ujuouz) = 1, a simple count shows

3 2
((urug) + L(uz) — 2c(ugug, uz ') = L(ugugus) = Zﬂ(ui) -2 Zc(ui, u;ll)
i=1 i=1
Therefore we find
3 2 n+1 n
Luy - Upt1) = Zé(ui)—Q Z c(ug, u;_&ﬁ—i—Z O(u;)—2 Z c(ug, u;_ll)—2c(u55, ugt)
i=1 i=1 i=4 i=4
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n+1 n

= Z €(u2) - 2ZC(U1,U;+11)

i=1

Case 2. {(ujug) = 2 or £(ugug) = 2.
Put
a=1u;, b=wuy, d=ug---Upy1.

We claim c(b,d ") = c(uz,u3 ). We have

c(b,d™t) = %(f(ug) +l(ug - tupyr) — (ug - Upg))-

By induction

n+1 n

f(u;g e Un+1) = Z é(uv) — 2ZC(U17U1_+11)7
=3 =3
n+1 n

K(HQ . u’ﬂ+1) = Z E(ul) — 2ZC(U1‘7U;+11)7
=2 =2

after calculating, as in the precedent case, we get c(b,d!) = c(us, ugl).
Since £(ujuz) = 2 or L(uguz) = 2, then c(uy,u; ') = 0 or c(ug,uz’) = 0.
Thus

_ _ 1
clur,uy ) + c(ug,uz ) < 7

‘We have
c(a,b™Y) +e(b,d™t) = c(ul,ugl) + c(u27u§1) <

Therefore, as in the above case, by Lemma 1.3 we get

{(abc) = £(a) + £(b) + £(c) — 2(c(a, b~ ) + ¢(b,d™ 1)),

thus
n+1 n

Qg - tpgr) = Oun)+0(u2)+ D> ;) =2 e(ug, ui)—2(c(ur, ug ') +e(uz, uz ).
i=3 i=3

Thus we have the desired conclusion. O

3 Proof of Theorem 1.2

We have
Ur=|J{H(s) | s€UNS}, Up=(UnSy*,

H(s)=q(s)Nn Sy U{1}.

11



By Lemma 2.3, H(s) is a finite subgroup.
The set U; can be written in the following manner

Ul :H(Sl)UUH(Sn)v

where s1,...,5, are in U NSy and s; o s; for i # j.

Let F' be the subgroup generated by Us. We are going to prove that H is
the free product H(sy) * -+ * H(s,) * F and that F is free with basis U N Ss.

AsU=({UnNS;)UUnNSy) CU UUs, H is generated by H(s;) U ... U
H(Sn) @] U2.

Now to prove that H = H(s1)*---* H(s,)* F and that U N Sy is a basis of
F we must show that if (uy,...,u,) is a sequence of H(s1) U...U H(s,) U U,
satisfying:

(1) ug # 1, uguipr # 1,

(44) if u; € H(s;) then w11 & H(s;),
then uy - - uy, # 1.

To this end we must prove that if (us,...,u,) is a sequence of Uy U Uy
satisfying the conditions:

(1) g # 1, uguipr # 1,

(Z’L) ui, ui+1 € Up = uy 7(’ Ui+1,
then uy « - u, # 1.

Thus we must prove that if (u1,...,u,) is a pseudo-reduced sequence of
Uy UUs then uq -« -uy # 1.
Now if (u1,...,un+1) is a pseudo-reduced sequence of U; U Uy then, by

Lemma 2.12, we have

n+1 n

Luy -+ Upg1) = Z O(u;) — QZc(ui,u;&l)
i=1 i=1

n n—1
= Z@(ul) -2 Z e(ui, uiy) + €(uns1) — 2¢(Up, Unt1)
i=1 i=1

=Ll(uy - up) + luptni1) — L(uy).

Since £(uptiny1) — £(u,) > 0 we get
Lug  Upg1) > L(ug - Up).

Therefore by induction on n we get €(uy -« up,) > €(uy). Since £(uy) # 0
then £(uq -+ uy) # 0 and thus ug -+ - u, # 1. O
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