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LINEAR DIFFERENTIAL OPERATORS ON CONTACT MANIFOLDS

CHARLES H. CONLEY AND VALENTIN OVSIENKO

Abstract. We consider differential operators between sections of arbitrary powers of the deter-
minant line bundle over a contact manifold. We extend the standard notions of the Heisenberg
calculus: noncommutative symbolic calculus, the principal symbol, and the contact order to such
differential operators. Our first main result is an intrinsically defined “subsymbol” of a differ-
ential operator, which is a differential invariant of degree one lower than that of the principal
symbol. In particular, this subsymbol associates a contact vector field to an arbitrary second
order linear differential operator. Our second main result is the construction of a filtration that
strengthens the well-known contact order filtration of the Heisenberg calculus.

1. Introduction

The space D(M) of linear differential operators on a smooth manifold M has a rich geometric
structure. By the geometry of D(M), we understand its structure as a module over the group of all
diffeomorphisms of M , and thereby also over its Lie algebra, the space Vect(M) of smooth vector
fields on M . The most interesting geometric properties of D(M) are described by its invariants
under the group of diffeomorphisms.

Additional structure on M leads to a smaller group of diffeomorphisms, and therefore a richer
set of invariants of D(M). Contact manifolds provide an important class of examples of geometric
structures. In this paper we study the geometric properties of D(M) viewed as a module over the
Lie algebra K(M) of all contact vector fields on M . This viewpoint fits into the general framework
of Heisenberg calculus, see [BG88, EM98, vE10], where the geometric structure is a codimension-1
distribution in T (M).

Our first main result is the association of a contact vector field to an arbitrary second order
linear differential operator in a contact-invariant manner. Although we do not carry out the
investigation here, this could provide a means to associate topological invariants to second order
operators. We generalize the result to differential operators of arbitrary order, associating to each
a certain tensor density on M . This tensor density is independent of the symbol of the operator
and may be thought of as a partial “subsymbol”.

By a tensor density, we mean a section of a power of the determinant line bundle. In fact, we
state our results in the more general context of the spaces Dλ,µ(M) of differential operators between
such line bundles, rather than simply for differential operators on functions. An interesting feature
is appearance of contact resonances, that is, of special powers of the determinant line bundle for
which the geometric properties of differential operators are more complicated. These resonances
were already observed in [FMP08]. Let us mention that the usual case where λ = µ is non-resonant.

Our second main result is the existence of a filtration refining the usual filtration given by the
Heisenberg calculus. Recall that differential operators on a contact manifold have a contact order,
in which vector fields tangent to the distribution are of order 1, and contact vector fields are
of order 2. We introduce a contact-invariant filtration on Dλ,µ(M) for which, roughly speaking,
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tangential vector fields have order 1 and contact vector fields have order 3. However, this filtration
is not compatible with composition. We prove its existence in the non-resonant case.

We remark that there is also an invariant double filtration on the space of differential forms
on M [Ru94]. In some ways, the situation for contact manifolds appears to be analogous to that
for foliated manifolds. This may at first be surprising, as contact distributions are completely
non-integrable, but such analogies have been observed before [ET98].

Although our results and their applications are essentially geometric, the proofs are algebraic.
The considerations are local, so we may work in the Euclidean case, replacing M by Rm, where
m = 2ℓ + 1. Moreover, we need only consider the Lie algebra of polynomial contact vector fields
on Rm, which is the classical infinite dimensional Cartan algebra Km; see [Fu86].

Our main theorems are proven using certain underlying structural results concerning the coho-
mology of Km with coefficients in spaces of differential operators between refined symbol modules.
These results in turn are obtained using a quantization map which is equivariant with respect to the
projective subalgebra sm of Km, a maximal subalgebra isomorphic to sp2(ℓ+1). We prove the exis-
tence and uniqueness of this quantization map using the description of the infinitesimal characters
of sm given by the Harish-Chandra homomorphism. We also calculate the map explicitly.

An sm-module is said to have an infinitesimal character if the center Z(sm) of the universal
enveloping algebra of sm acts on it by scalars. The infinitesimal character is then the resulting
homomorphism from Z(sm) to C. If an sm-module has a finite Jordan-Hölder composition series
of modules with distinct infinitesimal characters, then the module splits as the direct sum of its
composition series modules.

Let us discuss at this point the role of infinitesimal characters in other forms of quantization.
The Casimir element is the best known and simplest element of Z(sm). It turns out that for the
contact projective quantization studied in this paper, it is not sufficient to consider the eigenvalues
of the Casimir element alone, because there are fine symbol modules with distinct infinitesimal
characters but identical Casimir eigenvalues. This is in contrast with the situation for projective
quantization with respect to the full vector field Lie algebra Vect(Rm), whose projective subalgebra
is slm+1. The full principal symbol modules have infinitesimal characters under the action of slm+1,
and these infinitesimal characters are distinct if and only if their Casimir eigenvalues are different
[Le00]. Therefore in this setting there is no need to consider infinitesimal characters.

For conformal quantization, one replaces the projective subalgebra with the conformal subal-
gebra op+1,q+1, a maximal subalgebra of Vect(Rp+q). As was first observed in [DLO99], in this
setting the Casimir element of op+1,q+1 is not sufficient to detect distinct infinitesimal characters
among these submodules. Complete results concerning the existence and uniqueness of conformal
quantization for differential operators between tensor density modules have recently been obtained
in [Si09] and [Mi11]. It would be interesting to determine to what extent infinitesimal characters
can be used to replicate them.

The crucial property that allows us to apply algebraic results in the geometric situation of an
arbitrary contact manifold M is the uniqueness of the sp2(ℓ+1)-equivariant quantization map. For
example, the subsymbol is first defined locally in Darboux coordinates. Its uniqueness then implies
that it is defined globally on M .

This paper is organized as follows. In Section 2 we define the modules of tensor densities,
differential operators, and symbols, and formulate our main results. In Section 3 we fix local
Darboux coordinates and review local properties of the contact Lie algebra. In Section 4 we study
the modules of Section 2 under the action of the projective subalgebra, using infinitesimal characters
to compute contact resonances. In Section 5 we prove the existence and uniqueness of the projective
quantization, the natural projective equivalence from symbols to differential operators. Section 6
contains the proofs of two of our main results: the existence and uniqueness of the subsymbol and
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of the fine filtration. Section 7 gives the explicit formula for the projective quantization and the
subsymbol and proves our third main result.

2. Main results

Fix m = 2ℓ+ 1 odd, and let M be a smooth m-dimensional manifold equipped with a contact
distribution Ξ: a completely non-integrable distribution of codimension 1. As usual, locally we
define the contact structure in terms of a contact form θ whose kernel is Ξ. The non-integrability
of Ξ is equivalent to the fact that θ∧ (dθ)ℓ is a local volume form. We define the subspace Tan(M)
of Vect(M) to consist of the sections of Ξ, that is, the vector fields annihilated by θ. We will refer
to such vector fields as tangential vector fields.

2.1. Definitions. We will use the following notation throughout this paper. For X ∈ Vect(M),
we write L(X) for the associated Lie derivative. The non-negative integers will be denoted by N,
and the positive integers by Z+. For x ∈ R, we use the floor notation for the greatest integer ≤ x
and the ceiling notation for the least integer ≥ x:

⌊x⌋ := sup{n ∈ Z : n ≤ x}, ⌈x⌉ := inf{n ∈ Z : n ≥ x}.
Within Vect(M) we have the Lie subalgebra K(M) of contact vector fields, those which pre-

serve Ξ. Contact vector fields are characterized locally as those whose Lie derivatives preserve the
conformal class of θ. More precisely, a vector field X on M is contact if

(1) L(X)θ = 1
ℓ+1 Div(X)θ,

where Div is the divergence with respect to the volume form θ ∧ (dθ)ℓ. The complete non-
integrability of Ξ translates to

Vect(M) = K(M)⊕ Tan(M).

This decomposition is invariant under the Lie action of K(M). Observe that K(M) is not invariant
under multiplication by functions, and Tan(M) is not a Lie algebra. Let

π : Vect(M) → K(M)

be the projection along Tan(M).
We now make several definitions valid for arbitrary (not necessarily contact) manifolds.

Definition.

(i) For λ ∈ C, let |ΛmT ∗(M)|λ be the line bundle of homogeneous functions of degree λ on
the determinant bundle. The space Fλ(M) of tensor densities of degree λ consists of the
smooth sections of |ΛmT ∗(M)|λ with complex coefficients. It is a module for Vect(M), and
we write Lλ(X) for the action of a vector field X on it.

(ii) Let Dλ,µ(M) be the space of differential operators from Fλ(M) to Fµ(M), and let Lλ,µ be
the natural action of Vect(M) on it. For k ∈ N, let Dk

λ,µ(M) be the subspace of operators of

order ≤ k. The spaces Dk
λ,µ(M) comprise the order filtration of Dλ,µ(M) and are invariant

under Vect(M).
(iii) We write δ for the difference between µ and λ:

δ := µ− λ.

(iv) The space of principal symbols of degree k is the quotient

Sk
δ (M) := Dk

λ,µ(M)/Dk−1
λ,µ (M).

It is well-known that its Vect(M)-module structure depends only on δ.
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(v) The principal symbol is the natural projection

σk
λ,µ : Dk

λ,µ(M) → Sk
δ (M).

Let us give some natural examples of tensor density modules. The simplest is C∞(M), which
is F0(M). In the contact setting, the following facts are well-known.

• The adjoint action of the Lie algebra K(M) of contact vector fields on itself is equivalent
to F− 1

ℓ+1
(M). In other words, there is a K(M)-equivalence

X : F− 1
ℓ+1

(M) → K(M),

associating a contact vector field Xϕ to each element ϕ of F− 1
ℓ+1

(M). The tensor density

ϕ is called the contact Hamiltonian of Xϕ. The notion of the contact Hamiltonian is
independent of the choice of a contact form θ. However, fixing θ one can (locally) identify
tensor densities and functions and think of a contact Hamiltonian as of a function.

• The conformal class C∞(M)θ of the contact form θ is equivalent to F 1
ℓ+1

(M) as a K(M)-

module.

In fact, the second statement follows from (1), and the first follows from Lemma 3.1 below.
Thus the K(M)-modules of contact Hamiltonians and contact forms are dual over C∞(M). We
remark that the algebraic direct sum

⊕

λ Fλ(M) of all tensor density modules is a Poisson algebra
under the Lagrange bracket.

The space Dλ,µ(M) generalizes D0,0(M), which is the usual space of differential operators acting
on functions. Geometric properties of Dλ,µ(M) vary with the parameters, and the structure of
Dλ,µ(M) viewed as a K(M)-module can be special for certain values of λ and µ. Let us stress
the fact that differential operators between tensor densities appear naturally in many geometric
situations. We mention for example the classical notion of the conformally invariant Laplace
operator, also known as the Yamabe Laplacian, which is an element of D 1

2
− 1

m
, 1
2
+ 1

m
(M). The case

λ + µ = 1 is particularly special. This is the case where the notions of symmetric and skew-
symmetric operators are well-defined. More generally, if A ∈ Dλ,µ(M), then the adjoint operator
A∗ belongs to D1−µ,1−λ(M).

We now recall the classical notion of the Heisenberg order of a differential operator on a contact
manifold; see for example [vE10] and references therein.

Definition.

(i) The space of differential operators of Heisenberg order ≤ d is

Pd
λ,µ(M) := Span

{

Tc ◦ Lλ(Y1) ◦ · · · ◦ Lλ(Yt) : Tc ∈ Dc
λ,µ(M), Yi ∈ Tan(M), 2c+ t ≤ d

}

.

The spaces Pd
λ,µ(M), comprise the Heisenberg filtration of Dλ,µ(M). They are invariant

under K(M).

(ii) The bifiltration Dk,d
λ,µ(M) := Dk

λ,µ(M) ∩ Pd
λ,µ(M) gives rise to the fine symbol modules:

Σk,d
δ (M) := Dk,d

λ,µ(M)/
(

Dk−1,d
λ,µ (M) +Dk,d−1

λ,µ (M)
)

.

(iii) The fine symbol is the corresponding projection

fσk,d
λ,µ : Dk,d

λ,µ(M) → Σk,d
δ (M).

In the simplest case k = 1 and δ = 0, Σ1,1
0 (M) is Tan(M) and Σ1,2

0 (M) is K(M). Here fσ1,2
λ,λ is

nothing but the projection π defined above. More generally, it follows from Proposition 3.3 below
that

Σk,2k
δ (M) ∼= Fδ− k

ℓ+1
(M).
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Therefore fσk,2k
λ,µ may be regarded as a K(M)-equivariant linear projection from Dk

λ,µ(M) to

Fδ− k
ℓ+1

(M). This type of equivariant assignment of a tensor density to a differential operator

is known as a differential invariant.

Definition. We say that δ is contact-resonant if it lies in the set
{

1

ℓ+ 1
+

n

2(ℓ+ 1)

∣

∣

∣
n ∈ N

}

.

We will see in Section 4.5 that contact resonances arise from the representation theory of sp2(ℓ+1).

2.2. The subsymbol. Our first main theorem gives a new contact differential invariant.

Theorem A. If δ is not contact-resonant, then there exists a unique K(M)-equivariant linear
map

sσk
λ,µ : Dk

λ,µ(M) → Σ
k−1, 2(k−1)
δ (M)

whose restriction to Dk−1
λ,µ (M) is fσ

k−1, 2(k−1)
λ,µ .

We refer to sσk
λ,µ as the contact subsymbol. We will give an explicit formula for it in Proposi-

tion 7.4. It may be regarded as a K(M)-equivariant projection from Dk
λ,µ(M) to Fδ− k−1

ℓ+1

(M).

We remark that in the general self-adjoint case, where λ+µ = 1 and k is arbitrary, the existence
of such a differential invariant is obvious. Indeed, for T in Dk

λ,µ(M), the operator T − (−1)kT ∗ is

in Dk−1
λ,µ (M), and so can be projected to Σ

k−1, 2(k−1)
δ (M).

Since F− 1
ℓ+1

(M) is equivalent to K(M), the case that k = 2 and µ = λ is of particular interest,

as there the differential invariant given by the contact subsymbol may be viewed as a contact vector
field. In other words, for all λ ∈ C, the subsymbol sσ2

λ,λ defines a K(M)-equivariant projection

from D2
λ,λ(M) to K(M).

In order to give an intrinsically defined and manifestly contact-invariant formula for sσ2
λ,λ,

observe that any second order differential operator can be represented as a linear combination of
compositions of vector fields. On contact manifolds, contact vector fields and tangential vector
fields are intrinsically distinguished. Thus we are led to express an arbitrary second order operator
on Fλ(M) as a linear combination of operators of the form

(2)
T = Lλ(Xϕ1

) ◦ Lλ(Xϕ2
) + Lλ(Xϕ3

) ◦ Lλ(Y1) + Lλ(Y2) ◦ Lλ(Y3)

+Lλ(Xϕ4
) + Lλ(Y4) + f,

where the ϕi are arbitrary contact Hamiltonians, the Yi are tangential vector fields, and f is a
function.

Theorem B. The subsymbol sσ2
λ,λ(T ) is the contact vector field

1
2

[

Xϕ1
, Xϕ2

]

−
(

ℓ+1
ℓ+2

)(

λ− 1
2

)

XL(Y1)ϕ3
+ 1

2π
[

Y2, Y3

]

+Xϕ4
,

where L(Y1)ϕ3 denotes the natural action of Y1 on the − 1
ℓ+1 -density ϕ3.

Let us comment on this formula. It only contains natural operations, so it is clearly contact-
invariant. Conversely, equivariance with respect to K(M) (in fact the affine subalgebra suffices)
implies that sσ2

λ,λ(T ) has to be of the form

c12
[

Xϕ1
, Xϕ2

]

+ c13XL(Y1)ϕ3
+ c23π

[

Y2, Y3

]

+ c4Xϕ4
,

where the c’s are constants. The normalization condition on D1
λ,λ gives c4 = 1. Skew-symmetrizing

the expression then yields c12 = c23 = 1
2 . Symmetrizing the expression implies that c13 vanishes

in the self-adjoint case λ = 1
2 , but its exact form must be deduced by computation.
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The main content of the theorem is that the formula is actually well-defined. Indeed, the choice
of the ϕi and Yi in (2) is not unique: one can write an operator as a linear combination of such
expressions in many different ways. However, the formula is independent of the choice. Moreover,
the uniqueness statement of Theorem A implies that, up to a scalar, this is not true for any other
choice of the c’s.

2.3. The fine filtration. In order to explain the significance of our next theorem, consider the
following arrangement of the fine symbol modules (we have omitted M and δ for clarity):

Σ6,12

Σ5,10 Σ6,11

Σ4,8 Σ5,9 Σ6,10

Σ3,6 Σ4,7 Σ5,8 Σ6,9 · · ·

Σ2,4 Σ3,5 Σ4,6 Σ5,7 Σ6,8

Σ1,2 Σ2,3 Σ3,4 Σ4,5 Σ5,6 Σ6,7

Σ0,0 Σ1,1 Σ2,2 Σ3,3 Σ4,4 Σ5,5 Σ6,6

Observe that the graded module of Sk
δ (M) defined by the bifiltration Dk,d

λ,µ(M) is the “vertical”
sum

grSk
δ (M) =

⊕

k≤d≤2k

Σk,d
δ (M).

The graded module of Pd
λ,µ(M)/Pd−1

λ,µ (M) is the “slope −1” sum

gr
(

Pd
λ,µ(M)/Pd−1

λ,µ (M)
)

=
⊕

⌈ d
2
⌉≤k≤d

Σk,d
δ (M).

The content of our next theorem is that there exists a K(M)-invariant filtration that strengthens
the filtration Pd

λ,µ(M). The graded modules of its subquotients are the “slope − 1
2” sums.

Theorem C. Assume that δ is not contact-resonant. Then there is a unique K(M)-invariant
filtration of Dλ,µ(M),

D(0)
λ,µ(M) ⊂ · · · ⊂ D(b)

λ,µ(M) ⊂ D(b+1)
λ,µ (M) ⊂ · · · ,

such that the graded module of D(b)
λ,µ(M) is given by

grD(b)
λ,µ(M) =

⊕

2d−k≤b

Σk,d
δ (M).

For example, gr
(

D(6)
λ,µ(M)/D(5)

λ,µ(M)
)

= Σ6,6
δ (M) ⊕ Σ4,5

δ (M) ⊕ Σ2,4
δ (M), as indicated by the

boundaries in the diagram above. We will define D(b)
λ,µ(M) via the projective quantization: see

Section 6.3.
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2.4. Comments on non-existence and conjectures. In this paper we are concerned with
existence results rather than non-existence results, but we remark that in the contact-resonant
case our theorems are false for most values of λ. For example, if k = δ(ℓ + 1) − ℓ in Theorem A,
then there exists no subsymbol except in the self-adjoint case λ + µ = 1, where there exists a 1-
parameter family of such maps. Non-existence results can be interpreted in terms of cohomological
obstructions. We conjecture that the filtration of Theorem C does not exist in the contact-resonant
case. These questions will be addressed elsewhere.

A module is called uniserial, or completely indecomposable, if it has a unique maximal invariant
filtration. Such modules may be thought of as opposite to completely reducible modules. We

conjecture that for generic values of λ and µ, D(b)
λ,µ(M)/D(b−1)

λ,µ (M) is uniserial, because we expect
that in the Euclidean case, there is a non-trivial projectively relative 1-cohomology class of Km

linking Σk,d
δ to Σk−2,d+1

δ : an analog of the Schwarzian derivative. This conjecture says essentially

that the bifiltration Dk
λ,µ(M) ∩ D(b)

λ,µ(M) is the best possible. In other words, if the conjecture

is true then there is no K(M)-invariant filtration of Dλ,µ(M) whose elements are composed of
all those fine symbol modules on or below the lines of any fixed slope shallower than − 1

2 passing
through the above diagram.

3. The Euclidean contact Lie algebra

Since all of the theorems in Section 2 are local, their proofs essentially reduce to the case
M = Rm. Therefore in this section we establish notation and state some well-known results for
Euclidean contact manifolds: the proofs are straightforward and are usually omitted. All C∞(Rm)-
modules of finite rank are equipped with their usual topologies as Frechet spaces, and by definition
all Hom spaces between such modules include only continuous linear maps.

3.1. Darboux coordinates. Fix coordinates xi, yi, and z on Rm, wherem = 2ℓ+1 and 1 ≤ i ≤ ℓ.
Henceforth we use Einstein’s summation convention: unless stated otherwise, repeated indices are
summed over from 1 to ℓ. Let θ and ω be the standard contact and volume forms on Rm:

θ := dz + 1
2 (xidyi − yidxi), ω := 1

ℓ! θ ∧ (dθ)ℓ = dz ∧
∧ℓ

1(dxi ∧ dyi).

The standard divergence operator Div : Vect(Rm) → C∞(Rm) is defined by

L(X)ω = Div(X)ω.

Recall from Section 2 the definitions of the Lie algebra of contact vector fields and the space of
tangent vector fields:

K(Rm) :=
{

X ∈ Vect(Rm) : L(X) θ = 1
ℓ+1 Div(X)θ

}

,

Tan(Rm) :=
{

X ∈ Vect(Rm) : 〈θ,X〉 = 0
}

.

The space Tan(Rm) is a module over K(Rm), and so one has the K(Rm)-invariant decomposition

Vect(Rm) = K(Rm)⊕ Tan(Rm).

It is important to keep in mind that while Tan(Rm) is closed under multiplication by smooth
functions, K(Rm) is not. We now give explicit descriptions of both spaces.

Define the following Euler operators:

Ez := z∂z, Exy := xi∂xi
+ yi∂yi

.

For 1 ≤ i ≤ ℓ, define the vector fields

Ai := ∂xi
+ 1

2yi∂z, Bi := −∂yi
+ 1

2xi∂z.

The following statements are classical.
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• There is a linear bijection X : C∞(Rm) → K(Rm) mapping f to Xf , the unique contact
vector field such that 〈θ,Xf 〉 = f . It has the following explicit formulas:

(3)
Xf = f∂z +Bi(f)Ai −Ai(f)Bi

=
(

1− 1
2Exy

)

(f)∂z +
1
2∂z(f)Exy +

(

∂xi
(f)∂yi

− ∂yi
(f)∂xi

)

.

• {Ai, Bi : 1 ≤ i ≤ ℓ} is a basis of Tan(Rm) over C∞(Rm), and

[Ai, Bj ] = δij∂z, [∂z , Ai] = 0, [∂z, Bi] = 0.

We remark that one can verify (1) directly in this setting by checking that

(4) L(Xf ) θ = ∂z(f) θ, Div(Xf ) = (ℓ+ 1)∂z(f).

Definition. The Lagrange bracket {f, g} on C∞(Rm) is defined by

X{f,g} := [Xf , Xg].

The following formulas for {f, g} may be deduced from (3).

Lemma 3.1. The Lagrange bracket is given by

{f, g} = Xf (g)− g∂z(f) = f∂z(g)−Xg(f)

= f∂z(g)− ∂z(f)g +Bi(f)Ai(g)−Ai(f)Bi(g)

=
(

1− 1
2Exy

)

(f)∂z(g)−
(

1− 1
2Exy

)

(g)∂z(f) +
(

∂xi
(f)∂yi

(g)− ∂yi
(f)∂xi

(g)
)

.

3.2. Tensor density modules. Recall from Section 2 the tensor density module Fλ(R
m) of

Vect(Rm). As a vector space, Fλ(R
m) is nothing but C∞(Rm). However, the action of Vect(Rm)

depends on λ and is given by

Lλ(X)(g) := X(g) + λDiv(X) g,

where g ∈ C∞(Rm) and λ ∈ R. Since the volume form ω is global, we may regard Fλ(R
m) as

ωλC∞(Rm), so that the action of Vect(Rm) is identified with the usual Lie derivative:

L(X)(ωλg) = ωλ Lλ(X)(g).

We remark that the full family
{

Fλ(R
m) : λ ∈ C

}

of Vect(Rm)-modules can be understood
algebraically as a non-trivial deformation of the module C∞(Rm).

We will consider Fλ(R
m) as a module over the subalgebra of contact vector fields K(Rm). In light

of (1) and the global contact form θ, we may regard Fλ(R
m) in this context as either ωλC∞(Rm)

or θλ(ℓ+1)C∞(Rm). In particular, (4) gives

L(Xf )(θ
λ(ℓ+1)g) = θλ(ℓ+1)Lλ(Xf )(g) = θλ(ℓ+1)

(

Xf (g) + λ(ℓ + 1)∂z(f)g
)

.

As mentioned in Section 2, the adjoint action of K(Rm) on itself is equivalent to the module of
− 1

ℓ+1 -densities. The following definition and lemma state this formally.

Definition. Henceforth we regard X as the map

X : F− 1
ℓ+1

(Rm) → K(Rm), X(θ−1f) := Xf .

Lemma 3.2. The map X is a linear bijection and a K(Rm)-equivalence.

Proof. By Lemma 3.1, {f, g} = L− 1
ℓ+1

(Xf )(g). Therefore X intertwines the K(Rm)-action on

F− 1
ℓ+1

(Rm) and the adjoint action. �
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3.3. Differential operator modules. We now turn to the focus of the paper, the modules
Dλ,µ(R

m) of differential operators from Fλ(R
m) to Fµ(R

m). We can write the action Lλ,µ of
Vect(Rm) on these modules concretely as follows:

Lλ,µ(X)(T ) := Lµ(X) ◦ T − T ◦ Lλ(X).

The structure of the spaces Dλ,µ(R
m) viewed as Vect(Rm)-modules has been thoroughly studied;

see for example [LMT96, DO97, GMO05, Co09] and the references therein. We will be interested
in these spaces viewed as K(Rm)-modules, as which they are less rigid, because K(Rm) is smaller
than Vect(Rm). In particular, the Dλ,µ(R

m) admit more K(Rm)-invariant operations than they
do Vect(Rm)-invariant operations, such as projections to tensor fields. We will understand such
operations as differential invariants.

3.4. Symbol modules. In Section 2 we defined the principal symbol modules Sk
δ (R

m) and the

fine symbol modules Σk,d
δ (Rm), k ≤ d ≤ 2k. We will write Sδ(R

m) and Σδ(R
m) for the total symbol

module and the total fine symbol module, respectively; the graded modules associated to the order
filtration and the bifiltration of Dλ,µ(R

m):

Sδ(R
m) :=

∞
⊕

k=0

Sk
δ (R

m), Σδ(R
m) :=

∞
⊕

k=0

2k
⊕

d=k

Σk,d
δ (Rm).

Let LS
δ be the natural action of Vect(Rm) on Sδ(R

m), and let LΣ
δ be the natural action of K(Rm)

on Σδ(R
m). Our next proposition gives formulas for LS

δ (Xf ) and LΣ
δ (Xf ). In order to state it we

must develop a variation of the usual symbol calculus which is adapted to the fine filtration. Let
αi, βi, and ζ be the symbols associated to the vector fields Ai, Bi, and ∂z. More explicitly,

(5) αi = ξxi
+ 1

2 yiξz , βi = −ξyi
+ 1

2 xiξz, ζ = ξz ,

where ξx1
, ξy1

, . . . , ξxℓ
, ξyℓ

, ξz are the coordinates on T ∗Rm dual to x1, y1, . . . , xℓ, yℓ, z.
We shall abuse notation and use αi and βi also to denote fine symbols. Thus

(6)
Sk
δ (R

m) = SpanC∞(Rm)

{

ζcαIβJ : |I|+ |J |+ c = k
}

,

Σk,d
δ (Rm) = SpanC∞(Rm)

{

ζd−kαIβJ : |I|+ |J | = 2k − d
}

,

where I and J are multi-indices: I = (I1, . . . , Iℓ) and J = (J1, . . . , Jℓ). Note that in local coordi-
nates we do not write the shift ωδ in the tensor density degree explicitly.

Any differential operator from one symbol module to another, or from one fine symbol module
to another, may be written as a linear combination over C∞(Rm) of products of the operators

Ai, Bi, ∂z , αi, βi, ζ, ∂αi
, ∂βi

, ∂ζ .

Such a combination is to be interpreted as follows. The operators Ai, Bi, and ∂z act solely on the
C∞(Rm) coefficients of the basis elements in (6), while the remaining operators act solely on the
basis elements themselves.

Imitating the definitions of Ez and Exy, we set

Eζ := ζ∂ζ , Eαβ := αi∂αi
+ βi∂βi

.

Proposition 3.3. (i) The action LΣ
δ of K(Rm) on Σδ(R

m) is

LΣ
δ (Xf ) = f∂z + Bi(f)Ai − Ai(f)Bi + ∂z(f)

(

δ(ℓ + 1)− Eζ − 1
2Eαβ

)

+ 1
2 (AiBi +BiAi)(f)(βi∂βj

− αi∂αj
) + AiAj(f)βi∂αj

− BiBj(f)αi∂βj
.

(ii) The action LΣ
δ of K(Rm) on Sδ(R

m) is

LS
δ (Xf ) = LΣ

δ (Xf ) +
(

∂zAi(f)βi − ∂zBi(f)αi

)

∂ζ .



10 CHARLES H. CONLEY AND VALENTIN OVSIENKO

Proof. Taking in to account the shift ωδ in tensor density degree, LS and LΣ are derivations in an
obvious sense. Therefore it is only necessary to check the formulas on the generators αi, βi, and
ζ and on functions g. Keep in mind that Ai and Bi do not commute, although αi and βi, being
symbols, do. �

The difference between LS
δ and LΣ

δ is due to the fact that Σδ(R
m) is the graded module of

Sδ(R
m). Observe that LS

δ − LΣ
δ maps Σk,d

δ (Rm) to Σk,d−1
δ (Rm).

Henceforth we will frequently drop the argument Rm of the various tensor density, differential

operator, and symbol modules, writing simply Fλ, Dλ,µ, Sk
δ , Σ

k,d
δ , and so on.

4. The projective subalgebra

Here we recall the projective subalgebra sm ofK(Rm), which is isomorphic to sp2(ℓ+1). Restriction
of K(Rm)-modules to sm will be central to our strategy throughout this paper, for two reasons.
First, sm is a maximal polynomial subalgebra of K(Rm), and it turns out that for most values of
their parameters, the tensor density modules and the fine symbol modules are not only algebraically
irreducible under K(Rm), they remain so under restriction to sm. (By “algebraically irreducible”,
we mean irreducible in the polynomial category.) Second, sm is a finite dimensional semisimple Lie
algebra, and so we can bring the representation theory of such algebras to bear on the restricted
modules.

In fact, the restrictions to sm of the tensor density modules and fine symbol modules are duals
of sp2ℓ-relative Verma modules. Our approach to the construction of the projective quantization
referred to in the introduction will be to observe that for generic δ, the fine symbol modules
composing Dλ,µ have distinct infinitesimal characters under the action of sm. This implies that
there is a unique sm-equivariant splitting of Dλ,µ into the sum of its fine symbol modules. This
splitting may be regarded as a projectively invariant total symbol. The projective quantization is,
by definition, its inverse.

In addition to the projective subalgebra sm, two other subalgebras of K(Rm) will be important
to us: the affine subalgebra tm and its nilradical um.

4.1. The projective subalgebra of the full vector field Lie algebra. We first recall the
definitions of the analogous subalgebras of the full vector field Lie algebra. Let u1, . . . , um be any
coordinates on R

m. The full Euler operator is

Eu :=

m
∑

i=1

ui∂ui
.

Within Vect(Rm) we have the projective subalgebra am, the affine subalgebra bm, and the constant
coefficient subalgebra cm:

am := SpanC
{

∂ui
, uj∂ui

, ujEu : 1 ≤ i, j ≤ m
}

,

bm := SpanC
{

∂ui
, uj∂ui

: 1 ≤ i, j ≤ m
}

,

cm := SpanC
{

∂ui
: 1 ≤ i ≤ m

}

.

Clearly am ⊃ bm ⊃ cm. In fact, am is isomorphic to slm+1, and bm is a maximal parabolic
subalgebra of am with Levi factor glm and nilradical cm. The center of the Levi factor is CEu.

There is a standard conceptual proof of am ∼= slm+1 which we briefly sketch. Let u0, . . . , um be
coordinates on Rm+1, and note that SpanC{uj∂ui

: 0 ≤ i, j ≤ m} is a subalgebra of Vect(Rm+1)
isomorphic to glm+1. Restricting the action of Vect(Rm+1) to functions on Pm defines the canonical
projection from this copy of glm+1 to slm+1. Regarding Pm locally as the hyperplane defined by
u0 = 1 and identifying this hyperplane with R

m yields the isomorphism.
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4.2. The projective subalgebra of the contact Lie algebra. We now define the projective
and affine subalgebras of K(Rm): they are simply the intersections of the projective and affine
subalgebras of Vect(Rm) with K(Rm).

Definition. The projective subalgebra sm and the affine subalgebra tm of K(Rm) are

sm := am ∩ K(Rm), tm := bm ∩ K(Rm).

We define also the following subspaces of K(Rm):

um := SpanC
{

X1, Xxi
, Xyi

: 1 ≤ i ≤ ℓ
}

,

lsm := SpanC
{

Xxiyj
, Xxixj

, Xyiyj
: 1 ≤ i, j ≤ ℓ

}

,

lm := lsm ⊕ CXz.

Observe that Xz = Ez + 1
2Exy. This is the natural Euler operator in K(Rm). The space lm is

the 0-weight space of its adjoint action, and um is the sum of its − 1
2 -eigenspace SpanC{Xxi

, Xyi
:

1 ≤ i ≤ ℓ} and its −1-eigenspace CX1.
Next we give explicit descriptions of sm and tm and prove that sm is symplectic. We also show

that um, lsm, and lm are subalgebras of tm, and that um is the contact-analog of the constant
coefficient algebra cm.

Lemma 4.1. (i) The space lsm is a subalgebra of sm isomorphic to sp2ℓ.
(ii) The space lm is a Levi subalgebra of sm, with semisimple part lsm and center CXz.
(iii) The space um is a Heisenberg Lie algebra with center CX1.
(iv) The affine subalgebra tm is the semidirect sum lm ⊕s um. It is a maximal parabolic subal-

gebra of sm with nilradical um.
(v) The projective subalgebra sm is isomorphic to sp2(ℓ+1), and

sm = X
(

θ−1
{

Polynomials of degree ≤ 2 on Rm
})

.

Proof. Most of this can be left to the reader. To prove (i), use (3) to obtain

Xxiyj
= yj∂yi

− xi∂xj
, Xxixj

= xi∂yj
+ xj∂yi

, Xyiyj
= −yi∂xj

− yj∂xi
.

Then note that the natural action of lsm on SpanC{xi, yi : 1 ≤ i ≤ ℓ} preserves the skew-symmetric
form defined by 〈xi, xj〉 = 0, 〈yi, yj〉 = 0, and 〈xi, yj〉 = δij . (Alternately, observe that the Lagrange
bracket defines a non-degenerate lm-invariant skew-symmetric form on the − 1

2 -eigenspace of Xz.)
Parts (ii), (iii), and (iv) now follow by computation.

For a direct proof of the displayed equation in (v), first check that Exy = xiAi − yiBi. Then
verify that the vector fields

Ai, Bi, xjAi − yiBj , xjBi − xiBj , yjAi − yiAj , zAi +
1
2yiExy, zBi +

1
2xiExy,

1 ≤ i, j ≤ ℓ, span a (2ℓ+ 3)ℓ-dimensional subspace of am ∩ Tan(Rm).
Next, use Lemma 3.2 to verify that the right side of the display in (v) is a (2ℓ + 3)(ℓ + 1)-

dimensional subspace of am ∩ K(Rm). Since am is (2ℓ+ 3)(2ℓ+ 1)-dimensional, (v) is proven.
The fact that sm is a copy of sp2(ℓ+1) can now be proven using (ii) and an adaptation of the

above argument proving that am is a copy of slm+1. �

Let us establish some notation for later use: we will write C2ℓ for the basic module of lsm
∼=

sp2ℓ, and Symr
C2ℓ for its rth symmetric power. It is well-known that Symr

C2ℓ is self-dual and
irreducible for all r.

The following lemma defines a Cartan subalgebra hm of sm and gives the associated root system
and Weyl group. Its proof may be found in any text on Lie theory; see e.g., [Va84].
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Lemma 4.2. (i) The set {2Xz, Xx1y1
, . . . , Xxℓyℓ

} is a basis of a Cartan subalgebra hm of
sm. Under the Cartan-Killing form this basis is orthogonal and all of its elements are of
length 2

√
ℓ+ 2. Let {e0, e1, . . . , eℓ} be the dual basis of h∗m.

(ii) The adjoint action of hm on the polynomial contact vector fields is semisimple: X(xIyJzc)
is of hm-weight (2c+ |I|+ |J | − 2)e0 − (Ii − Ji)ei.

(iii) The roots of sm are all of the non-zero ±ei ± ej. The Weyl group W (sm) is Sℓ+1 ⋉Z
ℓ+1
2 ,

acting in the usual way on the basis {e0, . . . , eℓ}.
(iv) The order 0 < eℓ < · · · < e0 gives the following simple root system Π+(sm) and positive

root system ∆+(sm) of sm:

Π+(sm) :=
{

ei−1 − ei, 2eℓ
}ℓ

i=1
, ∆+(sm) :=

{

ei − ej}i<j ∪ {ei + ej
}

i,j
.

The half-sum of the positive roots is ρ(sm) =
∑ℓ

0(ℓ + 1 − i)ei. The dominant weights are

those
∑ℓ

0 γiei with 0 ≤ γℓ ≤ · · · ≤ γ0. The negative root vectors are X1, Xxi
, Xyi

, Xxixj
,

and those Xxiyj
with i < j.

(v) The algebra hm is also a Cartan subalgebra of the Levi subalgebra lm of sm. The roots of
lm are the non-zero ±ei ± ej with i, j > 0. It inherits the simple root system

Π+(lm) =
{

ei−1 − ei, 2eℓ
}ℓ

i=2
.

(vi) The subalgebra hsm := Span{Xx1y1
, . . . , Xxℓyℓ

} of hm is a Cartan subalgebra of lsm. The
roots of lsm are the same as those of lm.

4.3. The sm-structure of the symbol modules. In this subsection we analyze the action of
sm on the principal and fine symbol modules. Our first lemma gives the restriction to sm of the
actions LS

δ and LΣ
δ on Sδ and Σδ. It is a corollary of Proposition 3.3. In order to state it concisely,

we define the total weight operator W to act on both Sδ and Σδ by

W |Sδ
= W |Σδ

:= (Ez + 1
2Exy)− (Eζ + 1

2Eαβ) + δ(ℓ+ 1).

Lemma 4.3. (i) The restrictions of LS
δ and LΣ

δ to the affine subalgebra tm coincide.
(ii) Their restriction to the nilradical um of tm is the identity map Xf 7→ Xf :

X1 7→ ∂z, Xxi
7→ xi∂z −Bi, Xyi

7→ yi∂z −Ai.

(iii) Their restriction to the Levi factor lm of tm is given by

Xz 7→ W,

Xxiyj
7→ xiyj∂z − (xiAj + yjBi) + (αj∂αi

− βi∂βj
),

Xxixj
7→ xixj∂z − (xiBj + xjBi) + (βi∂αj

+ βj∂αi
),

Xyiyj
7→ yiyj∂z − (yiAj + yjAi)− (αi∂βj

+ αj∂βi
).

(iv) The action of the rest of sm under LΣ
δ is given by

LΣ
δ (Xxiz) = xiW − zBi − 1

2 (xrαr − yrβr)∂αi
+ 1

2βi(xs∂βs
+ ys∂αs

),

LΣ
δ (Xyiz) = yiW − zAi +

1
2 (xrαr − yrβr)∂βi

+ 1
2αi(xs∂βs

+ ys∂αs
),

LΣ
δ (Xz2) = 2zW − z2∂z − 1

2 (xrαr − yrβr)(xs∂βs
+ ys∂αs

).
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(v) The action of the rest of sm under LS
δ is given by

LS
δ (Xxiz) = LΣ

δ (Xxiz) + βi∂ζ ,

LS
δ (Xyiz) = LΣ

δ (Xyiz) + αi∂ζ ,

LS
δ (Xz2) = LΣ

δ (Xz2)− (xrαr − yrβr)∂ζ .

Note that the operators xrαr − yrβr and xs∂βs
+ ys∂αs

occurring in (iv) are lsm-invariants of
total weights 0 and 1, respectively.

We now define a space which will regularly play an important role in our arguments:

(Σk,d
δ )um :=

{

P ∈ Σk,d
δ : LΣ

δ (um)P = 0
}

,

the subspace of Σk,d
δ invariant under the Heisenberg algebra um. Since tm normalizes um, (Σk,d

δ )um

is a tm-module on which um acts trivially.

Lemma 4.4. (i) (Σk,d
δ )um = SpanC{ζd−kαIβJ : |I|+ |J | = 2k − d}.

(ii) Under W , (Σk,d
δ )um has total weight δ(ℓ+ 1)− 1

2d.

(iii) Under lsm
∼= sp2ℓ, (Σ

k,d
δ )um is equivalent to Sym2k−d

C2ℓ.

Proof. Part (i) is clear from the action of um given in Lemma 4.3. Part (ii) is straightforward,
and Part (iii) follows from the fact that as a module of lsm, SpanC{αi, βi}i is equivalent to the
irreducible module C2ℓ of sp2ℓ. �

Thus the um-invariant fine symbols are precisely the constant fine symbols. In addition to the
spaces of constant symbols, we will encounter the spaces of polynomial fine symbols, which are
modules of the Lie algebra of the polynomial contact vector fields. Under the action of sm, these
modules turn out to be the restricted duals of lm-relative Verma modules.

To make this precise, let us write Poly(Rm) for the polynomials in C∞(Rm). We will denote
the polynomial subspaces of K(Rm), Fλ(R

m), Dλ,µ(R
m), Sδ(R

m), and Σδ(R
m) by writing Rm

poly

in place of Rm. Thus for example K(Rm
poly) is the classical Cartan algebra Km discussed in the

introduction, and

Σk,d
δ (Rm

poly) := SpanPoly(Rm)

{

ζd−kαIβJ : |I|+ |J | = 2k − d
}

.

Note that Km is a dense subalgebra of K(Rm) containing sm, and all of the above polynomial
subspaces are dense Km-submodules of their smooth counterparts.

We will need the fact that smooth globally defined eigenfunctions of Euler operators are poly-
nomials.

Lemma 4.5. (i) Let f ∈ C∞(Rm) be an eigenfunction of the full Euler operator Eu =
∑m

i=1 ui∂i with eigenvalue λ. Then λ ∈ N and f is a homogeneous polynomial in u of
degree λ.

(ii) Let f ∈ C∞(Rm) be an eigenfunction of the contact Euler operator Ez + 1
2Exy with eigen-

value λ. Then λ ∈ 1
2N and f is a homogeneous polynomial in (x, y, z) of degree λ, in the

sense that xi and yi have degree 1
2 and z has degree 1.

Proof. The first statement is classical, and the second follows from the first by the change of
coordinates (x, y, z) 7→ (x, y, z2). �

Recall from Lemma 4.2 the Cartan subalgebra hm of sm. Given any hm-module V and any
ν ∈ h∗m, we use the standard notation Vν for the ν-weight space of V . By the restricted dual of V ,
we mean the direct sum of the duals of its weight spaces. A lowest weight vector in an sm-module
is a weight vector annihilated by the negative root vectors; see Lemma 4.2(iv). Recall also that
total weights are eigenvalues of the operator W .
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Lemma 4.6. (i) Σk,d
δ (Rm

poly) is the span of those elements of Σk,d
δ with well-defined total

weight.

(ii) (Σk,d
δ )um is the lowest total weight space of Σk,d

δ (Rm
poly).

(iii) Σk,d
δ (Rm

poly) has lowest hm-weight

νk,dδ =
[

2δ(ℓ+ 1)− d
]

e0 −
[

2k − d
]

e1.

Its lowest hm-weight space is the line spanned by ζd−kβ2k−d
1 .

Proof. Lemma 4.5 implies (i), and (ii) is due to the fact that polynomials have non-negative total
weights. For (iii), recall from Lemma 4.2 the basis {e0, . . . , eℓ} of the weight space h∗m and its
order 0 < eℓ < · · · < e0. The lowest hm-weight space is contained in the lowest total weight space

(Σk,d
δ )um . Since the hm-weights of ζ, αi, and βi are, respectively, −2e0, −e0 + ei, and −e0 − ei,

(iii) follows from Lemma 4.4. �

We now recall the basic notions of Verma modules. Let us denote by u+m and t+m the subalgebras
of sm opposite to um and tm, respectively:

u+m = SpanC
{

Xxiz , Xyiz, Xz2 : 1 ≤ i ≤ ℓ
}

, t+m = lm ⊕s u
+
m.

Given an irreducible module V of lm, the associated relative Verma module of sm is U(sm)⊗
t
+
m
V ,

where u+m acts trivially on V .

Lemma 4.7. As an sm-module, Σk,d
δ (Rm

poly) is equivalent to the restricted dual of the relative

Verma module U(sm)⊗
t
+
m
Sym2k−d

C2ℓ.

Proof. By Lemmas 4.3 and 4.4, any non-zero tm-invariant subspace of Σk,d
δ (Rm

poly) contains

(Σk,d
δ )um . Taking duals, we see that the dual of (Σk,d

δ )um generates the restricted dual Σk,d
δ (Rm

poly)
∗

under the action of tm. It follows that Σk,d
δ (Rm

poly)
∗ is a quotient of U(sm) ⊗

t
+
m

(

(Σk,d
δ )um

)∗
. The

reader may easily check that the two have the same total weight space dimensions, so they are
equivalent. The result now follows from Lemma 4.4(iii) and the fact that C2ℓ is self-dual. �

4.4. The sm-structure of Km. As a particular case of the sm-module structures of spaces of fine
symbols, we investigate the sm-structure of the algebra Km itself, which is by definition Σ1,2

0 .

Proposition 4.8. The quotient Km/sm is irreducible under sm. Its lowest weight vector is Xx3
1
,

which has weight e0 − 3e1.

Proof. The reader may use Lemma 4.3 to check that the lowest weight vectors of Km/sm under lm
are precisely all the elements of the form Xxi

1
zc with i + c ≥ 3. The same lemma shows that it is

possible to move from any one of these lowest weight vectors to any other using the elements X1,
Xx1

, Xx1z, and Xz2 of sm. The weight of Xx3
1
is given by Lemma 4.2(ii). �

It will be important to understand the space of um-invariants in Km/sm. The following result
is immediate from Proposition 4.8.

Corollary 4.9. (i) (Km/sm)um = Span{XxIyJ : |I|+ |J | = 3}.
(ii) (Km/sm)um has total weight 1

2 .

(iii) (Km/sm)um is equivalent to Sym3
C2ℓ under the action of lsm.
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4.5. Infinitesimal characters. We now turn to the infinitesimal characters of the fine symbol
modules. A module of a complex semisimple Lie algebra g is said to have an infinitesimal character
if the center Z(g) of the universal enveloping algebra U(g) acts on it by scalars. In this case, the
infinitesimal character is the resulting homomorphism from Z(g) to C. By Schur’s lemma, all
irreducible modules have infinitesimal characters.

Suppose that a Cartan subalgebra and a positive root system of g are fixed. Let ρ be the half-
sum of the positive roots. If V and V ′ are two lowest weight modules of g with lowest weights ν
and ν′, respectively, and both modules have infinitesimal characters, then it is a consequence of
the Harish-Chandra homomorphism that their infinitesimal characters are the same if and only if
ν − ρ and ν′ − ρ lie in the same orbit of the Weyl group of g.

Proposition 4.10. Under the action of sm, the fine symbol modules have infinitesimal characters.

Fix two fine symbol modules Σk,d
δ and Σk′,d′

δ such that either k′ < k, or k′ = k and d′ < d. They
have the same infinitesimal characters if and only if at least one of the following four conditions
holds:

(i) k′ = k, d′ = 2δ(ℓ+ 1)− 1 + 2k − d.

(ii) k′ = 2(δ − 1)(ℓ+ 1) + 1− k, d′ = 2(δ − 1)(ℓ+ 1) + 1− 2k + d.

(iii) k′ = (2δ − 1)(ℓ+ 1) + k − d, d′ = 2(2δ − 1)(ℓ+ 1)− d.

(iv) k′ = d− k − ℓ, d′ = 2(δ − 1)(ℓ+ 1) + 1− 2k + d.

Cases (i), (ii), (iii), and (iv) cannot occur unless 2δ(ℓ+ 1) is in

2 + N, 2(ℓ+ 1) + N, ℓ+ 2 + N, 2ℓ+ 1 + N,

respectively. Moreover, if ℓ = 0, then Case (iv) cannot occur unless 2δ ∈ 2 + N. Therefore if δ is
not contact-resonant (see Section 2.1), then all of the fine symbol modules of Dλ,µ have distinct
infinitesimal characters.

Proof. It is well-known that Verma modules have infinitesimal characters, and so their restricted

duals do also. Therefore by Lemma 4.7, Z(sm) acts by scalars on Σk,d
δ (Rm

poly). By a density

argument, it acts by the same scalars on Σk,d
δ (Rm). Thus the fine symbol modules have infinitesimal

characters.
Recall from Lemma 4.6 the lowest weight νk,dδ of Σk,d

δ (Rm
poly), and from Lemma 4.2 the half-sum

ρ(sm) of the positive roots:

ρ(sm) =

ℓ
∑

i=0

(ℓ+ 1− i)ei.

Recall also that the Weyl group W (sm) = Sℓ+1 ⋉ Z
ℓ+1
2 acts by permutations and sign changes on

the ei.
As stated above, the Harish-Chandra homomorphism shows that the infinitesimal characters of

Σk,d
δ and Σk′,d′

δ are the same if and only if there is an element w of W (sm) such that

w
(

νk,dδ − ρ(sm)
)

= νk
′,d′

δ − ρ(sm).

By Lemma 4.6, such a w exists if and only if the two sets
{

|(2δ − 1)(ℓ+ 1)− d|, ℓ+ 2k − d, ℓ− 1, ℓ− 2, . . . , 2, 1
}

,

{

|(2δ − 1)(ℓ+ 1)− d′|, ℓ+ 2k′ − d′, ℓ− 1, ℓ− 2, . . . , 2, 1
}

are equal. Since ℓ+ 2k − d > ℓ− 1 > · · · > 1 > 0, this can occur only in the following ways.
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First, |(2δ − 1)(ℓ + 1)− d| and |(2δ − 1)(ℓ + 1)− d′)| can be equal. In this case ℓ+ 2k − d and
ℓ + 2k′ − d′ must also be equal. Since we are assuming that (k, d) and (k′, d′) are distinct, this
leads to Case (iii).

Second, we could have

|(2δ − 1)(ℓ+ 1)− d| = ℓ+ 2k′ − d′, |(2δ − 1)(ℓ+ 1)− d′| = ℓ+ 2k − d.

This can occur in three ways, depending on the signs of the arguments of the absolute values. If
both are negative we arrive at Case (i), if both are positive we are in Case (ii), and if they are
different we obtain Case (iv).

Finally, if |(2δ − 1)(ℓ + 1) − d| is equal to one of ℓ − 1, . . . , 1, say i, then again ℓ + 2k − d and
ℓ + 2k′ − d′ must be equal and |(2δ − 1)(ℓ + 1)− d| must also be i. Therefore here we are still in
Case (iii), albeit with a different w. �

5. Projective quantization

Recall from Section 3.4 the total symbol modules Sδ and the total fine symbol modules Σδ. In
this section we study quantizations of Σδ invariant under the projective subalgebra sm of K(Rm).
We begin in Section 5.1 with a review of quantizations of Sδ invariant under the projective subal-
gebra am of Vect(Rm), as these quantizations are a component of the fine projective quantizations.

5.1. Projective quantization of symbols. A quantization of Sδ is defined to be a linear bijec-
tion Q from Sδ to Dλ,µ which preserves degree and is the identity on symbols. By this we mean
that it carries Sk

δ into Dk
λ,µ, and its restriction to Sk

δ is a right-inverse of the principal symbol map

σk
λ,µ:

σk
λ,µ ◦Q|Sk

δ
: Sk

δ → Sk
δ is the identity map.

Suppose that g is any Lie subalgebra of Vect(Rm). A quantization is said to be a g-equivariant
quantization (or simply a g-quantization) if it intertwines the two g-actions LS

δ |g and Lλ,µ|g.
The more vector fields a quantization is invariant with respect to, the more useful it is. Recall

from Section 4.1 the projective subalgebra am and the affine subalgebra bm of Vect(Rm). At one
extreme, one might ask for a Vect(Rm)-quantization of Sδ. However, there is no such map: Sδ

and Dλ,µ are not Vect(Rm)-equivalent for any (λ, µ). At the opposite extreme, bm-quantizations
are easy to find, not unique, and not very useful. The critical intermediate case is afforded by am,
because it is a simple finite dimensional maximal subalgebra of Vect(Rm).

Definition. We say that δ is projectively resonant if it lies in the set
{

1 +
n

m+ 1

∣

∣

∣
n ∈ N

}

.

The following theorem was proven in [CMZ97] for m = 1, in [LO99] for arbitrary m at p = 0,
and in general in [Le00].

Theorem 5.1. For δ not projectively resonant, there exists a unique am-quantization

Qam

λ,µ : Sδ → Dλ,µ.

Theorem 5.1 may be proven using only the eigenvalues of the Casimir operator; the full infini-
tesimal characters are not needed. This is the approach taken in [Le00]. The explicit formula for
the projective quantization Qam

λ,µ was given in [CMZ97] for m = 1, in [LO99] for arbitrary m at

p = 0, and in general in [DO01]; see Section 7.2 below.



CONTACT MANIFOLDS 17

5.2. Projective quantization of fine symbols. By analogy with quantizations of Sδ, we define
a quantization of Σδ, sometimes called a fine quantization, to be a linear bijection Q from Σδ to

Dλ,µ, carrying Σk,d
δ into Dk,d

λ,µ, which is the identity on fine symbols in the sense that its restriction

to Σk,d
δ is a right-inverse for the fine symbol map fσk,d

λ,µ:

fσk,d
λ,µ ◦Q|Σk,d

δ

: Σk,d
δ → Σk,d

δ is the identity map.

For any Lie subalgebra g of K(Rm), we say that a fine quantization is a fine g-equivariant quanti-
zation if it intertwines LΣ

δ |g and Lλ,µ|g.
The picture for quantizations of Σδ is similar to that for quantizations of Sδ: there is no fine

K(Rm)-quantization, there are many fine tm-quantizations, and for most δ there is a unique fine
sm-quantization. The following theorem makes this precise. It may be proven by combining the
results of [DO01] and [FMP08]. We understand it as a corollary of Proposition 4.10. As remarked
before that proposition, it cannot be proven using the Casimir operator of sm alone; the full
infinitesimal characters of the fine symbol modules are required.

Theorem 5.2. For δ not contact-resonant (see Section 2.1), there exists a unique fine sm-
quantization

Qsm
λ,µ : Σδ → Dλ,µ.

Proof. Write χk,d
δ for the sm-infinitesimal character of Σk,d

δ , and (Dλ,µ)χk,d

δ

for the subspace of

Dλ,µ on which the center Z(sm) of U(sm) acts by χk,d
δ . The χk,d

δ are distinct by Proposition 4.10,
so we have the sm-decomposition

Dλ,µ =
⊕

k,d

(Dλ,µ)χk,d

δ

.

The fine symbol map fσk,d
λ,µ restricts to the unique fine symbol-preserving sm-equivalence from

(Dλ,µ)χk,d

δ

to Σk,d
δ . The fine sm-quantization Qsm

λ,µ is the direct sum of the inverses of these restric-

tions. �

The explicit formula for Qsm
λ,µ will be given in Section 7.3.

6. Lowest weight calculations

In this section we prove Theorem A and Theorem C. The proofs rely on lowest weight calculations
in modules of homomorphisms between the fine symbol spaces.

6.1. The structure of Homum
(Σk,d

δ ,Σk′,d′

δ ). We begin with a description of the total weight

spaces of Homum
(Σk,d

δ ,Σk′,d′

δ ) which will be needed in both proofs. Recall that for ν ∈ h∗m, Vν

denotes the ν-weight space of any hm-module V . We will also use the following notation: for

w ∈ C, V(w) denotes the w-total weight space of V . Note that if ν =
∑ℓ

0 νiei, then Vν ⊆ V(
ν0
2
).

We will abbreviate C[∂z, A1, B1 . . . , Aℓ, Bℓ] by C[∂z , A,B].

Lemma 6.1. (i) The total weight space Endum

(

C∞(Rm)
)

(w)
is zero unless w ∈ − 1

2N, when

it is C[∂z, A,B](w).

(ii) The total weight space Homum
(Σk,d

δ ,Σk′,d′

δ )(w) is zero unless w ∈ 1
2 (d − d′)− 1

2N, when it
is

SpanC
{

ζd
′−k′

αI′

βJ′

∂d−k
ζ ∂I

α ∂J
β : |I|+ |J | = 2k − d, |I ′|+ |J ′| = 2k′ − d′

}

⊗ C[∂z, A,B](w− 1
2
(d−d′)).
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Proof. Let T : C∞(Rm) → C∞(Rm) be of total weight w. Use Lemma 4.5 to see that T maps
polynomials to polynomials, and verify that End

(

Poly(Rm)
)

is C[x, y, z] [[∂z, A,B]]. Hence

End
(

Poly(Rm)
)

(w)
= C[x, y, z] [∂z, A,B](w).

Since ∂z, A, and B commute with um, the um-equivariant maps in this space are precisely those
independent of x, y, and z. This proves (i).

Under um, Σk,d
δ is equivalent to (Σk,d

δ )um ⊗ C∞(Rm), so Homum

(

Σk,d
δ ,Σk′,d′

δ

)

is

HomC

(

(Σk,d
δ )um , (Σk′,d′

δ )um
)

⊗ Endum

(

C∞(Rm)
)

.

Thus (ii) follows from (i) and the fact that HomC

(

(Σk,d
δ )um , (Σk′,d′

δ )um
)

is

SpanC
{

ζd
′−k′

αI′

βJ′

∂d−k
ζ ∂I

α ∂J
β : |I|+ |J | = 2k − d, |I ′|+ |J ′| = 2k′ − d′

}

. �

We will also need the structure of Homum

(

Σk,d
δ ,Σk′,d′

δ

)

(w)
as a module of the subalgebra lsm,

which recall is isomorphic to sp2ℓ.

Lemma 6.2. Suppose that w is in 1
2 (d− d′)− 1

2N. Then under the action of lsm,

Homum

(

Σk,d
δ ,Σk′,d′

δ

)

(w)
∼= Sym2k−d

C
2ℓ ⊗ Sym2k′−d′

C
2ℓ ⊗

(

⊕

r≥0

Symd−d′−2r−2w
C

2ℓ

)

,

where the direct sum is only over non-negative exponents.

Proof. Consider the explicit basis of Homum

(

Σk,d
δ ,Σk′,d′

δ

)

(w)
given in Lemma 6.1(ii). We have the

following lsm-equivalences:

SpanC
{

αI′

βJ′

: |I ′|+ |J ′| = 2k′ − d′
} ∼= Sym2k′−d′

C
2ℓ,

SpanC
{

∂I
α ∂J

β : |I|+ |J | = 2k − d
} ∼= Sym2k−d

C2ℓ,

and for v ∈ − 1
2N, C[∂z, A,B](v) ∼=

⊕

r≥0 Sym
−2v−2r

C2ℓ. Since ζ, ∂ζ , and ∂z are lsm-invariant, the
result follows. �

6.2. Proof of Theorem A. Assume temporarily that M is R
m, equipped with the standard

contact structure. Since δ is not contact-resonant, Theorem 5.2 shows that there is a unique

sm-equivariant map from Dk
λ,µ to Σ

k−1, 2(k−1)
δ , namely

(7) sσk
λ,µ := πk−1, 2(k−1) ◦ (Qsm

λ,µ)
−1,

where πj,d denotes the canonical projection from Σδ to Σj,d
δ . Our task is to prove that this map is

in fact K(Rm)-equivariant.
We use the projective quantization to pull the action Lλ,µ of K(Rm) on Dλ,µ back to an action

Lλ,µ of K(Rm) on Σδ:

Lλ,µ(Xf ) := (Qsm
λ,µ)

−1 ◦ Lλ,µ(Xf ) ◦Qsm
λ,µ.

The statement that sσk
λ,µ is K(Rm)-equivariant is equivalent to the statement that

πk−1, 2(k−1) :
⊕

0≤j≤k

⊕

j≤d≤2j

Σj,d
δ → Σ

k−1, 2(k−1)
δ

intertwines the K(Rm)-actions Lλ,µ and LΣ
δ .

We may regard Lλ,µ as a block matrix with entries

L(j,d),(j′,d′)
λ,µ (Xf ) : Σ

j,d
δ → Σj′,d′

δ .
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This matrix is triangular with respect to the dictionary order on (j, d), and the diagonal entries

are simply the usual actions on fine symbols: L(j,d),(j,d)
λ,µ is LΣ

δ restricted to Σj,d
δ . As a result of the

sm-equivariance of Qsm
λ,µ, the off-diagonal entries L(j,d),(j′,d′)

λ,µ are sm-relative 1-cochains of K(Rm):

they vanish on sm and are sm-equivariant maps from K(Rm)/sm to Hom(Σj,d
δ ,Σj′,d′

δ ).

One finds that πk−1, 2(k−1) ◦ Lλ,µ restricted to
⊕

0≤j≤k

⊕

j≤d≤2j Σ
j,d
δ is

LΣ
δ ◦ πk−1, 2(k−1) +

2k
∑

d=k

L(k,d),(k−1, 2(k−1))
λ,µ ◦ πk,d.

Therefore it suffices to prove that entries L(k,d),(k−1, 2(k−1))
λ,µ are zero for all d. The following lemma

is the key to the situation.

Lemma 6.3. Let V be a module of K(Rm) such that the space V um

( 1
2
)
of um-invariants in V of total

weight 1
2 contains no copies of Sym3

C2ℓ under the action of lsm. Then the space C1
(

K(Rm), sm;V
)

of sm-relative 1-cochains of K(Rm) with values in V is zero.

Proof. Apply Corollary 4.9. �

In order to apply this lemma, we must prove that Homum

(

Σk,d
δ ,Σ

k−1, 2(k−1)
δ

)

( 1
2
)
contains no

copies of Sym3
C2ℓ under lsm for k ≤ d ≤ 2k. When d = 2k, by Lemma 6.1 we obtain

Homum

(

Σk,2k
δ ,Σ

k−1, 2(k−1)
δ

)

( 1
2
)
= ζk−1∂k

ζ Span{A,B},

which is a copy of C2ℓ. When d = 2k − 1, we obtain

Homum

(

Σk,2k−1
δ ,Σ

k−1, 2(k−1)
δ

)

( 1
2
)
= ζk−1∂k−1

ζ Span{∂α, ∂β},

which is again a copy of C2ℓ. Finally, when d < 2k − 1, we obtain zero.
This completes the proof of Theorem A when M = Rm. If M is an arbitrary contact manifold,

Darboux’s theorem implies the existence of an atlas of local charts on M that are diffeomorphic
to the standard contact structure on Rm. We have just proved that for every chart U , there is a
unique (locally defined) map sσk

λ,µ(U) equivariant with respect to K(U). If U ′ is another chart,

uniqueness implies that the maps sσk
λ,µ(U) and sσk

λ,µ(U
′) coincide on U ∩U ′. Therefore sσk

λ,µ(M)

is well-defined on all of M and obviously commutes with K(M).

6.3. Proof of Theorem C. As in the proof of Theorem A, take M = Rm and consider the action

Lλ,µ of K(Rm) on Σδ. We first prove that certain of its matrix elements L(k,d),(k′,d′)
λ,µ vanish.

Lemma 6.4. In both of the following cases, the space of sm-relative 1-cochains of K(Rm) with

coefficients in Hom
(

Σk,d
δ ,Σk′,d′

δ

)

is zero:

(i) k′ = k − 1 and d′ ≥ d.
(ii) k′ < k − 1 and d′ ≥ d− (k − k′) + 2.

Proof. By Lemma 6.3, we must prove that under lsm the space Homum
(Σk,d

δ ,Σk′,d′

δ )( 1
2
) contains

no copies of Sym3
C2ℓ in either Case (i) or Case (ii). By Lemma 6.1, this space is zero unless

d− d′ ∈ Z+. In particular, it is zero in Case (i). In Case (ii) with d− d′ ∈ Z+, Lemma 6.2 shows
that under lsm it is equivalent to

(8) Sym2k−d
C

2ℓ ⊗ Sym2k′−d′

C
2ℓ ⊗

(

⊕

r≥0

Symd−d′−2r−1
C

2ℓ

)

.
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It is well-known (see, e.g., [Va84]) that the largest irreducible component of Symr
C2ℓ⊗ Syms

C2ℓ

is Symr+s
C2ℓ, and for r ≥ s, its smallest irreducible component is its Parthasarathy - Ranga Rao

- Varadarajan submodule, a copy of Symr−s
C2ℓ. Therefore the maximal component of

Sym2k′−d′

C
2ℓ ⊗

(

⊕

r≥0

Symd−d′−2r−1
C

2ℓ

)

is Symd−2d′+2k′−1
C2ℓ. In Case (ii) we have k′ − d′ < k− d, so the smallest irreducible component

of (8) is Sym2(d′−d+k−k′)+1
C2ℓ, which is larger than Sym3

C2ℓ. �

This lemma implies that L(k,d),(k′,d′)
λ,µ = 0 under the conditions of Cases (i) and (ii). Therefore

the space D(b)
λ,µ(R

m) defined by

D(b)
λ,µ(R

m) := Qsm
λ,µ

(

⊕

2d−k≤b

Σk,d
δ

)

is invariant under the action Lλ,µ of K(Rm). Since under sm there is unique copy of Σk,d
δ in Dλ,µ

for all (k, d), D(b)
λ,µ is the unique subspace of Dλ,µ whose graded module is as in Theorem C. This

completes the proof for M = Rm. For M arbitrary, local existence and uniqueness allows us to

conclude global existence and uniqueness of D(b)
λ,µ(M) as in the proof of Theorem A.

7. Explicit formulas

7.1. The affine invariants. We begin by proving that the following maps between fine symbol
modules are equivariant with respect to the affine subalgebra tm:

Definition. The contact divergence is the map

DivC := ∂z∂ζ : Σk,d
δ → Σk−1,d−2

δ .

The tangential divergence is the map

DivT := Ar∂αr
+Br∂βr

: Σk,d
δ → Σk−1,d−1

δ .

Finally, define

∆ := (αrBr − βrAr)∂ζ : Σk,d
δ → Σk,d−1

δ .

Lemma 7.1. (i) DivC, DivT, and ∆ are all tm-equivariant.
(ii) The contact divergence DivC commutes with both DivT and ∆, and

[DivT,∆] = (ℓ+ Eαβ)DivC .

(iii) Regarded as a map from Sk
δ to Sk−1

δ , DivT +DivC is the full divergence Div.

Proof. The statement follows from Lemma 4.3 and short computations. �

Remark. It follows from the first fundamental theorem of invariant theory for sp2ℓ that the
associative algebra generated by the operators

DivC, DivT, ∆, Eαβ, Eζ
coincides with the algebra Endtm(Σδ) of all affine invariants: see [FMP07].
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7.2. The slm+1-equivariant quantization of Sδ. Continuing the discussion of Section 5.1, we
now give an explicit formula for the quantization map Qam

λ,µ of Theorem 5.1. This formula is part
of the explicit formula for the fine projective quantization in the contact setting.

We begin with the standard symbol calculus on Sδ. As in Section 4.1, fix any coordinates
u1, . . . , um on Rm. Write ξi for the symbol of the vector field ∂ui

. Then

Sδ = SpanC∞(Rm)

{

ξI : I ∈ N
m
}

, Dλ,µ = SpanC∞(Rm)

{

∂I
u : I ∈ N

m
}

.

As noted in Section 3.4, these spaces carry the Vect(Rm)-actions LS
δ and Lλ,µ, respectively.

One of the simplest quantizations is the normal order quantization:

N : Sδ → Dλ,µ, N
(

fI(u)ξ
I
)

:= fI(u)∂
I
u.

In the literature, Sδ and Dλ,µ are frequently identified via N, which then does not appear explicitly
in the formulas. Although N is not an am-equivariant quantization, it does turn out to be a bm-
quantization. The first step in computing Qam

λ,µ is to find explicit formulas for LS
δ and Lλ,µ. In

fact, one computes the pull-back of Lλ,µ to Sδ via N, that is,

LN−1

λ,µ (X) := N−1 ◦ Lλ,µ(X) ◦N.
Towards this end, note that any differential operator on Sδ may be written as a C∞(Rm)-linear
combination of monomials ∂I

uξ
J∂K

ξ .

Given any vector field X =
∑m

1 Xi∂ui
, it is straightforward to obtain

LN−1

λ,µ (X) = X + δDiv(X)−
∑

|I|>0

1
I!

(

∂I
u

[

λDiv(X) +
∑

j Xjξj
]

)

∂I
ξ .

The action LS
δ is simply the part of LN−1

λ,µ which preserves ξ-degree:

LS
δ (X) = X + δDiv(X)−

m
∑

i,j=1

(∂ui
Xj)ξj∂ξi .

Observe that these two formulas are the same if and only if X ∈ bm. Thus as claimed, N is a
bm-quantization.

As usual, let Eξ denote the ξ-Euler operator. The full divergence operator is

Div =
∑

1≤i≤m

∂ui
∂ξi : Sk

δ → Sk−1
δ .

Bear in mind that Eξ and Div do not commute: [Eξ,Div] = −Div. The theorem is as follows.

Theorem 7.2. [LO99, DO01] For δ non-resonant,

Qam

λ,µ = N ◦
∞
∑

s=0

1
s! Divs ◦

(Eξ + λ(m+ 1)− 1

s

)(

2Eξ − δ(m+ 1) +m− 1

s

)−1

.

It is worth mentioning that this formula can be understood as a (non-commutative) hypergeo-
metric function: see [DO01].

7.3. The sp2(ℓ+1)-equivariant quantization of Σδ. We now proceed to derive an explicit formula
for Qsm

λ,µ. We begin by defining a map SQsm
δ from Σδ to Sδ:

(9) SQsm
δ :=

∞
∑

s=0

2s

(s!)2
∆s ◦

(

2Eζ − 2δ(ℓ+ 1)

s

)−1

.

This formula is well-defined provided that δ is not contact-resonant. Recall from (6) that we are
abusing notation and using the same bases for Σδ and Sδ (this is analogous to regarding the normal
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order quantization N as the identity). Therefore we may and do regard SQsm
δ as a map from Σδ

to Sδ.

Theorem 7.3. The fine sm-equivariant quantization of Theorem 5.2 is

Qsm
λ,µ = Qam

λ,µ ◦ SQsm
δ .

Proof. Observe that it suffices to prove that SQsm
δ intertwines the restrictions of the actions LΣ

δ

and LS
δ to sm. By Lemma 7.1, SQsm

δ intertwines the tm-actions. Restricted to Σk,d
δ , it is of the

form
∑∞

0 ∆sCs for some constants Cs. One obtains (9) by deriving a recursion relation for these
constants. Since Xxiz generates sm under tm for any i, we need only impose the condition

LS
δ (Xxiz) ◦ SQsm

δ = SQsm
δ ◦ LΣ

δ (Xxiz).

By Lemma 4.3, LS
δ (Xxiz)− LΣ

δ (Xxiz) is βi∂ζ , which commutes with ∆. Therefore we find that
SQsm

δ ◦ βi∂ζ and
[

SQsm
δ , LΣ

δ (Xxiz)
]

must be equal, i.e.,

0 =
∑

s

(

∆s ◦ βi∂ζ −
[

∆s, LΣ
δ (Xxiz)

])

Cs.

Using the same lemma, deduce the following commutator:

[LΣ
δ (Xxiz),∆

s] = −s∆s−1βi∂ζ
(

Eζ − δ(ℓ+ 1)− 1
2 (s− 1)

)

,

This gives the recursion relation

Cs−1 = 1
2s
(

2c− 2δ(ℓ+ 1)− (s− 1)
)

Cs.

Since C0 = 1, the theorem follows. �

7.4. The subsymbol. In order to give an explicit local formula for sσk
λ,µ, let us fix a system of

Darboux coordinates as in Section 3.1. An arbitrary differential operator T of order ≤ k may be
expressed as

T =
∑

c+|I|+|J|≤k

Tc,I,J ∂
c
z∂

I
x∂

J
y ,

where the Tc,I,J are smooth functions. As usual, we replace ∂z, ∂x, ∂y by their symbols ξz, ξx, ξy ,
respectively. This amounts to replacing T by

N−1(T ) =
∑

c+|I|+|J|≤k

Tc,I,J ξ
c
zξ

I
xξ

J
y .

The formula has two ingredients: the full divergence Div, and the projection πk−1,2(k−1) :

Sk−1
δ → Σ

k−1,2(k−1)
δ . The full divergence Div(N−1(T )) is

∑

c+|I|+|J|≤k

(

c∂z(Tc,I,J) ξ
c−1
z ξIxξ

J
y +

ℓ
∑

s=1

(

Is∂xs
(Tc,I,J) ξ

c
zξ

I−es
x ξJy + Js∂ys

(Tc,I,J) ξ
c
zξ

I
xξ

J−es
y

)

)

.

In the (α, β, ζ)-coordinates on Sk−1
δ given in Section 3.4, the projection πk−1,2(k−1) simply gives

the ζk−1 term. In Darboux coordinates,

πk−1,2(k−1)

(

Tc,I,J ξ
k−1−|I|−|J|
z ξIxξ

J
y

)

= (−1)|I|
(

1
2

)|I|+|J|
yIxJTc,I,Jζ

k−1,

because by (5), ξxi
= αi − 1

2yiζ, ξyi
= −βi +

1
2xiζ, and ξz = ζ.

Proposition 7.4. In Darboux coordinates, the subsymbol sσk
λ,µ(T ) is given by

sσk
λ,µ(T ) = πk−1,2(k−1) ◦

(

1− (k − 1) + 2λ(ℓ + 1)

2(k − 1)− 2(δ − 1)(ℓ+ 1)
Div

)

◦N−1(T ).
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Proof. Using (7) and Theorem 7.3, we obtain sσk
λ,µ(T ) = πk−1,2(k−1) ◦

(

SQsm
δ

)−1 ◦
(

Qam

λ,µ

)−1
. Since

Σ
k−1,2(k−1)
δ is the fine symbol module in Sk−1

δ of the highest contact order, (9) gives

πk−1,2(k−1) ◦
(

SQsm
δ

)−1
= πk−1,2(k−1).

To calculate the Sk−1
δ -component of

(

Qam

λ,µ

)−1
, we use the formula of Theorem 7.2. �

Note that the formula for sσk
λ,µ is well-defined for all but one contact-resonant value of δ, the

value δ = ℓ+k
ℓ+1 . By continuity, it retains Km-equivariance whenever it is well defined.

7.5. Proof of Theorem B. Let T be a second order operator from Fλ to Fλ. Since Σ1,2
0 is

equivalent to F− 1
ℓ+1

, the subsymbol sσ2
λ,λ(T ) may be written as a contact Hamiltonian. If the

operator T is of the form

T = T2,0,0 ∂
2
z + T1,i,0 ∂z∂xi

+ T1,0,i ∂z∂yi
+ T0,ij,0 ∂xi

∂xj
+ T0,i,j ∂xi

∂yj
+ T0,0,ij ∂yi

∂yj

+T1,0,0 ∂z + T0,i,0 ∂xi
+ T0,0,i ∂yi

+ T0,0,0,

then the formula of Proposition 7.4 reads

sσ2
λ,λ(T ) = − 1+2λ(ℓ+1)

ℓ+2

(

∂z(T2,0,0 − 1
2yiT1,i,0 +

1
2xiT1,0,i)

+∂xi
(T1,i,0 − 1

2yjT0,ij,0 +
1
2xjT0,i,j)

+∂yi
(T1,0,i +

1
2xjT0,0,ij − 1

2yjT0,j,i)
)

+T1,0,0 − 1
2yiT0,i,0 +

1
2xiT0,0,i.

One can verify directly that this formula coincides with that of Theorem B. The most efficient
approach is to prove first the comments following the statement of the theorem, after which it
suffices to carry out the verification for the single operator T = Lλ(Xz) ◦ Lλ(A1), because that
determines c13.
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