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Abstract. We introduce oð pþ 1; qþ 1Þ-invariant bilinear differential operators on the space
of tensor densities on Rn generalizing the well-known bilinear sl2-invariant differential opera-
tors in the one-dimensional case, called Transvectants or Rankin–Cohen brackets. We also

consider already known linear oð pþ 1; qþ 1Þ-invariant differential operators given by powers
of the Laplacian.
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1. Introduction

In the one-dimensional case, the problem of classification of SL2-invariant (bi)linear

differential operators was treated in the classical literature.

Consider the following action of SLð2;RÞ on the space of (smooth) functions in

one variable, for instance, on R;S1, or holomorphic functions on the upper half-

plane:

f ðxÞ 7! f
axþ b

cxþ d

� �
ðcxþ dÞ�2l; ð1:1Þ

where l is a parameter l 2 R (or C). This SLð2;RÞ-module of functions is called the

space of l-densities and denoted F l.

The classification of SLð2;RÞ-invariant linear differential operators from F l to F m

(i.e. of the operators commuting with the action (1.1)) was obtained in classical

works on projective differential geometry, namely, for every k ¼ 1; 2; . . . ; there exists

a unique (up to a constant) SLð2;RÞ-invariant linear differential operator of order k:

Ak : F 1�k
2
! F 1þk

2
: ð1:2Þ

It is given by Akð f Þ ¼ dkf=dxk.
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Linear SLð2;RÞ-invariant differential operators from F l � F m to F n were already

considered by Gordan [13]. For generic values of l and m, more precisely, for

l; m 6¼ 0;�1
2;�1; . . .

and for every k ¼ 0; 1; 2; . . . ; there exists a unique (up to a constant) SLð2;RÞ-

invariant bilinear differential operator of order k

Bk : F l � F m ! F lþmþk:

This differential operator is given by the formula

Bkð f; gÞ ¼
X
iþj¼k

ð�1Þi
2mþ k� 1

i

� �
2lþ k� 1

j

� �
f ðiÞgð jÞ ð1:3Þ

and is called the Transvectant (cf. [16]). It is also known as the kth Rankin–Cohen

bracket [5, 21].

The operators (1.3) play an important role in the theory of modular forms; they

have been recently used in [6, 18, 19] to construct SLð2;RÞ-invariant star-products

on T 	S1 and in the cohomology of Lie algebras of vector fields [2].

The purpose of this Letter is to extend the classical Gordan Transvectants to the

multi-dimensional case. We will consider oð pþ 1; qþ 1Þ-invariant bilinear differen-

tial operators on tensor densities on Rn, where n ¼ pþ q. It should be stressed that

there are other ways to generalize sl2-symmetries in the multi-dimensional case.

For instance, one considers the slðnþ 1;RÞ-action on Rn; this leads to projective

differential geometry.

Another approach to the problem of classification of conformally invariant differ-

ential operators can be found in the recent papers [7] and [4].

2. Conformally-Invariant Differential Operators

In the multi-dimensional case, one has to distinguish the conformally flat case that

can be reduced to R
n endowed with the standard oð pþ 1; qþ 1Þ-action, where

n ¼ pþ q, and the ‘curved’ or generic case of an arbitrary pseudo-Riemannian mani-

fold M. In this paper we will consider only the conformally flat case.

2.1. LIE ALGEBRA OF CONFORMAL SYMMETRIES

Denote g the standard quadratic form on Rn of signature p� q, where pþ q ¼ n.

The Lie algebra of infinitesimal conformal transformations is generated by the vector

fields

Xi ¼
@

@xi
; Xij ¼ xi

@

@x j
� xj

@

@xi
;

X0 ¼ xi
@

@xi
; �XXi ¼ xjx

j @

@xi
� 2xix

j @

@x j
ð2:1Þ
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where ðx1; . . . ; xnÞ are coordinates on Rn and xi ¼ gijx
j. Throughout this Letter, sum

over repeated indices is understood. Let us also consider the Lie subalgebras

oð p; qÞ � eð p; qÞ � oð pþ 1; qþ 1Þ � VectðRn
Þ; ð2:2Þ

where oð p; qÞ is generated by the Xij and the Euclidean subalgebra eð p; qÞ by Xi;Xij.

It is worth noticing that the conformal Lie algebra oð pþ 1; qþ 1Þ is maximal in

the class of finite-dimensional subalgebras of VectðRn
Þ, that is, any bigger subalgebra

of VectðRn
Þ is infinite-dimensional (see [1]). This maximality property explains the

uniqueness results.

Remark 2:1: All the results of this paper are valid for an arbitrary manifold M

endowed with a conformally flat structure. Such a manifold is locally identified with

Rn and the action (2.1) of the conformal Lie algebra is defined locally on M.

2.2. MODULES OF DIFFERENTIAL OPERATORS

Let us define the space F l of tensor densities of degree l on Rn. As a vector space,

F l is isomorphic to C1ðRn
Þ; the action of the Lie algebra, VectðRn

Þ, of vector fields

on Rn on F l, is defined by

Ll
X ¼ Xi @

@xi
þ lDivðXÞ ð2:3Þ

and depends on l. Geometrically speaking, F l is the space of smooth sections of the

line bundle DlðR
n
Þ ¼ jLnT �R

n
j	l over R

n.

Consider the space Dl;m of linear differential operators from F l to F m and the

space Dl;m;n of bilinear differential operators from F l 	 F m to F n. These spaces

are naturally VectðRn
Þ-modules. We will restrict these modules structures to the sub-

algebra oð pþ 1; qþ 1Þ � VectðRn
Þ and consider the spaces Dl;m and Dl;m;n as

oð pþ 1; qþ 1Þ-modules. More precisely, we will be interested in the oð pþ 1;

qþ 1Þ-invariant differential operators, that is, in the differential operators commut-

ing with the oð pþ 1; qþ 1Þ-action.

Note that the oð pþ 1; qþ 1Þ-modules Dl;m have been studied in a series of recent

papers (see [8] and references therein).

2.3. POWERS OF THE LAPLACIAN

In the conformally flat case, the analogues of the operators (1.2) have been classified

in [11]. The result is as follows.

THEOREM 2.2 ([11]). For every k ¼ 1; 2; . . . ; there exists a unique ðup to a constantÞ

oð pþ 1; qþ 1Þ-invariant linear differential operator of order k:

A2k : F n�2k
2n

! F nþ2k
2n

ð2:4Þ
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and there are no other oð pþ 1; qþ 1Þ-invariant linear differential operators of order

k5 1 from F l to F m.

In the coordinate system (2.1), the explicit expressions of the operators A2k are

A2k ¼ Dk; where D ¼ gij
@

@xi
@

@x j
:

Remark 2:3: In the generic (curved) case, the situation is much more difficult, see

[14, 15]. We also refer to [9, 10], see also [3], for a recent study of conformally

invariant differential operators on tensor fields, and a complete list of references.

We will give a simple direct proof of Theorem 2.2.

2.4. MULTI-DIMENSIONAL TRANSVECTANTS

The following theorem is the main result of this Letter. It provides a classification of

bilinear oð pþ 1; qþ 1Þ-invariant differential operators on tensor densities of generic

degrees l and m.

THEOREM 2.4. ðiÞ For every k ¼ 0; 1; 2; . . . ; there exists a unique up to a constant

oð pþ 1; qþ 1Þ-invariant bilinear differential operator of order k

B2k : F l 	 F m ! F lþmþ2k
n

ð2:5Þ

provided neither of l and m belongs to the set

0;�
1

n
;�

2

n
; . . . ;

2� 2k

n

� �
[

n� 2

2n
;
n� 4

2n
; . . . ;

n� 2k

2n

� �
: ð2:6Þ

ðiiÞ There is no other bilinear oð pþ 1; qþ 1Þ-invariant differential operator on tensor

densities, for generic values of l and m.

The case, when l and m simultaneously belong to the set (2.6), is particular. There
may be no oð pþ 1; qþ 1Þ-invariant operators in this case, as well as there may be no

uniqueness. For instance, if l ¼ m ¼ ðn� 2kÞ=2n, both operators Bð f; gÞ ¼ A2kð f Þg

and Bð f; gÞ ¼ fA2kðgÞ, are oð pþ 1; qþ 1Þ-invariant. The classification in this case is

much more complicated and will not be considered in this paper (cf. [12] for the

one-dimensional case).

We will give explicit formul� for the operators (2.5) in Section 4.3.

Remark 2:5: In this paper, we will not consider the curved case. We formulate

here a problem of existence of bilinear conformally invariant differential operators

for an arbitrary (not necessarily flat) conformal structure.
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3. Proof of Theorem 2.2

We will start the proof with classical results of the theory of invariants and describe

the differential operators invariant with respect to the action of the Lie algebra

eð p; qÞ. We refer [22] as a classical source and [8] for the description of the Euclidean

invariants.

3.1. EUCLIDEAN INVARIANTS

Using the standard affine connection on Rn, one identifies the space of linear differ-

ential operators on Rn with the corresponding space of symbols, i.e., with the space

of smooth functions on T �Rn
ffi Rn

� ðRn
Þ
� polynomial on ðRn

Þ
�. This identification

is an isomorphism of modules over the algebra of affine transformations and allows

us to apply the theory of invariants.

Moreover, choosing a (dense) subspace of symbols which are also polynomials on

the first summand, one reduces the classification of eð p; qÞ-invariant differential

operators from Dl;m to the classification of eð p; qÞ-invariant polynomials in the space

C½x1; . . . ; xn; x1; . . . ; xn�, where ðx1; . . . ; xnÞ are the coordinates on ðRn
Þ
� dual to

ðx1; . . . ; xnÞ.

Consider first invariants with respect to oð p; qÞ � eð p; qÞ. It is well-known (see

[22]) that the algebra of oð p; qÞ-invariant polynomials is generated by three elements

Rxx ¼ gij x
ix j; Rxx ¼ xixi; Rxx ¼ gij xixj:

Second, taking into account the invariance with respect to translations in eð p; qÞ, any

eð p; qÞ-invariant polynomial Pðx; xÞ satisfies @P=@xi ¼ 0. The only remaining genera-

tor is Rxx and, therefore, eð p; qÞ-invariant linear differential operators from F l to F m

are linear combinations of operators (2.4).

Note that the obtained result is, of course, independent from l and m since the

degree of tensor densities does not intervene in the eð p; qÞ-action.

3.2. PROOF OF THEOREM 2.2

It remains to check for which values of l and m the operators (2.4) from F l to F m are

invariant with respect to the action of the full Lie algebra oð pþ 1; qþ 1Þ.

By definition, the action of a vector field X on an element A 2 Dl;m is given by

Ll;m
X ðAÞ ¼ Lm

X � A� A � Ll
X;

where Ll
X is the operator of Lie derivative (2.3).

Consider the action of the generator X0 in (2.1) on the operator A ¼
P

k5 0 ckR
k
xx.

Using the preceding expressions, one readily gets

Ll;m
X0
ðAÞ ¼

X
i5 0

nd� 2kð ÞckR
k
xx
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where d ¼ m� l. Therefore, the invariance condition Ll;m
X0
ðAÞ ¼ 0 is satisfied if and

only if for each k in the above sum either ck ¼ 0 or d ¼ 2k=n, and one obtains the

values of the shift d in accordance with (2.4).
Consider, at last, the action of the generators �XXi (with i ¼ 1; . . . ; n). After the iden-

tification of the differential operators with polynomials one has the following explicit

expressions for the Lie derivative.

PROPOSITION 3.1. The action of the generator �XXi on Dl;m is as follows

Ll;m
�XXi

¼ Ld
�XXi
� xiTþ 2ðE þ nlÞ @xi

where

Ld
�XXi
¼ xjx

j@i � 2xix
j@j � 2ðxixj � xjxiÞ@xj þ 2xjx

j@xi � 2ndxi

is the cotangent lift, and where T ¼ @xj@xj is the trace and E ¼ xj@xj the Euler operator.

This formula has been obtained in [8], it can be also easily checked by a straight-

forward computation.

Applying Ll;m
�XXi
to the operator Rk

xx one then obtains

Ll;m
�XXi
ðRk

xxÞ ¼ 2ð2k� ndÞxiRk
xx þ 2kðnð2l� 1Þ þ 2kÞxiR

k�1
xx :

The first term in this expression vanishes for 2k� nd=0, this condition is precisely

the preceding one; the second term vanishes if and only if l ¼ ðn� 2kÞ=2n: Theorem

2.2 is proved.

4. Proof of Theorem 2.4

In this section we will prove our main result and give an explicit formula for the

operators (2.5).

4.1. EUCLIDEAN-INVARIANT BILINEAR OPERATORS

As in Section 3.1, let us first consider the operators invariant with respect to the Lie

algebra eð p; qÞ. Again, identifying the bilinear differential operators with their sym-

bols, one is led to study the algebra of eð p; qÞ-invariant polynomials in the space

C½x1; . . . ; xn; x1; . . . ; xn; Z1; . . . ; Zn�. The Weyl invariant theory just applied guarantees

that there are three generators:

Rxx ¼ gij xixj; RxZ ¼ gij xiZj; RZZ ¼ gij ZiZj:

Any eð p; qÞ-invariant bilinear differential operator is then of the form

B ¼
X

r;s;t5 0

crstR
r;s;t

where, to simplify the notations, we put Rr;s;t ¼ Rr
xxR

s
xZR

t
ZZ:
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4.2. INVARIANCE CONDITION

The action of a vector field X on a bilinear operator B : F l 	 F m ! F n is defined as

follows

ðLl;m;n
X BÞð f; gÞ ¼ Ln

XBð f; gÞ � BðLl
Xf; gÞ � Bð f;Lm

XgÞ:

Let us apply the generator X0 of oð pþ 1; qþ 1Þ to the operator B, one has

Ll;m;n
X0

ðBÞ ¼
X

r;s;t5 0

nd� 2ðrþ sþ tÞð ÞcrstR
r;s;t

where d ¼ n� m� l. The equation Ll;m
X0
ðBÞ ¼ 0 leads to the homogeneity condition

d ¼
2ðrþ sþ tÞ

n
:

The general expression for B retains the form

B2k ¼
X

rþsþt¼k

crstR
r;s;t: ð4:1Þ

The operator B is of order 2k and n ¼ lþ mþ 2k=n.

Now, to determine the coefficients crst, one has to apply the generators �XXi of the

Lie algebra oð pþ 1; qþ 1Þ. A straightforward computation yields

PROPOSITION 4.1. The action of the generator �XXi on Dl;m;n is given by

Ll;m;n
�XXi

¼ Ld
�XXi
� xiTx � ZiTZ þ 2

�
ðEx þ nlÞ @xi þ ðEZ þ nmÞ @Zi

�
where

Ld
�XXi
¼xjx

j@i � 2xix
j@j � 2ndxi�

� 2
�
ðxixj � xjxiÞ@xj þ ðZixj � ZjxiÞ@Zj

�
þ

þ 2
�
xjx

j@xi þ Zjx
j@Zi

�
is just the natural lift of �XXi to T �Rn

� T �Rn.

Applying Ll;m;n
�XXi

to each monomial, Rr;s;t ¼ Rr
xxR

s
xZR

t
ZZ, in the operator B2k, one

immediately gets

Ll;m;n
�XXi

ðRr;s;tÞ ¼2ð2k� ndÞxiRr;s;tþ

þ 2rð2rþ nð2l� 1ÞÞRr�1;s;t � sðs� 1ÞRr;s�2;tþ1
�

þ

þ2sðsþ 2tþ nm� 1ÞRr;s�1;t
�
xiþ

þ 2tð2tþ nð2m� 1ÞÞRr;s;t�1 � sðs� 1ÞRrþ1;s�2;t
�

þ

þ2sðsþ 2rþ nl� 1ÞRr;s�1;t
�
Zi:
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Finally, applying Ll;m;n
�XXi

to the operator B2k written in the form (4.1) and collecting

the terms, one readily gets the following recurrent system of two linear equations

2ðrþ 1Þ 2ðrþ 1Þ þ nð2l� 1Þð Þcrþ1;s;t�

� ðsþ 2Þðsþ 1Þ cr;sþ2;t�1þ

þ 2ðsþ 1Þðsþ 2tþ nmÞ cr;sþ1;t ¼ 0

ð4:2Þ

and

2ðtþ 1Þ 2ðtþ 1Þ þ nð2m� 1Þð Þcr;s;tþ1�

� ðsþ 2Þðsþ 1Þ cr�1;sþ2;tþ

þ 2ðsþ 1Þðsþ 2rþ nlÞ cr;sþ1;t ¼ 0

ð4:3Þ

for the coefficients. The system (4.2), (4.3) is a necessary and sufficient condition of

oð pþ 1; qþ 1Þ-invariance for the operator (4.1).

4.3 EXPLICIT SOLUTION OF THE SYSTEM

Let us now show that the system (4.2), (4.3) is compatible and, moreover, give its

explicit solution.

Equations (4.2) with t ¼ 0 readily give

cr;s;0 ¼
ð�1Þr

2r
rþ s
r

� �
ðsþ nmÞr

ðnðl� 1
2Þ þ 1Þ

c0;rþs;0;

where we use the standard notation ðaÞr :¼ aðaþ 1Þ � � � ðaþ r� 1Þ for the Poch-

hammer symbol. Similarly, from Equations (4.3) with r ¼ 0, one obtains

c0;s;t ¼
ð�1Þt

2t
sþ t
t

� �
ðsþ nlÞt

ðnðm� 1
2Þ þ 1Þt

c0;sþt;0:

We now substitute the above expressions for c0;s;t to (4.2) to obtain the coefficients

cr;s;t with r4 t. The answer

cr;s;t ¼
ð�1Þt�r

2rr!

rþ sþ t

t

� �
ðsþ 1Þr

ðnðl� 1
2Þ þ 1Þr

�

�
Xr

p¼0

r!t!

p!

ðrþ s� pþ nlÞt�pðsþ 2tþ nmÞr�p

ðnðm� 1
2Þ þ 1Þt�p

�

� c0;rþsþt;0

ð4:4Þ

can be easily get by induction. Similarly, substituting the expressions for cr;s to (4.3),

one obtains the coefficients cr;s;t with r5 t. The explicit formula, in this case, co-

incides with (4.4) after the simultaneous exchange ðr $ tÞ and ðl $ mÞ.
Finally, to prove the compatibility of the system (4.2), (4.3), one checks by a

straightforward computation, that the coefficients (4.4) satisfy the equations (4.3).
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We proved that the system (4.2), (4.3) has a unique solution, provided neither of l
and m belongs to the set of critical values (2.6). Theorem 2.4 is proved.
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