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Abstract. We show that the space of classical Coxeter’s frieze patterns can be viewed as a discrete

version of the coadjoint orbit of the Virasoro algebra. The canonical (cluster) (pre)symplectic form

on the space of frieze patterns is a discretization of the Kirillov symplectic form. We relate a
continuous version of frieze patterns to conformal metrics of constant curvature in dimension 2.

1. Introduction and main results

The goal of this note is to relate two different subjects:

(1) the Virasoro algebra and the related infinite-dimensional symplectic manifold Diff+(S1)/PSL2(R);
(2) the space of Coxeter’s frieze patterns viewed as a cluster manifold.

The problem of discretization of the Virasoro algebra is very well known and has been studied by
different authors, and different discretizations were suggested [8, 9]; see also [14]. The main motivation
for this study is application to integrable systems, such as the Korteweg - de Vries (KdV) equation.
Several discrete versions of the KdV were proposed. Most of the discrete versions of the Virasoro
algebra consist of discretization of the corresponding linear Poisson structure on its dual space.

We will describe a discretization procedure that relates the subject to combinatorics and cluster
algebra. We will be interested in the infinite-dimensional homogeneous space Diff+(S1)/PSL2(R)
equipped with (a 1-parameter family of) Kirillov’s symplectic structures. This symplectic space is
often regarded as a coadjoint orbit of the Virasoro algebra [11, 12], or, in other words, a symplectic
leaf of the linear Poisson structure. This is a more geometric way to understand the Virasoro-related
Poisson structure. We will obtain a finite-dimensional discretization of Diff+(S1)/PSL2(R).

We do not consider integrable systems in this paper, but believe that our discretization procedure
can be applied to KdV and should be related to such discrete integrable systems as the pentagram
map; see [17] and references therein.

The discrete objects that we consider are the classical Coxeter (or Conway-Coxeter) frieze pat-
terns [4, 3]. This notion was invented in the early 1970’s but became widely known quite recently
due to its close relation to the cluster algebra; see [2, 1]. In particular, it was shown in [15, 16] that
frieze patterns are closely related with the moduli space of polygons in the projective line and with
second order linear difference equations. As every cluster manifold, the space of Coxeter’s friezes has
a canonical (pre)symplectic structure. We will prove the following.

Theorem 1. The space Diff+(S1)/PSL2(R) equipped with Kirillov’s symplectic form is a continuous
limit of the space of Coxeter’s frieze patterns equipped with the cluster (pre)symplectic form.

Following the ideas of Conway and Coxeter, we identify frieze patterns with linear recurrence
equations:

(1) Vi+1 = ciVi − Vi−1,
1
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where the “potential” (ci) is an n-periodic sequence of (real or complex) numbers, and where the
sequence (Vi) is unknown, i.e., a “solution”. Furthermore, we will impose the following condition: the
potential is n-periodic, and all the solutions are n-antiperiodic:

(2) ci+n = ci, Vi+n = −Vi.

The space of equations (1) satisfying the condition (2) is an algebraic variety of dimension n− 3. If n
is odd, then this algebraic variety is isomorphic to the classical moduli spaceM0,n; see [16] for details.

Note that equation (1) is nothing other than the classical discrete Hill equation (also called Sturm-
Liouville or Schrödinger, equation). Relation of this equation to a discrete version of the Virasoro
algebra is very natural and appeared in all the above cited works on the subject. However, the notion
of frieze pattern and cluster algebra were not considered. We will show that this approach provides
additional combinatorial tools. Let us also emphasize the fact that the (anti)periodicity condition (2)
seems to be the only natural way to obtain a finite-dimensional space of equations (1) approximating
the space Diff+(S1)/PSL2(R).

We also show how to describe the continuous limit of Coxeter’s frieze patterns in terms of solutions
of the classical Liouville equation. Solutions of this equation are interpreted in terms of projective
differential geometry. We believe that geometric and combinatorial viewpoints complement each other
and lead to a better understanding of both parts of the story.

We end the introduction by an open question that concerns a natural generalization of Coxeter’s
friezes called 2-friezes; see [15]. The space of 2-friezes is an algebraic variety of dimension 2n − 8. It
is related to linear recurrence equations of order 3:

Vi+3 = aiVi+2 − biVi+1 + Vi,

with n-periodic solutions. This space also carries a structure of cluster manifold, and therefore has a
canonical (pre)symplectic structure. This is the space on which the pentagram map acts. It would
be natural to expect that the canonical cluster symplectic structure is related to the Gelfand-Dickey
bracket. However, the pentagram map does not preserve the canonical symplectic structure. It would
be very interesting to understand the situation in this case.

2. The space of Coxeter’s friezes

In this section, we recall the classical notion of Coxeter frieze pattern. We introduce local coordinate
systems and identify this space with the moduli space M0,n.

2.1. Closed frieze patterns. We start with the definition of the classical Coxeter’s frieze patterns.

Definition 2.1.1. (a) A frieze pattern [4] is an infinite array of numbers

· · · 0 0 0 0 · · ·
· · · 1 1 1 1 · · ·

· · · ci ci+1 ci+2 ci+3 · · ·
· · · · · · · · · · · ·

where the entries propagate downward, and the entries of each next row are determined by
the previous two rows via the frieze rule. For each elementary “diamond”

(3)

b

a d

c
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one has

(4) ad− bc = 1.

For instance, the entries in the next row of the above frieze are cici+1 − 1.
(b) A frieze pattern is called closed if a row of 1’s appears again:

· · · 1 1 1 1 · · ·
ci ci+1 ci+2 ci+3 ci+4

· · · · · · · · · · · ·
· · · 1 1 1 1 · · ·

0 0 0 0 · · ·
· · · −1 −1 −1 −1 · · ·

By definition, this lower row of 1’s is followed by a row of 0’s, and then by a row of −1’s.
One can extend the array vertically so that each diagonal, in either of the two directions, is
anti-periodic.

(c) The width w of a closed frieze pattern is the number of non-trivial rows between the rows
of 1’s.

Example 2.1.2. A generic Coxeter frieze pattern of width 2 is as follows:

· · · 1 1 1 · · ·
a1

a2+1
a1

a1+1
a2

a2

· · · a2
a1+a2+1
a1a2

a1 · · ·
1 1 1 1

for some a1, a2 6= 0. (Note that we omitted the first and the last rows of 0’s.)

The following facts are well-known [4, 3]; see also [16].

(1) A closed frieze pattern is horizontally periodic with period

n = w + 3,

that is, ci+n = ci.
(2) A frieze pattern with the first line (ci) is closed if and only if the equation (1) satisfies

condition (2).
(3) A closed frieze pattern has “glide symmetry” whose second iteration is the horizontal parallel

translation distance n.

The name “frieze pattern” is due to the glide symmetry.

2.2. Local coordinates. Every Coxeter’s frieze pattern of width w is uniquely defined by its (South-
East) diagonal:

(5)

1 1 1 1

a1 · · ·
a2 · · ·

. . .

· · · aw · · ·
1 1 1 1
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for some a1, a2, . . . , aw 6= 0 (see Example 2.1.2). Therefore, (a1, a2, . . . , aw) is a local coordinate
system on the space of friezes.

Consider a different choice of the diagonal, or, more generally, consider an arbitrary zigzag

(6)

1 1 1 1

a′1 · · ·
a′2 · · ·

a′3 · · ·
a′4 · · ·

. . .

a′w · · ·
1 1 1 1

Again the frieze pattern is uniquely defined by a′1, a
′
2, . . . , a

′
w 6= 0, so that we obtain a different

coordinate system (a′1, a
′
2, . . . , a

′
w).

It turns out that the coordinate changes between these coordinate systems can be understood as
mutations in the cluster algebra of type Aw; see [15] (the Appendix). The space of all Coxeter’s friezes
is therefore a cluster manifold.

2.3. Relation to the moduli space M0,n. The following statement is proved in [15, 16].

Proposition 2.3.1. If n is odd, then the space of Coxeter’s friezes is isomorphic to to the moduli
space M0,n.

Proof. We briefly describe the main construction; see [15, 16] for the details.
Consider Coxeter’s frieze pattern given by a diagonal (5). Take the neighboring (upper) diagonal

and write the two diagonals together to obtain n vectors in R2:

(7)

(
0

1

)
,

(
1

a1

)
,

(
a2+1
a1

a2

)
, . . . ,

(
1

0

)
.

Note that these vectors V0, . . . , Vn−1 form a fundamental solution of the equation (1) corresponding
to the frieze (5).

Projecting this n-gon to RP1, one obtains a point in M0,n, and this projection is a one-to-one
correspondence. �

Remark 2.3.2. The above construction allows us to explain the geometric meaning of the entries of
the frieze. The elements (a1, . . . , aw) of the diagonal can be obtained as the vector products:

ai = [Vn−1, Vi] ,

for i = 1, . . . , w.

3. Continuous Coxeter’s friezes

In this section, we introduce our main notion of a continuous frieze pattern that can be obtained
as a continuous limit of classical Coxeter friezes. We show that the continuous limit of a Coxeter’s
frieze can be understood as a solution of the Liouville equation with special boundary conditions. The
space of these solutions is identified with Diff+(S1)/PSL2(R).
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3.1. Projective curves, Hill’s equations and the space Diff+(S1)/PSL2(R). Let Diff+(S1) be
the group of orientation preserving diffeomorphisms of the circle S1 ' RP1. The homogeneous space
Diff+(S1)/PSL2(R) is one of the most interesting infinite-dimensional manifolds in geometry and
mathematical physics. Its study was initiated by Kirillov [11, 12]. We give here two different realiza-
tions of this space. The results of this section are well-known.

Definition 3.1.1. We call a (simple) projective curve an orientation preserving diffeomorphism

γ : R/TZ→ RP1,

that is, a parameterization of the projective line by [0, T ). The projective equivalence class of γ consists
of the diffeomorphisms ϕ ◦ γ where ϕ : RP1 → RP1 is a projective transformation, i.e., ϕ ∈ PSL2(R).

The space of projective equivalence classes of curves is isomorphic to Diff+(S1)/PSL2(R), the
Diff+(S1)-action on the curves being given by

(8) f : γ 7→ γ ◦ f−1 where f ∈ Diff+(S1).

This space can also be identified with projective structures on RP1 with monodromy −Id; see [11, 12]
and also [18].

Definition 3.1.2. (a) A Hill equaltion is a 2nd order linear differential equation of the form

(9) 2c y′′(x) + k(x)y(x) = 0

with T -periodic potential k(x), here c ∈ R is an arbitrary constant. We will alway assume
that Hill’s equaltion has monodromy −Id, i.e., all the solutions of (9) are T -anti-periodic:

y(x+ T ) = −y(x).

(b) A Hill equation (9) with T -anti-periodic solutions is called non-oscillating if every solution
has exactly 1 zero on [0, T ).

An example of a non-oscillating Hill equation with T -anti-periodic solutions is the equation with
the constant potential k(x) ≡ 2cπ2/T 2.

Remark 3.1.3. Recall that the diagonals of a frieze pattern are solutions to a linear difference
equation of 2nd order (1) where ci are the terms in the first non-trivial row of a frieze pattern. Hill’s
equation is a continuous analog of this difference equation, and its potential, k(x) is a continuous
analog of the sequence (ci).

The following statement can be found in [11]; see also [18] for a detailed discussion. We give a proof
for the sake of completeness.

Proposition 3.1.4. The space Diff+(S1)/PSL2(R) can be identified with the space of non-oscillating
of Hill’s equations.

Proof. The space of solutions of Hill’s equation (9) is two-dimensional, and the Wronski determinant of
any pair of solutions is a constant that we normalize to be equal to 1. Thus a choice of two solutions
determines a curve Γ(x) ⊂ R2 such that [Γ,Γ′] = 1 (the bracket denotes the determinant formed
by two vectors). This curve Γ(x) is well defined up to the action of SL2(R), it is antiperiodic, i.e.,
Γ(x+ T ) = −Γ(x). Furthermore, the curve is simple if and only if the equation is non-oscillating.

Conversely, given a projective curve γ, we can lift γ to a parameterized curve Γ(x) ⊂ R2. The
closure condition on γ implies that Γ(x+T ) = −Γ(x). The lift is not unique: one can always multiply
Γ(x) by a non-vanishing function λ(x). We fix the lift by the condition

(10) [Γ(x),Γ′(x)] = 1 for all x.



6 V. OVSIENKO AND S. TABACHNIKOV

Projectively equivalent curves γ correspond to SL(2,R)-equivalent curves Γ, see [18]. Differentiating
(10), implies that the vectors Γ and Γ′′ are proportional, i.e., Γ satisfies Hill’s equaltion

Γ′′(x) = k(x)Γ(x)

with T -periodic potential k(x) and monodromy −Id. �

One can recover the potential k(x) of Hill’s equation from the curve Γ: if f(x) is the ratio of two
coordinates of the curve Γ(x) then

k = c S(f) where S(f) =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

is the classical Schwarzian derivative. This formula is quite old and should probably be attributed
to Lagrange; see [19]. A more contemporary way the express the same observation is the following
formula of Diff+(S1)-action on the space of Hill’s equaltions:

(11) f : k(x) 7→ k(f−1(x))
(
f−1′

)2

+ c S(f−1)(x).

Note that this more complicated formula precisely correspond to the action (8).

3.2. Definition of continuous friezes. Let us now describe the procedure of continuous limit of a
frieze pattern.

A natural labeling of the entries of a frieze pattern is according to the scheme:

(12)

vi,j

vi,j−1 vi+1,j

vi+1,j−1

A continuous analog of a frieze pattern is a twice differentiable function of two variables F (x, y)
satisfying an analog of the frieze rule. Namely, replace (12) by

F (x, y + ε)

F (x, y) F (x+ ε, y + ε)

F (x+ ε, y)

and expand in ε up to 2nd order. Then the frieze rule yields

ε2(FFxy − FxFy) = 1,

where Fx and Fy denote the partial derivatives with respect to x and y respectively. Thus, we are led
to the following.

Definition 3.2.1. (a) A continuous frieze pattern as a function F (x, y) satisfying the partial
differential equation

(13) F (x, y)Fxy(x, y)− Fx(x, y)Fy(x, y) = 1.

(b) A closed continuous frieze patterns is a function F (x, y) satisfying (13) and the following
conditions:

(14)

F (x, x) = 0, Fy(x, x) = 1 for all x;

F (x, y) > 0 for x < y < x+ T ;

F (x+ T, y) = F (x, y + T ) = −F (x, y) for all x, y.
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Remark 3.2.2. Equation (13) is the classical Liouville equation on the function lnF , see, e.g., [5].
The first two conditions in (14) are analogs of having a row of 0’s, followed by a row of 1’s. The
last condition is an analog of anti-periodicity of the diagonals, T being the period. Given the first
condition, the second one is equivalent to Fx(x, x) = −1.

3.3. Continuous friezes from projective curves. Let us describe a simple geometric construction
that provides all the solutions to (13) satisfying (14). We shall show that a projective equivalence
class of a projective curve determines a continuous frieze pattern, and that every continuous frieze
pattern can be obtained from a projective curve.

Consider a projective curve γ and its canonical lift Γ to R2 satisfying condition (10).

Theorem 2. (i) The function

(15) F (x, y) = [Γ(x),Γ(y)]

is a closed continuous frieze pattern.
(ii) Conversely, every closed continuous frieze pattern is of the form (15) for some curve γ.

Proof. Part (i). One has:

Fx = [Γ′(x), Γ(y)], Fy = [Γ(x), Γ′(y)], Fxy = [Γ′(x),Γ′(y)].

The Ptolemy (or Plücker) relation for the determinants made by the vectors Γ(x),Γ(y),Γ′(x),Γ′(y)
implies

[Γ(x),Γ(y)][Γ′(x),Γ′(y)]− [Γ′(x),Γ(y)][Γ(x),Γ′(y)] = [Γ(x),Γ′(x)][Γ(y),Γ′(y)],

and (13) follows.
The first and the last of the boundary conditions (14) obviously hold, and the second condition

coincides with (10). The positivity follows form the fact that Γ(x) induces an embedding of of the
interval (0, T ) to RP1.

Γ(x)

-

............................................................................................................................................ .......................................
......................

................
..............
............
............
..
...........
............
............
............
.....
..........
............
.............
...............
..............
...............
..............
..............
............
...........
............
......
............
............
...............

....................
............................

...............................
...........

RP16

Part (ii). The proof will be given in Section 3.4, see Corollary 3.4.2. �

Clearly, SL(2,R)-equivalent curves Γ give rise to the same function F (x, y).
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Example 3.3.1. If Γ is an arc length parameterized unit circle, we obtain the continuous frieze
pattern F (x, y) = sin(y − x) with T = π.

Remark 3.3.2. If one does not care about boundary conditions, then solutions to (13) can be obtained

from two curves, Γ and Γ̃, both satisfying (10):

F (x, y) = [Γ(x), Γ̃(y)].

For example, if Γ(x) = (x,−1), Γ̃(y) = (1, y), we obtain F (x, y) = 1 + xy. A more general solution of
this kind is F (x, y) = (xy)t + (xy)1−t for any real t.

3.4. Hill’s equations and projective curves from continuous friezes. Let us show that every
closed continuous frieze pattern can be obtained from a projective curve. In other words, we will show
that the construction of Section 3.3 is universal.

Lemma 3.4.1. Let F (x, y) be a closed continuous frieze pattern. Then F , as a function of x only,
or a function of y only, satisfies the same Hill’s equation

Fxx(x, y) = k(x)F (x, y), Fyy(x, y) = k(y)F (x, y)

with T -periodic potential k and monodromy −Id.

Proof. Differentiate (13) to obtain FFxxy = FyFxx. Thus

Fxx(x, y) = k(x, y)F (x, y), Fxxy(x, y) = k(x, y)Fy(x, y)

for some function k(x, y). Differentiate the first of these equations with respect to y to obtain
ky(x, y) = 0. Hence k depends on x only:

Fxx(x, y) = k(x)F (x, y), Fyy(x, y) = m(y)F (x, y),

where the second equation is obtained similarly to the first one.
To prove that k = m, differentiate the second equality in (14) to obtain

Fxy(x, x) + Fyy(x, x) = 0, Fxx(x, x) + Fxy(x, x) = 0,

and hence Fxx(x, x) = Fyy(x, x). This implies that k(x) = m(x).
The third equality in (14) implies that the monodromy of the Hill equation is −Id, and it follows

that k is T -periodic. �

Corollary 3.4.2. The above constructions provide a bijection between projective equivalence classes
of T -periodic parameterizations of RP1 and closed continuous frieze patterns.

Proof. First of all, a projective equivalence class of a curve in RP1 is the same as Hill’s equation; see
Proposition 3.1.4. Start with a curve Γ(x) satisfying Hill’s equation. Then F (x, y) = [Γ(x),Γ(y)], and
one has:

Fxx(x, y) = [Γ′′(x),Γ(y)] = k(x)F (x, y),

that is, one recovers the Hill equation from the respective continuous frieze, and thus the SL2(R)-
equivalent class of the curve Γ.

Conversely, let us show that the function k uniquely determines a continuous frieze. Indeed, F (x, y),
as a function of x, is the solution of Hill’s equation f ′′(x) = k(x)f(x) with the initial conditions
f(y) = 0, f ′(y) = −1. �

This completes the proof of Theorem 2.
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4. The symplectic structure

In the previous section, we showed that the space Diff+(S1)/PSL2(R) is a continuous limit of the
space of Coxeter’s frieze patterns. In this section, we will compare the symplectic structures on both
spaces and complete the proof of Theorem 1.

4.1. Kirillov’s symplectic structure. The space Diff+(S1)/PSL2(R) is a coadjoint orbit of the
Virasoro algebra and therefore it has the canonical Kirillov symplectic 2-form. Let us give here
several equivalent expressions of this 2-form; see [11, 12, 18] for more details.

The first expression is just the definition of the Kirillov symplectic form. Given a non-oscillating
Hill equation (9) with potential k(x), it is identified with an element of the dual space to the Virasoro
algebra as follows. Let (X(x) d

dx , α) be an element of the Virasoro algebra, then〈
(k(x), c) ,

(
X(x)

d

dx
, α
)〉

:=

∫ T

0

k(x)X(x) dx+ cα.

The coadjoint action of the Virasoro algebra is given by:

(16) ad∗
X(x) d

dx
(k(x), c) = (X(x)k′(x) + 2X ′(x)k(x) + cX ′′′(x), 0) ,

which is nothing else but the infinitesimal version of (11). Every tangent vector to the coadjoint orbit
of the Virasoro algebra through the point (k(x), c) is obtained by an action of some vector field. Let

ξ = ad∗
X(x) d

dx
(k(x), c) and η = ad∗

Y (x) d
dx

(k(x), c) ,

then by definition,

(17)

ωK(ξ, η) =

∫ T

0

k(x) (X(x)Y ′(x)−X ′(x)Y (x)) dx− c
∫ T

0

X ′(x)Y ′′(x) dx

= −
∫ T

0

(X(x)k′(x) + 2X ′(x)k(x) + cX ′′′(x))Y (x) dx.

Note that the last term on the first row of (17) is the famous Gelfand-Fuchs cocycle. This formula is
independent of the choice of the coordinate x.

Let us give an equivalent formula for Kirillov’s symplectic structure, in terms of projective curves.
Let γ(x) be a projective curve and Γ(x) its lift to R2 satisfying (10). For an arbitrary choice of linear

coordinates Γ(x) = (Γ1(x),Γ2(x)), consider the function f(x) = Γ1(x)
Γ2(x) which determines the curve γ.

Let, as above, ξ and η be two tangent vectors. Viewed as variations of f(x), these tangent vectors are
expressed as T -periodic functions, ξ(x) and η(x).

Lemma 4.1.1. One has

(18) ωK(ξ, η) = −c
∫ T

0

ξ′(x)η′′(x)− ξ′′(x)η′(x)

(f ′(x))
2 dx.

This formula does not depend on the choice of the parameter x.

Proof. The coadjoint action (16) of the Virasoro algebra, written in terms of projective curves, reads
simply as ad∗

X(x) d
dx

(f(x)) = X(x)f ′(x). Therefore,

ξ(x) =
X(x)

f ′(x)
,

and similarly for η. Substutute these expressions to (17), and integrate by parts taking into account
k = cS(f), to obtain the result. It is then easy to check that changing the parameter leaves the
formula intact. �



10 V. OVSIENKO AND S. TABACHNIKOV

4.2. The cluster symplectic structure. The space of closed Coxeter’s frieze patterns of width
w = n− 3 is an algebraic variety of dimension w. It has a structure of cluster manifold and therefore
has a canonical closed 2-form, i.e., a (pre)symplectic form; see [10] for a general theory. Let us give
the explicit expression of this 2-form.

Definition 4.2.1. Given a coordinate system (a1, a2, . . . , aw) associated to an South-East diago-
nal (5), the canonical cluster symplectic form on the space of friezes is defined by the formula

(19) ω =
∑

1≤i≤w−1

dai ∧ dai+1

aiai+1
.

Consider now an arbitrary zigzag (6) coordinates (a′1, a
′
2, . . . , a

′
w). Define the following a-priori

different 2-form

ω′ =
∑

1≤i≤w−1

(−1)εi
da′i ∧ da′i+1

a′ia
′
i+1

,

where εi = 0 if (a′i, a
′
i+1) belongs to a South-East diagonal, and εi = 1 if (a′i, a

′
i+1) belongs to a

South-West diagonal.

Proposition 4.2.2. One has ω = ω′, for any zigzag coordinate system.

Proof. It suffices to examine how the 2-form changes under an elementary transformation of a zigzag
. . . bac . . . 7→ . . . bcd . . . in (3). In this case, the difference ω−ω′ belongs to the ideal generated by the
differential of the defying identity of frieze pattern (4). �

The form (19) is symplectic, i.e., it is non-degenerate, if and only if w is even (that is, n is odd).
Otherwise, the form ω has a kernel of dimension 1.

4.3. Continuous limit of the cluster symplectic form. We will now apply the procedure of
continuous limit from Section 3.2 to obtain the continuous limit of the symplectic form (19).

The symplectic form ω written in geometric terms (see Remark 2.3.2) is as follows:

ω =
∑

1≤i≤w−1

d [Vn−1, Vi] ∧ d [Vn−1, Vi+1]

[Vn−1, Vi] [Vn−1, Vi+1]
.

Let ξ, η be two tangent vectors to the space of friezes. Each of them can be represented by n vectors
in R2, that is, ξ = (ξ0, . . . , ξn−1) , such that

[Vi, ξi+1] + [ξi, Vi+1] = 0,

since [Vi, Vi+1] ≡ 1. We obtain

ω(ξ, η) =
∑

1≤i≤w−1

[Vn−1, ξi] [Vn−1, ηi+1]− [Vn−1, ξi+1] [Vn−1, ηi]

[Vn−1, Vi] [Vn−1, Vi+1]
.

The continuous limit of the n-gon (V0, . . . , Vn−1) is a curve Γ(x) = (Γ1(x),Γ2(x)). A tangent vector
is represented by a curve ξ(x) = (ξ1(x), ξ2(x)) such that

[Γ, ξ′] + [ξ,Γ′] = 0.

The continuous limit of the above sum is then the following integral:

ω(ξ, η) =

∫ π

0

ξ2(x)η′2(x)− ξ′2(x)η2(x)

Γ2(x)2
dx.

Let us show that this expression coincides with (18) up to the multiple − 1
4c .
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A projective curve can be though of as a function f(x) = Γ1(x)
Γ2(x) . An affine lift (f(x), 1) does not

satisfy the equality (10) but the rescaling

(20) Γ(x) =
(
f(x)f ′(x)−1/2, f ′(x)−1/2

)
does. Let ξ(x) be a tangent vector, i.e., a variation of the function f(x). Lifted to a tangent vector
on curves ξ(x) = (ξ1(x), ξ2(x)) it then reads as

(ξ1(x), ξ2(x)) =

(
ξ(x)f ′(x)−1/2 − 1

2
ξ′(x)f ′(x)−3/2, −1

2
ξ′(x)f ′(x)−3/2

)
.

One readily obtains ω(ξ, η) = − 1
4cωK(ξ, η).

We have proved that the continuous limit of the cluster (pre)symplectic form on the space of
Coxeter’s friezes is (up to a multiple) the Kirollov symplectic form on Diff+(S1)/PSL2(R). Theorem 1
is proved.

Appendix: relation to metrics of constant curvature

Let us give yet another geometric interpretation of continuous frieze patterns. Using (20) and (15),
we obtain a general form of solution:

(21) F (x, y) =
f(y)− f(x)√
f ′(x)f ′(y)

satisfying the first two boundary conditions (14).

Example 4.3.1. Chosing f(x) = tanx yields Example 3.3.1. If f(x) = x, we obtain a linear solution
F (x, y) = y − x.

Now we describe the relation of continuous frieze patterns with conformal metrics of constant
curvature in dimension 2.

Lemma 4.3.2. The conformal metric −4F−2(z, z̄)dzdz̄ has constant curvature −1 if and only if the
function F satisfies equation (13).

Proof. The curvature of the metric g = g(z, z̄)dzdz̄ equals

−2

g

∂2 ln g

∂z∂z̄
,

see, e.g., [5]. Substituting g = −4F−2 yields the result. �

Example 4.3.3. The Poincaré half plane metric

(22) g = −4
dzdz̄

(z − z̄)2

gives F (x, y) = y − x. More generally, start with (22) and change the variable z = f(w). This yields
the formula

g = −4
f ′(w)f ′(w̄)dwdw̄

(f(w)− f(w̄))2
,

and by Lemma 4.3.2, the solution (21).

Remark 4.3.4. One can also consider a Lorentz metric 4F−2(x, y)dxdy. Then equation (13) is
equivalent to this metric having curvature 1. In particular, such conformal Lorentz metrics of constant
curvature on the hyperboloid are studied in [13]; see also [6, 7].
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