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ABSTRACT 

We classify non-trivial (non-central) extensions of the group Diff+(S’) of all diffeomorphisms of 
the circle preserving its orientation and of the Lie algebra Vect(,S’) of vector fields on Si, by the 
modules of tensor-densities on S’. The result is: 4 non-trivial extensions of Diff+(S’) and 7 non- 
trivial extensions of Vect(s’). Analogous results hold for the Virasoro group and the Virasoro al- 
gebra. We also classify central extensions of the constructed Lie algebras. 

1. INTRODUCTION 

The Lie group Diff+(S’) of all orientation preserving diffeomorphisms of the 
circle, has a unique (up to isomorphism) non-trivial central extension, so-called 
Bott-Virusoro group. It is defined by the Thurston-Bott cocycle [B]: 

B(@, !P) = log((@ 0 !P)‘)dlog(!P) 
S’ 

where @, P E Diff+(S’), the function @’ = F being well defined on S’. 
The corresponding Lie algebra is called the Virasoro algebra. It is given by 

the unique (up to isomorphism) non-trivial central extension of the Lie algebra 
Vect(S’) of all vector fields on the circle. This central extension is defined by 
the Gelfand-Fuchs cocycle [GF 11: 
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In this paper we study (non-central) extensions of the group Diff+(S’) and the 
Lie algebra Vect(S’) by the modules of tensor densities on S’. 
Let FA be the space of all tensor-densities on S’ of degree A: 

a = +)(&)A 

This space has natural structures of Diff(S’) and Vect(Si)-module. The 
Diff(S ‘)-action on FX is given by 

@*a = @)(@‘)A 

The Lie algebra Vect(S’) acts on this space by the Lie derivative: let 
f =f(x)d/dx be a vector field, then 

LfU = t&z + xf’a)(d.x)X 

We consider the problem of classification of all non-trivial extensions 

0 + FA -+ GA + Diff+(S’) ---f 0 (1) 

of the group Diff+(S’) by Diff+(S*)-modules .Fx. 
In other words, we are looking for group structures on Diff+(S ‘) x FA given 

by associative product of the following form: 

(@, a)(@, b) = (@ 0 9, b + @*a + BA(@, 9)) 

The expression BA(@, 9) E F,+ satisfies the condition: 

which means that Bx(@, 9) is a 2-cocycle on Diff’(S’) with values in 3~. 
If BA = 0 then the group GA is called the semi-direct product: 
GA = Diff+(S’) D Fx. 

The extension (1) is non-trivial if the Lie group GA is not isomorphic to 
Diff+(S’) D _FA. The cocycle Bx in this case, represents a non-trivial cohomol- 
ogy class of the group H 2(Diff +(S ‘); FA). The classification problem for the 
extensions (1) is equivalent to the problem of computing this cohomology 
group. 

We calculate the group H:(Diff+(Sl); .FA) of differentiable cohomology in 
Van-Est’s sense. It means, that we classify all the extensions given by differ- 
entiable cocycles. We find four non-isomorphic infinite-dimensional Lie 
groups. We give explicit formulae for non-trivial cocycles on Diff+(S’). 
We also consider non-trivial extensions of the Lie algebra Vect(S’): 

0 4 3~ + gx ---f Vect(S’) --f 0 (2) 

One obtains the classification of these extensions as a corollary of some general 
theorems in the cohomology theory of infinite-dimensional Lie algebras. 

On classifying the extensions (2), one finds a series of seven Lie algebras. 
They are defined on the space Vect(S ’ ) @ FA. The commutator is given by: 

[cf, a)(g, b)l = W, 4, L/b - &a + ccf, g)) 
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where c is a 2-cocycle on Vect(S ‘) with values in F’x. 
We also classify non-trivial central extensions of all the Lie algebras given by 

the extensions (2). Some of these Lie algebras have already been considered in 
the mathematical literature, some of them are probably new. 

All the Lie groups and the Lie algebras defined by the extensions (1) and (2) 
seem to be interesting generalizations of the Virasoro group and algebra. Their 
representations, coadjoint orbits etc. appear to be interesting subjects, and de- 
serve further study. 

2. MAIN THEOREMS 

Let us formulate the main results of this paper. 

2.1. Extensions of the group Diff+(S’) 

The following theorem gives a classification of non-trivial extensions (1) up to 
an isomorphism. 

Theorem 1. One hasfor cohomology of the group Diff + (S I): 

H:(Diff+(S’); Fx) R, X = 0, 1, 2, 5, 7 = 

0, x # 0, 1, 2, 5, 7 

In other words, there exists a uniue (modulo isomorphism) non-trivial exten- 
sion of Diff+(S’) by the module FX for each value: X = 0, 1, 2, 5? 7. If 
X # 0, 1, 2, 5, 7, there is no non-trivial extension. 

Let us describe here the 2-cocycles 

Bx : Diff’(S’) x Diff’(S’) + FX 

which generate all possible non-trivial cohomology classes. 
First of all, recall that the following mappings: 

I : Q, H Zog(Qi’(x)) 

dl : @ H d log(@‘(x)) = $d_x 

S:@H [$-;($)2] (dx)2 

define 1-cocycles on Diff+(S’) with values in Fo, .ZFi, &, correspondingly. 
They represent unique (modulo coboundaries) non-trivial classes of the coho- 
mology groups: H,! (Diff+(S’); Fx), X = 0, 1, 2. The cocycle S is called the 
Schwarzian derivative, dl is called the logarithmic derivative. 

To construct non-trivial cocycles on Diff+(S’), we shall use the following 
version of the general cap-product (see e.i. [Br]) on group cocycles. Consider a 
Lie group G. Let: U, V, W be G-modules; u : G ---) CJ, u : G -+ V be 1-cocycles 
on G (., .) : U @ V + W be G-invariant bilinear mapping. Then 
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24 fl4g7 h) = @(u(g)). v(h)) 

is a 2-cocycle on G with values in W. 
We are going to use the following invariant bilinear mapping on the spaces 

(a) The product of tensor-densities: 3x 18 3p -+ 3x+p 

a(x)(d$ ~~(x)(dx)‘“Ha(x)b(x)(dx)X+‘“. 

(b) The Poisson bracket: 3~ 8 3, ---f 3~+/~+i 

{a(x)(dx)x, b(x)(dx)@} = (Xa(x)b’(x) - /Uz’(x)b(x))(&)x+“+’ 

(cf. [W 

Theorem 2. Thecohomologygroups H:(Diff +(S’); 3~) where X = 0, 1, 2, 5, 7 

are generated by the following non-trivial 2-cocycles: 

Bo(@, P) = const(@, 9) = B(@, 9) 

B1 (@, !P) = S*(M) dZ@ 

B*(@, !q = !P*(l@). SC3 
!P”S@ s!P 

(4) 

(5) 

(6) 

k(@, 9) = (9*sq’ p) (7) 

!P*sB s!P 
B7(@> 9) = 2 (p*sQ),,, (s9)u, 

p*sq (SF) 

(!P*s@)” (StqN 

-~(S!P+S(@oO))B5(@, !P) (8) 

Remark. The central extension of Diff+(S’) by 30 N C”(S’) is in fact, a 
semi-direct product of the Bott-Virasoro group by the module of functions: it is 
given by the Thurston-Bott cocycle. 

2.2. Extensions of the Lie algebra Vect(S’) 

The following theorem classifies non-trivial extensions (2). 

Proposition 1. The cohomology group 

( 

R2 ,x=0, 1,2 
H2(Vect(S1);3A) = R ,x=5,7 

0 .A#O,1,2,5,7 

In other words, there exist 2 non-isomorphic non-trivial extensions of Vect(S ‘) 
by the module 3~ for X = 1, 2; and an unique non-trivial extension for each 
x = 0, 5, 7. 

Let us describe 2-cocycles on Vect(S’) with values in 3~ representing the 
non-trivial cohomology classes. 

Theorem 3. The cohomologygroups H2(Vect(S’); 3’x), where X = 0, 1, 2, 5, 7 

are generated by the following 8 non-trivial 2-cocycles: 

280 



~ocr,g)= ;, gx’ I I (9) 

co u-3 g) = C~M,f-, g) = wcf, g) (10) 

Cl u-1 g) = 

21 c.f, g) = 

c2 u-7 g) = 

c2 cr, g) = 

c5 cr, gl = 

c7 c_f, g) = 

I ! i:, $ dx (11) 

(12) 

! I 
r’- $1, (W2 

f"' 
f(W Rb;:l:) W5 

(I 
2 ;:I, 

(13) 

(14) 

(15) 

(16) 

Let us denote gi the Lie algebras given by the non-trivial cocycles ci and gi the 
Lie algebras given by the non-trivial cocycles Ci. 

Remark 1. The algebra cocycles CO, ct , ~2, ~5, c7 correspond to the group co- 
cycles Be, Bt , Bz, B5, B7. The algebra cocycles ~0, ~1, ~2 can not be ‘integrated’ 
to the group Diff+(S’). 

2. The Lie algebra go is a semi-direct product of the Virasoro algebra by the 
module of functions. 

3. The Lie algebra gs was considered in [OR]. 

2.3. Central extensions 

Each of the constructed Lie groups and Lie algebras (except Go, go), has at 
least one non-trivial central extension given by prolongations of the Thurston- 
Bott and Gelfand-Fuchs cocycles. Thus, one has 4 Lie groups which are non- 
trivial extensions of the Virasoro group and 7 Lie algebras which are non-trivial 
extensions of the Virasoro algebra, as described through the following dia- 
gram. 

0 0 

J L 
-TX = 3x 

1 I 
O-+R+gx+ gx -+O 

II L I 
0 -+ R + Vir ---f Vect(S’) + 0 

1 I 
0 0 

An interesting fact is that the Lie algebras gt and gt possess new central exten- 
sions. 
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Let us give here the complete list of non-trivial central extensions of the 
constructed Lie algebras. 

Proposition 2. Non-trivial central extensions of the Lie algebras gi and gi are 

given by the following list. 

(1) Each one of the Lie algebras gt , gz, g5, g7 and go, gt, &, has a non-trivial 
central extension given by: 

c(cf, a)> (g, b)) = wcf> g) 

There exist two more non-trivial central extensions: 
(2) A central extension of the Lie algebra gt given by the cocycle: 

c(cf> a), (8, b)) = s,, Ya -so) dx 

(3) A central extension of the Lie algebra gt given by the cocycle: 

c(cf, a), (g, b)) = js, Cf’b - g’4 dx 

(17) 

(18) 

Let us consider also central extensions of a semi-direct product: Vect(S’) D FA. 

Proposition 3. The cohomology group 

H2(Vect(S’) D .FA; R) = 
R3, X = 0, 1 

R, A # 0, 1 

The cocycles which define central extensions of Vect(S’) D 30 nonequivalent to 
the Virasoro extension, are: 

and 

c(cf, a), (g> b)) = J,, cf”b - 84 dx (19) 

c(cfi a), (g, 6)) = s,,Wb - bda) (20) 

One remarks, that the last cocycle defines the structure of infinite-dimensional 
Heisenberg algebra on the space FO N C”“(S’). This Lie algebra was con- 
sidered in [ACKP]. 

In the case of Vect(S’) D .F, non-trivial cocycles are also given by the for- 
mulae (17) and (18). 

3. LIE ALGEBRAS gs AND g7 AND MOYAL BRACKET 

Consider the standard Poisson bracket on R*: 

{F, G} = FqGP - FPG, 

The Lie algebra of functions on R2 has a non-trivial formal deformation which 
is called the Moyal bracket (see e.g. [FLS]). 

Consider the following bilinear operations invariant under the action of the 
group SL(2, R) of all linear symplectic transformations of R2: 
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(21) 

For example, {F, G}, = FG, {F, G}, = {I;, G}, 

etc. 
The Moyal bracket is defined as a formal series: 

{F, G}, = {F, G}, + ;{F, G}, + $ {F, G}, +. . (24 

It verifies the Jacobi identity and defines a Lie algebra structure on the space 

c-(R2)[kll ff o ormal series in t with functional coefficients. 
The relationship between the Lie algebras g5, g7 and the Moyal bracket is 

based on the following realization of tensor-densities by homogeneous func- 
tions on R2. 

3.1. Tensor-densities on S’ and homogeneous functions on R* 

Consider homogeneous functions on R2 \ (0) (with singularities in the origin): 
F(Kq, up) = rc’F(q, p), where K > 0. 

Lemma 1. (i) The space of homogeneous functions of degree 2 on R2 \ (0) is a 
subalgebra of the Poisson Lie algebra C”(R2 \ (0)) 
(ii) This subalgebra is isomorphic to Vect(S ‘). 

Proof. The isomorphism is given by: f = f (x)d/dx ++ F = r2f (4) where r, C$ 
are the polar coordinates. 

Moreover, the Poisson bracket defines a structure of Vect(S ‘)-module on the 
space of homogeneous functions. Let F and G be homogeneous functions of 
degree 2 and X respectively. Then, their Poisson bracket {F, G} is again a 
homogeneous function of degree A. 

Lemma 2. There exists an isomorphism of Vect(S’)-modules: the space of 
homogeneous functions of degree X on R2 \ (0) and the space of tensor-densities 

3-4. 

Proof. Take the mapping given by: 

f = f (x)(dx)-4 +-+ F = r’f (4) 

It is easy to verify that the Poisson bracket corresponds to the 
this mapping: Lfg - {F, G}. 

Corollary. (i) There exists a series of SLz-invariant operations 

(23) 

Lie derivative by 
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(., .), : 3’x @3/l + 3’X+/A+n 

on the space of tensor-densities on S’. 
(ii) Moreover, there exists a Lie structure given by the Moyal bracket (21) on 

the space of tensor-densities on S I. 

Remark. The isomorphism (23) is in fact, much more general. It is valid in the 
case on an arbitrary contact manifold (see [OR]). 

3.2. Cocycle cs 

Let us substitute two vector fields f = f(x)/dx, g = g(x)d/dx (corresponding 
to homogeneous functions of degree 2 on R2 \ (0)) to the Moyal bracket. We 
get a formal series in t with coefficients in the space of tensor-densities. 

Lemma 3. (i) rfJ; g E Vect(S’), then u, g}3 = {f, g}s = 0. 
(ii) The$rst non-zero term: (f, g17 E 35 isproportional to cs. 

Proof. Let F, G be two functions on R2 \ {0}, then {F, G}7 is a homogene- 
ous function of degree -10. Thus, u, g}7 E 35. It is easy to verify that 
u, g}, = 20160~5. 

Consequently, c5 is a 2-cocycle. Indeed, the Jacobi identity for the Moyal 
bracket implies that the first non-zero term in this series is a 2-cocycle on 
Vect(S’). 

3.3. Cocycle cl 

Lemma 4. The second non-zero term of the Moyal bracket: {f, g}s E 37 ispro- 
portional to c7. 

Proof: straightforward. 
Let us prove that (f, g}9 is again a 2-cocycle on Vect(S ‘). The Jacobi iden- 

tity for the Moyal bracket u, g}t implies: 

{f I {g, %h + {f 3 18, hhh + {f) kc W3 (+cyW = 0 

for any f, g, h E Vect(S’). One checks that the expression {f, {g, h}7}3 is 
proportional to f “‘(g”‘h’” - g’“h”‘), and so one gets: {f, {g, h}7}3 
(+ cycle) = 0. We obtain the following relation: 

{f, {g, h),), + If, isI hAj9 (+cycte) = 0 

which means that {f, g}9 is a 2-cocycle. Indeed, recall that for any tensor-den- 
sity a, {f, a}l = Lfa. Therefore, this relation coincides with: 

LAg, h]s + If, {g, hl, h (+cycle) = 0 

which is exactly the relation d{ ., .}9 = 0. 
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3.4. Group cocycle & 

Let us recall that the mapping s :f(x)d/dx -+ f”‘(x)(d~)~ is a 2-cocycle (an 
algebraic analogue of the Schwarzian derivative) generating the cohomology 
group H 1 (Vect(,S’); F2). It is easy to check, that the following relation is sa- 
tisfied: 

If, & = 504{f”‘, g”‘]j 

Thus, it is natural to look for a group version of the cocycle c7 in the following 
form: B(@, !P) = {**S(Q), S(!P)},. H owever, this formula does not define a 
cocycle on the group Diff+(S’) since the operation A @ BH {A, B}s is not in- 
variant. 

Lemma 5. Let a, b E .Fz, Qi is a difiomorphism, then 

{@*a, @*b}, = @*{a, b}3 + 480S(@)@*{a, b}, 

where S(Q) is the Schwarzian derivative. 

Proof: straightforward. 
Let us verify now that B7 is a 2-cocycle. One must show that 

dB7(@, !P, Z) = B7(@, 9 o E) - B7(@ o 9, Z) + B7(P, S) - Z*B7(@, 9) = 0 

for any @, !P, s” E Diff+(S’). 
Let us take the expression: B(@, !P) = {@*S(G), S(e)},. Lemma 5 implies: 

dB(@, !P, E) = 48OS(Z) . Z*{!P*S(@), S(!P)}, . Consider another expression 
B(@, !P) = (S(g) + S(@ o @)){S(@), S(P)},. A simple computation gives: 
d&G, P, E) = 3S(E) . E* {!P*S(@), S(P)},. Thus, the expression 

B(@, !P) = {M, W}, - 16O(S9 + S@ o !P){S@, S!P}, 

is a 2-cocycle. One checks that this formula is proportional to the formula (8). 

4. PROOFS OF MAIN THEOREMS 

The proofs are quite simple but they use high technique of cohomology of in- 
finite-dimensional Lie algebras. All the necessary details can be found in the 
book of D.B. Fuchs. 

Proof of Proposition 1. Cohomology groups of Lie algebras of smooth vector 
fields with coefficients in modules of tensor fields, where calculated essentially 
in [GF 21, [T] (see also [F], p. 147). Let us recall here the answer. 
The cohomology group 

Hq(Vect(S1); F+) = Hq-‘( Y(S’);R) 

where Y(S’)~S’xS’x~nS3,andH~(Vect(S’);~~=OifX#0,1,2,5,7,..., 
3r**r -,.... The cohomology ring H*(Y(S’);R) 

bri with generators in dimensions 1,1,2. 
is a free anti-commutative alge- 
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One obtains immediately the proof of Proposition 1 

Proof of Theorem 3. The cohomology ring H2(Vect(S1); C”(S’)) is gener- 
ated by three cocycles: 

(cf. Theorem 2.4.12 of [F]). Thus, one has two non trivial cocycles (9), (10). 
H2(Vect(S1); 3 ) 1 is a free H2(Vect(S1); C”(S’))-module. This fact implies 

formulae (1 l), (I 2) for the generating cocycles. 
The cocycles (13) and (14) can be obtained from the isomorphism: 32 N 

31@31. 
The proof that formulae (15) and (16) define 2-cocycles on Vect( S ’ ) is given 

in the sect. 3. (For the cocycle (15) it follows also from the formula (7) for the 
group cocycle). These cocycles define non-trivial cohomology classes. Indeed, 
one can check, that the Lie algebras gs and g7 do not verify the same identities 
as Vect(S*). 

Proof of Theorem 1. The Van Est cohomology ring for the Lie group Diff+(S ‘) 
is defined by the following isomorphism (cf [F], p.244): 

H,‘(Diff+(S’); 3~) 1: H*(Vect(S’), SO(2); 3~) 

(where SU(2) c Diff+(S’) is the maximal compact subgroup of ‘rotations’ of 
S’).Thus,H,*(Diff+(S’); 3~) =OifX#O,l,2,5,7. 
The cohomology ring H*(Vect(S’), SO(2); 3~) is defined by cochains which 
are identically zero on the subalgebra so c Vect(S ‘) (that means, by cochains 
given by differential operators without zero order terms). To prove that the co- 
cycles CO, Cl, ~2 can not be integrated to Diff+(S’), one must show now that the 
cohomology classes of these cocycles can not be represented by such cocycles. 

Suppose, that there exists a cocycle ~6 cohomological to CO such that 

$W g) = C&j> 1 cijf(‘)g(j). Then CO - c; is a differential of some 1-cochain 0. 
But it is easy to verify that the expression daCf, g) depends only on the de- 
rivatives off and g. The contradiction means that there is no cohomology 
class in H*(Vect(S’), SO(2); 30) corresponding to the cocycle CO. Thus, 
H*(Vect(S’), SO(2); 30) = 0. Analogous arguments are valid for Fi, &. 

To finish the proof of the theorem, one should show that the cocycles 
~1, ~2, ~5, ~7 correspond to some group cocycles, but it follows from formulae 
given by Theorem 2. 

Proof of Theorem 2. It follows from the construction, that the mappings (4)- 
(7) are cocycles on Diff(S’). It was proved in the sect. 3 that the formula (8) 
defines a cocycIe. The Lie algebra cocycles associated with the group cocycles 
(4)-(8), are CO, ~1, 22, 25, C7 correspondingly. This proves that the cocycles (4)- 
(8) represent non-trivial cohomology classes. 
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Proof of Propositions 2 and 3. In general, let L be a Lie algebra and A4 an 
L-module, consider a Lie structur LM on L CB M with the commutator: 

[(X7 E)(Y, 41 = (IX, Yll X(rl) - y(t) + 4x7 Y)) 

where Q is a 2-cocycle: a E Z2(L; 44). Let c be a 2-cocycle on LM with scalar 
values. Then: 

(1) The restriction c IL~L is a 2 cocycle on L. 

(2) The condition dc(X, Y, Z) = 0 implies: c(a(X, Y), Z) (+cycle) = 0. 
(3) dc(X, a, b) = 0 implies: c(X(a), 6) + c(a, X(b)) = 0. That is, the restric- 

tion C = c ]M@M is L-invariant. 
(4) dc(X, Y, a) = 0 means: 

c(aCft g), 0) = c(X(a), Y) - c(Y(a)* X) - c([X, Yl, a) 

Thus, the linear mapping c : L -+ M* given by the relation: c(X)a = c(X, a) 
satisfies the following condition: 

dc=coa 

Let us apply these facts to the case: L = Vect(S’), A4 = .Tx. 
First of all, the restriction c ]L~L is proportional to the Gelfand-Fuchs co- 

cycle. 
The unique invariant bilinear mapping C : .FA A 3~ + R is 

?(a, b) = 

if X = 0. One obtains the cocycle (20) for the semi-direct product. This cocycle 
can not be extended on the Lie algebra go, since the property d? = E o a is not 
satisfied. If X # 0, then C is I-cocycle. 

The dual module Fi is isomorphic to F1-x. Consider the cohomology group: 
H ’ (Vect(S’); 3t_,& w h ere X = 0, 1, 2, 5, 7. It is not trivial in two cases: 
X = 0, 1. Otherwise, there is no non-trivial extensions which are not equivalent 
to the Virasoro one. The group H 1 (Vect(S ‘); Fe) is generated by the following 
two elements: 

f(x)dldx -f(x) f(x)dldx Hf’(X) 

(the first part of Theorem 2.4.12 of [F]). One obtains the cocycles (17) and (18) 
which satisfy the condition 2). The group H’(Vect(S’); Ft) has one generator 

f(x)d/dx w f”(x)dx 

(not f Hf'dx: there is a misprint in [F] here). One gets the cocycle (19). 
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