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a b s t r a c t

The Hurwitz problem of composition of quadratic forms, or of ‘‘sum of squares
identity’’ is tackled with the help of a particular class of (Z/2Z)n-graded non-associative
algebras generalizing the octonions. This method provides explicit formulas for the
classical Hurwitz–Radon identities and leads to new solutions in a neighborhood of the
Hurwitz–Radon identities.
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1. Introduction

A square identity of size [r, s,N] is an identity

(a21 + · · · + a2r ) (b21 + · · · + b2s ) = c21 + · · · + c2N , (1.1)

where a1, . . . , ar and b1, . . . , bs are independent indeterminates and each ci is a bilinear form in (a1, . . . , ar) and (b1, . . . , bs)
with integer coefficients. The problem to determine all triples of positive integers r, s,N for which there exists a square
identity of size [r, s,N] was formulated by Hurwitz [10] and remains widely open. Such triples are called admissible. An
admissible triple [r, s,N] is optimal if r and s cannot be increased and N cannot be decreased. This problem has various
applications and interpretations in number theory, linear algebra, geometry and topology, see [21,19] for a complete
overview.

The simplest example is called Brahmagupta’s two-square identity

(a21 + a22) (b21 + b22) = (a1b1 − a2b2)2 + (a1b2 + a2b1)2,

which can be easily proved algebraically, but can also be understood as equality between the products of the norms of two
complex numbers and the norm of their product:

N (a) N (b) = N (a · b).

The similar equalities in the algebras of quaternions H and of octonions O coincide with Euler’s four-square identity (1748)
and Degen’s eight-square identity (1818), respectively. We refer to [7] for the history of these identities and their meaning.

In 1898, Hurwitz proved his celebrated theorem [10] stating that N-square identities exist only for N = 1, 2, 4 and 8.
Actually, Hurwitz proved a stronger ‘‘non-existence’’ result in the casewhere ci are bilinear formswith complex coefficients.
In 1918 (published in 1922), Hurwitz [11] generalized his theorem and established the largest integer r = ρ(N) for which
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there exists a [r,N,N]-identity with complex coefficients. In 1922, Radon [18] independently solved a similar problem in
the case of real coefficients. The result is the same in both cases: write N in a form N = 2n(2k + 1), then

ρ(N) =

 2n + 1, n ≡ 0 mod 4
2n, n ≡ 1, 2 mod 4
2n + 2, n ≡ 3 mod 4.

The function ρ is called the Hurwitz–Radon function (this function also appears in topology [1] and linear algebra [2]). Note
that Hurwitz’s constructive proof leads to [r,N,N]-identities with integer coefficients. According to [8], this even implies
the existence of such identities with coefficients in {−1, 0, 1}.

A nice feature of the Hurwitz–Radon identities is their relation to Clifford algebras. Every square identity of size
[r + 1,N,N] defines a representation of the real Clifford algebra Cℓ0,r by N × N-real matrices. In this representation the
matrices corresponding to the generators of Cℓ0,r are orthogonal and skew-symmetric matrices with integer coefficients.
Conversely, every such representation of Cℓ0,r defines an [r +1,N,N]-identity. In his original work [10], Hurwitz implicitly
constructed Clifford algebras and their representations. However, this was formulated in an explicit and conceptual way
much later (see [21] for more details).

Besides the Hurwitz–Radon formula, a number of solutions to the Hurwitz problem are known. We refer to
[3,12,13,15,20,22] for concrete examples of admissible triples [r, s,N] and various methods to prove their optimality. The
complete list of the admissible triples with N ≤ 32 is given in [23].

In [24,25], Yuzvinsky introduced a new approach to construct square identities, see also [14]. His method is based on
monomial pairings on the group algebra over (Z/2Z)n. In particular, the existence of infinite series of identities of size

[2n + 2, 2n
− ϕ(n), 2n

], (1.2)

where the function ϕ(n) is given by the binomial coefficients

ϕ(n) =


n

n/2


, n ≡ 0 mod 4, ϕ(n) = 2


n − 1

(n − 1)/2


, n ≡ 1 mod 4,

was established. The above values of [r, s,N] are called Yuzvinsky–Lam–Smith formulas (see [21]). Another series of
triples:

2n, 2n
− 2n, 2n

− 2


(1.3)

can be found in [6]. To the best of our knowledge, the Hurwitz–Radon formula, the expressions (1.2) and (1.3) as well as
their direct consequences, are the only known infinite series of solutions to the Hurwitz problem.

In the present paper, we obtain infinite families of admissible triples [r, s,N] similar to (1.2). Our method is similar to
the Yuzvinsky method, but the monomial pairings we consider are different. We use a series of algebras constructed in the
recent work [17]. These algebras generalize the classical algebra of octonions and Clifford algebras at the same time. As an
application of these algebras, explicit expressions for the Hurwitz–Radon identities were provided in [17]. Here we extend
the method to obtain more general identities. As well as (1.2), the triples that we obtain are close to the Hurwitz–Radon
triple. Whereas (1.2) is obtained from [ρ(2n), 2n, 2n

] by increasing the first entry, ρ(2n), we will decrease the third entry,
2n. Let us also mention that our formulas include (1.3) as the simplest case.

Let us also mention that optimality of [r, s,N] is often a difficult problem. For instance, it is not known whether
(1.2) is optimal. We show that our formulas generate several optimal (and several best known) values [r, s,N]. However,
unfortunately we do not have any result on optimality of our formulas.

The paper is organized as follows. In Section 2, we formulate the main results. In Section 3, we introduce the general
notion of twisted group algebra over the Abelian group (Z/2Z)n. In Section 4, we recall the definition of the algebras On and
introduce the notion of a Hurwitzian subset of (Z/2Z)n. Proofs of the main results are given in Section 5.

2. The main results

The first family of admissible triples that we obtain depends on two parameters, ℓ and k.

Theorem 1. (i) For every n, there exist square identities of size [r, s,N] with
r = 2n,

s = 2n
− 2


k − 1
2


+ ℓ + 1


n + 4


k
3


+ 2 k ℓ,

N = 2n
− 2


k − 1
2


+ ℓ + 1


,

(2.1)

for all 1 ≤ ℓ < k ≤ n.
(ii) If n ≡ 3mod 4, then there are also identities of size [r + 2, s − 2,N], where r, s,N are as in (2.1).



A. Lenzhen et al. / Journal of Pure and Applied Algebra 215 (2011) 2903–2911 2905

For small values of ℓ and k, formula (2.1) gives the following triples:
2n, 2n

− 4n + 4, 2n
− 4


,


2n, 2n

− 6n + 10, 2n
− 6


,


2n, 2n

− 8n + 16, 2n
− 8


.

We conjecture that the values (2.1) are optimal if n is sufficiently large.
Let us give a few examples of concrete numeric values.

Example 2.1. (a) For n = 5, we obtain the following admissible triples: [10, 12, 26], [10, 16, 28]; the latter is optimal
(as proved in [23]).

(b) For n = 6, we obtain [12, 38, 58], [12, 44, 60] that correspond to the best known values, (cf, [21], pp. 292–293).
(c) For n = 7, we obtain the values [14, 88, 120], [14, 96, 122], [14, 104, 124] from (2.1). Furthermore, part (ii) of the

theorem leads to [16, 86, 120], [16, 94, 122], [16, 102, 124].
(d) For n = 8, we obtain [16, 218, 250], [16, 228, 252].

The second family of identities is parametrized by an integer k < n
2 . The values of s and N are given in terms of sums of

binomial coefficients.

Theorem 2. (i) If n ≡ 1 mod 4, then there exist square identities of size [r, s,N], where

r = 2n, s =

−
0≤i≤k−1

2


n
m − i


, N =

−
0≤i≤k

2


n
m − i


, (2.2)

where m = (n − 1)/2 and 1 ≤ k ≤ m.
(ii) If n ≡ 3mod 4, then there exist square identities of size [r + 2, s,N], where r, s and N are as in (2.2).

Let us give the first and simplest example. In the case k = 1, the formula (2.2) reads[
2n, 2


n
m


, 2


n + 1
m

]
,

[
2n + 2, 2


n
m


, 2


n + 1
m

]
,

for n ≡ 1 mod 4 and n ≡ 3 mod 4, respectively.

Example 2.2. Weobtain the values [10, 20, 30], [16, 70, 112], [18, 252, 420]. The second one strengthens the known triple
[16, 64, 112], see [21], p. 294.

3. Twisted group algebras over (Z/2Z)n

In this section, we recall the definition of twisted group algebras over the Abelian group (Z/2Z)n. These algebras include
Clifford algebras and the algebra of octonions. We then explain Yuzvinsky’s idea [24] of construction of square identities out
of a twisted group algebra.

3.1. Definition and examples of twisted group algebras

Consider the group algebra R [(Z/2Z)n] over the Abelian group (Z/2Z)n. Denote by ux the natural basis vectors indexed
by elements of the group x ∈ (Z/2Z)n. One then has:

R

(Z/2Z)n


=


x∈(Z/2Z)n

R ux.

Given a function f : (Z/2Z)n × (Z/2Z)n → Z/2Z, satisfying f (x, 0) = f (0, x) for all x ∈ (Z/2Z)n, one defines a twisted
product on R [(Z/2Z)n]

ux · uy = (−1)f (x,y) ux+y,

for all x, y ∈ (Z/2Z)n. The defined algebra is called a twisted group algebra over (Z/2Z)n and denoted by (R [(Z/2Z)n] , f ).
The basis vector u0 is a unit in (R [(Z/2Z)n] , f ).

Example 3.1. Recall that the Clifford algebra Cℓ0,n is the associative algebra with n generators γ1, . . . , γn and relations

γ 2
i = −1, γiγj = −γjγi.

Write elements of (Z/2Z)n in the form x = (x1, . . . , xn), where xi = 0, 1, and choose the function

fCℓ(x, y) =

−
1≤i≤j≤n

xiyj. (3.1)

It turns out that the twisted group algebra (R [(Z/2Z)n] , fCℓ) is isomorphic to the Clifford algebra Cℓ0,n, see [5] for the details.
For instance, if n = 2, then this is nothing but the algebra of quaternions H.
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The algebra (R [(Z/2Z)n] , f ) is associative if and only if f is a 2-cocycle on the group (Z/2Z)n, i.e.,

f (y, z) + f (x + y, z) + f (x, y + z) + f (x, y) = 0,

for all x, y, z ∈ (Z/2Z)n. This is obviously the case for the bilinear function (3.1).
The following example realizes the classical non-associative algebra of octonions O as a twisted group algebra with a

cubic twisting function f (that is not a 2-cocycle). This result was found in [4].
Example 3.2. The twisted group algebra (R


(Z/2Z)3


, f ) defined by the function

f (x, y) = x1x2y3 + x1y2x3 + y1x2x3 +

−
1≤i≤j≤3

xiyj

is isomorphic to the algebra of octonions O.

3.2. Multiplicativity criterion

In this subsection, we explain the Yuzvinsky original idea (see [24] and also [25]).
Let us consider a twisted group algebra (R [(Z/2Z)n] , f ). We define the Euclidean norm:

N (a) =

−
x∈(Z/2Z)n

a2x , (3.2)

for a =
∑

x∈(Z/2Z)n ax ux, where ax ∈ R.
Recall that a composition algebra is a normed algebra such that, for any two elements a and b,

N (a) N (b) = N (a · b). (3.3)
It is well-known (and follows for instance from Hurwitz’s theorem) that there are no composition algebras of dimension

greater than 8. Therefore, if n ≥ 4, then the condition (3.3) cannot be satisfied for arbitrary elements a and b of the twisted
group algebra (R [(Z/2Z)n] , f ). In order to find square identities, we will look for subsets A, B of (Z/2Z)n, such that the
condition (3.3) is satisfied for

a ∈ SpanR(ux, x ∈ A), b ∈ SpanR(ux, x ∈ B).

Definition 3.3. Given two subsets A, B ⊂ (Z/2Z)n, we say that (A, B) is a multiplicative pair if the condition (3.3) holds for
any two elements of the form

a =

−
x∈A

axux, b =

−
y∈B

byuy.

Note that this definition depends on the twisting function f . Moreover, existence of multiplicative pairs is an important
property of f .

Recall that the sumset, A+ B, of subsets A and B in (Z/2Z)n is the set formed by pairwise sums of the elements of A and B,
i.e.

A + B = {a + b | a ∈ A, b ∈ B}.

Proposition 3.4. If (A, B) is a multiplicative pair, then there exists a square identity of size

[r, s,N] = [card(A), card(B), card(A + B)],

which can be written explicitly as−
x∈A

a2x

−
y∈B

b2y


=

 −
z∈A+B

c2z


where

cz =

−
(x,y)∈A×B
x+y=z

(−1)f (x,y) ax by.

Proof. This is an immediate consequence of the property (3.3). �

The following important statement is proved in [24]. It provides a criterion for subsets A and B to be a multiplicative pair
and, therefore, it also proves the existence of corresponding square identities. The proof is elementary and we give it here
for the sake of completeness.
Proposition 3.5. Let A and B be two subsets of (Z/2Z)n. The following two conditions are equivalent
(i) The pair (A, B) is multiplicative.
(ii) For all x ≠ z ∈ A and y ≠ t ∈ B such that x + y + z + t = 0, one has

f (x, y) + f (z, t) + f (x, t) + f (z, y) = 1. (3.4)
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Proof. The product of the Euclidean norms is obviously N (a) N (b) =
∑

x,y a2x b
2
y . On the other hand, one obtains:

N (a · b) =

−
x+y+z+t=0

(−1)f (x,y)+f (z,t) ax by az bt .

It follows that the condition (3.3) is satisfied if and only if the terms ax by az bt and ax bt az by cancel whenever (x, y) ≠ (z, t)
and ax by az bt ≠ 0, in other words, the corresponding signs are opposite. Hence the result. �

Our next goal is to find a twisted group algebra (R [(Z/2Z)n] , f ) that admits multiplicative pairs of large cardinality.

4. The algebras On

In this section, we apply the results of Section 3 to a particular series of twisted group algebras.

4.1. Definitions

We recall the definition and the main properties of the algebras On generalizing the algebra of octonions. This section
presents a brief account, the details can be found in [17].
Definition 4.1. The algebra On is the twisted group algebra defined by the function

fO(x, y) =

−
1≤i<j<k≤n


xixjyk + xiyjxk + yixjxk


+

−
1≤i≤j≤n

xiyj, (4.1)

for all x = (x1, . . . , xn) and y = (y1, . . . , yn), elements of (Z/2Z)n.
Note that O3 is exactly the algebra of octonions O, cf. Example 3.2.
The main property of the algebra On is that its structure is determined (up to isomorphism) by a single function in one

variable

α : (Z/2Z)n → Z/2Z

that we call the generating function.
Definition 4.2. Given a twisted group algebra (R [(Z/2Z)n] , f ), we say that this algebra has a generating function if there
exists a function α : (Z/2Z)n → Z/2Z such that
(i) For all x, y ∈ (Z/2Z)n, the following equation is satisfied:

f (x, y) + f (y, x) = α(x + y) + α(x) + α(y),

(ii) For all x, y, z ∈ (Z/2Z)n,

f (y, z) + f (x + y, z) + f (x, y + z) + f (x, y)
= α(x + y + z) + α(x + y) + α(x + z) + α(y + z) + α(x) + α(y) + α(z).

Remark 4.3. The above conditions (i) and (ii) have cohomological meaning. In particular the expression on the right-hand
side of (i) and the left-hand side of (ii) are the differentials δα and δf , respectively. The idea of existence of a generating
function goes back to Eilenberg and MacLane (see [16]); this idea is also crucial for the theory of error-correcting codes and
code loops (see [9]).

One can immediately check the following statement.
Proposition 4.4 ([17]). (i) The function

αO(x) := fO(x, x),

for x ∈ (Z/2Z)n, is a generating function for the algebra On.
(ii) For f = fO and x + y + z + t = 0, one has

fO(x, y) + fO(z, t) + fO(x, t) + fO(z, y) = αO(x + z). (4.2)
(iii) The function αO(x) depends only on the weight of the element x, i.e., on the integer

|x| =

−
1≤i≤n

xi.

Note that equation (4.2) is equivalent to (3.4).
The algebra On is the unique twisted group algebra over (Z/2Z)n that admits a generating function αO which is invariant

under the action of the group of permutations Sn on (Z/2Z)n, i.e., the action permuting the coordinates of x.
By (iii) of Proposition 4.4, the value αO(x) only depends on the weight |x|. It turns out that αO is 4-periodic.

αO(x) =


0, if |x| ≡ 0 mod 4,
1, otherwise.
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4.2. The Hurwitzian sets

We use the function αO to give a combinatorial characterization of multiplicative pairs for the algebra On.
Lemma 4.5. A pair (A, B) of subsets of (Z/2Z)n is a multiplicative pair if and only if the following condition is satisfied. If

w ∈ (A + A) ∩ (B + B)

and w ≠ 0, then |w| ≢ 0 ( mod 4).
Proof. The condition 0 ≠ w ∈ (A + A) means w = x + z for some elements x, z ∈ A such that x ≠ z. Similarly, w = y + t ,
where y, t ∈ B. By (3.4) and (4.2), multiplicativity of a pair (A, B) is equivalent to

αO(x + z) = αO(y + t) = 1, (4.3)
for all x, z ∈ A and y, t ∈ B such that x + z = y + t . Since αO is 0 only for elements of weight multiple of 4, the lemma now
follows. �

Definition 4.6. A subset H ⊂ (Z/2Z)n is called a Hurwitzian set if H forms a multiplicative pair with (Z/2Z)n, and card(H)
is the greatest possible with this condition.

Let us fix the following notation for some particular elements of (Z/2Z)n:
e0 := (0, 0, . . . , 0),
e0 := (1, 1, . . . , 1),
ei := (0, . . . , 0, 1, 0, . . . , 0), where 1 occurs at the ith position,
ei := (1, . . . , 1, 0, 1, . . . , 1), where 0 occurs at the ith position.

The following table provides a possible choice of Hurwitzian sets and the size of the identities obtained by applying
Proposition 3.4, depending on the class of nmod 4.

Hurwitzian set Size of identity

n ≡ 0 mod 4 H = {ei, e1 + ei} [2n, 2n, 2n
]

n ≡ 1 mod 4 H = {ei, ei} [2n, 2n, 2n
]

n ≡ 2 mod 4 H = {ei, e1 + ei} [2n, 2n, 2n
]

n ≡ 3 mod 4 H = {e0, e0, ei, ei} [2n + 2, 2n, 2n
]

(4.4)

where 1 ≤ i ≤ n. Indeed, it is easy to check that |x+ z| is never a multiple of 4, when x, z ∈ H . Therefore the condition (4.3)
is always satisfied.
Remark 4.7. For n = 1, 2 or 3 mod 4, the triples in the table are the optimal triples given byHurwitz–Radon theorem.When
n ≡ 0 mod 4, we do not achieve the optimal [2n + 1, 2n, 2n

]. This is related to the fact that for n ≡ 0 mod 4, the algebra On
is not simple.

5. Generalized Hurwitz–Radon identities

In this section, we prove Theorems 1 and 2. The proofs are based on Proposition 3.4. The idea is to start with a
multiplicative pair (H, B), where B = (Z/2Z)n, and reduce the size of H + B by removing elements from B. We first give
some examples.

5.1. The simplest examples

Let H be a Hurwitzian set as in table (4.4).
(1) For B = (Z/2Z)n \ H , the sumsets are as follows:

H + B = (Z/2Z)n \ {e0, e1}, H + B = (Z/2Z)n \ {e0, ē0},

for n ≡ 0, 2 mod 4 and n ≡ 1, 3 mod 4, respectively. This leads to the formula (1.3). Furthermore, in the case n ≡ 3 mod 4,
one obtains an identity of size

[2n + 2, 2n
− 2n − 2, 2n

− 2].

(2) Assume n is odd and let

B = (Z/2Z)n \ {x, |x| = 1, 3, n − 3, n − 1} .

The sumset is then of the form:

H + B = (Z/2Z)n \ {x, |x| = 0, 2, n − 2, n} .
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Fig. 1. Sumset H + B for n = 2m + 1 and B consisting of elements of weightm and m + 1.

This leads to identities of size[
2n, 2n

− 2

n +


n
3


, 2n

− 2

n
2


− 2

]
,

which corresponds to the second ‘‘border case’’ in Theorem 1, namely to formula (2.1) with (ℓ, k) = (n − 1, n).
(3) Again, let n be odd andwrite n = 2m+1. Set B = {x, |x| = m,m + 1} . ThenH+B = {x, |x| = m−1,m,m+1,m+2},

see Fig. 1. This leads to identities of size[
2n, 2


n
m


, 2


n + 1
m

]
,

[
2n + 2, 2


n
m


, 2


n + 1
m

]
,

if n ≡ 1 mod 4 and n ≡ 3 mod 4, respectively. This is Theorem 2, in the particular case k = 1.

5.2. Proof of Theorem 1

In Section 5.1, part (2), we removed all the elements of weight 2 and (n−2). Wewill now remove them one after another.
Consider first the case when n is odd.
Set eij := ei + ej and eij := e0 + eij. In order to eliminate two elements eij and eij from H + B, we have to remove from B

the following set:

H ∪

H + eij


∪


H + eij


.

Notice however, that

H + eij


and


H + eij


coincide and their intersection with H is {ei, ej, ei, ej}. Thus the cardinality of

the removed set is 4n − 4.
Finally, we fix (ℓ, k) with ℓ < k and let B be the following set

B = (Z/2Z)n \


H ∪


(i,j)≺(ℓ,k)


H + eij


,

where ≺ is the lexicographical order. It can be easily proved by induction that the removed set is of cardinality
(k − 1)(k − 2) + 2ℓ + 2


n −

2
3

(k − 2)(k − 1)k + 2 kℓ.

The corresponding sumset is then of the form

H + B = (Z/2Z)n \ {e0, e0, eij eij, (i, j) ≺ (ℓ, k)}.

Its cardinality is

card(H + B) = 2n
− (k − 1)(k − 2) − 2 ℓ − 2.

We now apply Proposition 3.4 to obtain identities (2.1) for an odd n.
In the case n is even, the proof is similar, with e1 playing the role of e0.
Theorem 1 is proved.
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Fig. 2. Sumset H + B for n = 2m + 1 and B consisting of elements of weight between (m − k + 1) and (m + k).

5.3. Proof of Theorem 2

We write n = 2m + 1. Fix k such that 0 ≤ k ≤ m and set

B = {x, |x| = m − k,m − k + 1, . . . ,m,m + 1, . . . ,m + k + 1} .

The sumset is as follows (see Fig. 2)

H + B = {x, |x| = m − k − 1,m − k, . . . ,m + k + 1,m + k + 2} .

By Proposition 3.4, this leads to the formulas of Theorem 2.
Theorem 2 is proved.

5.4. The twisting function fO and representations of the Clifford algebras

Let us finally mention that the twisting function fO that defines the algebras On allows one to construct representations
of the Clifford algebras Cℓ0,r explicitly.

For x ∈ (Z/2Z)n, we define a (2n
×2n)-matrix Gx whose coefficients are indexed by elements (y, t) ∈ (Z/2Z)n×(Z/2Z)n

and are given by

Gx(y, t) =


(−1)fO(y+t,y), if y + t = x,
0, otherwise.

Note that for x = (0, . . . , 0) one obtains G0 = Id.
The matrices Gx satisfy the following properties.

(i) G2
x = (−1)fO(x,x) Id,GT

x = G−1
x = (−1)fO(x,x) Gx.

(ii) GxGx′ = −Gx′Gx if and only if fO(x, x′) + fO(x′, x) = 1.

This leads to representations of Clifford algebras in R[2n
]. Indeed, if A is a subset of r elements of (Z/2Z)n such that

fO(x, x) = 1 and fO(x, x′) + fO(x′, x) = 1, for all x, x′
∈ A, then the matrices Gx, x ∈ A, represent the real Clifford algebra

Cℓ0,r in the algebra R[2n
].

Example 5.1. We describe explicitly the irreducible representations of some of the simple real Clifford algebras. We give a
possible choice of sets A. The condition on the set A can be expressed using the generating function αO. We use the notation
of Section 4.2.
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• If n ≡ 3 mod 4, an irreducible representation of Cℓ0,2n = R[2n
] is given by

Gx, x ∈ {ei, ei, 1 ≤ i ≤ n}.

• If n ≡ 1, 3 mod 4, an irreducible real representation of Cℓ0,2n−1 = C[2n−1
] is given by

Gx, x ∈ {ei, e1 + ej, 1 ≤ i ≤ n, 1 < j ≤ n}.

• If n ≡ 2, 3 mod 4, an irreducible real representation of Cℓ0,2n−2 = H[2n−2
] is given by

Gx, x ∈ {ei, e1 + ej, 1 ≤ i ≤ n, 1 < j < n}.
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