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Abstract. The spaces of linear differential operatorsDl�Rn� acting on l-densities onRn and the
space Pol�T�Rn� of functions on T�Rn which are polynomial on the ¢bers are not isomorphic
as modules over the Lie algebra Vect�Rn� of vector ¢elds of Rn. However, these modules are
isomorphic as sl�n� 1;R�-modules where sl�n� 1;R� � Vect�Rn� is the Lie algebra of
in¢nitesimal projective transformations. In addition, such an sln�1-equivariantbijection is unique
(up to normalization).This leads to a notion of projectively equivariant quantization and symbol
calculus for a manifold endowed with a (£at) projective structure.
We apply the sln�1-equivariant symbol map to study theVect�M�-modulesDk

l�M� of kth-order
linear differential operators acting on l-densities, for an arbitrary manifold M and classify the
quotient-modules Dk

l�M�=D`l�M�.
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1. Introduction

Roughly speaking, a quantization procedure associates linear operators on a Hilbert
space to functions on a symplectic manifold. In particular, if this manifold is the
cotangent bundle T�M of a smooth manifold M, a now standard quantization pro-
cedure leads to a linear bijection from the space Pol�T�M� of functions on T�M
which are polynomial on the ¢bers (or, equivalently, symmetric contravariant tensor
¢elds on M), into the space D�M� of linear differential operators on M:

Q : Pol�T�M� ! D�M� ; quantization map:

The inverse

s � Qÿ1: D�M� ! Pol�T�M� ; symbol map

associates to each operator A 2 D�M� a sort of total symbol.

1.1. One of the main questions usually arising in this context is to ¢nd the group of
symmetries, that is, the Lie group acting onM such that the quantization procedure
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is equivariant with respect to this action. It is natural, then, to consider the space of
differential operators D�M� as a module over the group Diff�M� of diffeomorphisms
of M.

There exists a natural family of Diff�M�- and Vect�M�-module structures on
D�M�. To de¢ne it, one considers differential operators as acting on tensor-densities
of arbitrary degree l, this leads to a Diff�M�-module of differential operatorsDl�M�.
The module D1=2�M� on half-densities plays a special role (see [2, 11]).

It is worth noticing that modules of differential operators on tensor densities have
been studied in recent papers [4, 6, 9, 13].

1.2. One of the dif¢culties of quantization is that there is no natural quantization
map. In other words, Pol�T�M� and Dl�M� are not isomorphic as modules over
the group Diff�M� of diffeomorphisms of M nor as modules over its Lie algebra
Vect�M� of vector ¢elds.

The main idea of this paper is to ¢x amaximal group of symmetries for which such
quantization is still possible. We consider a manifold M (of dimension n) endowed
with a (£at) projective structures (i.e. we locally identifyM with the projective space
RPn). We show that there exist unique (up to a natural normalization) symbol and
quantization maps equivariant with respect to the group SL�n� 1;R� of projective
symmetries.

In terms of modules of differential operators, our main result can be formulated as
follows. We consider a natural embedding sl�n� 1;R� � Vect�Rn� (sl�n� 1;R� acts
on Rn by in¢nitesimal projective transformations). It turns out that Dl�Rn� and
Pol�T�Rn� are equivalent sl�n� 1;R�-modules. In particular, the sl�n� 1;R�-
modules Dl�Rn� with different values of l are isomorphic to each other.

1.3. We apply our sln�1-equivariant symbol map to the problem of classi¢cation of
modules of differential operators on an arbitrary smooth manifold M. The classi-
¢cation of Vect�M�-modules Dk

l�M� has been performed in a series of recent works
[6, 13] and [9]. In this Letter we classify the quotient-modules Dk

l�M�=D`l�M�.
We prove that for kÿ `X 2 every such module (except the special case l � 1=2 with
kÿ ` � 2) is a nontrivial deformation of the Vect�M�-module of symbols and com-
pute the corresponding cohomology classes of Vect�M�.

1.4. An important aspect discussed in this Letter is the property of locality. We show
that any linear map on Pol�T�Rn� is necessarily local if it is equivariant with respect
to the Lie group generated by translations and homotheties ofRn (i.e., with respect
to R� j�Rn-action). This proves, in particular, that an sln�1-equivariant symbol
is given by a differential map.

1.5. Remarks. (a) The relationship between differential operators and projective
geometry has already been studied in the fundamental book [19]. The best known
example is the Sturm^Liouville operator d2=dx2 � u�x� describing a projective struc-
ture on R (or on S1 if u�x� is periodic).
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(b) In the one-dimensional case (n � 1), the sl2-equivariant symbol map and
quantization map were obtained (in a more general situation of pseudodifferential
operators) in recent work by P. B. Cohen, Yu. I. Manin and D. Zagier [4]. If
n � 1, our isomorphisms coincide with those of [4]. This Letter is a revised version
of the electronic preprint [14], although we were not aware of the article [4] when
the computation of the sln�1-equivariant symbol was carried out.

(c) In the (algebraic) case of global differential operators on CPn, existence and
uniqueness of the sln�1-equivariant symbol is a corollary of Borho^Brylinski's results
[3]: D�CPn�, as a module over sl�n� 1;C�, has a decomposition as a sum of
irreducible submodules of multiplicity one. This implies the uniqueness result.
Our explicit formul� are valid in the holomorphic case and de¢ne an isomorphism
between D�CPn� and the space of functions on T�CPn which are polynomial on
¢bers.

We believe that the appearance of projective symmetries in the context of
quantization is natural. We do not know any work on this subject except the special
one-dimensional case. A particular role of the Lie algebra of projective
transformations is related to the fact that sl�n� 1;R� � Vect�Rn� is a maximal
Lie subalgebra. Any bigger Lie subalgebra of Vect�Rn� is in¢nite-dimensional.

2. Modules of Di¡erential Operators on RRn

2.1. DEFINITION OF THE Vect�Rn�-MODULE STRUCTURES

Let us recall the de¢nition of the natural 1-parameter family of Vect�Rn�-module
structures on the space of differential operators (see [6, 9, 13]).

DEFINITION. For each l 2 R (or C), consider the space F l of tensor densities of
degree l on Rn, that is, of sections of the line bundle jLnT�Rnj
l. The space F l

has a natural structure of Vect�Rn�-module, de¢ned by the Lie derivative.

In coordinates:

f � f�x1; . . . ; xn� dx1 ^ . . . ^ dxn
�� ��l:

The action of X 2 Vect�Rn� on f 2 C1�Rn� is given by

Ll
X �f� � Xi@if� l@iX if ; �2:1�

where @i � @=@xi. Note, that the formula (2.1) does not depend on the choice of local
coordinates.

Remark.Modules F l are not isomorphic to each other for different values of l (cf.
[8]). The simplest examples of modules of tensor densities are F 0 � C1�Rn� and
F 1 � On�Rn�, the module F 1=2 is particularly important for geometric quantization
(see [2, 11]).
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DEFINITION. Consider the spaceDl�Rn� (orDl for short) of differential operators
on tensor densities, A : F l! F l. The natural Vect�Rn�-action on Dl is given by

LlX �A� � Ll
X � Aÿ A � Ll

X : �2:2�

Denote Dk
l � Dl the Vect�Rn�-module of kth-order differential operators.

In local coordinates any linear differential operator of order k is of the form:

A � ai1...ik
k @i1 � � � @ik � � � � � ai1@i � a0 �2:3�

with coef¢cients ai1...ij
j � ai1...ij

j �x1; . . . ; xn� 2 C1�Rn� (sum over repeated indices is
understood).

2.2. Vect�Rn�-MODULES OF SYMMETRIC TENSOR FIELDS ON Rn

Consider the space Pol�T�Rn� of functions on T�Rn � R2n polynomial on the ¢bers:
P �Pk

j�0 a
i1...ij
j xi1 � � � xij : This space has a natural Vect�Rn�-module structure

(de¢ned by the lift of a vector ¢eld to the cotangent space):

LX � Xi@i ÿ xj@iX
j@xi ; �2:4�

here and below we denote @i � @=@xi and @xi � @=@xi.
As a Vect�Rn�-module, Pol�T�Rn� is isomorphic to the direct sum of the modules

of symmetric contravariant tensor ¢elds on R, i.e. Polk�T�Rn� � S0 � � � � � Sk;
where S` � G�S`�TRn��.

2.3. IDENTIFICATION OF THE VECTOR SPACES Dl AND Pol�T�Rn�

DEFINITION. Substituting the monomial xi1 � � � xij (where x � �xi� 2 Rn�) to the
partial derivation �@=@xi1� . . . �@=0@xij �, allows us to identify A with some element
of Pol�T�Rn�:

ai1...ik
k @i1 � � � @ik 7! ai1...ik

k xi1 � � � xik : �2:5�

We get in this way an isomorphism of vector spaces D � Pol�T�Rn�.
The Vect�Rn�-action (2.2) is, of course, different from the standard Vect�Rn�-

action (2.2) on polynomials. We will, therefore, distinguish two Vect�Rn�-modules:

Dl � �Pol�T�Rn�;Ll�; �2:6�

S � �Pol�T�Rn�;L�: �2:7�
In particular, a vector ¢eld X corresponds to a ¢rst-order polynomial: X � Xixi.

The operator of Lie derivative is then given by a Hamiltonian vector ¢eld

LX � @xiX@i ÿ @iX@xi : �2:8�
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Remark. The identi¢cation (2.5) is often called in mathematical physics the normal
ordering. Another frequently used way to identify the spaces of differential operators
on Rn with the space Pol�T�Rn� is provided by the Weyl symbol calculus.

2.4. COMPARISON OF THE Vect�Rn�-ACTION ON Dl AND S

Let us compare the Vect�Rn�-action on Dl with the standard Vect�Rn�-action (2.8)
on Pol�T�Rn�. We will use the identi¢cation (2.5) and write the Vect�Rn�-action
(2.2) in terms of polynomials.

LEMMA 2.1. The Vect�Rn�-action on Dl has the following form:

LlX � LX ÿ 1
2 @ijX@xixj ÿ l �@i �Div�X@xi�

� �higher order derivatives @i1 � � � @ilX �;
�2:9�

where DivX � @i@xiX � @iX i.
Proof. Straightforward computation. &

3. Projective Lie Algebra sl�n� 1;RR�
The standard action of the Lie algebra sl�n� 1;R� on Rn is generated by the vector
¢elds:

@i ; xi@j ; xiE ; �3:1�

where

E � xj@j : �3:2�

It will be called the projective Lie algebra. It contains the af¢ne Lie algebra, the Lie
subalgebra generated by the constant and the linear vector ¢elds.

Remark. The group SL�n� 1;R� acts onRPn by homographies (linear-fractional
tranformations). This action is locally de¢ned on Rn � RPn. The Lie subalgebra of
Vect�Rn� tangent to this action coincides with (3.1).

3.1. MAXIMALITY OF sl�n� 1;R� INSIDE Vect�Rn�

It seems to be quite a known fact that the projective Lie algebra sl�n� 1;R� is a
maximal subalgebra of the Lie algebra of polynomial vector ¢elds on Rn (cf. [10]
for n � 1; 2.) For the sake of completeness, we will prove here the following version
of this result, supposing for simplicity that nX 3.

PROPOSITION 3.1. Given an arbitrary polynomial vector ¢eld X 62 sl�n� 1;R�, the
Lie algebra generated by sl�n� 1;R� and X is the Lie algebra of all polynomial vector
¢elds on Rn.
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Proof. We will need the following lemmas:

LEMMA 3.2. Given a polynomial vector ¢eld X such that for every i � 1; . . . ; n one
has: �@i;X � � @iX 2 sl�n� 1;R�, each component of the vector ¢eld X is a polynomial
in x1; . . . ; xn of degree at most 2.

Proof. Suppose that degX X 3 and that @iX � aiE, where ai are some linear
functions and E is the Euler ¢eld (3.2). From @i@j � @j@i, one has: �@iaj ÿ @iaj�E�
aj@i ÿ ai@j � 0. If nX 3, this system has a unique solution a1 � � � � � an � 0. &

We will also need the following classical fact:

LEMMA 3.3. The space S12 of symmetric 1-contravariant, 2-covariant tensor ¢eld on
Rn is split as an gl�n;R�-module into two irreducible components:

S12 � A� B ; where A � Rn� � E � sl�n� 1;R� and B � Ker�Div� ;

and where Div � @i@xi .

Let us now prove the proposition. Considering the commutators �@i;X � and using
Lemma 3.3, we can suppose that the vector ¢eld X is a homogeneous polynomial
of degree 2. Then, X � XA � XB; where XA 2 A and XB 2 B. By Lemma 3.3, the
Lie algebra sl�n� 1;R� and XB generate the space of all second-order vector ¢elds
on Rn. Proposition 3.5 follows then from the following lemma whose proof is
straightforward.

LEMMA 3.4. If nX 2, then the space of all vector ¢elds onRn polynomial of degree 2
generates the Lie algebra of all polynomial vector ¢elds on Rn.

Proposition 3.1 is proven. &

COROLLARY 3.5 (i) The projective Lie algebra sl�n� 1;R� is a maximal
subalgebra of the Lie algebra of polynomial vector ¢elds.

(ii) The projective Lie algebra sl�n� 1;R� is a maximal subalgebra of Vect�Rn� in
the class of ¢nite-dimensional Lie subalgebras.

Remark. It worth noticing that the problem of classi¢cation of ¢nite-dimensional
Lie subalgebras of Vect�Rn� goes back to S. Lie and remains open (cf. [10]). The
only known examples of maximal semisimple Lie subalgebras of Vect�Rn� are the
projective Lie algebra sl�n� 1;R� and the conformal Lie algebra o�p� 1; q� 1�with
p� q � n. The second case was studied in [7] as a continuation of [14].

3.2. ACTION OF sl�n� 1;R� ON Dl

The action (2.2) restricted to sl�n� 1;R� takes a particularly nice form.
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PROPOSITION 3.6. The action of sl�n� 1;R� on Dl reads:

LlX � LX ; �3:3�

LlXs
� LXs ÿ

�
E � l�n� 1�

�
@xs �3:4�

for X from the af¢ne subalgebra of sl�n� 1;R� and Xs a quadratic vector ¢eld given by
(3.1) and where

E � xi@xi : �3:5�

Proof. Straightforward in view of Lemma 2.1. &

The formula (3.3) implies that the identi¢cation (2.5) is an isomorphism between
Pol�T�Rn� and Dl as modules over the af¢ne Lie algebra.

4. Projectively Equivariant Symbol Map

DEFINITION. (a) A linear bijection s : Dl! Pol�T�Rn� is called a symbol map if
for every A 2 Dl, the highest-order term of s�A� coincides with the principal symbol

sA � ai1...ik
k xi1 � � � xik : �4:1�

(b) We will say that s is differential if in addition its restriction to each homo-
geneous component of Dl is a differential operator.

Remark. The coef¢cients ai1...ij
j of the differential operator (2.3) have no geometric

meaning, except for j � k. In other words, there is no natural symbol map, i.e. there
is no linear bijection from Dl into the space of symmetric contravariant tensor ¢elds
on Rn equivariant with respect to the Vect�Rn�-action.

We will see below that for l � 1=2, there is also a well-de¢ned symbol of order
kÿ 1 on Dk

1=2.

4.1. THE DIVERGENCE OPERATOR AS AN AFFINE INVARIANT

Let us introduce a differential operator on the space of polynomials S � Pol�T�Rn�
(and on Dl using the identi¢cation (2.5)):

Div � @i@xi : �4:2�

On a homogeneous component of order k, Sk � S one has

Div
���
Sk
� k div ; �4:3�
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where�
div ak� �

�i1...ikÿ1 � @j�ai1...ikÿ1j
k � : �4:4�

Remarks. (a) The operator (4.2) commutes with the action of the af¢ne Lie algebra.
Moreover, it follows from the classical Weyl^Brauer theorem that any linear
operator on S commuting with the af¢ne Lie algebra is a polynomial expression
in Div and E de¢ned by (3.5).

(b) Fix the standard volume form O � dx1 ^ � � � ^ dxn on Rn, then, for any vector
¢eld X , the standard divergence divO�X � coincides with DivX (after the identi¢-
cation (2.5)).

4.2. STATEMENT OF THE MAIN RESULT

The main result of this paper is the existence and uniqueness of an sln�1-equivariant
symbol map on Rn. We will prove that such a map is necessarily differential.

THEOREM 4.1.For every l, there exists a unique sln�1-equivariant symbol map sl. It
is differential and given on a homogeneous component Sk by

sl
���
Sk
�
X
`W k

ck` divkÿ`; �4:5�

where the numbers ck` are as follows:

ck` � �ÿ1�kÿ`
k
`

ÿ � �n�1�l�kÿ1
kÿ`

ÿ �
k�`�n
kÿ`

ÿ � �4:6�

Recall that the binomial coef¢cient a
m

ÿ �
for a 62N is

a�aÿ 1� � � � �aÿm� 1�
m!

:

Remarks. (a) The condition of sln�1-equivariance is already suf¢cient to determine
sljSk up to a constant. The supplementary condition, that the higher order term of
the polynomial sl�A� coincides with the principal symbol sA, ¢xes the normalization.

(b) In the one-dimensional case (n � 1) the formula (4.5), (4.6) is also valid for the
space of pseudodifferential operators. In this case, it coincides with (4.11) of [4].

4.3. EXAMPLE: SECOND ORDER OPERATORS AND QUADRATIC HAMILTONIANS

Let us apply the general formul� (4.5), (4.6) to second-order differential operators.
The sln�1-equivariant symbol map associates to a second-order differential

operator A � aij2@i@j � ai1@i � a0 the polynomial sl�A� � �aij2xixj � �ai1xi � �a0; with
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the coef¢cients:

�aij2 � aij2 ;

�ai1 � ai1 ÿ 2
�n� 1�l� 1

n� 3
@j�aij2 �;

�a0 � a0 ÿ l@i�ai1� � l
�n� 1�l� 1

n� 2
@i@j�aij2 � :

4.4. PROOF OF THEOREM 4.1

Let us ¢rst prove that symbol map sl de¢ned by formul� (4.5) and (4.6) is
sln�1-equivariant.

A symbol map (4.5) with arbitrary constants ck` , is obviously equivariant with
respect to the af¢ne algebra. It can be rewritten in the form

sl
���
Sk
�
Xk
`�O

Ck
` Divkÿ` ; �4:7�

where ck` � k�kÿ 1� � � � �kÿ `� 1�Ck
` . Now, to determine the constantsCk

` , one needs
the following commutation relations.

LEMMA 4.2. For Xs � xsE 2 sl�n� 1;R�, one has:

�LXs ;Div� �
�
2E � �n� 1�

�
� @xs ; �4:8�

Proof. Straightforward. &

Let us calculate a recurrent relation for the coef¢cients Ck
` in (4.7). The condition

of sl�n� 1;Rn�-equivariance reads:

LX � sl � sl � LlX ; for every X 2 sl�n� 1;Rn� :
For X � Xs, from (3.4) one, therefore, gets:

�LXs ; sl� � ÿsl �
�
E � l�n� 1�

�
� @xs : �4:9�

We are looking for the symbol map sl in the form (4.7). From Equations (4.7), (4.9)
one immediately obtains

Ck
` LX ;Divkÿ`
� ����

Sk
� ÿCkÿ1

` Divkÿ`ÿ1 �
�
E � l�n� 1�

�
� @xs :

From the commutation relation (4.8) and using that E � k Id on Sk, one easily gets

LXs ;Divm
� ����

Sk
� m�2kÿm� n�Divmÿ1 � @xs ;
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and, ¢nally, one obtains the recurrent relation:

Ck
` � ÿ

kÿ 1� l�n� 1�
�kÿ `��k� `� n�C

kÿ1
` : �4:10�

This, together with Ck
k � 1; is equivalent to (4.6).

This proves that the symbol map sl is, indeed, sln�1-equivariant.

The uniqueness of the sln�1-equivariant map sl follows from:

PROPOSITION 4.3. The only sln�1-equivariant linear maps on the space of sym-
metric contravariant tensor ¢elds are multiplications by constants, namely

Homsln�1 �Sk;S`� � R ; k � `
0 ; k 6� `

�
�4:11�

Proof. It is easy to compute the Casimir operator of sl�n� 1;R�:

C
���
Sk
� 2k�k� n� Id : �4:12�

Since C commutes with the sl�n� 1;R�-action, this implies the result (4.11) in the
case k 6� `.

In the case k � `, the result easily follows from Theorem 5.1 below. Moreover,
Lemma 5.2 implies that an sln�1-equivariant linear operator on Sk is necessarily
a differential operator of order zero. Then, it follows from the classical Weyl^Brauer
theorem that it is proportional to the identity. &

Theorem 4.1 is proven. &

4.5. PROJECTIVELY EQUIVARIANT QUANTIZATION

The inverse to the symbol map, sÿ1l , is the unique (up to normalization)
sln�1-equivariant quantization map.

PROPOSITION 4.4. The map sÿ1l is de¢ned by

sÿ1l

���
Sk
�
X
`W k

�ck` divkÿ`; �4:13�

where

�ck` �
k
`

ÿ � �n�1�l�kÿ1
kÿ`

ÿ �
2k�nÿ1
kÿ`

ÿ � : �4:14�

Proof. Applying the same method as in the proof of Theorem 4.1, one can show
that there exists a unique differential operator Ql : Pol�T�Rn� ! Dl which is
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sl�n� 1;R�-equivariant and such that the principal symbol of Ql�P� coincides with
the leading term of P, namely, Ql � sÿ1l . On the space of homogeneous polynomials
this map is given by

Ql

���
Sk
�
X
`W k

�Ck
` Divkÿ` : �4:15�

The numbers �Ck
` are de¢ned by the relation

�Ck
` �

`� �n� 1�l
�kÿ `��k� `� n�

�Ck
`�1; �Ck

k � 1 :

The result follows. &

4.6. EXAMPLE: QUANTIZATION OF THE GEODESIC FLOW

Consider a nondegenerate quadratic form H � gijxixj and apply the
sln�1-equivariant quantization map in the special case of l � 1=2. It is easy to check
that the result of quantization (4.13) is a Laplace^Beltrami operator. Namely

Q1=2�H� � Dg � �n� 1�
4�n� 2� @ijg

ij ; �4:16�

where Dg � gij�@i@j ÿ Gk
ij@k� is the standard Laplace operator corresponding to the

metric g � Hÿ1 � gijdxidxj.
Recall that in a neighborhood of each point u, there exist so-called normal

coordinates, that is coordinates characterized by Gk
ij�u� � 0 and @l�Gk

ij� �
1
3 �Rk

li;j � Rk
lj;i� : In these coordinates, the potential of (4.16) is proportional to the

scalar curvature: @ijgij � �1=3�R.
One obtains the following result:

PROPOSITION 4.5. In the case when the normal coordinates of g are compatible with
the projective structure, the quantum Hamiltonian is given by

Q1=2�H� � Dg � �n� 1�
12�n� 2�R : �4:17�

Remark. The problem of quantization of the geodesic £ow on a (pseudo)-
Riemannian manifold have already been considered by many authors (see [5],
end references therein). Various methods lead to formul� of the type (4.17) but with
different values of the multiple in front of the scalar curvature. The formul� (4.16),
(4.17) is a new version of the quantization of the geodesic £ow.
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5. Equivariance and Locality

Consider the Lie algebra R j�Rn generated by the vector ¢elds

E � xi
@

@xi
;

@

@x1
; . . . ;

@

@x1
; �5:1�

(which is, of course, a subalgebra of sl�n� 1;R�).
The following result seems to be quite unexpected.

THEOREM 5.1. If pX q, then every linear map T: Sp! Sq equivariant with respect
to the Lie algebra generated by the vector ¢elds (5.1) is local.

Proof. Assume that P 2 Sp vanishes in a neighborhood of some point u 2 Rn. We
will prove that T �P�u � 0. Using invariance with respect to translations
Rn � sl�n� 1;R�, we may assume that u � 0.

LEMMA 5.2. For every P 2 Sp such that the �sÿ 1�-jet of P at the origin vanishes,
there exists Q 2 Sp such that P � xi1 � � � xis@i1 � � � @is�Q�

Proof. It follows directly from the Taylor integral formula. &

In terms of E � xi@i, this reads

P � �E ÿ �sÿ 1� Id��E ÿ �sÿ 2� Id� � � � �E ÿ Id�E�Q�:
Taking account of the fact that the Lie derivative LE on Sp is given by LE � E ÿ p Id,
we thus obtain

P � �LE � �pÿ s� 1� Id��LE � �pÿ s� 2� Id� � � � �LE � �pÿ 1� Id��LE � p Id��Q�:
Therefore, by sln�1-equivariance,

T �P� � �LE � �pÿ s� 1� Id� � � � �LE � p Id�T �Q�
� �E � �pÿ qÿ s� 1� Id� � � � �E � �pÿ q� Id�T �Q�:

With s � pÿ q� 1, we obtain T �P�0 � 0. Hence the result. &

Remarks. (a) By the well-known Peetre theorem [17], the map T from Theorem 5.1
is (locally) a differential operator. This theorem therefore generalizes the statement
of Theorem 4.1 that every sln�1-equivariant symbol map is differential.

(b) The Lie algebra generated by the vector ¢elds (5.1) is also a subalgebra of the
conformal Lie algebra o�p� 1; q� 1�, and, therefore, can be implied in this
case.

6. Action of Vect�RRn� on Dl in sln�1-Equivariant Form

We now turn to study the space of differential operators onRn as a module over the
Lie algebra Vect�Rn� of all vector ¢elds onRn. Using the sln�1-equivariant symbol sl
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one can obtain a canonical (projectively invariant) form of the Vect�Rn�-action on
Dl:

Dl
LlXÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ! Dl

sl

????y
????ysl

Pol�T�Rn� sl�LlX�sÿ1lÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ! Pol�T�Rn�

�6:1�

This action is clearly of the form

sl � LlX � sÿ1l � LX �
X
`X 1

gl`�X � ; �6:2�

where gl` are linear maps associating to X some operators on Pol�T�Rn�, namely, for
every k,

gl` : Vect�Rn� ! Hom�Sk;Skÿ`� : �6:3�

The operators gl` play important role in the study of these modules.

6.1. ELEMENTARY PROPERTIES OF THE MAPS gl`

The following lemma is an immediate corollary of the sln�1-equivariance of sl:

LEMMA 6.2. The linear maps (6.3) satisfy the following properties: (a)
sln�1-equivariance:

�LX ; gl`�Y �� � gl`��X ;Y ��; X 2 sln�1 ; �6:4�

(b) vanishing on sln�1:

gl`�X � � 0; X 2 sln�1: �6:5�

The next statement follows directly from the fact that (6.2) is an action of
Vect�Rn�:

LEMMA 6.2. For every l, the map gl1 is a 1-cocycle on Vect�Rn�, i.e., it satis¢es the
relation:

�LX ; gl1�Y �� ÿ �LY ; gl1�X �� � gl1��X ;Y �� ; �6:6�

for every X ;Y 2 Vect�Rn�.
Moreover, in the case when gl1 vanishes, then the cocycle property holds true for g

l
2.

Remark. These simple facts explain how the modules of differential operators are
related to so-called sl�n� 1;R�-relative cohomology of Vect�Rn� (that is,
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Vect�Rn�-cohomology vanishing on sl�n� 1;R�). This subject will be treated in a
subsequent article.

We will need explicit formul� for gl1 and gl2.

6.2. COMPUTING gl1

PROPOSITION 6.3. One has

gl1
���
Sk
� �n� 1�

2�2k� nÿ 1� �2lÿ 1� `k ; �6:7�

where `k: Vect�Rn� ! Hom�Sk;Skÿ1� is the following operator:

`k�X � � @ijX @xixj ÿ
2�kÿ 1�
n� 1

�@i �Div�X @xi : �6:8�

Proof. Applying explicit formul� (4.15), (2.9) and (4.7) for each factor in
sl � LlX � sÿ1l , one immediately obtains

gl1�X �
���
Sk
� �Ck

kÿ1 LX �Div� Ck
kÿ1 Div � LXÿ

ÿ 1
2 @ijX @xixj ÿ l �@i �Div�X @xi

� ÿ�Ck
kÿ1 ÿ 1

2� @ijX @xixj ÿ �Ck
kÿ1 ÿ l� �@i �Div�X @xi :

The formula (6.7, 6.8) follows. &

Important Remark. The operator (6.8) is, in fact, an operator of contraction with
the symmetric �2; 1�-tensor ¢eld: `k�X ��P� � h �̀�X �;Pi, where

�̀�X �hij � @ijXh ÿ 1
n� 1

dhi @j � dhj @i
� �

@lX l : �6:9�

This expression is a 1-cocycle on Vect�Rn� vanishing on the subalgebra sl�n� 1;R�
(cf. [15, 16] and references therein).

6.3. COMPUTING gl2

PROPOSITION 6.4. The map gl2 in (6.2) is given by

gl2
���
Sk
� 1

2�2k� nÿ 2��2k� nÿ 3� s
l
k;

where the operator slk : Vect�Rn� ! Hom�Sk;Skÿ2� is:
slk�X � � a1 @hijX @xhxixj � a2 @ijX Div � @xixj�

� b1 �@ij �Div�X @xixj � b2 �@i �Div�X Div � @xi�
� d @ij@xhX @h@xixj

�6:10�
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with the numerical coef¢cients

a1 � ÿ
�
�n� 1�2l�lÿ 1� � 1

3 �k2 � kn� n2 ÿ k� n�
�
;

a2 � ÿ 2�n� 1�2l�lÿ 1� � 2k2 � 2knÿ 4k� n2 ÿ n� 2
2k� nÿ 1

;

b1 �
�4k� nÿ 5��n� 1�l�lÿ 1� ÿ �kÿ 2��kÿ 1�

2k� nÿ 1
;

b2 � �4kÿ 6��n� 1�l�lÿ 1� � �kÿ 2�n;

d2 � ÿ�n� 1�2l�lÿ 1� � �kÿ 2��k� nÿ 1�:

�6:11�

Proof. A quite complicated straightforward computation similar to that of the
proof of Proposition 6.3. &

6.4. EXAMPLE: CASE k � 2

For k � 2, one veri¢es that the operator (6.10) is as follows:

sl2�X � � ÿ�n� 1��n� 2� l�lÿ 1� �s ;

where the operator �s can be written in terms of the operator (6.8):

�s�X � � @xi `2�X �� � @i ÿ 2
nÿ 1

Div `2�X �� � : �6:12�

Remark. In the case l � 1=2, the map g1 is identically zero and the ¢rst nonzero
term, namely g2, in (6.2) is a 1-cocycle on Vect�Rn� (cf. Section 6.1).

6.5 CONJUGATION AND THE sln�1-EQUIVARIANT SYMBOL MAP

Recall from [6] and [13] that the conjugation is an isomorphism of Vect�Rn�-modules
� : Dl � D1ÿl ; (which also exists for an arbitrary manifold M, see below). It is
characterized by ��Id� � Id and by

��Ll
X � A� � ÿ � �A� � L1ÿl

X �6:13�

for all X 2 Vect�Rn� and all A 2 Dl.
A nice property of the sln�1-equivariant symbol map is the following

LEMMA 6.5. For each homogeneous polynomial P 2 Sk one has sl � � � sÿ1l �P� �
�ÿ1�kP :
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Proof. By Proposition 4.3, the map sl � � � sÿ1l is an operator of multiplication by
a constant. On the other hand, Equation (6.13) shows that the principal symbol
s��A� � �ÿ1�ksA. &

COROLLARY 6.6. All the bilinear maps g
1
2
2p�1 vanish.

7. Space of Di¡erential Operators on a Manifold as a Module
over the Lie Algebra of Vector Fields

LetM be a smooth manifold. Consider the spaceF l of tensor densities of degree l on
M and Dl�M� the space of scalar linear differential operators A: F l! F l. The
space Dl�M� has a natural Vect�M�-module structure. The 1-parameter family
of Vect�M�-modules Dl has been recently studied in [6, 9, 13].

In this section, we will study the quotient modules Dk
l�M�=D`l�M�. Our purpose is

to solve the problem of isomorphism between these modules for different values
of l and to compare these modules with the modules of symmetric contravariant
tensor ¢elds Polk�T�M�=Pol`�T�M� � Sk�M� � . . .� S`�1�M�.

7.1. LOCALITY OF EQUIVARIANT MAPS

Equivariance with respect to Vect�M� is, of course, a much stronger condition that
equivariance with respect to sl�n� 1;R� or R j�Rn (cf. Section 6.4). It has already
been shown in [13] that a Vect�M�-equivariant linear map from Dk

l�M� into
Dk

m�M� is local. In the same spirit we have

PROPOSITION 7.1. Every Vect�M�-equivariant linear map T from Dk
l�M�=D`l�M�

into Dk
m�M�=D`m�M� is local (k > `).

Proof. Suppose thatA 2 Dk
l�M�=D`l�M� vanishes on an open subsetU ofM. Let us

show that T �A� vanishes on U as well. Assume in the contrary that T �A�ju 6� 0 for
some u 2 U . One can choose u such that the principal symbol sT �A�ju 6� 0. Then,
there exists X 2 Vect�M� with compact support in U such that �LX �T �A���ju 6� 0.
Hence, the contradiction since LX �A� � 0 and LX �T �A�� � T �LX �A��. To see
that such X exists, it suf¢ce to choose X such that �LX �S��ju 6� 0; where
S 2 Sp�M�; ` < pW k, is the principal symbol of T �A� and p is its order around
u. This is always possible for p > 0. Hence, the proposition. &

The above proof is easily adapted to get the following result that we will need later.

PROPOSITION 7.2. Every Vect�M�-equivariant linear map T : Dk
l�M�=D`l�M� !

Sp�M� is local (k > `; p > 0).

7.2. CLASSIFICATION OF THE MODULES Dk
l�M�=Dkÿ2

l �M�

The following result gives a classi¢cation of the quotient modules for the case
` � kÿ 2.
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THEOREM 7.3. Assume that kX 2 and that dimMX 2.

(i) All the Vect�M�-modules Dk
l�M�=Dkÿ2

l �M�, with l 6� 1=2, are isomorphic.They are
not isomorphic to the direct sum of modules of tensor ¢elds Sk�M� � Skÿ1�M�.

(ii) The module of di¡erential operators on half-densities is exceptional since

Dk
1
2
�M�=Dkÿ2

1
2
�M� � Sk�M� � Skÿ1�M�:

Proof. (i) Having local coordinates in a open subset U �M and using the
sln�1-equivariant symbol map, we identify Dk

l�M�=Dkÿ2
l �M� over U with

Sk�M� � Skÿ1�M� endowed with the Vect�M�-action

LlX
���
Sk�Skÿ1

� LX � gl1�X �: �7:1�

In view of (6.7), it is clear that if l; m 6� 1=2, the map

�Pk;Pkÿ1� 7! Pk;
2mÿ 1
2lÿ 1

Pkÿ1

� �
�7:2�

is an isomorphism between the Vect�Rn�-modules

�Sk � Skÿ1; sl � LlX � sÿ1l � ÿ!�Sk � Skÿ1; sm � LmX � sÿ1m � :
It, therefore, de¢nes an isomorphism between the restrictions of the
Vect�M�-modules Dk

l�M�=Dkÿ2
l �M� and Dk

m�M�=Dkÿ2
m �M� to the domain U of

coordinates. This isomorphism does not depend on the choice of coordinates because
it commutes with the Vect�M�-action: the formula (7.2) does not change under the
coordinate transformations. Hence, the local isomorphisms de¢ned on each U glue
together to de¢ne a global isomorphism.

Now let Dk
l�M�=Dkÿ2

l �M� ! Sk�M� � Skÿ1�M� be a Vect�M�-equivariant map. It
is local (Proposition 7.2). Hence, by the Peetre theorem [17], it is locally a differential
operator. Expressed like above in terms of the sln�1-equivariant symbol, it has
a diagonal form (Proposition 4.3): ��ak; �akÿ1� 7! �ak �ak; akÿ1 �akÿ1� for some ak;
akÿ1 2 R. The fact that T intertwines the action (7.1) and the Lie derivative of tensors
on Sk�M� � Skÿ1�M� implies akÿ1gl1�X ; �ak� � 0 for all �ak 2 Sk�M�. Since l 6� 1=2, it
follows that akÿ1 � 0. Therefore, T is not injective.

Hence Part (i) of Theorem 7.3.

7.3. EXCEPTIONAL CASE l � 1=2

If l � 1=2, the term gl1�X ; �ak� vanishes. The Vect�M�-action (0.2) in this case is just
the standard action on Sk�M� � Skÿ1�M�.

Hence Theorem 7.3. &

It follows from this theorem that for l 6� 1=2, there is no intrinsically de¢ned
subsymbol of a differential operator. However, in the exceptional case of differential
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operators on 1=2-densities, the two ¢rst terms of the sln�1-equivariant symbol have
geometric meaning. One obtains the following remark.

COROLLARY 7.4. The sln�1-equivariant symbol de¢nes a Vect�M�-equivariant map

�s1=2k ; s1=2kÿ1� : Dk
1=2�M� ! Sk�M� � Skÿ1�M�:

Proof. The Vect�M�-module Dk
1=2�M� has a symmetry: the conjugation of

operators A! A� (cf. [6, 13]). Every A 2 Dk
1=2�M� has a decomposition A �

A0 � A1, where A�0 � �ÿ1�kA0 and A�1 � �ÿ1�kÿ1A1. One easily sees that s1=2�A�k
is the principal symbol of A0 and s1=2�A�kÿ1 that of A1. &

7.4. MODULES Dk
l�M�=D`l�M� IN MULTI-DIMENSIONAL CASE

We now turn to the Vect�M�-modules Dk
l�M�=D`l�M� when kÿ `X 3 and

dimMX 2. The following result shows that there is no nontrivial isomorphism
between the Vect�M�-modules in this case.

THEOREM 7.5. Assume that kÿ `X 3 and dimMX 2.

(i) If l 6� m, the modulesDk
l�M�=D`l�M� andDk

m�M�=D`m�M� are isomorphic if and only
if l� m � 1.

(ii) There is no isomorphism between the modules Dk
l�M�=D`l�M� and the module of

tensor ¢elds Sk�M� � . . .� S`�1�M�.
Proof. The isomorphism in Part (i) is given by the standard conjugation of

differential operators. This map de¢nes a general isomorphism � : Dl�M� !
D1ÿl�M� (cf. [6, 13]).

The proof that there is no other isomorphism is very similar to that of Theorem
7.3. In local coordinates and in terms of sln�1-equivariant symbol, such an
isomorphism between Dk

l�M�=D`l�M� and Dk
m�M�=D`m�M� (or Sk�M� � � � � �

S`�1�M�) is of the form:

�Pk; Pkÿ1; Pkÿ2; . . .� ! �ak Pk; akÿ1Pkÿ1; akÿ2 Pkÿ2; . . .� �7:3�

for some ak; akÿ1; akÿ2; . . . 2 R.
In the both cases, (i) and (ii), the Vect�M�-equivariance condition now involves not

only gl1 but also gl2. Tedious computations then allow us to show in the ¢rst case that
(7.3) is an isomorphism if and only if �lÿ m��l� mÿ 1� � 0. In the second case,
equivariance immediately implies that akÿ1 � akÿ2 � 0. &

Part (ii) of Theorem 7.5 con¢rms the fact (well-known `in practice') that a
`complete' symbol of a differential operator can not be de¢ned in an intrinsic
way (even in the case of differential operators on 1

2-densities).
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7.5 MODULES OF SECOND-ORDER DIFFERENTIAL OPERATORS

Consider the modules of second-order differential operators D2
l�M�.

These modules have been classi¢ed in [6] where it has been shown that there are
exactly three isomorphism classes of Vect�M�-modules among them, namely

fD2
l�M�; l 6� 0; 1=2; 1g; fD2

0�M�;D2
1�M�g and fD2

1=2�M�g :
For l; m 6� 0; 12 ; 1, there exists a unique (up to a constant) intertwining operator

L2l;m : D2
l�M� ! D2

m�M�
This has been proven in [6] within the class of local maps. It has been shown in [13]
that each Vect�M�-equivariant map from D2

l�M� ! D2
m�M� is local.

Let us express L2l;m in terms of the sln�1-equivariant symbol (4.6). It follows from
Corollary 2.6, that the map sm � L2l;m � sÿ1l is diagonal.

PROPOSITION 7.6 The Vect�M�-module isomorphism sm � L2l;m � sÿ1l is of the form

�P2; P1; P0� 7! P2;
2mÿ 1
2lÿ 1

P1;
m�mÿ 1�
l�lÿ 1� P0

� �
: �7:4�

Proof. This formula follows from the explicit expression for the Vect�M�-action
(6.2) in the case of second-order operators. Straightforward computations (cf.
Section 5.5) give

sm � L2l;m � sÿ1l � LX � �2lÿ 1�eg1�X � � l�lÿ 1�eg2�X �
where the mapseg1 andeg2 do not depend on l;eg2 is de¢ned by (6.12) according to
Proposition 6.3, andeg1 is de¢ned by (6.7), (6.8). As in the proof of Theorem 7.3,
one notes that the map de¢ned by (7.4) is intrinsic. &

Let us now give a coordinate free expression for the map L2l;m.
Every second order differential operator can be written as a sum of

(i) a zero-order operator f 7! ff (multiplication by a function),
(ii) a ¢rst-order operator Ll

X (Lie derivative),
(iii) a symmetric expression �Ll

X ;L
l
Y �� � Ll

X � Ll
Y � Ll

Y � Ll
X ;

where f 2 C1�M�;X ;Y ;Z 2 Vect�M�.

PROPOSITION 7.7. One has

L2l;m
�
�Ll

X ;L
l
Y ��

�
� �Lm

X ;L
m
Y ��;

L2l;m�Ll
Z� �

2mÿ 1
2lÿ 1

Lm
Z;

L2l;m�f � �
m�mÿ 1�
l�lÿ 1� f :

PROJECTIVELY EQUIVARIANT SYMBOL CALCULUS 191



Proof. Straightforward &

Remarks. (a) The expression forL2l;m in terms of Lie derivatives is intrinsic, but it is
a nontrivial fact that it does not depend on the choice ofX ;Y and f representing the
same differential operator. The expression for L2l;m in terms of symbols is
well-de¢ned locally, but it is a nontrivial fact that it is invariant with respect to
coordinate changes. The two facts are corollaries of the third one: the two formul�
represent the same map.

(b) The explicit formula for L2l;m in terms of coef¢cients of differential operators
was obtained in [6].

7.6. MODULES OF (PSEUDO)DIFFERENTIALOPERATORS IN THEONE-DIMENSIONALCASE

We now study the space of (pseudo)differential operators on S1 (or on R):

A �
X1
i�0

akÿi

�
d

dx

�kÿi
; �7:5�

where k 2 R.
The group Diff�S1� and the Lie algebra Vect�S1� act on the space of

pseudodifferential operators in the same way as on the space of differential
operators. Denote CDk

l the Vect�S1�-modules of the operators (7.5) acting on F l.

DEFINITION 7.8. The bilinear operations Jm : F l 
F m! F l�m�m given by

Jm�f;c� �
X
i�j�m
�ÿ1�im!

2l�mÿ 1
i

� �
2m�mÿ 1

j

� �
f�i�c�j� �7:6�

is called the transvectants.
It is a classical fact that the transvectants are sln�1-equivariant. Moreover, for gen-
eric l; m the operations (7.6) are characterized by this property.

Put l � ÿ1 and f � X a vector ¢eld on S1, the transvectants (7.6) de¢ne the linear
maps

�gm : Vect�S1� ! Hom�F m;F m�mÿ1�; �7:7�
such that �gm�X ;c� :� Jm�X ;c�.

LEMMA 7.9 The Vect�S1�-action on CDk
l is of the form

sl � LX � sÿ1l � LX �
Xk
i�s�2

tiÿsi �l� �giÿs�1�X �; �7:8�

where tiÿsi �l� are some polynomials and �gm are the operations (7.7).
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Proof. The formula (7.8) is a particular case of (6.2). If n � 1, then g1 � 0 (cf.
Proposition 6.3) and gm are proportional to �gm since the transvectants are unique
sl2-equivariant bilinear maps. &

We will study the quotient-modules CDk
l=CDkÿ`

l . If k 2N; ` � k� 1, it is just the
module of differential operators on S1.

7.7. CLASSIFICATION OF THE MODULES CDk
l=CDkÿ`

l

The classi¢cation of Vect�S1�-modules CDk
l=CDkÿ`

l follows from the formula (7.8).
As in the multi-dimensional case, zeroes of the polynomials tjkÿ`�l� corresponds
to exceptional modules.

Let us formulate the result for generic values of k.

PROPOSITION 7.10. If k 6� 0; 1=2; 1; 3=2; . . ., then the Vect�S1�-modules
CDk

l=CDkÿ`
l and CDk

m=CDkÿ`
m , are isomorphic in the following cases:

(i) `X 2;
(ii) ` � 3, if t2k�l�; t2k�m� 6� 0;
(iii) ` � 4, if l; m are not root of the polynomials t2k; t

2
kÿ1; t

3
k ;

(iii) `X 4, if and only if l� m � 1.

The proof is analogous to the proofs of Theorems 7.3 and 7.5 &

7.8. RELATION TO THE BERNOULLI POLYNOMIALS

Let us give the explicit formul� for the polynomials t2k; t
2
kÿ1 and t3k:

t2k�l� �
k�kÿ 1�
2kÿ 1

�
l2 ÿ lÿ �k� 1��kÿ 2�

12

�
;

t3k�l� �
k
6
l�2lÿ 1��lÿ 1�

They evoke a possible relationship between the polynomials tjk�l� and the
well-known Bernoulli polynomials. Indeed,

t2k�l� �
k�kÿ 1�
2kÿ 1

�
B2�l� ÿ k�kÿ 1�

12

�
; t3k�l� �

k
12

B3�l�;

where Bs is the Bernoulli polynomial of degree s, e.g.:

B0�x� � 1; B1�x� � xÿ 1=2; B2�x� � x2 ÿ x� 1=6;

B3�x� � x3 ÿ 3x2=2� x=2; B4�x� � x4 ÿ 2x3 � x2 ÿ 1=30;

B5�x� � x5 ÿ 5x4=2� 5x3=3ÿ x=6:
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The next examples are

t4k�l� �
k�kÿ 1��kÿ 2�
2�2kÿ 3��2kÿ 5�

�
B4�l� � 2k2 ÿ 6k� 3

24
B2�l�ÿ

ÿ 3k4 � 18k3 ÿ 35k2 � 8k� 2
480

�
;

t5k�l� �
k�kÿ 1�
15�2kÿ 7�

�
B5�l� � 5�kÿ 1��kÿ 3�

24
B3�l�

�
PROPOSITION 7.11. Polynomials t2jk �l� are combinations of B2s with s � 0; 1; . . . ; j
and polynomials t2j�1k �l� are combinations of B2s�1 with s � 0; 1; . . . ; j

Proof. This statement is a simple corollary of the isomorphismDl � D1ÿl. Indeed,
under the involution l0 � 1=2ÿ l, one has Bs�l0� � �ÿ1�sBs�l�. &

Remark: the duality. There exists a nondegenerate natural pairing of CDk=CD`
and CDÿ`ÿ2=CDÿkÿ2. It is given by the so-called Adler trace [1]: if A 2 CDk, where
k 2 Z, then

tr�A� �
Z
S1
a1�x�dx:

Let now A 2 CDk=CD` and B 2 CDÿ`ÿ2=CDÿkÿ2. Put �A;B� :� tr�eAeB�; whereeA 2 CDk;eB 2 CDÿ`ÿ2 are arbitrary lifts of A and B.
Adler's trace is equivariant with respect to the Vect�S1�-action. This means that

the pairing � ; � is well-de¢ned on Vect�S1�-modules. Indeed, ��Ll
X ;A�;B��

�A; �Ll
X ;B�� � 0 for every X 2 Vect�S1� (see [4] for the details and interesting proper-

ties of the transvectants).

8. Conclusion

8.1. GENERALIZATION FOR THE LOCALLY PROJECTIVE MANIFOLDS

A projective structure on a manifold M is de¢ned by an atlas with linear-fractional
coordinate changes.

More precisely, a covering �Ui� with a family of local diffeomorphisms
fi : Ui ! RPn is called a projective atlas if the local transformations fj � fÿ1i :

RPn ! RPn are projective (i.e. are given by the action of the group
SL�n� 1;R� on RPn).

A projective structure de¢nes locally onM an action of the Lie group SL�n� 1;R�
by linear-fractional transformations and a (locally de¢ned) action of the Lie algebra
sl�n� 1;R� generated by vector ¢elds (3.1), for every system of local coordinates of a
projective atlas. This action is stable with respect to linear-fractional trans-
formations (the space of vector ¢elds (3.1) is well-de¢ned globally on RPn).

One has the following simple corollary of Theorem 4.1.
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COROLLARY 8.1. Given a manifold M endowed with a projective structure, the
symbol map sl, given in local coordinates of an arbitrary projective atlas by the
formul× (4.5), (4.6), is well de¢ned globally on M.

8.2. sl�n� 1;R�-EQUIVARIANT STAR-PRODUCTS ON T�M

Let us show that for every l the sl�n� 1;R�-equivariant quantization map sl de¢nes
a star-product on T�M thus obtaining a 1-parameter family of sl�n� 1;R�-
equivariant star-products.

Given a quantization map sÿ1 : Pol�T�M� ! D�M�, let us introduce a new par-
ameter �h. For a homogeneous polynomial P of degree k we set

Q�h�P� � �hksÿ1�P�:

and we de¢ne a new associative but noncommutative multiplication on Pol�T�M� by

F ?�h G :� Qÿ1�h �Q�h�F � �Q�h�G��: �8:1�

The corresponding algebra is isomorphic to the associative algebra of differential
operators on M.

The result of the operation (8.1) is a formal series in �h. It has the following form:

F ?�h G � FG�
X
kX 1

�hkCk�F ;G�;

where the higher-order terms Ck�F ;G� are some differential operators.

Recall that such an operation is called a star-product if the skew symmetric part of
C1�F ;G� is the standard Poisson bracket on Pol�T�M�.

An elementary calculation shows that the associative operation corresponding to
the quantization map (4.14) has this property.

8.3. MODULES OF DIFFERENTIAL OPERATORS AND COHOMOLOGY OF Vect�M�

According to the formula (2.9), the Vect�M�-module of differential operatorsDl�M�,
for every l, can be naturally viewed as a deformation of the module Pol�T�Rn� of
symmetric contravariant tensor ¢elds on M. This leads to an interesting link with
the cohomology of Vect�M� with the operator coef¢cients, namely, with values
in the space Hom�Sk;Skÿ`�. Notice that this is the next natural case comparing with
the Gel'fand^Fuchs cohomology of Vect�M� with coef¢cients in the modules of
tensor ¢elds on M.

Examples of the Vect�M�-cohomology classes with values in Hom�Sk;Skÿ`� are
given by the 1-cocycles gl1 and g1=22 (cf. Section 6.1). We will study this cohomology
of Vect�M� in a subsequent article.
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The restriction of the modules Dl to sl�n� 1;R� leads to the sl�n� 1;R�-
cohomology (with the same coef¢cients). The complete answer in this case was
obtained in [12].
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