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Abstract. We consider the universal central extension of the Lie algebra Vect(S*) x C*°(SY). The
coadjoint representation of thisLiealgebrahasanatural geometric interpretation by matrix anal ogues
of the Sturm—Liouville operators. Thisapproach |eadsto new Lie superalgebras generalizing thewell-
known Neveu-Schwarz algebra.
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1. Introduction
1.1. STURM-LIOUVILLE OPERATORS AND THE ACTION OF Vect(S?)

Let usrecall some well-known definitions (cf., e.g., [9, 8]).
Consider the Sturm-Liouville operator
d2

where c € R and u isaperiodic potential u(z + 2r) = u(z) € C*(R).
Let Vect(St) bethe Lie algebraof asmooth vector field on St: f = f(x)d/dz,
where f(z + 27) = f(x), with the commutator

F@) @) | = (F(2)g/ (@) — (@)o(a))

We define a Vect(S1)-action on the space of Sturm-Liouville operators.

Consider a 1-parameter family of Vect(S*) actions on the space of smooth
functions C>°(S1):

LY al@) = F(2)d (@) = Af (@)a(a). @
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NOTATION. (1) The operator

d
Lty = F@) g = M'(@)

iscalled the Lie derivative.

(2) Denote F, asthe Vect(S?)-module structure (2) on C*°(S1).
DEFINITION. The Vect(S?) action on L is defined by the commutator with the
Lie derivative:

— 7(=(3/2) (1/2)
|:Lf(d/dz)aL:| = Lf(d/dx) OL_LOLf(d/da:)' (3)

The result of this action is a scalar operator, i.e. the operator of multiplication

by the function

|Lswya I] = f@)u! (@) + 2f (@)ulw) — cf " (). @)

Remark. Theargument « of the operator (2) has anatural geometric interpreta-
tion as atensor density on S* of degree —\:

a =a(z)(dz)™A
One obtains anatural realization of the Sturm—Liouville operator as an operator on
tensor densities L: Fy /> — F_(3/2) (cf. [8]).
1.2. THE COADJOINT REPRESENTATION OF THE VIRASORO ALGEBRA
The Mirasoro algebra is a unigue (up to isomorphism) nontrivial central extension

of Vect(S1). It is given by the Gelfand—Fuchs cocycle

2n
(1) g = [ @ ) dr ®

dz 0

The Virasoro algebraistherefore a Lie algebra on the space Vect(S1) @ R with the
commutator

[(£, ), (9, B)] = ([f, glvea(s1, (5 9))-

A deep remark of A. A. Kirillov and G. Segal (see [4, 7]) is that the Vect(S?)
action (4) coincides with the coadjoint action of the Virasoro algebra.

Let us give the precise definitions.
Consider the space C*(S?) @ R and a pairing between this space and the
Virasoro algebra

()0 (1)) ) = [ ) (@) o+ o
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Space C*(S1) @R isidentified with apart of the dual spaceto the Virasoro algebra.
Itis called theregular part (see[4]).

DEFINITION. The coadjoint action of the Virasoro algebra on C*®(St) @ R is
defined by

(a0 o). 0 (9508 ) = = (o). (1) (958 )-

It is easy to calculate the explicit formula. Theresult is
* -2
ad(()(d/de), ) (U(2), €) = (L;(I;(d/dx) u(x) — cf" (), O) ,

where Lgcz) is the operator of Lie derivative (2). This action coincides with the
Vect(S1) action (4) on the space of Sturm-Liouville operators.

Remarks. (1) Note that the coadjoint action of the Virasoro algebraisin fact a
Vect(S1)-action (the center actstrivially).

(2) Theregular part of the dual spaceto the Virasoro algebra can be interpreted
as a deformation of the Vect(S1)-module F .

2. Central Extension of Vect(S1) x C>(S?)

Consider the semi-direct product G = Vect(St) x C*°(S1). ThisLieagebrahasa
three-dimensional central extension given by the nontrivial 2-cocycles

o1 (550 o) (5 0)) = [ £ @) o,
o2 (150 o) (5 ) = [LU" @) — ' @ato) de, g

03 ((fd—i, a) , <gd—(i, b)) =2 Sla(m)b'(x) dz.

Let us denote g asthe Lie algebra defined by this extension.
Asavector space, g = Vect(S?) x C*(S?) @ R3. The commutator in g is

(1) (sge08)| = (G - rog. 5 -ads o). @

where

a = (a1, a2,a3), B=(B1,B2.0s) ER® and o = (01,02,03)
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are the 2-cocycles given by formulas (6).

The Liealgebragiswell knownin physical literature (see[1, 2]). It was shown
in [6] that the cocycles (6) define the universal central extension* the Lie algebra
Vect(SY) x C*(S1). This means H?(Vect(S) x € (S%)) = R3.

In this Letter we define a space of matrix linear differential operators generaliz-
ing the Sturm—Liouville operators. This space givesanatural geometric realization
of the coadjoint representation of the Lie algebrag. We hope that such arealization
can be useful for the theory of KdV-type integrable systems related to the Lie
algebra g as well as for studying the coadjoint orbits of g (cf. [4] for the Virasoro
case). Remark here that some interesting results concerning coadjoint orbits of g
have been obtained recently in [3].

3. Matrix Sturm—Liouville Operators

DEFINITION. Consider the following matrix linear differential operators on
C>®(SY) @ C>(S1):
d? d
B —261@ + U(.’I’) 282@ + 'U(iU)
L= ¥ : ®
_ZCZE + v(x) 4¢3
where ci, ¢z, ¢c3 € Rand u = u(x),v = v(x) are 2r-periodic functions.
The Vect(S?) action on the space of operators (8) is defined, as in the case
of Sturm—Liouville operators (1), by commutation with the Lie derivative. We
consider £ as an operator on Vect(S1) modules:

L: .71/2 SV .7,(1/2) — .7,(3/2) SV .7,(1/2).
We will show that there exists a structure on the space of operators (8). Namely,
we will define an action of the semi-direct product Vect(St) x C>°(S1).
3.1. Vect(S?) x C>°(S1)-MODULE STRUCTURE

Let us define a 1-parameter family of Vect(S) x C'°°(S*)-modules on the space
C=(8Y) @ C=(5Y):

s <¢(x)> B L}?Q/dx) P(x) ©
(@afde a@) \ p(x) | =\ L0 () — A'(2)(a) |

where ¢(z),(z) € C(SY). Verify that this formula defines a Vect(S?)
C>(S1)-action:

(N (N _ (N
[T(f(d/dz),a)’ T(g(d/dx),b)] - T((fg’ff’g)d/dz, fb/—ga’)’

* It makes sense, since Hy(Vect(S') x C*°(Sh)) = 0.
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DEFINITION. Definethe Vect(St) x C>°(S?1) action on the space of the operators
(8) by

(-1/2) (1/2)
[Tl £] = Tiana © £ £ © Tfdaa; (10)

Let us give the explicit formula of this action.

PROPOSITION 1. Theresult of the action (10) is an operator of multiplication by
the matrix

fu' + 2f’u _ lem fU' + fI,U _ sz//

+wva' + coa” +2caa’
To@anan £ =1 o o SN
+2c3a’

Proof. Straightforward.

The following result clarifies the nature of definition (10). It turns out that, in
the case of the Lie algebra g, the situation is analogous to those in the Virasoro
case: one obtains a generalization of the Kirillov—Segal result.

THEOREM 1. The action (10) coincides with the coadjoint action of the Lie
algebrag.

We will provethis theorem in the next section.

3.2. COADJOINT REPRESENTATION OF THE LIE ALGEBRA g

Let us calculate the coadjoint action of the Lie algebrag.

DEFINITION. Define the regular part of the dual space g* to the Lie algebra g
as follows (cf. [4]). Put gieg = C>(5%) & C>(S*) ® k3 and fix the pairing ( , ):
greg ®g— R

(u(@), v(@), ), (F(@)~, a(z), @
< < dz >>

=/ f(z)u(z)dz + /51 a(z)v(z)dzr + a - c,

where ¢ = (c1, ¢, ¢3), @ = (a1, a2, a3) € R3.
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PROPOSITION 2. The coadjoint action of g on the regular part of its dual space
Greg IS Tiven by

u fu' + 2f'u —c1f" +va' + coa”
ad((g/deyay | v | — | fOI v —caf" + 2c3d (12)
c 0

wherec = (c1, ¢z, c3) (the center of g actstrivially).
Proof. By definition of the coadjoint action,

(et (r0)) =~ (e (&) ()

Integrate by part to obtain the resullt.
The right-hand side of formula (12) coincides with the action (10) of the Lie
algebra Vect(S) x C°°(S1) on space of operators (8).

Theorem 1 follows now from Proposition 1.

Remark. As a Vect(S?) module, dreg IS @ deformation of the module F_, @

F_1 @ R3 (and coincides with it if ¢; = ¢, = 0). Therefore, the dual spaceto the
Lie algebra has the following tensor sense:

w = u(z)(dz)?, v = v(z)dz.

The space of matrix Sturm-Liouville operators (8) gives a natural geometric
realization of the dual spaceto the Lie algebra g.

4. Generalized Neveu—Schwar z Super algebra

Weintroduce hereaLie superalgebrawhich contains g asits even part. Therelation
between g and this superal gebraisthe same asbetween the Virasoro algebraand the
Neveu—Schwarz superalgebra. We show that the differential operator (8) appears
as apart of the coadjoint action of the constructed Lie superalgebra.

We follow here the Kirillov method (see [5]) where the Sturm—Liouville oper-
ator is realized as the even part of the coadjoint action of the Neveu-Schwarz
superalgebra.

4.1. DEFINITION

Consider the Z,-graded vector space S = So @ S1, where Sp = g = Vect(S?) @
C>®(5%) @ k% and Sy = C(S%) @ C=(S?1). Define the structure of aLie super-
algebraon S.
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(1) Define the action of the even part Sp on Sy by
d
(F@) gy o) (Bla)s al@))] =TGPy, ot @(o). (o)

so that, as a Vect(S*)-module, S1 = Fi /o & F_(1/2).
(2) Theeven part Sp actson S according to (9). L et usdefinethe anticommutator
[, ]+151®51—>So

(@ o) 0], = (o 68+ 02, (13)

where o = (041,042,043) is the continuation of the cocycles (6) to the even
part of Sp C S defined by the formulae

71a((90), (4,0)) =2 ¢/ @)/ (@) da,
7ial( ), (06,8) = =2 [ (#(2)8(a) + ala)y! (@) d, 1
71al(9:0), (4,0)) =4 [ ala)B(o) da

THEOREM 2. S isa Lie superalgebra.
Proof. One must verify the Jacobi identity

()M [y, 2] + ()P Iy (2, X + ()M Z (X, Y] =0, (15)

where | X | isadegreeof X (|X| =0for X € Spand | X| = 1for X € &).
Letusprove(15)for X, Y, Z € S1. Take X = (¢, ), Y = (¢, 0), Z = (7,7),
then

(@ [0, [, 8), (1, DN = =T (ryy, (850,
Sincetheexpression (v, 3), (7,7)]+ isgivenby (15), onegetsT[t/2 (m)]+(¢’0‘):

T2 i 5m) (9> @). According to (9),
Tisryron) () = (L79), Loy () = 3067+ 67)'9),
where

LJ2(9) = e — 3/t +91')¢

and

Lwl/z( ) — (zpfy +07)p =91 + 5 (sz) o — —(T/”Y) ¢ — %(/67) ¢
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In the same way, we obtain

(B) [, 8).[(1,7), (6, )] = (L2 ($), Ly 2(B) — S(rax + py)'p),
where

L) = g — 3¢/ + ¢')0
and

L,H2(8) = S(ra+ ¢y)'p = ¢78' + 3(¢7)'8 — 3(ra)'p — 3(v9)"sp.

For the last term, one has

(© (), [(d, @), (0, B)]] = (LFE(T), Ly ?(7) — 3(¢8 +9a)'7),
where

Lyp(r) = ' — 3¢/ + po)r
and
L M2 () — 3(B +9a)'T = ¢y + 3(dw)'y — 3(68)'% — S(awp)'7.

Taking the sum (a) + (b) + (c), one obtains zero.
The proof of the Jacobi identity for the other cases is analogous.

Theorem 2 is proven.
PROPOSITION 3. The coadjoint action of S is given by the formula

L;_Z) (u) +va' + coa" — lem

" +%¢'¢ + %Wﬁ' - %5'04 + %ﬁa'
L;—l) (v) + 2¢c3a’ — caf"
v
+30'¢+ 38¢
* C =
ad fd_oalc i 0 ,
—3/2
ot [°] [
o dx)% B —2c1¢" + ugp + va + 2¢d!
L§ 728

—2c2¢" + v + desa
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wherec = (c1, ¢z, c3) (asusual, the center actstrivially).

Proof. Direct calculation using the definition of the superalgebra S.

In particular, one obtains the following corollary.

COROLLARY.
U 0
v 0
w* O C — O
0 0 —2c1¢" + ugp + va + 2¢0!
o dz)/?

This coroallary givesthe matrix operator (8) defined in Section 2.

TheLie superalgebraS seemsto be an interesting generalization of the Neveu—

Shwartz superalgebra. It would be interesting to obtain some information about its
representations, coadjoint orbits, corresponding integrable systems, etc.
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