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Abstract: The pentagram map is a projectively natural transformation defined on
(twisted) polygons. A twisted polygon is a map from Z into RP

2 that is periodic modulo
a projective transformation called the monodromy. We find a Poisson structure on the
space of twisted polygons and show that the pentagram map relative to this Poisson
structure is completely integrable. For certain families of twisted polygons, such as
those we call universally convex, we translate the integrability into a statement about
the quasi-periodic motion for the dynamics of the pentagram map. We also explain how
the pentagram map, in the continuous limit, corresponds to the classical Boussinesq
equation. The Poisson structure we attach to the pentagram map is a discrete version of
the first Poisson structure associated with the Boussinesq equation. A research announce-
ment of this work appeared in [16].
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1. Introduction

The notion of integrability is one of the oldest and most fundamental notions in math-
ematics. The origins of integrability lie in classical geometry and the development of
the general theory is always stimulated by the study of concrete integrable systems.
The purpose of this paper is to study one particular dynamical system that has a sim-
ple and natural geometric meaning and to prove its integrability. Our main tools are
mostly geometric: the Poisson structure, first integrals and the corresponding Lagrang-
ian foliation. We believe that our result opens doors for further developments involving
other approaches, such as Lax representation, algebraic-geometric and complex analysis
methods, Bäcklund transformations; we also expect further generalizations and relations
to other fields of modern mathematics, such as cluster algebras theory.

The pentagram map, T , was introduced in [19], and further studied in [20 and 21].
Originally, the map was defined for convex closed n-gons. Given such an n-gon P , the
corresponding n-gon T (P) is the convex hull of the intersection points of consecutive
shortest diagonals of P . Figure 1 shows the situation for a convex pentagon and a con-
vex hexagon. One may consider the map as defined either on unlabelled polygons or on
labelled polygons. Later on, we shall consider the labelled case in detail.

The pentagram map already has some surprising features in the cases n = 5 and
n = 6. When P is a pentagon, there is a projective transformation carrying P to T (P).
This is a classical result, cf. [15]; one of us learned of this result from John Conway in
1987. When P is a hexagon, there is a projective transformation carrying P to T 2(P).
It is not clear whether this result was well-known to classical projective geometers, but
it is easy enough to prove. The name pentagram map stems from the fact that the pentagon
is the simplest kind of polygon for which the map is defined.

Letting Cn denote the space of convex n-gons modulo projective transformations,
we can say that the pentagram map is periodic on Cn for n = 5, 6. The pentagram
map certainly is not periodic on Cn for n ≥ 7. Computer experiments suggest that the
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Fig. 1. The pentagram map defined on a pentagon and a hexagon

pentagram map on Cn in general displays the kind of quasi-periodic motion one sees
in completely integrable systems. Indeed, this was conjectured (somewhat loosely) in
[21]. See the remarks following Theorem 1.2 in [21].

It is the purpose of this paper to establish the complete integrability conjectured in
[21] and to explain the underlying quasi-periodic motion. However, rather than work
with closed n-gons, we will work with what we call twisted n-gons. A twisted n-gon is
a map φ : Z → RP

2 such that that

φ(k + n) = M ◦ φ(k); ∀k.

Here M is some projective automorphism of RP
2. We call M the monodromy. For tech-

nical reasons, we require that every 3 consecutive points in the image are in general
position – i.e., not collinear. When M is the identity, we recover the notion of a closed
n-gon. Two twisted n-gons φ1 and φ2 are equivalent if there is some projective transfor-
mation � such that � ◦ φ1 = φ2. The two monodromies satisfy M2 = �M1�

−1. Let
Pn denote the space of twisted n-gons modulo equivalence.

Let us emphasise that the full space of twisted n-gons (rather than the geometrically
natural but more restricted space of closed n-gons) is much more natural in the general
context of the integrable systems theory. Indeed, in the “smooth case” it is natural to
consider the full space of linear differential equations; the monodromy then plays an
essential rôle in producing the invariants. This viewpoint is adopted by many authors
(see [9,14] and references therein) and this is precisely our viewpoint in the discrete
case.

The pentagram map is generically defined on Pn . However, the lack of convexity
makes it possible that the pentagram map is not defined on some particular point of Pn ,
or that the image of a point in Pn under the pentagram map no longer belongs to Pn .
That is, we can lose the 3-in-a-row property that characterizes twisted polygons. We will
put coordinates in Pn so that the pentagram map becomes a rational map. At least when
n is not divisible by 3, the space Pn is diffeomorphic to R

2n . When n is divisible by
3, the topology of the space is trickier, but nonetheless large open subsets of Pn in this
case are still diffeomorphic to open subsets of R

2n . (Since our map is only generically
defined, the fine points of the global topology of Pn are not so significant.)

The action of the pentagram map in Pn was studied extensively in [21]. In that paper,
it was shown that for every n this map has a family of invariant functions, the so-called
weighted monodromy invariants. There are exactly 2[n/2]+2 algebraically independent
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invariants. Here [n/2] denotes the floor of n/2. When n is odd, there are two exceptional
monodromy functions that are somewhat unlike the rest. When n is even, there are 4
such exceptional monodromy functions. We will recall the explicit construction of these
invariants in the next section, and sketch the proofs of some of their properties. Later on
in the paper, we shall give a new treatment of these invariants.

Here is the main result of this paper.

Theorem 1. There exists a Poisson structure on Pn having co-rank 2 when n is odd and
co-rank 4 when n is even. The exceptional monodromy functions generically span the
null space of the Poisson structure, and the remaining monodromy invariants Poisson-
commute. Finally, the Poisson structure is invariant under the pentagram map.

The exceptional monodromy functions are precisely the Casimir functions for the
Poisson structure. The generic level set of the Casimir functions is a smooth sym-
plectic manifold. Indeed, as long as we keep all the values of the Casimir functions
nonzero, the corresponding level sets are smooth symplectic manifolds. The remain-
ing monodromy invariants, when restricted to the symplectic level sets, define a singular
Lagrangian foliation. Generically, the dimension of the Lagrangian leaves is precisely the
same as the number of remaining monodromy invariants. This is the classical picture of
Arnold-Liouville complete integrability.

As usual in this setting, the complete integrability gives an invariant affine structure
to every smooth leaf of the Lagrangian foliation. Relative to this structure, the pentagram
map is a translation. Hence

Corollary 1.1. Suppose that P is a twisted n-gon that lies on a smooth Lagrangian leaf
and has a periodic orbit under the pentagram map. If P ′ is any twisted n-gon on the
same leaf, then P ′ also has a periodic orbit with the same period, provided that the orbit
of P ′ is well-defined.

Remark 1.2. In the result above, one can replace the word periodic with ε-periodic. By
this we mean that we fix a Euclidean metric on the leaf and measure distances with
respect to this metric.

We shall not analyze the behavior of the pentagram map on Cn . One of the difficulties
in analyzing the space Cn of closed convex polygons modulo projective transformations
is that this space has positive codimension in Pn (codimension 8). We do not know in
enough detail how the Lagrangian singular foliation intersects Cn , and so we cannot
appeal to the structure that exists on generic leaves. How the monodromy invariants
behave when restricted to Cn is a subtle and interesting question that we do not yet fully
know how to answer (see Theorem 4 for a partial result). We hope to tackle the case of
closed n-gons in a sequel paper.

One geometric setting where our machine works perfectly is the case of universally
convex n-gons. This is our term for a twisted n-gon whose image in RP

2 is strictly
convex. The monodromy of a universally convex n-gon is necessarily an element of
PGL3(R) that lifts to a diagonalizable matrix in SL3(R). A universally convex poly-
gon essentially follows along one branch of a hyperbola-like curve. Let Un denote the
space of universally convex n-gons, modulo equivalence. We will prove that Un is an
open subset of Pn locally diffeomorphic to R

2n . Further, we will see that the penta-
gram map is a self-diffeomorphism of U2n . Finally, we will see that every leaf in the
Lagrangian foliation intersects Un in a compact set.

Combining these results with our Main Theorem and some elementary differential
topology, we arrive at the following result.
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Theorem 2. Almost every point of Un lies on a smooth torus that has a T -invariant
affine structure. Hence, the orbit of almost every universally convex n-gon undergoes
quasi-periodic motion under the pentagram map.

We will prove a variant of Theorem 2 for a different family of twisted n-gons. See
Theorem 3. The general idea is that certain points of Pn can be interpreted as embedded,
homologically nontrivial, locally convex polygons on projective cylinders, and suitable
choices of geometric structure give us the compactness we need for the proof.

Here we place our results in a context. First of all, it seems that there is some con-
nection between our work and cluster algebras. On the one hand, the space of twisted
polygons is known as an example of cluster manifold, see [6,7] and discussion in the
end of this paper. This implies in particular that Pn is equipped with a canonical Poisson
structure, see [10]. We do not know if the Poisson structure constructed in this paper
coincides with the canonical cluster Poisson structure. On the other hand, it was shown
in [21] that a certain change of coordinates brings the pentagram map rather closely in
line with the octahedral recurrence, which is one of the prime examples in the theory of
cluster algebras, see [11,18,22].

Second of all, there is a close connection between the pentagram map and integrable
P.D.E.s. In the last part of this paper we consider the continuous limit of the pentagram
map. We show that this limit is precisely the classical Boussinesq equation which is one
of the best known infinite-dimensional integrable systems. Moreover, we argue that the
Poisson bracket constructed in the present paper is a discrete analog of the so-called
first Poisson structure of the Boussinesq equation. We remark that a connection to the
Boussinesq equation was mentioned in [19], but no derivation was given.

Discrete integrable systems is an actively developing subject, see, e.g., [26] and the
books [5,23]. The paper [4] discusses a well-known discrete version (but with contin-
uous time) of the Boussinesq equation; see [25] (and references therein) for a lattice
version of this equation. See [9] (and references therein) for a general theory of integra-
ble difference equations. Let us stress that the r -matrix Poisson brackets considered in
[9] are analogous to the second (i.e., the Gelfand-Dickey) Poisson bracket. A geometric
interpretation of all the discrete integrable systems considered in the above references
is unclear.

In the geometrical setting which is closer to our viewpoint, see [5] for many inter-
esting examples. The papers [1,2] considers a discrete integrable system on the space
of n-gons, different from the pentagram map. The recent paper [13] considers a discrete
integrable systems in the setting of projective differential geometry; some of the formu-
las in this paper are close to ours. Finally, we mention [12,14] for discrete and continuous
integrable systems related both to Poisson geometry and projective differential geometry
on the projective line.

We turn now to a description of the contents of the paper. Essentially, our plan is
to make a bee-line for all our main results, quoting earlier work as much as possible.
Then, once the results are all in place, we will consider the situation from another point
of view, proving many of the results quoted in the beginning.

One of the disadvantages of the paper [21] is that many of the calculations are ad hoc
and done with the help of a computer. Even though the calculations are correct, one is not
given much insight into where they come from. In this paper, we derive everything in an
elementary way, using an analogy between twisted polygons and solutions to periodic
ordinary differential equations.

One might say that this paper is organized along the lines of first the facts, then the
reasons. Accordingly, there is a certain redundancy in our treatment. For instance, we
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introduce two natural coordinate systems in Pn . In the first coordinate system, which
comes from [21], most of the formulas are simpler. However, the second coordinate
system, which is new, serves as a kind of engine that drives all the derivations in both
coordinate systems; this coordinate system is better for computation of the monodromy
too. Also, we discovered the invariant Poisson structure by thinking about the second
coordinate system.

In §2 we introduce the first coordinate system, describe the monodromy invariants,
and establish the Main Theorem. In §3 we apply the main theorem to universally convex
polygons and other families of twisted polygons. In §4 we introduce the second coor-
dinate system. In §4 and 5 we use the second coordinate system to derive many of the
results we simply quoted in §2. Finally, in §6 we use the second coordinate system to
derive the continuous limit of the pentagram map.

2. Proof of the Main Theorem

2.1. Coordinates for the space. In this section, we introduce our first coordinate system
on the space of twisted polygons. As we mentioned in the Introduction, a twisted n-gon
is a map φ : Z → RP

2 such that

φ(n + k) = M ◦ φ(k) (2.1)

for some projective transformation M and all k. We let vi = φ(i). Thus, the vertices of
our twisted polygon are naturally . . . vi−1, vi , vi+1, . . .. Our standing assumption is that
vi−1, vi , vi+1 are in general position for all i , but sometimes this assumption alone will
not be sufficient for our constructions.

The cross ratio is the most basic invariant in projective geometry. Given four points
t1, t2, t3, t4 ∈ RP

1, the cross-ratio [t1, t2, t3, t4] is their unique projective invariant. The
explicit formula is as follows. Choose an arbitrary affine parameter, then

[t1, t2, t3, t4] = (t1 − t2) (t3 − t4)

(t1 − t3) (t2 − t4)
. (2.2)

This expression is independent of the choice of the affine parameter, and is invariant
under the action of PGL(2, R) on RP

1.

Remark 2.1. Many authors define the cross ratio as the multiplicative inverse of the for-
mula in Eq. 2.2. Our definition, while perhaps less common, better suits our purposes.

The cross-ratio was used in [21] to define a coordinate system on the space of twisted
n-gons. As the reader will see from the definition, the construction requires somewhat
more than 3 points in a row to be in general position. Thus, these coordinates are not
entirely defined on our space Pn . However, they are generically defined on our space,
and this is sufficient for all our purposes.

The construction is as follows, see Fig. 2. We associate to every vertex vi two num-
bers:

xi = [
vi−2, vi−1, ((vi−2, vi−1) ∩ (vi , vi+1)) , ((vi−2, vi−1) ∩ (vi+1, vi+2))

]
,

yi = [((vi−2, vi−1) ∩ (vi+1, vi+2)), ((vi−1, vi ) ∩ (vi+1, vi+2)), vi+1, vi+2], (2.3)

called the left and right corner cross-ratios. We often call our coordinates the corner
invariants.
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Fig. 2. Points involved in the definition of the invariants

Clearly, the construction is PGL(3, R)-invariant and, in particular, xi+n = xi and
yi+n = yi . We therefore obtain a (local) coordinate system that is generically defined
on the space Pn . In [21], §4.2, we show how to reconstruct a twisted n-gon from its
sequence of invariants. The reconstruction is only canonical up to projective equiva-
lence. Thus, an attempt to reconstruct φ from x1, y1, . . . , perhaps would lead to an
unequal but equivalent twisted polygon. This does not bother us. The following lemma
is nearly obvious.

Lemma 2.2. At generic points, the space Pn is locally diffeomorphic to R
2n.

Proof. We can perturb our sequence x1, y1, . . . in any way we like to get a new sequence
x ′

1, y′
1, . . . . If the perturbation is small, we can reconstruct a new twisted n-gon φ′

that is near φ in the following sense. There is a projective transformation � such that
n-consecutive vertices of �(φ′) are close to the corresponding n consecutive vertices
of φ. In fact, if we normalize so that a certain quadruple of consecutive points of �(φ′)
match the corresponding points of φ, then the remaining points vary smoothly and alge-
braically with the coordinates. The map (x ′

1, y′
2, . . . , x ′

n, y′
n) → [φ′] (the class of φ′)

gives the local diffeomorphism. 	

Remark 2.3. (i) Later on in the paper, we will introduce new coordinates on all of Pn

and show, with these new coordinates, that Pn is globally diffeomorphic to R
2n

when n is not divisible by 3.
(ii) The actual lettering we use here to define our coordinates is different from the

lettering used in [21]. Here is the correspondense:

. . . p1, q2, p3, q4 . . . ⇐⇒ . . . , x1, y1, x2, y2, . . . .

2.2. A formula for the map. In this section, we express the pentagram map in the coor-
dinates we have introduced in the previous section. To save words later, we say now that
we will work with generic elements of Pn , so that all constructions are well-defined.
Let φ ∈ Pn . Consider the image, T (φ), of φ under the pentagram map. One difficulty
in making this definition is that there are two natural choices for labelling T (φ), the left
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Fig. 3. Left and right labelling schemes

choice and the right choice. These choices are shown in Fig. 3. In the picture, the black
dots represent the vertices of φ and the white dots represent the vertices of T (φ). The
labelling continues in the obvious way.

If one considers the square of the pentagram map, the difficulty in making this choice
goes away. However, for most of our calculations it is convenient for us to arbitrarily
choose right over left and consider the pentagram map itself and not the square of the
map. Henceforth, we make this choice.

Lemma 2.4. Suppose the coordinates for φ are x1, y1, . . . then the coordinates for T (φ)

are

T ∗xi = xi
1 − xi−1 yi−1

1 − xi+1 yi+1
, T ∗yi = yi+1

1 − xi+2 yi+2

1 − xi yi
, (2.4)

where T ∗ is the standard pull-back of the (coordinate) functions by the map T .

In [21], Eq. 7, we express the squared pentagram map as the product of two involu-
tions on R

2n , and give coordinates. From this equation one can deduce the formula in
Lemma 2.4 for the pentagram map itself. Alternatively, later in the paper we will give a
self-contained proof of Lemma 2.4.

Lemma 2.4 has two corollaries, which we mention here. These corollaries are almost
immediate from the formula. First, there is an interesting scaling symmetry of the pen-
tagram map. We have a rescaling operation on R

2n , given by the expression

Rt : (x1, y1, . . . , xn, yn) → (t x1, t−1 y1, . . . , t xn, t−1 yn). (2.5)

Corollary 2.5. The pentagram map commutes with the rescaling operation.

Second, the formula for the pentagram map exhibits rather quickly some invariants
of the pentagram map. When n is odd, define

On =
n∏

i=1

xi ; En =
n∏

i=1

yi . (2.6)

When n is even, define

On/2 =
∏

i even

xi +
∏

i odd

xi , En/2 =
∏

i even

yi +
∏

i odd

yi . (2.7)

The products in this last equation run from 1 to n.
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Corollary 2.6. When n is odd, the functions On and En are invariant under the penta-
gram map. When n is even, the functions On/2 and En/2 are also invariant under the
pentagram map.

These functions are precisely the exceptional invariants we mentioned in the Intro-
duction. They turn out to be the Casimirs for our Poisson structure.

2.3. The monodromy invariants. In this section we introduce the invariants of the pen-
tagram map that arise in Theorem 1.

The invariants of the pentagram map were defined and studied in [21]. In this section
we recall the original definition. Later on in the paper, we shall take a different point of
view and give self-contained derivations of everything we say here.

As above, let φ be a twisted n-gon with invariants x1, y1, . . .. Let M be the monodr-
omy of φ. We lift M to an element of GL3(R). By slightly abusing notation, we also
denote this matrix by M . The two quantities

�1 = trace3(M)

det(M)
; �2 = trace3(M−1)

det(M−1)
; (2.8)

enjoy 3 properties.

• �1 and �2 are independent of the lift of M .
• �1 and �2 only depend on the conjugacy class of M .
• �1 and �2 are rational functions in the corner invariants.

We define

�̃1 = O2
n En�1; �̃2 = On E2

n�2. (2.9)

In [21] it is shown that �̃1 and �̃2 are polynomials in the corner invariants. Since the pen-
tagram map preserves the monodromy, and On and En are invariants, the two functions
�̃1 and �̃2 are also invariants.

We say that a polynomial in the corner invariants has weight k if we have the following
equation:

R∗
t (P) = tk P. (2.10)

Here R∗
t denotes the natural operation on polynomials defined by the rescaling operation

(2.5). For instance, On has weight n and En has weight −n. In [21] it is shown that

�̃1 =
[n/2]∑

k=1

Ok; �̃2 =
[n/2]∑

k=1

Ek, (2.11)

where Ok has weight k and Ek has weight −k. Since the pentagram map commutes
with the rescaling operation and preserves �̃1 and �̃2, it also preserves their “weighted
homogeneous parts”. That is, the functions O1, E1, O2, E2, . . . are also invariants of the
pentagram map. These are the monodromy invariants. They are all nontrivial polynomi-
als.

Algebraic Independence: In [21], §6, it is shown that the monodromy invariants are
algebraically independent provided that, in the even case, we ignore On/2 and En/2. We
will not reproduce the proof in this paper, so here we include a brief description of the
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argument. Since we are mainly trying to give the reader a feel for the argument, we will
explain a variant of the method in [21]. Let f1, . . . , fk be the complete list of invariants
we have described above. Here k = 2[n/2] + 2. If our functions were not algebraically
independent, then the gradients ∇ f1, . . . ,∇ fk would never be linearly independent. To
rule this out, we just have to establish the linear independence at a single point. One
can check this at the point (1, ω, . . . , ω2n), where ω is a (4n)th root of unity. The actual
method in [21] is similar to this, but uses a trick to make the calculation easier. Given
the formulas for the invariants we present below, this calculation is really just a matter
of combinatorics. Perhaps an easier calculation can be made for the point (0, 1, . . . , 1),
which also seems to work for all n.

2.4. Formulas for the invariants. In this section, we recall the explicit formulas for the
monodromy invariants given in [21]. Later on in the paper, we will give a self-contained
derivation of the formulas. From the point of view of our main theorems, we do not need
to know the formulas, but only their algebraic independence and Lemma 2.8 below.

We introduce the monomials

Xi := xi yi xi+1. (2.12)

1. We call two monomials Xi and X j consecutive if j ∈ {i − 2, i − 1, i, i + 1, i + 2} ;
2. we call Xi and x j consecutive if j ∈ {i − 1, i, i + 1, i + 2} ;
3. we call xi and xi+1 consecutive.

Let O(X, x) be a monomial obtained by the product of the monomials Xi and x j ,
i.e.,

O = Xi1 · · · Xis x j1 · · · x jt .

Such a monomial is called admissible if no two of the indices are consecutive. For every
admissible monomial, we define the weight |O| and sign(O) by

|O| := s + t, sign(O) := (−1)t .

With these definitions, it turns out that

Ok =
∑

|O|=k

sign(O) O; k ∈
{

1, 2, . . . ,
[n

2

]}
. (2.13)

The same formula works for Ek , if we make all the same definitions with x and y
interchanged.

Example 2.7. For n = 5 one obtains the following polynomials:

O1 =
5∑

i=1

(xi yi xi+1 − xi ) , O2 =
5∑

i=1

(xi xi+2 − xi yi xi+1 xi+3)

together with O5.

Now we mention the needed symmetry property. Let τ be the involution on the
indices:

τ :
{

xi �→ x1−i
yi �→ y−i

mod n. (2.14)

Then τ acts on the variables, monomials and polynomials.
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Lemma 2.8. One has τ(Ok) = Ok.

Proof. τ takes an admissible partition to an admissible one and does not change the
number of singletons involved. 	


2.5. The Poisson bracket. In this section, we introduce the Poisson bracket on Pn . Let
C∞

n denote the algebra of smooth functions on R
2n . A Poisson structure on C∞

n is a map

{ , } : C∞
n × C∞

n → C∞
n (2.15)

that obeys the following axioms:

1. Antisymmetry: { f, g} = −{g, f }.
2. Linearity: {a f1 + f2, g} = a{ f1, g} + { f2, g}.
3. Leibniz Identity: { f, g1g2} = g1{ f, g2} + g2{ f, g1}.
4. Jacobi Identity: 
{ f1, { f2, f3}} = 0.

Here 
 denotes the cyclic sum.
We define the following Poisson bracket on the coordinate functions of R

2n :

{xi , xi±1} = ∓xi xi+1, {yi , yi±1} = ±yi yi+1. (2.16)

All other brackets not explicitly mentioned above vanish. For instance

{xi , y j } = 0; ∀ i, j.

Once we have the definition on the coordinate functions, we use linearity and the Liebniz
rule to extend to all rational functions. Though it is not necessary for our purposes, we
can extend to all smooth functions by approximation. Our formula automatically builds
in the anti-symmetry. Finally, for a “homogeneous bracket” as we have defined, it is
well-known (and an easy exercise) to show that the Jacobi identity holds.

Henceforth we refer to the Poisson bracket as the one that we have defined above.
Now we come to one of the central results in the paper. This result is our main tool for
establishing the complete integrability and the quasi-periodic motion.

Lemma 2.9. The Poisson bracket is invariant with respect to the pentagram map.

Proof. Let T ∗ denote the action of the pentagram map on rational functions. One has
to prove that for any two functions f and g one has {T ∗( f ), T ∗(g)} = { f, g} and of
course it suffices to check this fact for the coordinate functions. We will use the explicit
formula (2.4).

To simplify the formulas, we introduce the following notation: ϕi = 1−xi yi . Lemma
2.4 then reads:

T ∗(xi ) = xi
ϕi−1

ϕi+1
, T ∗(yi ) = yi+1

ϕi+2

ϕi
.

One easily checks that {ϕi , ϕ j } = 0 for all i, j . Next,

{xi , ϕ j } = (
δi, j−1 − δi, j+1

)
xi x j y j ,

{yi , ϕ j } = (
δi, j+1 − δi, j−1

)
x j yi y j .

In order to check the T -invariance of the bracket, one has to check that the relations
between the functions T ∗(xi ) and T ∗(y j ) are the same as for xi and y j . The first relation
to check is: {T ∗(xi ), T ∗(y j )} = 0.
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Indeed,

{
T ∗(xi ), T ∗(y j )

} = {xi , ϕ j+2} y j+1 ϕi−1

ϕi+1 ϕ j
− {xi , ϕ j } y j+1 ϕi−1 ϕ j+2

ϕi+1 ϕ2
j

−{y j+1, ϕi−1} xi ϕ j+2

ϕi+1 ϕ j
+ {y j+1, ϕi+1} xi ϕi−1 ϕ j+2

ϕ2
i+1 ϕ j

= (
δi, j+1 − δi, j+3

) xi x j+2 y j+2 y j+1 ϕi−1

ϕi+1 ϕ j

− (
δi, j−1 − δi, j+1

) xi x j y j y j+1 ϕi−1 ϕ j+2

ϕi+1 ϕ2
j

− (
δ j+1,i − δ j+1,i−2

) xi−1 y j+1 yi−1 xi ϕ j+2

ϕi+1 ϕ j

+
(
δ j+1,i+2 − δ j+1,i

) xi+1 y j+1 yi+1 xi ϕi−1 ϕ j+2

ϕ2
i+1 ϕ j

= 0,

since the first term cancels with the third and the second with the last one.
One then computes {T ∗(xi ), T ∗(x j )} and {T ∗(yi ), T ∗(y j )}, the computations are

similar to the above one and will be omitted. 	

Two functions f and g are said to Poisson commute if { f, g} = 0.

Lemma 2.10. The monodromy invariants Poisson commute.

Proof. Let τ by the involution on the indices defined at the end of the last section. We
have τ(Ok) = Ok by Lemma 2.8. We make the following claim: For all polynomials
f (x, y) and g(x, y), one has

{τ( f ), τ (g)} = −{ f, g}.

Assuming this claim, we have

{Ok, Ol} = {τ(Ok), τ (Ol)} = −{Ok, Ol},

hence the bracket is zero. The same argument works for {Ek, El} and {Ok, El}.
Now we prove our claim. It suffices to check the claim when f and g are monomials

in variables (x, y). In this case, we have: { f, g} = C f g, where C is the sum of ±1,
corresponding to “interactions” between factors xi in f and x j in g (resp. yi and y j ).
Whenever a factor xi in f interacts with a factor x j in g (say, when j = i + 1, and the
contribution is +1), there will be an interaction of x−i in τ( f ) and x− j in τ(g) yielding
the opposite sign (in our example, − j = −i − 1, and the contribution is −1). This
establishes the claim, and hence the lemma. 	


A function f is called a Casimir for the Poisson bracket if f Poisson commutes with
all other functions. It suffices to check this condition on the coordinate functions. An
easy calculation yields the following lemma. We omit the details.

Lemma 2.11. The invariants in Eq. 2.7 are Casimir functions for the Poisson bracket.
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2.6. The corank of the structure. In this section, we compute the corank of our Poisson
bracket on the space of twisted polygons. The corank of a Poisson bracket on a smooth
manifold is the codimension of the generic symplectic leaves. These symplectic leaves
can be locally described as levels Fi = const of the Casimir functions. See [27] for the
details.

For us, the only genericity condition we need is

xi �= 0, y j �= 0; ∀ i, j. (2.17)

Our next result refers to Eq. 2.7.

Lemma 2.12. The Poisson bracket has corank 2 if n is odd and corank 4 if n is even.

Proof. The Poisson bracket is quadratic in coordinates (x, y). It is very easy to see that
in so-called logarithmic coordinates,

pi = log xi , qi = log yi ,

the bracket is given by a constant skew-symmetric matrix. More precisely, the bracket
between the p-coordinates is given by the marix

⎛

⎜⎜⎜
⎝

0 −1 0 . . . 1
1 0 −1 . . . 0
0 1 0 . . . 0
. . . . . .

−1 0 0 . . . 0

⎞

⎟⎟⎟
⎠

whose rank is n − 1, if n is odd and n − 2, if n is even. The bracket between the
q-coordinates is given by the opposite matrix. 	


The following corollary is immediate from the preceding result and Lemma 2.11.

Corollary 2.13. If n is odd, then the Casimir functions are of the form F (On, En). If n
is even, then the Casimir functions are of the form F(On/2, En/2, On, En). In both cases
the generic symplectic leaves of the Poisson structure have dimension 4[(n − 1)/2].
Remark 2.14. Computing the gradients, we see that a level set of the Casimir functions
is smooth as long as all the functions are nonzero. Thus, the generic level sets are smooth
in quite a strong sense.

2.7. The end of the proof. In this section, we finish the proof of Theorem 1. Let us sum-
marize the situation. First we consider the case when n is odd. On the space Pn we have a
generically defined and T -invariant Poisson bracket that is invariant under the pentagram
map. This bracket has co-rank 2, and the generic level set of the Casimir functions has
dimension 4[n/2] = 2n − 2. On the other hand, after we exclude the two Casimirs, we
have 2[n/2] = n − 1 algebraically independent invariants that Poisson commute with
each other. This gives us the classical Arnold-Liouville complete integrability.

In the even case, our symplectic leaves have dimension 4[(n − 1)/2] = 2n − 4.
The invariants En/2 and On/2 are also Casimirs in this case. Once we exclude these, we
have 2[(n − 1)/2] = n − 2 algebraically independent invariants. Thus, we get the same
complete integrability as in the odd case.

This completes the proof of our Main Theorem. In the next chapter, we consider
geometric situations where the Main Theorem leads to quasi-periodic dynamics of the
pentagram map.



422 V. Ovsienko, R. Schwartz, S. Tabachnikov

3. Quasi-periodic Motion

In this chapter, we explain some geometric situations where our Main Theorem, an
essentially algebraic result, translates into quasi-periodic motion for the dynamics. The
universally convex polygons furnish our main example.

3.1. Universally convex polygons. In this section, we define universally convex poly-
gons and prove some basic results about them.

We say that a matrix M ∈ SL3(R) is strongly diagonalizable if it has 3 distinct
positive real eigenvalues. Such a matrix represents a projective transformation of RP

2.
We also let M denote the action on RP

2. Acting on RP
2, the map M fixes 3 distinct

points. These points, corresponding to the eigenvectors, are in general position. M sta-
bilizes the 3 lines determined by these points, taken in pairs. The complement of the 3
lines is a union of 4 open triangles. Each open triangle is preserved by the projective
action. We call these triangles the M-triangles.

Let φ ∈ Pn be a twisted n-gon, with monodromy M . We call φ universally convex if

• M is a strongly diagonalizable matrix.
• φ(Z) is contained in one of the M-triangles.
• The polygonal arc obtained by connecting consecutive vertices of φ(Z) is convex.

The third condition requires more explanation. In RP
2 there are two ways to connect

points by line segments. We require the connection to take place entirely inside the
M-triangle that contains φ(Z). This determines the method of connection uniquely.

We normalize so that M preserves the line at infinity and fixes the origin in R
2. We

further normalize so that the action on R
2 is given by a diagonal matrix with eigenvalues

0 < a < 1 < b. This 2 × 2 diagonal matrix determines M . For convenience, we will
usually work with this auxilliary 2 × 2 matrix. We slightly abuse our notation, and also
refer to this 2 × 2 matrix as M . With our normalization, the M-triangles are the open
quadrants in R

2. Finally, we normalize so that φ(Z) is contained in the positive open
quadrant.

Lemma 3.1. Un is open in Pn.

Proof. Let φ be a universally convex n-gon and let φ′ be a small perturbation. Let M ′
be the monodromy of φ′. If the perturbation is small, then M ′ remains strongly diago-
nalizable. We can conjugate so that M ′ is normalized exactly as we have normalized M .

If the perturbation is small, the first n points of φ′(Z) remain in the open positive
quadrant, by continuity. But then all points of φ′(Z) remain in the open positive quadrant,
by symmetry. This is to say that φ′(Z) is contained in an M ′-triangle.

If the perturbation is small, then φ′(Z) is locally convex at some collection of n con-
secutive vertices. But then φ′(Z) is a locally convex polygon, by symmetry. The only
way that φ(Z) could fail to be convex is that it wraps around on itself. But, the invariance
under the 2 × 2 hyperbolic matrix precludes this possibility. Hence φ(Z) is convex. 	

Lemma 3.2. Un is invariant under the pentagram map.

Proof. Applying the pentagram map to φ(Z) all at once, we see that the image is again
strictly convex and has the same monodromy. 	
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Fig. 4. Points involved in the definition of the invariants

3.2. The Hilbert perimeter. In this section, we introduce an invariant we call the Hilbert
perimeter. This invariant plays a useful role in our proof, given in the next section, that
the level sets of the monodromy functions in Un are compact.

As a prelude to our proof, we introduce another projective invariant – a function of
the Casimirs – which we call the Hilbert Perimeter. This invariant is also considered in
[19], and for similar purposes.

Referring to Fig. 2, we define

zk = [(vi , vi−2), (vi , vi−1), (vi , vi+1), (vi , vi+2)]. (3.1)

We are taking the cross ratio of the slopes of the 4 lines in Fig. 4.
We now define a “new” invariant

H = 1
∏n

i=1 zi
. (3.2)

Remark 3.3. Some readers will know that one can put a canonical metric inside any
convex shape, called the Hilbert metric. In case φ is a genuine convex polygon, the
quantity − log(zk) measures the Hilbert length of the thick line segment in Fig. 4. (The
reader who does not know what the Hilbert metric is can take this as a definition.) Then
log(H) is the Hilbert perimeter of T (P) with respect to the Hilbert metric on P . Hence
the name.

Lemma 3.4. H = 1/(On En).

Proof. This is a local calculation, which amounts to showing that zk = xk yk . The best
way to do the calculation is to normalize so that 4 of the points are the vertices of a
square. We omit the details. 	


3.3. Compactness of the level sets. In this section, we prove that the level sets of the
monodromy functions in U are compact.

Let Un(M, H) denote the subset of Un consisting of elements whose monodromy is
M and whose Hilbert Perimeter is H . In this section we will prove that Un(M, H) is
compact. For ease of notation, we abbreviate this space by X .

Let φ ∈ X . We normalize so that M is as in Lemma 3.1. We also normalize so that
φ(0) = (1, 1). Then there are numbers (x, y) such that φ(n) = (x, y), independent of
the choice of φ. We can assume that x > 1 and y < 1. The portion of φ of interest
to us, namely φ({0, . . . , n − 1}), lies entirely in the rectangle R whose two opposite
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corners are (1, 1) and (x, y). Let (vi , v j ) denote the line determined by vi and v j . Here
vk = φ(k). In particular, let Li = (vi , vi+1).

Lemma 3.5. Suppose that {φk} ∈ X is a sequence that does not converge on a subse-
quence to another element of X. Then, passing to a subsequence we can arrange that at
least one of the two situations holds: there exists some i such that

1. The angle between Li and Li+1 tends to 0 as k → ∞ whereas the angle between
Li+1 and Li+2 does not;

2. The points vi and vi+1 converge to a common point as k → ∞ whereas vi+2 con-
verges to a distinct point.

Proof. Suppose that there is some minimum distance ε between all points of φk in the
rectangle R. In this case, the angle between two consecutive segments must tend to 0
as k → ∞. However, not all angles between consecutive segments can converge to 0
because of the fixed monodromy. The first case is now easy to arrange. If there is no such
minimum ε, then two points coalesce, on a subsequence. For the same reason as above,
not all points can coalesce to the same point. The second case is now easy to arrange.

	

Lemma 3.6. X is compact.

We will suppose we have the kind of sequence we had in the previous lemma and
then derive a contradiction. In the first case above, the slopes of the lines (vi+2, vi ) and
(vi+2, vi+1) converge to each other as k → ∞, but the common limit remains uniformly
bounded away from the slopes of (vi+2, vi+3) and (vi+2, vi+4). Hence zi+2 → 0. Since
z j ∈ (0, 1) for all j , we have H → ∞ in this case. This is a contradiction.

To deal with the second case, we can assume that the first case cannot be arranged.
That is, we can assume that there is a uniform lower bound to the angles between two
consecutive lines Li and Li+1 for all indices and all k. But then the same situation as in
Case 1 holds, and we get the same contradiction.

3.4. Proof of Theorem 2. In this section, we finish the proof of Theorem 2.
Recall that the level sets of our Casimir functions give a (singular) foliation by sym-

plectic leaves. Note that all corner invariants are nonzero for points in Un . Hence, our
singular symplectic foliation intersects Un in leaves that are all smooth symplectic man-
ifolds. Let k = [(n − 1)/2].

Let M be a symplectic leaf. Note that M has dimension 4k. Consider the map

F = (O1, E1, . . . , Ok, Ek), (3.3)

made from our algebraically independent monodromy invariants. Here we are excluding
all the Casimirs from the definition of F .

Say that a point p ∈ M is regular if d Fp is surjective. Call M typical if some
point of M is regular. Given our algebraic independence result, and the fact that the
coordinates of F are polynomials, we see that almost every symplectic leaf is typical.

Lemma 3.7. If M is typical then almost every F-fiber of M is a smooth submanifold
of M.
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Proof. Let S = F(M) ⊂ R
2k . Note that S has positive measure since d Fp is nonsin-

gular for some p ∈ M. Let 
 ⊂ M denote the set of points p such that d Fp is not
surjective. Sard’s theorem says that F(
) has measure 0. Hence, almost every fiber of
M is disjoint from 
. 	


Let M be a typical symplectic leaf, and let F be a smooth fiber of F . Then F
has dimension 2k. Combining our Main Theorem with the standard facts about
Arnold-Liouville complete integrability (e.g., [3]), we see that the monodromy invari-
ants give a canonical affine structure to F . The pentagram map T preserves both F ,
and is a translation relative to this affine structure. Any pre-compact orbit in F exhibits
quasi-periodic motion.

Now, T also preserves the monodromy. But then each T -orbit in F is contained in
one of our spaces Un(H, M). Hence, the orbit is precompact. Hence, the orbit undergoes
quasi-periodic motion. Since this argument works for almost every F-fiber of almost
every symplectic leaf in Un , we see that almost every orbit in Un undergoes quasi-
periodic motion under the pentagram map.

This completes the proof of Theorem 2.

Remark 3.8. We can say a bit more. For almost every choice of monodromy M , the
intersection

F(M) = F ∩ Un(H, M) (3.4)

is a smooth compact submanifold and inherits an invariant affine structure from F . In
this situation, the restriction of T to F(M) is a translation in the affine structure.

3.5. Hyperbolic cylinders and tight polygons. In this section, we put Theorem 2 in a
somewhat broader context. The material in this section is a prelude to our proof, given
in the next section, of a variant of Theorem 2.

Before we sketch variants of Theorem 2, we think about these polygons in a different
way. A projective cylinder is a topological cylinder that has coordinate charts into RP

2

such that the transition functions are restrictions of projective transformations. This is a
classical example of a geometric structure. See [24 or 17] for details.

Example 3.9. Suppose that M acts on R
2 as a nontrivial diagonal matrix having eigen-

values 0 < a < 1 < b. Let Q denote the open positive quadrant. Then Q/M is a
projective cylinder. We call Q/M a hyperbolic cylinder.

Let Q/M be a hyperbolic cylinder. Call a polygon on Q/M tight if it has the following
3 properties:

• It is embedded;
• It is locally convex;
• It is homologically nontrivial.

Any universally convex polygon gives rise to a tight polygon on Q/M , where M is the
monodromy normalized in the standard way. The converse is also true. Moreover, two
tight polygons on Q/M give rise to equivalent universally convex polygons iff some
locally projective diffeomorphism of Q/M carries one polygon to the other. We call
such maps automorphisms of the cylinder, for short.

Thus, we can think of the pentagram map as giving an iteration on the space of tight
polygons on a hyperbolic cylinder. There are 3 properties that give rise to our result
about periodic motion.
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θ

(0,0)

Fig. 5. The cylinder 
(θ, d)

1. The image of a tight polygon under the pentagram map is another well-defined tight
polygon.

2. The space of tight polygons on a hyperbolic cylinder, modulo the projective auto-
morphism group, is compact.

3. The strongly diagonalizable elements are open in SL3(R).

The third condition guarantees that the set of all tight polygons on all hyperbolic cylinders
is an open subset of the set of all twisted polygons.

3.6. A related theorem. In this section we prove a variant of Theorem 2 for a different
family of twisted polygons.

We start with a sector of angle θ in the plane, as shown in Fig. 5, and glue the top
edge to the bottom edge by a similarity S that has dilation factor d. We omit the origin
from the sector. The quotient is the projective cylinder we call 
(θ, d). When d = 1 we
have a Euclidean cone surface. When θ = 2π we have the punctured plane.

We consider the case when θ is small and d is close to 1. In this case, 
(θ, d) admits
tight polygons for any n. (It is easiest to think about the case when n is large.) When
developed out in the plane, these tight polygons follow along logarithmic spirals.

Let S(θ, d) denote the subset of R
2 consisting of pairs (θ ′, d ′), where

0 < θ ′ < θ; 1 < d ′ < d. (3.5)

Define


̂(d, 1) =
⋃

(θ ′,d ′)∈S(θ,d)


(θ ′, d ′). (3.6)

One might say that 
̂(θ, d) is the space of polygons that are more tightly coiled than
those on 
(θ, d).

Theorem 3. Suppose that θ > 0 is sufficiently close to 0 and d > 1 is sufficiently close to
1. Then almost every point of 
̂(θ, d) lies on a smooth torus that has a T -invariant affine
structure. Hence, the orbit of almost every point of 
̂(θ, d) undergoes quasi-periodic
motion.

Proof. Our proof amounts to verifying the three properties above for the points in our
space. We fix (θ, d) and let 
̂ = 
̂(θ, d).

1. Let P be a tight polygon on 
(θ ′, d ′). If θ ′ is sufficiently small and d ′ is sufficiently
close to 1, then each vertex v of P is much closer to its neighbors than it is to the
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origin. For this reason, the pentagram map acts on, and preserves, the set of tight
polygons on 
(θ ′, d ′). The same goes for the inverse of the pentagram map. Hence

̂ is a T -invariant subset of Pn .

2. Let Z(θ ′, d ′, α) denote the space of tight polygons on 
(θ ′, d ′) having Hilbert
perimeter α. We consider these tight polygons equivalent if there is a similarity
of 
(θ ′, d ′) that carries one to the other. A proof very much like the compactness
argument given in [19], for closed polygons, shows that Z(θ ′, d ′, α) is compact for
θ ′ near 0 and d ′ near 1 and α arbitrary. Hence, the level sets of the Casimir functions
intersect 
̂ in compact sets.

3. The similarity S is the monodromy for our tight polygons. S lifts to an element of
SL3(R) that has one real eigenvalue and two complex conjugate eigenvalues. Small
perturbations of S have the same property. Hence, 
̂ is open in Pn .

We have assembled all the ingredients necessary for the proof of Theorem 2. The same
argument as above now establishes the result. 	

Remark 3.10. The first property crucially uses the fact that θ is small. Consider the case
θ = 2π . It can certainly happen that P contains the origin in its hull but T (P) does not.
We do not know the exact bounds on θ and d necessary for this construction.

4. Another Coordinate System in Space Pn

4.1. Polygons and difference equations. Consider two arbitrary n-periodic sequences
(ai ), (bi ) with ai , bi ∈ R and i ∈ Z, such that ai+n = ai , bi+n = bi . Assume that
n �= 3 m. This will be our standing assumption whenever we work with the (a, b)-
coordinates; its meaning will become clear shortly. We shall associate to these sequences
a difference equation of the form

Vi+3 = ai Vi+2 + bi Vi+1 + Vi , (4.1)

for all i .
A solution V = (Vi ) is a sequence of numbers Vi ∈ R satisfying (4.1). Recall a

well-known fact that the space of solutions of (4.1) is 3-dimensional (any solution is
determined by the initial conditions (V0, V1, V2)). We will often understand Vi as vectors
in R

3. The n-periodicity then implies that there exists a matrix M ∈ SL(3, R) called the
monodromy matrix, such that Vi+n = M Vi .

Proposition 4.1. If n is not divisible by 3 then the space Pn is isomorphic to the space
of the equations (4.1).

Proof. First note that since PGL(3, R) ∼= SL(3, R), every M ∈ PGL(3, R) corresponds
to a unique element of SL(3, R) that (abusing the notations) we also denote by M .

A. Let (vi ), i ∈ Z be a sequence of points vi ∈ RP
2 in general position with monodr-

omy M . Consider first an arbitrary lift of the points vi to vectors Ṽi ∈ R
3 with the condi-

tion Ṽi+n = M(Ṽi ). The general position property implies that det(Ṽi , Ṽi+1, Ṽi+2) �= 0
for all i . The vector Ṽi+3 is then a linear combination of the linearly independent vectors
Ṽi+2, Ṽi+1, Ṽi , that is,

Ṽi+3 = ai Ṽi+2 + bi Ṽi+1 + ci Ṽi ,

for some n-periodic sequences (ai ), (bi ), (ci ). We wish to rescale: Vi = ti Ṽi , so that

det(Vi , Vi+1, Vi+2) = 1 (4.2)
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for all i . Condition (4.2) is equivalent to ci ≡ 1. One obtains the following system of
equations in (t1, . . . , tn):

ti ti+1ti+2 = 1/ det(Ṽi , Ṽi+1, Ṽi+2), i = 1, . . . , n − 2,

tn−1tnt1 = 1/ det(Ṽn−1, Ṽn, Ṽ1),

tnt1t2 = 1/ det(Ṽn, Ṽ1, Ṽ2).

This system has a unique solution if n is not divisible by 3. This means that any generic
twisted n-gon in RP

2 has a unique lift to R
3 satisfying (4.2). We proved that a twisted

n-gon defines Eq. (4.1) with n-periodic ai , bi .
Furthermore, if (vi ) and (v′

i ), i ∈ Z are two projectively equivalent twisted n-gons,
then they correspond to the same Eq. (4.1). Indeed, there exists A ∈ SL(3, R) such that
A(vi ) = v′

i for all i . One has, for the (unique) lift: V ′
i = A(Vi ). The sequence (V ′

i ) then
obviously satisfies the same Eq. (4.1) as (Vi ).

B. Conversely, let (Vi ) be a sequence of vectors Vi ∈ R
3 satisfying (4.1). Then every

three consecutive points satisfy (4.2) and, in particular, are linearly independent. There-
fore, the projection (vi ) to RP

2 satisfies the general position condition. Moreover, since
the sequences (ai ), (bi ) are n-periodic, (vi ) satisfies vi+n = M(vi ). It follows that every
Eq. (4.1) defines a generic twisted n-gon. A choice of initial conditions (V0, V1, V2)

fixes a twisted polygon, a different choice yields a projectively equivalent one. 	

Proposition 4.1 readily implies the next result.

Corollary 4.2. If n is not divisible by 3 then Pn = R
2n.

We call the lift (Vi ) of the sequence (vi ) satisfying Eq. (4.1) with n-periodic (ai , bi )

canonical.

Remark 4.3. The isomorphism between the space Pn and the space of difference equa-
tions (4.1) (for n �= 3m) goes back to the classical ideas of projective differential
geometry. This is a discrete version of the well-known isomorphism between the space
of smooth non-degenerate curves in RP

2 and the space of linear differential equations,
see [17] and references therein and Sect. 6.1. The “arithmetic restriction” n �= 3m is
quite remarkable.

Equations (4.1) and their analogs were already used in [9] in the context of integrable
systems; in the RP

1-case these equations were recently considered in [14] to study the
discrete versions of the Korteweg - de Vries equation. It is notable that an analogous
arithmetic assumption n �= 2m is made in this paper as well.

Remark 4.4. Let us now comment on what happens if n is divisible by 3. A certain
modification of Proposition 4.1 holds in this case as well. Given a twisted n-gon (vi )

with monodromy M , lift points v0 and v1 arbitrarily as vectors V0, V1 ∈ R
3, and then

continue lifting consecutive points so that the determinant condition (4.2) holds. This
implies that Eq. (4.1) holds as well.

One has:

M(Vi ) = ti Vi+n (4.3)

for non-zero reals ti , and (4.2) implies that ti ti+1ti+2 = 1 for all i ∈ Z. It follows that
the sequence ti is 3-periodic; let us write t1+3 j = α, t2+3 j = β, t3 j = 1/(αβ). Applying
the monodromy linear map M to (4.1) and using (4.3), we conclude that

an+i = ti+2

ti
ai , bn+i = ti+1

ti
bi ,
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that is,

an+3 j = αβ2 a3 j , an+3 j+1 = 1

α2β
a3 j+1, an+3 j+2 = α

β
a3 j+2,

bn+3 j = α2βb3 j , bn+3 j+1 = β

α
b3 j+1, bn+3 j+2 = 1

αβ2 b3 j+2.

(4.4)

We are still free to rescale V0 and V1. This defines an action of the group R
∗ × R

∗:

V0 �→ uV0, V1 �→ vV1, u �= 0, v �= 0.

The action of the group R
∗ × R

∗ on the coefficients (ai , bi ) is as follows:

a3 j �→ u2v a3 j , a3 j+1 �→ v

u
a3 j+1, a3 j+2 �→ 1

uv2 a3 j+2,

b3 j �→ u

v
b3 j , b3 j+1 �→ uv2 b3 j+1, b3 j+2 �→ 1

u2v
b3 j+2.

(4.5)

When n �= 3m, according to (4.4), this action makes it possible to normalize all ti to 1
which makes the lift canonical. However, if n = 3m then the R

∗ × R
∗-action on ti is

trivial, and the pair (α, β) ∈ R
∗ × R

∗ is a projective invariant of the twisted polygon.
One concludes that Pn is the orbit space

[{(a0, . . . , an−1, b0, . . . , bn−1)}/(R∗ × R
∗)] × (R∗ × R

∗)

with respect to R
∗ ×R

∗-action (4.5). This statement replaces Proposition 4.1 in the case
of n = 3m.

It would be interesting to understand the geometric meaning of the “obstruction”
(α, β). If the obstruction is trivial, that is, if α = β = 1, then there exists a 2-parameter
family of canonical lifts, but if the obstruction is non-trivial then no canonical lift exists.

4.2. Relation between the two coordinate systems. We now have two coordinate sys-
tems, (xi , yi ) and (ai , bi ). Assuming that n is not divisible by 3, let us calculate the
relations between the two systems.

Lemma 4.5. One has:

xi = ai−2

bi−2 bi−1
, yi = − bi−1

ai−2 ai−1
. (4.6)

Proof. Given four vectors a, b, c, d in R
3, the intersection line of the planes Span(a, b)

and Span(c, d) is spanned by the vector (a ×b)× (c ×d). Note that the volume element
equips R

3 with the bilinear vector product:

R
3 × R

3 →
(
R

3
)�

.

Using the identity

(a × b) × (b × c) = det(a, b, c) b, (4.7)

and the recurrence (4.1), let us compute lifts of the quadruple of points

(vi−1, vi , (vi−1, vi ) ∩ (vi+1, vi+2), (vi−1, vi ) ∩ (vi+2, vi+3))
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involved in the left corner cross-ratio. One has

Vi−1 = Vi+2 − ai−1 Vi+1 − bi−1 Vi .

Furthermore, it is easy to obtain the lift of the intersection points involved in the left
corner cross-ratio. For instance, (vi−1, vi ) ∩ (vi+1, vi+2) is

(Vi−1 × Vi ) × (Vi+1 × Vi+2) = ((Vi+2 − ai−1 Vi+1 − bi−1 Vi ) × Vi ) × (Vi+1 × Vi+2)

= Vi+2 − ai−1 Vi+1.

One finally obtains the following four vectors in R
3:

(Vi+2−ai−1 Vi+1−bi−1, Vi , Vi , Vi+2−ai−1 Vi+1, bi Vi+2−ai−1 Vi −ai−1 bi Vi+1).

Similarly, for the points involved in the right corner cross-ratio

(ai Vi+2 + bi , Vi+1 + Vi , Vi+2, bi Vi+1 + Vi , bi Vi+2 − ai−1 Vi − ai−1 bi Vi+1) .

Next, given four coplanar vectors a, b, c, d in R
3 such that

c = λ1 a + λ2 b, d = μ1 a + μ2 b,

where λ1, λ2, μ1, μ2 are arbitrary constants, the cross-ratio of the lines spanned by these
vectors is given by

[a, b, c, d] = λ2μ1 − λ1μ2

λ2μ1
.

Applying this formula to the two corner cross-ratios yields the result. 	

Formula (4.6) implies the following relations:

xi yi = − 1

ai−1 bi−2
, xi+1 yi = − 1

ai−2 bi
,

ai

ai−3
= xi yi−1

xi+1 yi+1
,

bi

bi−3
= xi−1 yi−1

xi+1 yi
,

(4.8)

that will be of use later.

Remark 4.6. If n is a multiple of 3 then the coefficients ai and bi are not well defined
and they are not n-periodic anymore; however, according to formulas (4.4) and (4.5),
the right hand sides of formulas (4.6) are still well defined and are n-periodic.

4.3. Two versions of the projective duality. We now wish to express the pentagram map
T in the (a, b)-coordinates. We shall see that T is the composition of two involutions
each of which is a kind of projective duality.

The notion of projective duality in RP
2 is based on the fact that the dual projec-

tive plane
(
RP

2)�
is the space of one-dimensional subspaces of RP

2 which is again
equivalent to RP

2. Projective duality applies to smooth curves: it associates to a curve
γ (t) ⊂ RP

2 the 1-parameter family of its tangent lines. In the discrete case, there are
different ways to define projectively dual polygons. We choose two simple versions.

Definition 4.7. Given a sequence of points vi ∈ RP
2, we define two sequences α(vi ) ∈

(RP
2)� and β(vi ) ∈ (RP

2)� as follows:
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Fig. 6. Projective dual for smooth curves and polygons

Fig. 7. Iteration of the duality maps: α2(vi )=α(vi ) ∩ α(vi+1), β2(vi )=β(vi−1) ∩ β(vi+1) and (α ◦ β)

(vi ) = β(vi ) ∩ β(vi+1)

1. α(vi ) is the line (vi , vi+1),
2. β(vi ) is the line (vi−1, vi+1),

see Fig. 6.

Clearly, α and β commute with the natural PGL(3, R)-action and therefore are well-
defined on the space Pn . The composition of α and β is precisely the pentagram map T .

Lemma 4.8. One has

α2 = τ, β2 = Id, α ◦ β = T, (4.9)

where τ is the cyclic permutation:

τ(vi ) = vi+1. (4.10)

Proof. The composition of the maps α and β, with themselves and with each other,
associates to the corresponding lines (viewed as points of (RP

2)�) their intersections,
see Fig. 7. 	


The map (4.10) defines the natural action of the group Z on Pn . All the geometric
and algebraic structures we consider are invariant with respect to this action.

4.4. Explicit formula for α. It is easy to calculate the explicit formula of the map α in
terms of the coordinates (ai , b j ). As usual, we assume n �= 3 m.

Lemma 4.9. Given a twisted n-gon with monodromy (vi ), i ∈ Z represented by a dif-
ference equation (4.1), the n-gon (α(vi )), i ∈ Z is represented by the Eq. (4.1) with
coefficients

α∗(ai ) = −bi+1, α∗(bi ) = −ai , (4.11)

where, as usual, a∗ stands for the pull-back of the coordinate functions.
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Proof. Consider the canonical lift (Vi ) to R
3. Let Ui = Vi × Vi+1 ∈ (R3)�. This is obvi-

ously a lift of the sequence (α(vi )) to (R3)�. We claim that (Ui ) is, in fact, a canonical
lift.

Indeed, Ui is a lift of ui since Vi × Vi+1 is orthogonal to Vi and to Vi+1. Next, using
the identity (4.7) one has

det(Ui ×Ui+1, Ui+1×Ui+2, Ui+2×Ui+3) = [(Ui ×Ui+1)×(Ui+1×Ui+2)] · (Ui+2×Ui+3)

= Ui+1 · (Ui+2 × Ui+3) = det(Ui+1, Ui+2, Ui+3) = 1.

It follows that the sequence Ui ∈ R
3 satisfies the equation

Ui+3 = α∗(ai ) Ui+2 + α∗(bi ) Ui+1 + Ui

with some α∗(ai ) and α∗(bi ). Let us show that these coefficients are, indeed, given by
(4.11). For all i , one has

Ui+1 · Vi = 1, Ui · Vi+2 = 1, Ui+3 · Vi+3 = 0.

Using (4.1), the last identity leads to:

α∗(bi ) Ui+1 · Vi + ai Ui · Vi+2 = 0.

Hence α∗(bi ) = −ai . The first identity in (4.11) follows from formula (4.9). Indeed,
one has α∗(α∗(ai )) = ai+1 and α∗(α∗(bi )) = bi+1, and we are done. 	


4.5. Recurrent formula for β. The explicit formula for the map β is more complicated,
and we shall give a recurrent expression.

Lemma 4.10. Given an n-gon (vi ), i ∈ Z represented by a difference equation (4.1),
the n-gon (β(vi )), i ∈ Z is represented by the Eq. (4.1) with coefficients

β∗(ai ) = −λi bi−1

λi+2
, β∗(bi ) = −λi+3 ai+1

λi+1
, (4.12)

where the coefficients λi are uniquelly defined by

λiλi+1λi+2 = − 1

1 + bi−1ai
(4.13)

for all i .

Proof. The lift of the map β to R
3 takes Vi to Wi = λi Vi−1 × Vi+1, where the coeffi-

cients λi are chosen in such a way that det(Wi , Wi+1, Wi+2) = 1 for all i . The sequence
Wi ∈ R

3 satisfies the equation

Wi+3 = β∗(ai ) Wi+2 + β∗(bi ) Wi+1 + Wi .

To find β∗(ai ) and β∗(bi ), one substitutes Wi = λi Vi−1 × Vi+1, and then, using (4.1),
expresses each V as a linear combination of Vi , Vi+1, Vi+2. The above equation is then
equivalent to the following one:

(
β∗(ai ) λi+2 + bi−1 λi

)
Vi × Vi+1

+
(
ai+1 λi+3 + β∗(bi ) λi+1

)
Vi × Vi+2

+
(
(1 + bi ai+1) λi+3 + β∗(ai ) ai λi+2 − λi

)
Vi+1 × Vi+2 = 0.
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Since the three terms are linearly independent, one obtains three relations. The first two
equations lead to (4.12) while the last one gives the recurrence

λi+3 = λi
1 + ai bi−1

1 + ai+1 bi
.

On the other hand, one has

λi λi+1 λi+2 det (Vi−1 × Vi+1, Vi × Vi+2, Vi+1 × Vi+3) = 1.

Once again, expressing each V as a linear combination of Vi , Vi+1, Vi+2, yields

λiλi+1λi+2 (1 + ai bi−1) = −1,

and one obtains (4.13). 	


4.6. Formulas for the pentagram map. We can now describe the pentagram map in terms
of (a, b)-coordinates and to deduce formulas (2.4).

Proposition 4.11. (i) One has:

T ∗(xi ) = xi
1 − xi−1 yi−1

1 − xi+1 yi+1
, T ∗(yi ) = yi+1

1 − xi+2 yi+2

1 − xi yi
.

(ii) Assume that n = 3m + 1 or n = 3m + 2; in both cases,

T ∗(ai ) = ai+2

m∏

k=1

1 + ai+3k+2 bi+3k+1

1 + ai−3k+2 bi−3k+1
, T ∗(bi ) = bi−1

m∏

k=1

1 + ai−3k−2 bi−3k−1

1 + ai+3k−2 bi+3k−1
.

(4.14)

Proof. According to Lemma 4.8, T = α ◦ β. Combining Lemmas 4.9 and 4.10, one
obtains the expression:

T ∗(ai ) = λi+4 ai+2

λi+2
, T ∗(bi ) = λi bi−1

λi+2
,

where λi are as in (4.13). Equation (4.6) then gives

T ∗(xi ) = T ∗(ai−2)

T ∗(bi−2) T ∗(bi−1)
= λi+2 ai

λi

λi

λi−2 bi−3

λi+1

λi−1 bi−2

= ai

bi−2 bi−3

1 + bi−3 ai−2

1 + bi−1 ai
= ai−3

bi−2 bi−3

1 + bi−3 ai−2

1 + bi−1 ai

ai

ai−3

= xi−1

1 − 1
xi−1 yi−1

1 − 1
xi+1 yi+1

xi yi−1

xi+1 yi+1
= xi

1 − xi−1 yi−1

1 − xi+1 yi+1
,

and similarly for yi . We thus proved formula (2.4). To prove (4.14), one now uses (4.8).
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+

Fig. 8. The Poisson bracket for n=5 and n = 7

4.7. The Poisson bracket in the (a, b)-coordinates. The explicit formula of the Poisson
bracket in the (a, b)-coordinates is more complicated than (2.16). Recall that n is not a
multiple of 3 so that we assume n = 3m + 1 or n = 3m + 2. In both cases the Poisson
bracket is given by the same formula.

Proposition 4.12. The Poisson bracket (2.16) can be rewritten as follows:

{ai , a j } =
m∑

k=1

(
δi, j+3k − δi, j−3k

)
ai a j ,

{ai , b j } = 0,

{bi , b j } =
m∑

k=1

(
δi, j−3k − δi, j+3k

)
bi b j .

(4.15)

Proof. One checks using (4.5) that the brackets between the coordinate functions (xi , y j )

coincide with (2.16). 	


Example 4.13. a) For n = 4, the bracket is

{ai , a j } = (
δi, j+1 − δi, j−1

)
ai a j

(and with opposite sign for b), the other terms vanish.
b) For n = 5, the non-zero terms are:

{ai , a j } = (
δi, j+2 − δi, j−2

)
ai a j ,

corresponding to the “pentagram” in Fig. 8.
c) For n = 7, one has:

{ai , a j } = (
δi, j+1 − δi, j−1 − δi, j+3 + δi, j−3

)
ai a j .

d) For n = 8, the result is

{ai , a j } = (
δi, j+2 − δi, j−2 − δi, j+3 + δi, j−3

)
ai a j .

5. Monodromy Invariants in (a, b)-Coordinates

The (a, b)-coordinates are especially well adapted to the computation of the monodr-
omy matrix and the monodromy invariants. Such a computation provides an alternative
deduction of the invariants (2.11), independent of [21].
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5.1. Monodromy matrices. Consider the 3 × ∞ matrix M constructed recurrently as
follows: the columns C0, C1, C2, . . . satisfy the relation

Ci+3 = ai Ci+2 + bi Ci+1 + Ci , (5.1)

and the initial 3 × 3 matrix (C0, C1, C2) is unit. The matrix M contains the monodromy
matrices of twisted n-gons for all n; namely, the following result holds.

Lemma 5.1. The 3×3 minor Mn = (Cn, Cn+1, Cn+2) represents the monodromy matrix
of twisted n-gons considered as a polynomial function in a0, . . . , an−1, b0, . . . , bn−1.

Proof. The recurrence (5.1) coincides with (4.1), see Sect. 4.1. It follows that Mn
represents the monodromy of twisted n-gons in the basis C0, C1, C2. 	


Let

N j =
⎛

⎝
0 0 1
1 0 b j
0 1 a j

⎞

⎠ .

The recurrence (5.1) implies the following statement.

Lemma 5.2. One has: Mn = N0 N1 . . . Nn−1. In particular, det Mn = 1.

To illustrate, the beginning of the matrix M is as follows:
⎛

⎝
1 0 0 1 a1 a1a2 + b2 . . .

0 1 0 b0 b0a1 + 1 b0a1a2 + a2 + b0b2 . . .

0 0 1 a0 a0a1 + b1 a0a1a2 + b1a2 + a0b1 + 1 . . .

⎞

⎠ .

The dihedral symmetry σ , that reverses the orientation of a polygon, replaces the
monodromy matrices by their inverses and acts as follows:

σ : ai �→ −b−i , bi �→ −a−i ;
this follows from rewriting Eq. (4.1) as

Vi = −bi Vi+1 − ai Vi+2 + Vi+3,

or from Lemma 4.5.1

Consider the rescaling 1-parameter group

ϕτ : ai �→ eτ ai , bi �→ e−τ bi .

It follows from Lemma 4.5 that the action on the corner invariants is as follows:

xi �→ e3τ xi , yi �→ e−3τ yi .

Thus our rescaling is essentially the same as the one in (2.5) with t = e3τ .
The trace of Mn is a polynomial Fn(a0, . . . , an−1, b0, . . . , bn−1). Denote its homo-

geneous components in s := eτ by I j , j = 0, . . . , [n/2]; these are the monodromy
invariants. One has Fn = ∑

I j . The s-weight of I j is given by the formula:

w( j) = 3 j − k if n = 2k, and w( j) = 3 j − k + 1 if n = 2k + 1 (5.2)

1 Since all the sums we are dealing with are cyclic, we slightly abuse the notation and ignore a cyclic shift
in the definition of σ in the (a, b)-coordinates.
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(this will follow from Proposition 5.3 in the next section). For example, M4 is the matrix
⎛

⎝
a1 a1a2+b2 a1a2a3+a3b2+a1b3+1

a1b0 +1 a1a2b0 +a2 +b0b2 a1a2a3b0 +a2a3+a3b0b2 +a1b0b3+b3+b0
a0a1+b1 a0a1a2+a2b1+a0b2+1 a0a1a2a3+a2a3b1+a0a3b2+a0a1b3+a0 +a3+b1b3

⎞

⎠

and

I0 =b0b2 +b1b3, I1 =a0 +a1+a2+a3+b0a1a2 +b1a2a3+b2a3a0 +b3a0a1, I2 =a0a1a2a3.

Likewise, for n = 5,

I0 =
∑

(b0 + b0b2a3), I1 =
∑

(a0a1 + b0a1a2a3), I2 = a0a1a2a3a4,

where the sums are cyclic over the indices 0, . . . , 4.
One also has the second set of monodromy invariants J0, . . . , Jk constructed from

the inverse monodromy matrix, that is, applying the dihedral involution σ to I0, . . . , Ik .

5.2. Combinatorics of the monodromy invariants. We now describe the polynomials
Ii , Ji and their relation to the monodromy invariants Ek, Ok .

Label the vertices of an oriented regular n-gon by 0, 1, . . . , n − 1. Consider marking
of the vertices by the symbols a, b and ∗ subject to the rule: each marking should be
coded by a cyclic word W in symbols 1, 2, 3, where 1 = a, 2 = ∗ b, 3 = ∗∗∗. Call such
markings admissible. If p, q, r are the occurrences of 1, 2, 3 in W then p + 2q + 3r = n;
define the weight of W as p − q. Given a marking as above, take the product of the
respective variables ai or bi that occur at vertex i ; if a vertex is marked by ∗ then it
contributes 1 to the product. Denote by Tj the sum of these products over all markings
of weight j . Then A := Tk is the product of all ai ; let B be the product of all bi ; here
k = [n/2].
Proposition 5.3. The monodromy invariants I j coincide with the polynomials Tj . One
has:

E j = Ik− j

A
for j = 1, . . . , k, and En = (−1)n B

A2 .

J j are described similarly by the rule 1 = b, 2 = a ∗, 3 = ∗ ∗ ∗, and are similarly
related to O j :

O j = (−1)n+ j Jk− j

B
for j = 1, . . . , k, and On = A

B2 .

Proof. First, we claim that the trace Fn is invariant under cyclic permutations of the
indices 0, 1, . . . , n − 1.

Indeed, impose the n-periodicity condition: ai+n = ai , bi+n = bi . Let Vi be as (4.1).
The matrix Mn takes (V0, V1, V2) to (Vn, Vn+1, Vn+2). Then the matrix (V1, V2, V3) →
(Vn+1, Vn+2, Vn+3) is conjugated to Mn and hence has the same trace. This trace is
Fn(a1, b1, . . . , an, bn), and due to n-periodicity, this equals Fn(a1, b1, . . . , a0, b0). Thus
Fn is cyclically invariant.

Now we argue inductively on n. Assume that we know that I j = Tj for j = n −
2, n − 1, n. Consider Fn+1. Given an admissible labeling of n − 2, n − 1 or n-gon, one
may insert ∗∗∗, ∗ b or a between any two consecutive vertices, respectively, and obtain
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an admissible labeling of n + 1-gon. All admissible labeling are thus obtained, possibly,
in many different ways.

We claim that Fn+1 contains the cyclic sums corresponding to all admissible labeling.
Indeed, consider an admissible cyclic sum in Fn−2 corresponding to a labeled n −2-gon
L . This is a cyclic sum of monomials in a0, . . . , bn−3; these monomials are located in
the matrix M on the diagonal of its minor Mn−2. By recurrence (5.1), the same mono-
mials will appear on the diagonal of Mn+1, but now they must contribute to a cyclic sum
of variables a0, . . . , bn . These sums correspond to the labelings of n + 1-gon that are
obtained from L by inserting ∗ ∗ ∗ between two consecutive vertices.

Likewise, consider a term in Fn−1, a cyclic sum of monomials in a0, . . . , bn−2
corresponding to a labeled n − 1-gon L . By (5.1), these monomials are to be multi-
plied by bn−2, bn−1 or bn (depending on whether they appear in the first, second or
third row of M) and moved 2 units right in the matrix M , after which they contribute to
the cyclic sums in Fn+1. As before, the respective sums correspond to the labelings of
n + 1-gon obtained from L by inserting ∗ b between two consecutive vertices. Similarly
one deals with a contribution to Fn+1 from Fn : this time, one inserts symbol a.

Our next claim is that each admissible term appears in Fn+1 exactly once. Suppose
not. Using cyclicity, assume this is a monomial an P (or, similarly, bn P). Where could
a monomial an P come from? Only from the bottom position of the column Cn+2 (once
again, according to recurrence (5.1)). But then the monomial P appears at least twice in
this position, hence in Fn , which contradicts our induction assumption. This completes
the proof that I j = Tj .

Now let us prove that E j = Ik− j/A. Consider E j as a function of x, y and switch to
the (a, b)-coordinates using Lemma 4.5:

x1 = a−1

b−1b0
, y1 = − b0

a−1a0

and its cyclic permutations. Then

y0x1 y1 = 1

a−2a−1a0

and the cyclic permutations. An admissible monomial in E j then contributes the factor
−bi/(ai−1ai ) for each singleton yi+1 and 1/(ai−2ai−1ai ) for each triple yi xi+1 yi+1.

Admissibility implies that no index appears twice. Clear denominators by multiplying
by A, the product of all a’s. Then, for each singleton yi+1, we get the factor −bi and empty
space ∗ at the previous position i − 1, because there was ai−1 in the denominator and,
for each triple yi xi+1 yi+1, we get empty spaces ∗∗∗ at positions i −2, i −1, i . All other,
“free”, positions are filled with a’s. In other words, the rule 1 = a, 2 = ∗ b, 3 = ∗ ∗ ∗
applies. The signs are correct as well, and the result follows.

Finally, En is the product of all yi+1, that is, of the terms −bi/(ai−1ai ). This product
equals (−1)n B/A2. 	

Remark 5.4. Unlike the invariants Ok, Ek , there are no signs involved: all the terms in
polynomials Ii are positive.

Similarly to Remark 4.6, the next lemma shows that one can use Proposition 5.3 even
if n is a multiple of 3. In particular, this will be useful in Theorem 4 in the next section.

Lemma 5.5. If n is a multiple of 3 then the polynomials I j , J j of variables a0, . . . , bn−1
are invariant under the action of the group R

∗ × R
∗ given in (4.5).
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Proof. Recall that, by Lemma 5.2, Mn = N0 N1 . . . Nn−1, where

N j =
⎛

⎝
0 0 1
1 0 b j
0 1 a j

⎞

⎠ .

The action of R
∗ × R

∗ on the matrices N j depends on j mod 3 and is given by the next
formulas:

⎛

⎝
0 0 1
1 0 b0
0 1 a0

⎞

⎠ �→
⎛

⎝
0 0 1
1 0 u

v
b0

0 1 u2v a0

⎞

⎠ =
⎛

⎝
1 0 0
0 u

v
0

0 0 u2v

⎞

⎠

⎛

⎝
0 0 1
1 0 b0
0 1 a0

⎞

⎠

⎛

⎝
v
u 0 0
0 1

u2v
0

0 0 1

⎞

⎠ ,

⎛

⎝
0 0 1
1 0 b1
0 1 a1

⎞

⎠ �→
⎛

⎝
0 0 1
1 0 uv2 b1
0 1 v

u a1

⎞

⎠ =
⎛

⎝
1 0 0
0 uv2 0
0 0 v

u

⎞

⎠

⎛

⎝
0 0 1
1 0 b1
0 1 a1

⎞

⎠

⎛

⎝
1

uv2 0 0
0 u

v
0

0 0 1

⎞

⎠ ,

⎛

⎝
0 0 1
1 0 b2
0 1 a2

⎞

⎠ �→
⎛

⎝
0 0 1
1 0 1

u2v
b2

0 1 1
uv2 a2

⎞

⎠ =
⎛

⎝
1 0 0
0 1

u2v
0

0 0 1
uv2

⎞

⎠

⎛

⎝
0 0 1
1 0 b2
0 1 a2

⎞

⎠

⎛

⎝
u2v 0 0

0 uv2 0
0 0 1

⎞

⎠ .

Note that
⎛

⎝
v
u 0 0
0 1

u2v
0

0 0 1

⎞

⎠

⎛

⎝
1 0 0
0 uv2 0
0 0 v

u

⎞

⎠ = v

u
E,

⎛

⎝
1

uv2 0 0
0 u

v
0

0 0 1

⎞

⎠

⎛

⎝
1 0 0
0 1

u2v
0

0 0 1
uv2

⎞

⎠ = 1

uv2 E,

and
⎛

⎝
u2v 0 0

0 uv2 0
0 0 1

⎞

⎠

⎛

⎝
1 0 0
0 u

v
0

0 0 u2v

⎞

⎠ = u2v E,

where E is the unit matrix. Therefore the R
∗ × R

∗-action on Mn is as follows:

Mn �→ 1

u2v

⎛

⎝
1 0 0
0 u

v
0

0 0 u2v

⎞

⎠ N0 N1 . . . Nn−1

⎛

⎝
u2v 0 0

0 uv2 0
0 0 1

⎞

⎠ ∼ Mn,

where ∼ means “is conjugated to”. It follows that the trace of Mn , as a polynomial in
a0, . . . , bn−1, is R

∗ × R
∗-invariant, and so are all its homogeneous components. 	


5.3. Closed polygons. A closed n-gon (as opposed to a merely twisted one) is charac-
terized by the condition that Mn = I d. This implies that

∑
I j = 3 (and, of course,∑

J j = 3 as well). There are other linear relations on the monodromy invariants which
we discovered in computer experiments. All combined, we found five identities.

Theorem 4. For a closed n-gon, one has:

k∑

j=0

I j =
k∑

j=0

J j = 3,

k∑

j=0

w( j)I j =
k∑

j=0

w( j)J j = 0,

k∑

j=0

w( j)2(I j − J j ) = 0,

where k = [n/2] and w( j) are the weights (5.2).
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Proof. The monodromy M ∈ SL(3, R) is a matrix-valued polynomial function of ai , bi ,
and M(τ ) = M ◦ ϕτ , where ϕτ is the scaling action

ai �→ eτ ai , bi �→ e−τ bi .

The characterization of Cn is M(0) = I d.
Let eλ1 , eλ2 , eλ3 be the eigenvalues of M(τ ) considered as functions of ai , bi , τ . Then

λi = 0 for τ = 0 and each i = 1, 2, 3, and

λ1 + λ2 + λ3 = 0 (5.3)

identically. The eigenvalues of M−1 are similar with negative λs as exponents. The
definition of I (a, b) and J (a, b) implies:

eλ1 + eλ2 + eλ3 =
∑

eτw( j) I j , e−λ1 + e−λ2 + e−λ3 =
∑

e−τw( j) J j , (5.4)

where w( j) are the weights. Setting τ = 0 in (5.4) we obtain the obvious relations∑
I j = ∑

J j = 3. Differentiating (5.4) with respect to τ and setting τ = 0, we get

3∑

i=1

λ′
i (0) =

∑
w( j)I j =

∑
w( j)J j .

By (5.3), the left hand side is zero, and we obtain two other relations stated in the theorem.
Differentiate (5.4) twice and set τ = 0:

3∑

i=1

λ′′
i (0) + λ′

i (0)2 =
∑

w( j)2 I j ,

3∑

i=1

−λ′′
i (0) + λ′

i (0)2 =
∑

w( j)2 J j .

Subtract and use the fact that
∑3

i=1 λ′′
i (0) = 0 (as follows from (5.3) by differentiating

in τ twice) to obtain:
∑

w( j)2(I j − J j ) = 0. (5.5)

This is the fifth relation of the theorem. 	

Example 5.6. In the cases n = 4 and n = 5, it is easy to solve the equation Mn = I d.
For n = 4, the solution is a single point

a0 = a1 = a2 = a3 = 1, b0 = b1 = b2 = b3 = −1,

and then I0 = 2, I1 = 0, I2 = 1. For n = 5, one has a 2-parameter set of solutions with
free parameters x, y:

a0 = x, a1 = y, a2 = − 1 + x

1 − xy
, a3 = −(1 − xy), a4 = − 1 + y

1 − xy
,

and bi = −ai+2. Hence

I0 = J0 = 2 − z, I1 = J1 = 1 + 2z, I2 = J2 = −z with z = xy(1 + x)(1 + y)

1 − xy
.

Remark 5.7. Cn has codimension 8 in Pn , and we have the five relations of Theorem 4.
We conjecture that there are no other relations between the monodromy invariants that
hold identically on Cn .
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6. Continuous Limit: The Boussinesq Equation

Since the theory of infinite-dimensional integrable systems on functional spaces is much
more developed than the theory of discrete integrable systems, it is important to inves-
tigate the n → ∞ “continuous limit” of the pentagram map.

It turns out that the continuous limit of T is the classical Boussinesq equation. This is
quite remarkable since the Boussinesq equation and its discrete analogs are thoroughly
studied but, to the best of our knowledge, their geometrical interpretation remained
unknown.

We will also show that the Poisson bracket (2.16) can be viewed as a discrete version
of the well-known first Poisson structure of the Boussinesq equation.

6.1. Non-degenerate curves and differential operators. We understand the continuous
limit of a twisted n-gon as a smooth parametrized curve γ : R → RP

2 with monodromy:

γ (x + 1) = M(γ (x)), (6.1)

for all x ∈ R, where M ∈ P SL(3, R) is fixed. The assumption that every three consec-
utive points are in general position corresponds to the assumption that the vectors γ ′(x)

and γ ′′(x) are linearly independent for all x ∈ R. A curve γ satisfying these conditions
is usually called non-degenerate.

As in the discrete case, we consider classes of projectively equivalent curves. The
continuous analog of the space Pn , is then the space, C, of parametrized non-degener-
ate curves in RP

2 up to projective transformations. The space C is very well known in
classical projective differential geometry, see, e.g., [17] and references therein.

Proposition 6.1. There exists a one-to-one correspondence between C and the space of
linear differential operators on R:

A =
(

d

dx

)3

+ u(x)
d

dx
+ v(x), (6.2)

where u and v are smooth periodic functions.

This statement is classical, but we give here a sketch of the proof.

Proof. A non-degenerate curve γ (x) in RP
2 has a unique lift to R

3, that we denote by
�(x), satisfying the condition that the determinant of the vectors �(x), �′(x), �′′(x)

(the Wronskian) equals 1 for every x :
∣∣�(x) �′(x) �′′(x)

∣∣ = 1. (6.3)

The vector �′′′(x) is a linear combination of �(x), �′(x), �′′(x) and the condition (6.3) is
equivalent to the fact that this combination does not depend on �′′(x). One then obtains:

�′′′(x) + u(x) �′(x) + v(x) �(x) = 0.

Two curves in RP
2 correspond to the same operator if and only if they are projectively

equivalent.
Conversely, every differential operator (6.2) defines a curve in RP

2. Indeed, the space
of solutions of the differential equation A f = 0 is 3-dimensional. At any point x ∈ R,
one considers the 2-dimensional subspace of solutions vanishing at x . This defines a
curve in the projectivization of the space dual to the space of solutions. 	
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Fig. 9. Evolution of a non-degenerate curve

Remark 6.2. It will be convenient to rewrite the above differential operator as a sum of
a skew-symmetric operator and a (zero-order) symmetric operator:

A =
(

d

dx

)3

+
1

2

(
u(x)

d

dx
+

d

dx
u(x)

)
+ w(x), (6.4)

where w(x) = v(x)− u′(x)
2 . The pair of functions (u, w) is understood as the continuous

analog of the coordinates (ai , bi ).

6.2. Continuous limit of the pentagram map. We are now defining a continuous analog
of the map T . The construction is as follows. Given a non-degenerate curve γ (x), at each
point x we draw a small chord: (γ (x − ε), γ (x + ε)) and obtain a new curve, γε(x), as
the envelop of these chords, see Fig. 9.

The differential operator (6.4) corresponding toγε(x) contains new functions (uε, wε).
We will show that

uε = u + ε2ũ + O(ε3), wε = w + ε2w̃ + O(ε3)

and calculate ũ, w̃ explicitly. We then assume that the functions u(x) and w(x) depend
on an additional parameter t (the “time”) and define an evolution equation:

u̇ = ũ, ẇ = w̃

that we understand as a vector field on the space of functions (and therefore of operators
(6.4)). Here and below u̇ and ẇ are the partial derivatives in t , the partial derivatives in
x will be denoted by ′.

Theorem 5. The continuous limit of the pentagram map T is the following equation:

u̇ = w′,

ẇ = −u u′

3
− u′′′

12
.

(6.5)

Proof. The (lifted) curve �ε ⊂ R
3, corresponding to γε(x) satisfies the following

conditions:

|�(x + ε), �(x − ε), �ε(x)| = 0,
∣∣�ε(x), �(x + ε) − �(x − ε), �′

ε(x)
∣∣ = 0.



442 V. Ovsienko, R. Schwartz, S. Tabachnikov

We assume that the curve �ε(x) is of the form:

�ε = γ + ε A + ε2 B + (ε3),

where A and B are some vector-valued functions. The above conditions easily imply
that A is proportional to �, while B satisfies:

∣∣�(x), �′(x), B ′(x)
∣∣ = 0,

1
2

∣∣�(x), �′(x), �′′(x)
∣∣ +

∣∣�(x), �′(x), B(x)
∣∣ = 0.

It follows that B = 1
2�′′ + g�, where g is a function. We proved that the curve �ε(x) is

of the form:

�ε = (
1 + ε f + ε2g

)
� + ε2

2 �′′ + (ε3),

where f and g are some functions.
It remains to find f and g and the corresponding differential operator. To this end

one has to use the normalization condition (6.3).

Lemma 6.3. The condition (6.3) implies f (x) ≡ 0 and g(x) = u(x)
3 .

Proof. A straightforward computation. 	

One has finally the following expression for the lifted curve:

�ε =
(

1 +
ε2

3
u

)
� +

ε2

2
�′′ + (ε3). (6.6)

We are ready to find the new functions uε, vε such that

�′′′
ε (x) + uε(x) �′

ε(x) + vε(x) �ε(x) = 0.

After a straightforward calculation, using the additional formula

�(V ) = −(2u′ + v) �′′ − (u′′ + 2v′ − u2) �′ − (v′′ − uv) �,

one gets directly from (6.6):

uε = u + ε2
(

v′ − u′′

2

)
, vε = v + ε2

(
v′′

2
− uu′

3
− u′′′

3

)
.

The result follows. 	

Remark 6.4. Equation (6.5) is equivalent to the following differential equation:

ü = −
(
u2

)′′

6
− u(I V )

12
,

which is nothing else but the classical Boussinesq equation.

Remark 6.5. It is not hard to compute that the continuous limit of the scaling symmetry
is given by the formula:

u(x) �→ u(x), w(x) �→ w(x) + t,

where t is a constant.
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Remark 6.6. The fact that the continuous limit of the pentagram map is the Boussinesq
equation is discovered in [19] (not much details are provided). The computation in [19]
is made in an affine chart R

2 ⊂ RP
2. In this lift, different from the canonical one

(characterized by constant Wronskian), one obtains the curve flow

�̇ = −1

3

[�′, �′′′]
[�′, �′′] �′ +

1

2
�′′,

where [., .] is the cross-product; this is equivalent to Eq. (6.6) (we omit a rather tedious
verification of this equivalence).

6.3. The constant Poisson structure. Eq. (6.5) is integrable. In particular, it is
Hamiltonian with respect to (two) Poisson structures on the space of functions (u, w).
We describe here the simplest Poisson structure usually called the first Poisson structure
of the Boussinesq equation.

Consider the space of functionals of the form

H(u, w) =
∫

S1
h(u, u′, . . . , w,w′, . . .) dx,

where h is a polynomial. The variational derivatives, δu H and δw H , are the smooth
functions on S1 given by the Euler-Lagrange formula, e.g.,

δu H = ∂h

∂u
−

(
∂h

∂u′

)′
+

(
∂h

∂u′′

)′′
− + · · · ,

and similarly for δw H .

Definition 6.7. The constant Poisson structure on the space of functionals is defined by

{G, H} =
∫

S1

(
δuG (δw H)′ + δwG (δu H)′

)
dx . (6.7)

Note that the “functional coordinates” (u(x), w(x)) play the role of Darboux
coordinates.

Another way to define the above Poisson structure is as follows. Given a functional
H as above, the Hamiltonian vector field with Hamiltonian H is given by

u̇ = (δw H)′ ,
ẇ = (δu H)′ .

(6.8)

The following statement is well known, see, e.g., [8].

Proposition 6.8. The function

H =
∫

S1

(
w2

2
− u3

18
− uu′′

24

)
dx

is the Hamiltonian function for Eq. (6.5).

Proof. Straightforward from (6.8). 	
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This statement has many consequences. For instance, the following functions are the
first integrals of (6.5):

H1 =
∫

S1
u dx, H2 =

∫

S1
w dx, H3 =

∫

S1
uw dx .

Note that the functions H1 and H2 are precisely the Casimir functions of the structure
(6.8).

6.4. Discretization. Let us now test the inverse procedure of discretization. Being more
“heuristic”, this procedure will nevertheless be helpful for understanding the discrete
limit of the classical Poisson structure of the Boussinesq equation.

Given a non-degenerate curve γ (x), fix an arbitrary point vi := γ (x) and, for a small
ε, set vi+1 := γ (x + ε), etc. We then have:

vi = γ (x), vi+1 = γ (x + ε) vi+2 = γ (x + 2 ε) vi+3 = γ (x + 3 ε).

Lifting γ (x) and (vi ) to R
3 so that the difference equation (4.1) is satisfied, we are

looking for a and b in

�(x + 3 ε) = a(x, ε) �(x + 2 ε) + b(x, ε) �(x + ε) + �(x),

as functions of x depending on ε, where ε is small.

Lemma 6.9. Representing a(x) and b(x) as a series in ε:

a(x, ε) = a0(x) + ε a1(x) + · · · , b(x, ε) = b0(x) + ε b1(x) + · · · ,

one gets for the first four terms:

a0 = 3, b0 = −3,

a1 = 0, b1 = 0,

a2 = −u(x), b2 = u(x),

a3 = − 7
4 u′(x) − 1

2 w(x), b3 = 5
4 u′(x) − 1

2 w(x).

(6.9)

Proof. Straightforward Taylor expansion of the above expression for �(x + 3 ε). 	

The Poisson structure (2.16) can be viewed as a discrete analog of the structure (6.7)

and this is, in fact, the way we guessed it. Indeed, one has the following two observations:

(1) Formula (6.9) shows that the functions log a and log b are approximated by linear
combinations of u and w and therefore (4.15), a discrete analog of the bracket (6.7),
should be a constant bracket in the coordinates (log a, log b).

(2) Consider the following functionals (linear in the (a, b)-coordinates):

F f (a, b) =
∫

S1
f (x) a(x, ε) dx, G f (a, b) =

∫

S1
f (x) b(x, ε) dx .

Using (6.7) and (6.9), one obtains:

{F f , Fg} = ε5
∫

S1
f g′ dx + O(ε6), {F f , Gg} = O(ε6),

{G f , Gg} = −ε5
∫

S1
f g′ dx + O(ε6).
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One immediately derives the following general form of the “discretized” Poisson
bracket on the space Pn :

{ai , a j } = Pi, j ai a j , {ai , b j } = 0, {bi , b j } = −Pi, j bi b j ,

where Pi, j are some constants. Furthermore, one assumes: Pi+k, j+k = Pi, j by cyclic
invariance. One then can check that (4.15) is the only Poisson bracket of the above form
preserved by the map T .

7. Discussion

We finish this paper with questions and conjectures.

Second Poisson structure. The Poisson structure (2.16) is a discretization of (6.7) known
as the first Poisson structure of the Boussinesq equation. We believe that there exists
another, second Poisson structure, compatible with the Poisson structure (2.16), that
allows to obtain the monodromy invariants (and thus to prove integrability of T ) via the
standard bi-Hamiltonian procedure.

Note that the Poisson structure usually considered in the discrete case, cf. [9], is a
discrete version of the second Adler-Gelfand-Dickey bracket. We conjecture that one
can adapt this bracket to the case of the pentagram map.

Integrable systems on cluster manifolds. The space Pn is closely related to cluster
manifolds, cf. [7]. The Poisson bracket (2.16) is also similar to the canonical Poisson
bracket on a cluster manifold, cf. [10].

Example 5.6 provides a relation of the (a, b)-coordinates to the cluster coordinates.
A twisted pentagon is closed if and only if

a0 = a3 + 1

a1
, a2 = a1 + a3 + 1

a1 a3
, a4 = a1 + 1

a3
,

and bi = −ai+2. Note that ai+5 = ai . This formula coincides with formula of coordinate
exchanges for the cluster manifold of type A2, see [7]. The 2-dimensional submanifold
of P5 with M = Id is therefore a cluster manifold; the coordinates (a1, a3), etc. are the
cluster variables.

It would be interesting to compare the coordinate systems on Pn naturally arising
from our projective geometrical approach with the canonical cluster coordinates and
check whether the Poisson bracket constructed in this paper coincides with the canoni-
cal cluster Poisson bracket.

We think that analogs of the pentagram map may exist for a larger class of cluster
manifolds.2

Polygons inscribed into conics. We observed in computer experiments that if a twisted
polygon is inscribed into a conic then one has: Ek = Ok for all k; the same holds for
polygons circumscribed about conics. As of now, this is an open conjecture. Working
on this conjecture, we discovered, by computer experiments, a variety of new configu-
ration theorems of projective geometry involving polygons inscribed into conics; these
results will be published separately. Let us also mention that twisted n-gons inscribed
into a conic constitute a coisotropic submanifold of the Poisson manifold Pn . Dynamical
consequences of this observations will be studied elsewhere.3

2 See the recent preprint arXiv:1005.0598.
3 See the recent preprints arXiv:0910.1952, arXiv:1004.4311.
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