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Projective Structures and Contact Forms

V. Yu. Ovsienko UDC 514.7

Introduction

In this paper we show that a projective structure on a real simply connected smooth manifold M
determines a family of local Lie algebras on M (i.e., a family of Lie brackets on C°(M) that satisfy the
localization condition).

As was shown in Kirillov’s paper [4], a nondegenerate local Lie algebra is determined by a contact or a
symplectic structure on the manifold.

The relation between projective and contact geometries has already been mentioned by Cartan (see [9]
and also [2]). Many problems of projective differential geometry lead to contact structures. It turns out
that this relationship is absolutely direct. Seemingly, the following elementary (and curious) fact remains
unnoticed.

Theorem 1. Let M be a simply connected manifold (possibly noncompact) of dimension 2k —1. For
a projective structure on M to ezist it is necessary and sufficient that there be functions fi,..., fax €
C>(M) such that the 1-form '

k
a =Y (fri-1 dfzi = foi dfai-1) (1)
=1
s contact.

Thus, a locally projective manifold of odd dimension is contact. The corrésponding local Lie algebra is
nondegenerate and is determined by a Lagrange bracket. The choice of the form (1) is not unique.

An even-dimensional manifold with a projective structure must not be symplectic. However, this holds if
the projective structure is affine. From this viewpoint, there is a sharp difference between even-dimensional
and odd-dimensional projective structures, while there is a strict analogy between “projective-contact” and
“affine-symplectic” geometries.

Theorem 1'. For a simply connected manifold M of dimension 2k to possess an affine structure it is

necessary and sufficient that there be functions fi, ..., fax € C°(M) such that the 2-form
3
W = Z dfgi_.l A df2,' (1')
i=1

18 symplectic.
The following more general fact holds for an arbitrary dimension.

Theorem 1. Let M™ be a simply connected manifold. For a projective structure on M to exist it is

necessary and sufficient that there be functions f1,..., fat1 € C®(M) such that the form
n+1 ) .
Q= (-D'fidfi A= Adfi Ao N (1)
i=1

is the volume form on M.

If the dimension is odd then = a A da*~1; the author learned this fact from S. L. Tabachnikov.

Generically, a local Lie algebra that corresponds to an even-dimensional manifold may degenerate on a
geodesic submanifold of codimension 1. It turns out that this submanifold is contact and its complement
is symplectic.
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Theorem 2. On a simply connected manifold M endowed with a pm]ectzve structure there exists a
structure of a local Lie algebra such that

(A) if dim M = 2k — 1, then the Lie algebra spyx can be embedded in C°(M) and the action of spak
on M 1is transitive;

(B) if dim M = 2k, then the affine symplectic Lie algebra spai x R?* can be embedded in C°(M) and
its action on M\T and I' (T' denoting a geodesic submanifold of dimension 2k — 1) is transitive.

We propose an analog of the Sturm theorem for projective structures, replacing solutions of a differential
equation by geodesic submanifolds with respect to the projective structure. ‘

We also consider relationships between projective structures and invariant differential operators.

Relations of the projective geometry to the symplectic and the contact ones are not understood com-
pletely. We indicate two recent papers on this topic [18, 20]. v

The idea of this paper arose at Kirillov’s seminar. It was conjectured by V. I. Arnol'd that a projective
structure defines a local Lie algebra on the manifold. I am grateful to them both and also to A. B. Givental,
L. Guieu, Ch. Duval, E. Ghys, P. Iglesias, C. Roger, and especially to S. L. Tabachnikov for useful

discussions.

§1. Definitions

We say that a manifold M of dimension n is endowed with a projective structure if on M there is
a fixed atlas with projective coordinate changes. More precisely, a covering (U;) with a family of local
diffeomorphisms ¢;: U; — RP™ is called a projective atlas if the local transformations ¢; o ;! : RP™ —
RP™ are projective (i.e., are determined by the action of the group PGL,+; on RP™). Two projective
atlases are said to be equivalent if their union is also a projective atlas. The class of mutually equivalent
projective atlases is called a projective structure.

The notion of a projective structure originates from Elie Cartan [9]; it is the flat case of the notion of
a projective connection introduced there.

Another way to define a projective structure is connected with the notion of a geometric structure, or
(X, G)-structure, on a manifold M ; this notion was introduced by F. Klein and systematically studied for
the first time in Ehresmann [10]. Here G is a Lie group that acts transitively on the “model” manifold X .
Such a structure on M is determined by a local (in a neighborhood of each point of M) isomorphism
between M and X, which gives a (local) action of G on M ; on the intersections of maps these actions
are conjugate.

A projective structure on M is a (PGL,41, RP™)-structure.

The third definition of a projective structure is in the introduction of a developing mapping

¢: M — RP™ (2)

defined on the universal covering manifold M of M. This mapping must have the following properties:
a) ¢ is a local diffeomorphism;
b) there exists a homomorphism T': w1(M) — PGLy41 that “conjugates” the action of the homotopy

group on M | i.e.,
poy(m) =Ty0p(m). (3)
To any projective structure on M there corresponds a developing mapping, which is determined up to

a projective transformation of the space RP™. In turn, the local diffeomorphism (2) with property (3)
determines a unique projective structure. The image of the homomorphism T is called a monodromy

group (or a holonomy one) of the projective structure.
A projective structure is said to be affine if the transformations ¢ o ;' are determined by the action
of the affine group GL, x R". In this case the developing mapping of an affine structure takes its values

in the affine space, i.e., ¢: M — RP" \RP"-1.

Remark on the uniqueness. In what follows we assume that the manifold M is simply connected
(m1(M) = 0); however, it may be noncompact. In this case all projective structures on M are diffeomorphic
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(e.g., see [10]). In other words, if the projective structure on M exists, then it is unigue (up to the natural
equivalence).

A generalization of Theorems 1 and 2 to manifolds that are not simply connected requires that in
this case the monodromy group be conjugate to a subgroup of the projective-symplectic group PSpar C
PGLji; we omit the details.

§2. Proof of Theorem 1

Let M?¥ =1 be an oriented simply connected manifold endowed with a projective structure. The de-
veloping mapping (2) can be “lifted” (in two ways) to a local diffeomorphism &: M — S2¥~1. Consider
the standard embedding $2%¥~1 C R?*. Let us fix a system of linear coordinates (€1,...,z2) in RZ*,
Put f; := &*z;. The standard contact form on S$?*¥~! has the form ap = Ef__:l(a:z,-._l dzgi ~ x9; dzei_1).
Thus, the 1-form (1) can be expressed as o := @*ag; hence, it is contact.

Conversely, suppose that there is a contact form given by (1) on M?*~1, Let us prove that a projective
structure on M exists. Consider the 2k-dimensional linear space F spanned by the functions f;: F =
(fi,---, for) = R*_ To any point m € M we assign the subspace V;, C F formed by the functions
vanishing at the point m:

Vi ={f € F| f(m)=0}.

The dimension of the subspace Vi, is 2k — 1 (since the form « is nondegenerate). Thus, the map-
ping ¢: M — RP*~! (o(m) = Vi) is constructed. This mapping is determined up to a projective
transformation: ¢ ~ Ap, A € PGLy (depending on the choice of a linear isomorphism F =2 R?¥),

Lemma 1. ¢ s a local diffeomorphism.

Proof. Since the form (1) is nondegenerate (a A (da)*~! # 0), the mapping ¢ is nondegenerate as
well. Indeed, for any point m there is a function in F' that is nonzero at m. Without loss of generality
we may assume that far(m) # 0. Let us put t; = fi/fax, ¢ = 1,...,2k — 1, in the neighborhood of
m. Then the form a A (da)*~! is proportional to the form dt; A --- A dtag—1 # 0. Thus, the functions
(t1,...,t2x—1) form a system of local coordinates on M. The mapping ¢* relates it to a system of affine
coordinates on RP2*~1,

Hence, ¢ is a developing mapping for some projective structure.

It can be easily verified that the correspondence just defined between projective structures and contact
forms given by formula (1) (the latter are determined up to a linear transformation of the space F) is
bijective. Theorem 1 is proved.

Let us prove Theorem 1'.

Let dim M = 2k. The developing mapping ¢ that corresponds to the affine structure on M can be
lifted to @: M — S?%\ §2%—1 Let us define a projection M — A%F (see Fig. 1) onto an affine hyperplane
A?F C R?*¥+1, Let (z1,...,72k+1) be coordinates in R?**1. Suppose that the hyperplane A%* is given
by the equation z2p4+1 = const. Then the symplectic form (1') can be defined as a preimage of the form
wo = Y dz9;—1 A dza;. The necessity is proved.

The sufficiency can be proved as in Theorem 1.

Theorem 1"’ can be proved similarly.
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Examples. a) In the two-dimensional case a form given by (1'’) can be written as
Q= fidfy Adfs + fadfs Adfs + fadfi Adfa;

it determines a symplectic structure on M.

b) A four-dimensional projective manifold must not be symplectic (§* is a counterexample).

c) The symplectization [1, 2] of a manifold with a contact form given by (1) can be endowed with an
affine structure. :

§3. Geodesic Submanifolds and the Sturm Theorem on Zeroes

Let M™ be a simply connected manifold endowed with a projective structure. A submanifold I'* ¢ M
is called a k-geodesic if ‘

T C ¢ Y(RPF)

for some RP* ¢ RP™, i.e., I' can be “developed” into a flat space. A geodesic I' is called complete if
I = Y(RPF).

Theorem A (“on zeroes”). Let T'y, Tz, and T' be different complete geodesics such that dimI'y =
dimI'y =n —1 and dimT = 1. Then between any two points of intersection of the submanifolds I' and
T'; there exists a point of intersection of the submanifolds T' and T'y (see Figs. 2, 3).

In order to prove this theorem, we establish a relation between geodesics and the functions fi,..., fo+1 €
C°°(M) from Theorem 1". Denote by F' C C*®°(M) the subspace generated by these functions.

Lemma 2. (1) Let g1,...,gx € F be linearly independent functions. Then the submanifold
Iy={meM|g(m)=--=g(m)=0}

is a complete (n — k)-geodesic.
(2) For any (n — k)-geodesic I' there ezist functions gy, ..., gx € F such that ' CTy.

The proof is obvious: it suffices to recall (see §2) that the functions f; are determined as preimages of
the coordinate functions on R™*! under a developing mapping. ,

Thus, there exist functions g1,g2 € F such that Iy = Iy, and I'; = I'y,. Let us consider the
restrictions of these functions to I': §; = ¢1ir and g2 = g2|r.

Lemma 3. The functions §; and §» determine a projective structure on T, i.e., the 1-form ar =
g1 dgs — 2 dg1 1s nowhere degenerated on T.

Proof. There exist linearly independent functions g3, ..., gn+1 € F vanishing on I'. These functions,
together with g; and g, , form a basis of F. The volume form (1'') is proportional to the form ar A dgs A
---Adgpy1 on IT'. 0O

This lemma implies our theorem. Indeed, the points of I'' NT" and I'; NT' are zeroes for gi and go,
respectively; thus, they alternate by the ordinary Sturm theorem. The theorem is proved.
We state here an assertion generalizing Lemma 3.
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Proposition 1. Let I' C M be a k-geodesic and let gy,...,gx4+1 € F be functions that are not
identically zero on T'. Then the restrictions of these functions to I' determine a projective structure on I'.

The proof is similar.
Let us state another version of the multidimensional Sturm theorem on zeroes.

Theorem B. Suppose a geodesic T"~! C M™ bounds a compact submanifold A C M. Then for any
complete (n — 1)-dimensional geodesics I'1, ...,y there ezists an intersection point p € (), T interior
to A (see Fig. 4).

This theorem can be regarded as a multidimensional version of the Sturm theorem on zeroes.
Let us consider the odd-dimensional case separately.

Definition. Let M?*~! be a simply connected manifold with a projective structure. Fix a contact
form given by (1) on M. A Legendre submanifold I' C M that is geodesic is called a Legendre geodesic.

Lemma 4. (1) Let L C F be a Lagrange subspace. Then the submanifold T, = {m € M |
f(m) =0, f € L} 1s a Legendre submanifold.
(2) Each Legendre geodesic I' C M satisfies I' C 'y for some Lagrange subspace L C F.

The proof is obvious.
Thus, any Legendre geodesic is determined by a Lagrange subspace of the space F'.

§4. Local Lie Algebras Determined by Projective Structures

In this section we define a family of local Lie algebras on a simply connected manifold endowed with a
projective structure and prove Theorem 2. Let us recall the definitions (see [4]).

We say that the space C°(M) is endowed with the structure of a local Lie algebra if on C*®({M) there
is an operation [ , | given by a smooth differential operation on M and satisfying the Jacobi identity.

As was shown in [4], the local Lie algebra structure on C*°(M) is determined by a pair (a, ¢), where
a= 5 a*(z)0 is a vector field and ¢ = i ¢ 9; A 8; is a bivector field on M. In this notation, the
commutator can be expressed explicitly:

[F,G] = FaG — GaF + (¢, dF A dG).
The Jacobi identity for this operation is equivalent to the following relation (see [4]):
a(c) =0, dceAc=aAlc,

where a(c) is the Lie derivative of the bivector ¢ along the vector field a and dc =3, ; dicti(z)0;.

To any function G we assign the vector field {g = Ga+ %(c, dG); then we have [G, H] = £gH — £uG.

A local Lie algebra is said to be transitive if for any point m € M the tangent space T, M is spanned
by the vectors £g(m). As was shown in Kirillov [4], any transitive Lie algebra is determined by some
structure that is either contact or symplectic.

A. dim M = 2k —1. The projective structure on M determines a family of contact forms given by (1).
A contact form determines a transitive local Lie algebraon M called a Lagrange bracket (e.g., see [1, 2, 4]).
Let us indicate the explicit formula in local coordinates which are related to the projective structure. To

191



this end, put z; = fai-1/for, ¥i = foi/for, i =1,...,k =1, and 2z = fop—1/f2x. Then the Lagrange
bracket on C°°(M) has the form

[F,Gla = {F,G}o + (2F — BF)G, — F,(2G - 3G), (4)

where
k—1 k-1
{F,GYo=) (Fu;Gy — FyuGa,), 3= (20 +yidy,).

=1 =1
In this case we have (a, ¢) = (20, > 0;, A 9y, + 8; A D). The quadratic polynomials in fy,..., for form
a subalgebra spar C C°(M), and the corresponding vector fields determine an action of spax on M.

B. dim M = 2k. The product M xR can be endowed with the projective structure (induced from M).
We fix a contact form given by (1) on M x R and the corresponding Lagrange bracket.

Lemma 5. The natural embedding C°(M) — C°(M x R) endows M with the structure of a local
Lie algebra.

Proof. Let t be a coordinate on R; let us define an embedding C*°(M) C C*(M x R) by identifying
C>=(M) with the space of functions on M x R that do not depend on ¢. Let us rewrite the form (1):

k
a= t.df2k+1 — fakp1dt + Z(fzi—l dfsi — fai dfai—1), (5)

i=1

where f1,..., fax—1 is an arbitrary basis of the space ' C C*°(M) (F is determined by the projective
structure). The space C®(M) C C*°(M x R) is a Lie subalgebra, because the Lagrange bracket of two
functions that do not depend on ¢ does not depend on ¢ as well. The locality condition is clear.

Thus, a projective structure on M determines a family of local Lie algebra structures on C*°(M). In
what follows, a local Lie algebra C°°(M) means a structure from this family.

Lemma 6. Fiz a projective structure on M?*. Then a local Lie algebra from the above family is
determined by an embedding of the affine algebra spor X R?* in slapyq.

Proof. The form (5) is determined by this embedding, and quadratic polynomialsin fi,..., for, fok+1
generate the Lie algebra spor x R2F.

Generally, local Lie algebras defined above are not transitive (e.g., this is the case if M is not symplectic).
Let us recall that the submanifold I'y,,,, C M, on which the function fyr41 vanishes, is itself a complete
geodesic (Lemma 2). Let us show that a local algebra C°°(M) decomposes into transitive algebras on

M \ Ff2k+1 u Ff2k+1 .
Lemma 7. A local Lie algebra C®(M) is nondegenerate on M \ Ty, ., .

Proof. Let m € M be a point for which fyr+1 # 0. In a neighborhood of m the functions z; =
fok—=1/for+1 and y; = fai/for+1, t = 1,..., k, are coordinates on M. In these coordinates, a local Lie
algebra C®(M \ Ty, ,) is determined by the standard Poisson bracket

{F,G} =) (Fs,Gy, — F,,Gy,)

and is transitive. O

Lemma 8. The submanifold Ty, ., is invariant. The restriction of a local Lie algebra C°(M) to this
submanifold is determined by a canonical contact structure given by (1).

Proof. Suppose that far # 0 in a neighborhood of a point m € I'y,. Then the functions z; =

faica/foks yi = foif for, 1= 1,..., k=1, 2= for_1/for, and s = far41/fax arelocal coordinates on M.
It is easy to calculate that in these coordinates the Lie bracket of a local Lie algebra C*°(M) has the form

[F,G) = [F, Gla + s(F.Gs — F.G), (6)

192



where [F,G)q is given by formula (4). Thus, for s = 0, i.e., on the submanifold I's,,,, , we obtain the
standard contact Lagrange bracket [F,Glo. O

Thus, the local Lie algebra structure defined above is determined by a symplectic structure on
M\Ty,,, . This structure degenerates on the geodesic submanifold T'z,,,, C M, on which this structure
determines the standard contact Lagrange bracket.

Theorem 2 is proved.

The pair (a, ¢) (a is a vector field and ¢ is a bivector) corresponding to our local Lie algebra can be

easily calculated in the coordinates (zi,yi,z,8), t=1,...,k—1:
k—1
a=20., c= 8Ny +8.AD,
i=1

where O = 3 .(2i0z; + yi0y;) is the Euler field.

Remark. If the projective structure on M?2* is affine, then there exists a regular structure among
corresponding local Lie algebra structures on C*°(M), given by a symplectic form (1'). (It corresponds
to the choice of a function fpr4+1 which is nowhere zero.)

Example. The local Lie algebra C®°(5%*) corresponding to the standard projective structure on 52*
degenerates on the sphere $?2¥~! C $?* and determines the standard contact structure on the sphere.

§5. Two Invariant Differential Operators

Here we define two invariant differential operators on an arbitrary manifold. Their relationship to
projective structures will be discussed in the next section.

We will not give the general definition of invariant differential operators (see [6]) and restrict ourselves
to a particular case.

Definition. By a tensorial density of degree A\ on M we mean a section of the bundle (A™T*M)®*
over M. In local coordinates, it can be expressed in the form

f=f(z1,...,z.)(dzy A~ Adzy)>
We denote by F» the space of all the tensorial densities of degree A.

A differential g-linear operator A: Fy, ® --- ® Fy, — F, is said to be invariant if it commutes with
the action of the diffeomorphism group of M.

On any n-dimensional manifold there is a (n + 1)-linear invariant skew-symmetric differential operator
Wi A" Fy = Frinas

(the “Wronskian”). In local coordinates this operator is given by the formula

0f1 o fn+1 ]

fi ... Oifa

W(fi,..., fos1) = 1: ! . If: i (dzy A--- A dzn)(n+1))\+1’ (7)
6nf1 PR anfn+1

where 8;f = 0f/0z;. The fact that the operator W is invariant means that formula (7) does not depend
on the choice of local coordinates. Let us call W the Wronski operator.

Note that for A = —1/(n + 1) the operator W takes values in the space Fo = C*(M).
Let Vect M be the space of vector fields on M . Define an invariant differential operator

L:Fx @ @ Fx, = Fagttrn—1 ®ceo(m) Vect M
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by the formula

Alfl e /\nfn

alfl .o alfn
L(fiseey fa) = (do1 A--- Adag)it o+ +1®;(_1) a’z\fl 37}'; Oz; ®)

anfl “«n . anfn

Lemma 9. The operator L is invariant.
Proof. It can be checked directly that formula (8) does not depend on the choice of local coordinates.

Example. Let f € F_5/3 and g € F_1/3, n =2. Then L(f, g) is the vector field of the form

2f g 2f g

L(f,g) =

- Oz -
fo gz|? fy 9 i
The operator L will be used in the following particular case. Let A = —1/(n 4+ 1). Consider the
composition of the operator L with the multiplication by tensorial densities. Let us define the operator
L(f; fis--es fn) = FL(frs- s fn) (9)

on the space ®”+1.7-'_1/(n+1) with values in Vect M.
The following identity connects the operators L and W .

Proposition 2. Let f, fi,..., fa, 9 € F_1/(nt1)- Then the following identity holds:

L(F; froeeer F)(@) = FW(Frs e furg) = ;}ng(f,fl, AT (10)

where on the left-hand side we have a Lie derivative along a vector field.

Proof. Direct calculations.

§6. Projective Structures and Tensorial Densities

A. Theorem. Let M™ be a simply connected manifold.
1) To any projective structure ‘B on M there corresponds a (n + 1)-dimensional subspace F = Fgg C

f—-l/(n-{-]) such that
W(f1,..., fnt1) = const (11)

for each fi,..., fas1 € F; W determines a nondegenerate volume form on F.
2) The correspondence P — Fip is bijective and invariant.
3) The operator L: @™ Fyy — Vect M determines an action of slny1 on M.

Proof. The first assertion follows from Theorem 1"; it suffices to put f; = f;Q~1/(»+1),
The second assertion can be derived from Theorem 1’ and the fact that relation (11) is invariant.
The third assertion follows from identity (10).

Indeed, consider the space a = agg C Vect M spanned by the vector fields L(f1; fa, ..., fnt1), where
fi € F (thus, a is the image of F under the operator L). From (10) it follows that
a) a is a Lie subalgebra;

b) a acts on F (by the Lie derivative).
This action preserves the operator W (because W is invariant), i.e., preserves the volume form on F.

This defines a homomorphism

a— Sln+1 .
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The image of this mapping is sln41 (see below). On the other hand, dima < (n + 1)2 — 1. Indeed, the
operator L has a nonzero kernel on the space F: if fi,...y fa41 € F, then

Alty, . nt1 L(fl s fayens .fn+1) =0

(explicit calculations are given below). The theorem is proved. [J

Remark. In the one-dimensional case (n = 1) it is well known that the space of all projective structures
is naturally isomorphic to the space of Sturm-Liouville operators on M (e.g., see [5, 15])

A= +u(z).

In this case the aforementioned two-dimensional space of tensorial densities of degree —1/2 is the space
of solutions of the equation Af = 0. In the one-dimensional case the operator L is the ordinary multipli-
cation: L(f1; f2) = f1 - f2. The third assertion of our theorem coincides (for n = 1) with the following
remark [5]: if the action of the Lie algebra sl; preserves the operator A, then it is determined by the
product of solutions of the equation Af = 0.

Thus, the space of tensorial densities F 1is similar to the space of solutions of a Sturm-Liouville
equation.

B. Let us consider an odd-dimensional manifold M?*~! endowed with a projective structure .

We fix a canonical contact form given by (1) on M. (The choice of a contact form is equivalent to the
choice of a Lie subalgebra spax C slag.)

Let us define a symplectic structure on Fiz. We recall some general properties of tensorial densities on
a contact manifold.

Definition (for details see [7, 16]). Let (M?*~1 a) be a contact manifold. A contact-tensorial density
of degree A on M is an object of the form

©o=p(T1,..., mgk_l)a’\.
We denote by K, the space of all contact-tensorial densities of degree A.
Assertion 1 (see [7, 16]). (1) There is a natural isomorphism
K= Fajok-

(2) The space Ky 1s isomorphic to the space of homogeneous functions of degree —A on the symplecti-
zation S — M.

Proof. Fix a volume form @ = a A (da)*~!. Let G: M — M be a contact diffeomorphism. The
tensorial density ¢ = ¢(z)Q* is transformed under G in the same way as & = p(z)a*#. Indeed, if
G*a =g a, where g € C®(M), then G*Q = ga A (dga)*¥~! = ¢g*¥Q. The second assertion is evident.

Corollary. Fp CK_y/-
Definition (for details see [7, 16]). A generalized Lagrange bracket on M is a Lie algebra structure
{, }KA®Ky = Kagptr
determined by a Poisson bracket on the symplectization S (see §2).

We obtain the following “refinement” of our theorem in the contact case.

Assertion 2 (see [16]). Let f1, f2 € Fp.

(1) {f1, f2} = const and the Lagrange bracket determines a nondegenerate symplectic form on Fop;
the form (6) is the corresponding volume form.

(2) Let Q@ = g/ f;f; be a homogeneous polynomial of degree 2 and f;, fi € Fyp. Let &g be the contact
vector field corresponding to the contact Hamiltonian Q. Then £g € spax C ag.

Proof. This immediately follows from the definition of the space F given in the proof of Theorem 1.

195



Remark. The space Fy and the Lie subalgebra spsr C a form the Lie superalgebra osp(1]2k)
(see [5]).

Now we describe canonical coordinates.

For projective structures the following “Darboux theorem” holds.

Lemma 10. Let M be a manifold with a fized projective structure. Then in a neighborhood of any
point of M there exist coordinates such that:

1) the functions {1,%1,...,zn} form a basis of the space F (we omitted the factor (dzy A --- A
dxn)'_l/(n""l) );

2) the action of slaty is determined by the vector fields {0y, , 20y, , :2}, where 3 =Y | z;0;,.

Proof. For any point m € M there exists f € F such that f(m) # 0. We may assume (without
loss of generality) that f = fn41. Then the functions z; = f;/fa41 (fi is a basis in F) are canonical
coordinates.

In the odd-dimensional case the action of the Lie algebra spsr can be easily calculated as well.

§7. Two Problems

A. Nonstandard contact structures. There exists an interesting example of a globally defined
contact form that determines a contact structure not diffeomorphic to the structure given by (1). In the
elegant papers [12-14] contact forms given by the formula

B = g1(f1dfzs — fadfi) + g2(fs dfs — fa dfs) (12)

were considered on a three-dimensional manifold, where f;, gi € C°°(M). The submanifolds (g; = 0) and
{92 = 0) do not intersect. Scaling the form § properly, we can assume that g, = sinyp and g; = cos¢,
where ¢ € C*°(M).

Let M = §3. Connected components of the submanifolds (g, = 0) and (g = 0) are isomorphic to T?
(see [12-14]). The form S is equivalent to one of the forms

Bn = sin(r/4 + n(z? + 22))(z1 dza — 22 dz1) + cos(n/4 + n(z? + 23))(23 dzg — x4 dz3),

where z; are the coordinates on the space R* D S®. If n # 0, then the contact structure given by the
form f, is not equivalent to the standard one [8] (although these structures are homotopic in the class of
2-distributions). All structures (3, are equivalent for n # 0.

We pose the following problem: Does a form given by (12) determine a geometric structure on M?

B. The main problem in the theory of geometric structures is the existence problem.

Under what conditions on the manifold M a projective structure on M exists?

This problem remains open and is very complicated.

For the odd-dimensional case Theorem 1 gives a (rather weak) restriction: a locally projective manifold
is contact. In particular, its third Stiefel-Whitney class vanishes (see [8]).

Any two-dimensional surface can be endowed with a projective structure (for details and numerous
examples see [11, 17, 19]).

In the three-dimensional case the existence problem is of particular interest. There is a bold conjecture
that such a structure always exists (see [17]); this conjecture is not withdrawn. Three-dimensional mani-
folds with a hyperbolic metric yield numerous examples (see [19]). The affirmative solution of the existence
problem in the three-dimensional case would imply the proof of the Poincaré conjecture. (Indeed, a pro-
jective structure on a compact simply connected manifold of dimension 3 determines a, transitive action
of the group SL(4,R) on this manifold. This immediately implies that this manifold is diffeomorphic
to S3. '

We )conclude this paper with the following remark. In order to prove the Poincaré conjecture it is
sufficient to show that on a three-dimensional simply connected manifold M there exists a (globally
defined) contact form given by the formula

a=fdg—gdf +hdk~kdh,  f,g,h ke C®(M).

The remark follows from Theorem 1.
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