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Abstract. We apply the Hurwitz-Radon theory of square identities to additive combinatorics
of sumsets in Fn

2 . We fix an arbitrary cubic function α on Fn
2 and obtain information about the

size and structure of a set A ⊂ Fn
2 satisfying α

∣∣
(A+A)\{0} ≡ 1. We then consider two differrent

sets, A and B, and obtain a lower bound for the size of the sumset A + B under a similar
condition for the additive quadruples. Our main tool is the non-associative algebra associated
to a cubic function on Fn

2 .

1. Introduction

In this paper, we investigate relationship between two different subjects: additive combi-
natorics of sumsets in Fn

2 and the theory of “square identities” (or “composition of quadratic
forms”), initiated by Hurwitz [14]. Starting from two sets, A,B ⊂ Fn

2 , and assuming some
restriction on additive quadruples in A×A×B ×B, we construct a square identity. The main
ingredient of our construction is a cubic binary (or boolean) form. This construction allows us
to establish several statements about sizes of sumsets, as well as statements about binary cubics.

We will need to fix the notation and recall several standard notions of combinatorics over F2.

• An element x ∈ Fn
2 is represented as an n-tuple of 0 and 1: x = (x1, . . . , xn). The

Hamming weight wt(x) is the number of non-zero components xi.
• A cubic form on Fn

2 is a function α : Fn
2 → F2 of the form

α(x) =
∑

1≤i≤j≤k≤n
αijk xixjxk,

where the coefficients αijk ∈ {0, 1}. Note that, over F2, we have x2i = xi and therefore
every cubic form can be viewed as a homogeneous form.
• The cardinality of a set A ⊂ Fn

2 is denoted by |A|.
• Given two sets A,B ⊂ Fn

2 , the sumset A+B is the set of elements of the form a+ b with
a ∈ A, b ∈ B.

We also recall two central notions of the Hurwitz theory.

• A square identity of size [r, s,N ] is an identity of the form

(a21 + · · · + a2r) (b21 + · · · + b2s) = c21 + · · · + c2N ,

where ci are bilinear expressions in aj and bk with coefficients in Z. In [14], Hurwitz
formulated his famous problem to determine all the triples (r, s,N) such that there exists
an identity of size [r, s,N ]. The values (r, s,N) are optimal if r and s cannot be increased
and N cannot be decreased.
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• The Hurwitz-Radon function ρ is a function on the set of natural numbers ρ : N → N.
If N = 2n(2m + 1), then ρ(N) = ρ(2n) (i.e., it depends only on the dyadic part of N),
and the latter number is given by

ρ(2n) =

 2n+ 1, n ≡ 0 mod 4
2n, n ≡ 1, 2 mod 4
2n+ 2, n ≡ 3 mod 4.

• The celebrated Hurwitz-Radon theorem [15, 19]; see also [21], is formulated as follows:
there exists an identity of size [r,N,N ] if and only if r ≤ ρ(N). This is the only
case where the Hurwitz problem is solved. Importance of the Hurwitz problem is due
to various applications of square identities and their direct relations to many areas of
number theory, algebra, geometry and topology.

Starting from two sets A,B and their sumset A+B, and assuming some conditions in terms
of (an arbitrary) cubic form α, we produce a square identity of size [|A|, |B|, |A + B|]. This
approach was developed in [17, 16, 18] in order to construct new square identities. In this paper,
we apply the same technique to, conversely, obtain information about additive combinatorics of
sumsets from known results on square identities.

In Section 2, we formulate our results about sumsets. Sections 3-5 contain all our construc-
tions: the correspondence between cubic functions on Fn

2 and real non-associative algebras, the
correspondence between sumsets and square identities, explicit examples of maximal subsets for
Hurwitz-Radon identities. Section 6 completes the proofs.

2. The main results

2.1. An upper bound. The classical Freiman theorem [7] and its analog over F2 due to Ruzsa,
as well as various generalizations (see [20, 6, 9] and [8] for a survey of the whole subject) provide
information about the structure of a set A under a restriction on the cardinality of A+A. Our
first result gives information about the cardinality of A under a restriction on the structure
of A+A.

Theorem 1. Given a cubic function α : Fn
2 → F2 and a set A ⊂ Fn

2 , if for every x, x′ ∈ A, such
that x 6= x′, one has α(x+ x′) = 1, then

|A| ≤ ρ(2n).

This bound is sharp, at least in the cases n ≡ 1, 2 or 3 ( mod 4).

We will give examples of a cubic form α and sets A satisfying the condition α(x + x′) = 1
and the equality |A| = ρ(2n) (except for the case n ≡ 0 ( mod 4), where we have no examples).

An immediate combinatorial consequence of the above theorem is the following statement.

Corollary 2.1. If for every x, x′ ∈ A, such that x 6= x′, the weight wt(x+ x′) is not a multiple
of 4, then |A| ≤ ρ(2n).

Note that replacing the condition multiple of 4 by another integer, say 3 or 5, one obtains that
the maximal cardinality |A| is at least quadratic in n. The value 4 is the only value for which
the upper bound is linear in n.

The following statement is a refinement of Theorem 1.
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Corollary 2.2. If for every x 6= x′ ∈ A one has α(x+x′) = 1, and A ⊂ V , where V is an affine
subspace of Fn

2 , then |A| ≤ ρ(|V |).
As above, we can replace the assumption α(x+x′) = 1 by a more restrictive one that wt(x+x′)
is not a multiple of 4.

Let us also emphasize that Theorem 1 implies that the set A cannot have a small doubling,
namely |A+A| ≥ c|A|2, where c is a constant (asymptotically 1

4).

2.2. Additive quadruples. Our second statement concerns so-called additive quadruples. If
A,B ⊂ Fn

2 , four elements x, x′ ∈ A, y, y′ ∈ B form an additive quadruple (x, x′, y, y′) if

x+ x′ + y + y′ = 0.

We call an additive quadruple proper if x 6= x′ and y 6= y′.

Theorem 2. Let A,B ⊂ Fn
2 with |A| ≤ |B|. If every proper additive quadruple (x, x′, y, y′)

satisfies α(x+ x′) = 1, then

|A+B| ≥ Ω(|A|
6
5 ).

As above, the condition α(x + x′) = 1 can be replaced by the condition that the weight
wt(x+ x′) is not a multiple of 4.

The Balog-Szemerédi-Gowers theorem [3, 11], in the Fn
2 case (see [9]) states, roughly speak-

ing, that the sumset A + B grows slowly, provided there are “many” additive quadruples (of
order |A|3). The above result is a sort of converse statement.

2.3. A few properties of cubic forms. Classification of boolean cubic forms on Fn
2 , modulo

the action of the linear group GL(m, 2) is unknown for n > 9; see [12, 4] and the website
http://langevin.univ-tln.fr/project/. The above theorems provide invariants of cubic forms,
which are of course not sufficient for their classification. Given a cubic form α, the maximal
cardinality of a set A ⊂ Fn

2 such that α(x+ x′) = 1 for all x 6= x′ ∈ A, is obviously an invariant
of α. The maximal cardinality of |A+B|, where A,B are as in Theorem 2, is also an invariant.

We also prove the following simple property of cubic binary forms.

Proposition 2.3. If V ⊂ Fn
2 is an (affine) subspace such that α(v) = 1 for all non-zero v ∈ V ,

then dim(V ) ≤ 3.

2.4. The method. Hurwitz’s problem remains widely open and no explicit formulas or asymp-
totic for the optimal triplets (r, s,N) are known in general. However, the problem is old and
much information is available; see [21].

Our method is based on the algebraic constructions developed in [17, 16, 18]. For every cubic
form α on Fn

2 , we construct a real non-associative algebra with basis {ex |x ∈ Fn
2} and the

product encoded by α. The square identities are realized in the form ||a|| ||b|| = ||ab||, provided
a and b are chosen in “good” subspaces of the algebra, and where ||.|| is the Euclidean norm.

The following statement already proved in [16] will be explained in the sequel.

Theorem 3. Given subsets A,B ⊂ Fn
2 and a cubic form α, if for every proper additive quadruple

(x, x′, y, y′) one has α(x + x′) = 1, then there exists a square identity of size given by the
cardinalities: [|A|, |B|, |A+B|].

Note that this statement is a refinement of Yuzvinsky’s theorem [23] (see also [21], Theo-
rem 13.A.1, p. 286). Yuzvinsky did not consider cubic forms and his result gives a lower bound
for |A+B| in terms of the Hopf-Stiefel function.
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3. Cubic functions and twisted group algebras

In this section, we develop our technique and establish the relationship between cubic forms
and non-associative algebras.

3.1. Examples of cubic functions on Fn
2 . The space of (boolean) functions on Fn

2 with values
in F2 is isomorphic to the quotient space of the space of polynomials with coefficients in F2 by
the ideal generated by the relations x2i = xi, namely

F2 [x1, . . . , xn] / (x2i − xi : i = 1, . . . , n).

Every boolean function can be expressed as a polynomial in variables (x1, . . . , xn) with coeffi-
cients in F2, but not in a unique way. We will be interested in polynomials of degree ≤ 3.

Example 3.1. Let us introduce a very special cubic function αO on Fn
2 : it is equal to 1 every-

where except for the vectors of weight wt(x) which is proportional to 4:

αO(x) =

{
0, if wt(x) ≡ 0 (mod 4)

1, otherwise.

The explicit coordinate formula can be written as follows:

(3.1) αO(x) =
∑

1≤i<j<k≤n
xixjxk +

∑
1≤i<j≤n

xixj +
∑

1≤i≤n
xi,

that is, αO is just the total sum of the monomials of degree 1, 2 and 3. Since xi = x2i = x3i , this
function can be viewed as a homogeneous cubic form.

The form αO is special since it is invariant with respect to the action of the group Sn of
permutations of the coordinates. Functions of this type are sometimes called counting functions.

Example 3.2. Another Sn-invariant cubic form is

α0(x) =
∑

1≤i<j<k≤n
xixjxk

that vanishes for all x except for wt(x) = 4m+ 1.
The quadratic form

q(x) =
∑

1≤i<j≤n
xixj +

∑
1≤i≤n

xi

is equal to 1 if wt(x) = 4m+ 1 or 4m+ 2.

Let us give the comparative table of values of the above forms.

(3.2)

wt(x) 1 2 3 4 5 6 7 8 · · ·

q 1 1 0 0 1 0 0 0 · · ·
αO 1 1 1 0 1 1 1 0 · · ·
α0 1 0 0 0 1 0 0 0 · · ·

The above forms, especially αO will be useful to construct non-associative algebras that play
essential role for this work.
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3.2. Twisted group algebras. We now recall the definition of a twisted group algebra over
an abelian group. We restrict ourselves to the case of the group Fn

2 , and the ground field is R;
we refer to [5] for the general theory.

Definition 3.3. Let f : Fn
2 × Fn

2 → F2 be an arbitrary function of two variables. The twisted
group algebra over Fn

2 associated to f is the real 2n-dimensional algebra with basis {ex |x ∈ Fn
2}

and the product given by

ex · ex′ = (−1)f(x,x
′) ex+x′ .

This algebra is denoted by (R[Fn
2 ], f).

This algebra is, in general, neither commutative nor associative. The non-commutativity is
measured by the function

β(x, y) := f(x, y) + f(y, x),

while the non-associativity is measured by the function

δf(x, y, z) := f(y, z) + f(x+ y, z) + f(x, y + z) + f(x, y).

Many classical algebras, such as the algebras of quaternions H, of octonions O, and, more
generally, the Clifford algebras and the Cayley-Dickson algebras, can be realized as twisted
group algebras over Fn

2 ; see [1, 2].
The associativity condition, δf = 0, is too restrictive and does not lead to algebras interesting

for combinatorics. For instance, the Clifford algebras are too simple for our purpose. On the
other hand, algebras with δf 6= 0 can be very hard to handle, this is the case of the Cayley-
Dickson algebras. In [17] we introduced an intermediate condition that is the symmetrized
function of f is a 2-cocycle, i.e.,

δβ = 0.

This leads to series of new algebras. We have proved in [17] that, if β as above is a 2-cocycle,
then it is necessarily a coboundary, i.e., β = δα, and α has to be a cubic form on Fn

2 . Moreover,
α determines the twisted group algebra up to isomorphism.

We summarize the approach in the following short way.

3.3. From cubic forms to algebras. There is a canonical way to construct a twisted group
algebra out of an arbitrary cubic form α.

Proposition 3.4. Given a cubic form α, there exists a function f satisfying the conditions:

(a) First polarization formula:

f(x, y) + f(y, x) = α(x+ y) + α(x) + α(y).

(b) Second polarization formula:

f(x, y) + f(x, y + z) + f(x+ y, z) + f(y, z) =

α(x+ y + z) + α(x+ y) + α(x+ z) + α(y + z) + α(x) + α(y) + α(z).

(c) Linearity of f in 2nd variable:

f(x, y + y′) = f(x, y) + f(x, y′).

(d) Reconstruction of α from f :

f(x, x) = α(x).
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Proof. The existence of f follows from an explicit formula. We replace every monomial in α
according to the following rule:

(3.3)

xixjxk 7−→ xixjyk + xiyjxk + yixjxk,

xixj 7−→ xiyj ,

xi 7−→ xiyi.

where i < j < k, and obtain this way a function f in two arguments, satisfying the properties
(a)-(d). �

Example 3.5. Our main examples are related to the octonions and Clifford algebras.

(1) The function fO : Fn
2 × Fn

2 → F2 corresponding to the form αO is as follows.

fO(x, y) =
∑

1≤i<j<k≤n
(xixjyk + xiyjxk + yixjxk) +

∑
1≤i≤j≤n

xiyj

for all x = (x1, . . . , xn) and y = (y1, . . . , yn), elements of Fn
2 . When n = 3, the corre-

sponding twisted group algebra is isomorphic to the classical algebra O of octonions.
(2) The twisted group algebra (R[Fn

2 ], fq), where fq is the function corresponding to the
quadratic form q from Example 3.2, is isomorphic to the Clifford algebra Cl0,n.

The constructed algebras (R[Fn
2 ], fO) generalize the algebra of octonions (and the Clifford

algebras). These algebras were introduced and studied in [17]. Their properties are completely
different from those of Cayley-Dickson algebras.

Remark 3.6. Given a cubic form α, the choice of a function f is unique modulo a coboundary.
More precisely, two functions of two variables, f and f ′, correspond to the same cubic form α,
if and only if f + f ′ is a coboundary. The corresponding twisted group algebras are isomorphic.

3.4. Why cubic functions? One cannot choose a polynomial of degree ≥ 4, instead of a cubic
function, in order to construct a twisting function f satisfying properties (a)-(d) of Proposi-
tion 3.4. Indeed, let us apply the differential δ to the equation in property (b). Since δ2 = 0,
one obtains after a short computation:

0 = α(x+ y + z + t)

+α(x+ y + z) + α(x+ y + t) + α(x+ z + t) + α(y + z + t)

+α(x+ y)+α(x+ z)+α(x+ t)+α(y + z)+α(y + t)+α(z + t)

+α(x) + α(y) + α(z) + α(t).

This is exactly the condition that α is a polynomial of degree at most 3.

3.5. A criterion of existence of α. An equivalent way to express the condition δβ = 0 (and
therefore the existence of α) is to require that the ternary function δf(x, y, z) is symmetric in
its arguments x, y, z. This means that the non-associativity is not “too wild”. In particular, the
algebras are alternative.
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4. From algebra to square identities

4.1. The Euclidean norm. Consider a twisted group algebra (R[Fn
2 ], f). Our plan is to define

the Euclidean norm (or absolute value) on the space R[Fn
2 ] ∼= R2n and investigate its compati-

bility with the algebra structure.
Every element of the algebra is a linear combination of the basis elements

a =
∑
x∈Fn

2

ax ex,

with (arbitrary) real coefficients ax ∈ R. We set

||a||2 :=
∑
x∈Fn

2

a2x.

Consider two sets A,B ⊂ Fn
2 and the coordinate subspaces A and B ⊂ (R[Fn

2 ], f):{
a | a =

∑
x∈A

ax ex
}

and
{
b | b =

∑
y∈B

by ey
}
.

Our next task is to determine a necessary and sufficient condition on A and B that guarantees:

(4.1) ||a||2 ||b||2 = ||a b||2,
for all a ∈ A and b ∈ B. Observe that the equation (4.1) is nothing but a square identity of size
[|A|, |B|, |A+B|].

4.2. The normed subspaces. This idea goes back to Yuzvinsky [23], it was also used in [17,
16, 18]. The following statement was obtained in all these references, we give here a proof for
the sake of consistency.

Lemma 4.1. The condition (4.1) is satisfied if and only if for all x 6= x′ ∈ A and y 6= y′ ∈ B
such that x+ x′ + y + y′ = 0, one has:

(4.2) f(x, y) + f(x, y′) + f(x′, y) + f(x′, y′) = 1.

Proof. The product of the norm in the left-hand-side of (4.1) is:

||a||2 ||b||2 =
∑
x,y

a2x b
2
y.

On the other hand, the product of two elements is given by

a b =
∑
x+y

(−1)f(x,y) ax by ex+y =
∑
z

( ∑
x+y=z

(−1)f(x,y) ax by

)
ez.

The Euclidean norm of this element is

||a b||2 =
∑
x,y

a2x b
2
y +

∑
x + y = x′ + y′

x 6= x′

(−1)f(x,y)+f(x′,y′) ax by ax′ by′ .

The monomial ax by ax′ by′ in the second summand appears twice, and has total coefficient

(−1)f(x,y)+f(x′,y′) + (−1)f(x,y
′)+f(x′,y).

This coefficient vanishes if and only if the condition (4.2) holds. �
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4.3. The norm condition in terms of the cubic. Suppose now that the algebra (R[Fn
2 ], f)

was constructed out of a cubic form α; see Section 3.3. The equation (4.2) then drastically
simplifies.

Lemma 4.2. The equation (4.2) reads: α(x+ x′) = 1.

Proof. Use linearity of f in second argument and substitute y′ = x+x′+ y to the left-hand-side
of (4.2). After cancellation one has

f(x, x) + f(x, x′) + f(x′, x) + f(x′, x′) = α(x) + β(x, x′) + α(x′) = α(x+ x′),

thanks to the properties (a) and (d) of Proposition 3.4. �

5. Construction of Hurwitzian sets

In this section, we fix the cubic form αO given by (3.1) and study the sets A ⊂ Fn
2 satisfying

the condition αO(x + x′) = 1 for all distinct x, x′ ∈ A. In other words, the weight wt(x + x′)
is not a multiple of 4. We are interested in the sets A of cardinality |A| = ρ(2n). Such sets
were already considered in [16] where they were called Hurwitzian sets. In this section, will
give explicit constructions of Hurwitzian sets. In particular, we discuss a relation to the binary
Hadamard matrices.

5.1. Cases n ≡ 1, 2 ( mod 4). In this case, ρ(2n) = 2n. The following choice of a Hurwitzian
set is perhaps the most obvious. Choose the following set:

A = {0, e1, e2, . . . , en, e1 + e2, e1 + e3, . . . , e1 + en} .

For all x, x′ ∈ A, the weight of the sum satisfies wt(x + x′) ≤ 3, and thus αO(x + x′) = 1,
provided x+ x′ 6= 0. Therefore A is a Hurwitzian set.

Note that the above choice is not unique. However, it is easy to see that the set A is the only
Hurwitzian set which is a “shift-minimal downset” according to the terminology of [10].

5.2. Case n ≡ 3 ( mod 4). In this case, ρ(2n) = 2n + 2 which is the most interesting situation
for many reasons.

Consider the element of maximal weight:

ω = (11 . . . 1) = e1 + · · ·+ en.

One can choose the above set A, completed by ω and e1 + ω. Let us give a more symmetric
example.

Choose the set

A = {0, ω, e1, e2, . . . , en, e1 + ω, e2 + ω, . . . , en + ω} .

The weight of a non-zero element of the sumset A+ A can be one of the following four values:
1, 2, n− 1, or n− 2. Since this is never a multiple of 4, we conclude that A is a Hurwitzian set.
Moreover, it is not difficult to show that the above set is the only Hurwitzian set invariant with
respect to the group of permutations Sn.
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5.3. Another choice in the case n ≡ 3 ( mod 8), relation to the Hadamard matrices.
The case n ≡ 3 ( mod 8) is a subcase of the above one. Remarkable, there is a choice of
Hurwitzian set based on the classical Hadamard matrices.

Recall that a Hadamard matrix is an m×m-matrix H with entries ±1, such that tHH = mI,
where tH is the transpose of H and I is the identity matrix. It is known that a Hadamard
matrix can exist only if m = 1, 2 or m = 4s; existence for arbitrary s is the classical Hadamard
conjecture.

The construction is as follows. We remove the first column and than consider two 11 × 12-
matrices, H1, H2 with entries 0, 1. The matrix H1 is obtained by replacing 1 by 0 and −1 by 1,
the matrix H2 is obtained by replacing −1 by 0.

Lemma 5.1. The rows of H1 and H2 form a Hurwitzian set in F4s−1
2 , provided s is odd.

Proof. It follows from the definition of a Hadamard matrix that every sum of two distinct rows
of H1 is of weight 2s, and similarly for H2. The sum of a row of H1 with a row of H2 is of weight
2s− 1 or 4s− 1. �

Example 5.2. The (unique up to equivalence) 12× 12 Hadamard matrix H corresponds to the
following 12× 11 binary matrices:

H1 =



1 1 1 1 1 1 1 1 1 1 1

0 1 0 1 1 1 0 0 0 1 0

0 0 1 0 1 1 1 0 0 0 1

1 0 0 1 0 1 1 1 0 0 0

0 1 0 0 1 0 1 1 1 0 0

0 0 1 0 0 1 0 1 1 1 0

0 0 0 1 0 0 1 0 1 1 1

1 0 0 0 1 0 0 1 0 1 1

1 1 0 0 0 1 0 0 1 0 1

1 1 1 0 0 0 1 0 0 1 0

0 1 1 1 0 0 0 1 0 0 1

1 0 1 1 1 0 0 0 1 0 0


H2 =



0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 1 1 1 0 1

1 1 0 1 0 0 0 1 1 1 0

0 1 1 0 1 0 0 0 1 1 1

1 0 1 1 0 1 0 0 0 1 1

1 1 0 1 1 0 1 0 0 0 1

1 1 1 0 1 1 0 1 0 0 0

0 1 1 1 0 1 1 0 1 0 0

0 0 1 1 1 0 1 1 0 1 0

0 0 0 1 1 1 0 1 1 0 1

1 0 0 0 1 1 1 0 1 1 0

0 1 0 0 0 1 1 1 0 1 1


(which are related to the extended Golay code). The rows of the matrices H1 and H2 constitute
a Hurwitzian set in F11

2 of cardinality 24.

5.4. Case n ≡ 0 ( mod 4). Recall that ρ(2n) = 2n+ 1 in this case. We have no construction of
Hurwitzian set. Moreover, we are convinced that a similar situation holds for any cubic form.

Conjecture 1. Given a boolean cubic function α on Fn
2 with n ≡ 0 ( mod 4), there is no set A

such that α
∣∣
(A+A)\{0} ≡ 1 and |A| = 2n+ 1.

6. Proof of the main results

We are ready to complete the proof of the results formulated in Section 2.

6.1. Proof of Theorem 1 and Corollaries 2.1 and 2.2. Fix an arbitrary cubic form α, and
let A ⊂ Fn

2 be a set such that
α
∣∣
(A+A)\{0} ≡ 1.

Lemmas 4.1 and 4.2 then imply ||a|| ||b|| = ||ab|| for all a ∈ A and arbitrary b ∈ Fn
2 . We

therefore obtain a square identity of size [|A|, 2n, 2n]. The Hurwitz-Radon Theorem implies
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that |A| ≤ ρ(2n). This bound is sharp as follows from the constructions of Hurwitzian sets; see
Section 5. Theorem 1 is proved.

Choosing α = αO as in formula (3.1), one obtains Corollary 2.1.
Now we deduce Corollary 2.2. It will suffice to consider linear subspace V . Let A ⊂ V , the

linear subspace V ⊂ Fn
2 is itself isomorphic to Fm

2 for some m ≤ n. Given a cubic form αO on Fn
2

and let αV be its pull-back to V . One then has αV (x + y) = 1, for all x, y ∈ A and concludes
by the same arguments as above. Corollary 2.2 then follows.

6.2. Proof of Theorem 2. Fix, as above, an arbitrary cubic form α. Suppose that A and B are
two subsets of same cardinality |A| = |B| = r, and such that for all proper additive quadruples
(x, x′, y, y′). By Theorem 3, one obtains an identity of size [r, r,N ], where N = |A + B|. The
Hurwitz problem is still open in this particular case and even an asymptotic of the least value
Nmin as a function of r is not known exactly. However, it is known that asymptotically

C1 r
6
5 ≤ Nmin(r) ≤ C2

r2

log(r)
.

where C1 and C2 are some constants. The upper bound follows easily from the Hurwitz-Radon
theorem, and the lower bound was recently obtained in [13]. This is precisely the statement of
Theorem 2.

6.3. Proof of Proposition 2.3. If V ⊂ Fn
2 is a subspace such that α(v) = 1 for all non-

zero v ∈ V , then there exists a square identity of size [|V |, |V |, |V |]. The famous theorem of
Hurwitz [14] states that there is an identity of size [N,N,N ], if and only if N = 1, 2, 4 or 8. It
follows that dim(V ) ≤ 3.

Acknowledgments. This project was partially supported by the PICS05974 “PENTAFRIZ”
of CNRS.

References

[1] H. Albuquerque, S. Majid, Quasialgebra structure of the octonions, J. Algebra 220 (1999), 188–224.
[2] H. Albuquerque, S. Majid, Clifford algebras obtained by twisting of group algebras, J. Pure Appl. Algebra

171 (2002), 133–148.
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