
CLASSIFICATION OF THIRD-ORDER LINEAR DIFFERENTIAL EQUATIONS 

AND SYMPLECTIC SHEETS OF THE GEL'FAND--DIKII BRACKET 

V. Yu. Ovsienko 

Hill's equations ~"(x) + u(x)~ = 0 with a periodic potential u were classified for the 
first time in [i]. As it turned out later, this solved the problem of classification of orbits 
of a coadjoint representation of the Virasoro group, which was solved independently in [2, 3] 
(see also [4-6]). The authors of [7] classified the orbits of Lie superalgebras of theNeveu-- 
Schwartz and Ramone types. 

In this article we describe a relation between the classification of the symplectic sheets 
of the Gel'fand--Dikii bracket in the space of differential equations with periodic coeffi- 
cients of the form 

A y  = y "  (x) --, u (x) y' (x) i- v (x) y (x) = 0 (i) 

and calculations of homotopy classes of non-flattening curves on S 2. Our results are gen- 
eralized in [8] to equations of higher orders. 

i. A Tensor Interpretation of Third-Order Linear Differential Equations. In this para- 
graph we give a geometric interpretation of the second Gel'fand--Dikii bracket in the space 
of equations (i). Its centerpiece is the action of tensor fields of degree ~2 on equations 
and locally convex curves in RP =. 

i.i. Locally Convex Curves in RP 2. To each ordinary linear differential equation there 
corresponds a non-flattening curve y(x) in the projective space. To every point x we assign 
a hyperspace in the space of solutions (and therefore, a straight line in its dual space) con- 
sisting of solutions which become zero at the point x. In the case of equations of the form 
(I) the curve y(x) e~P 2 satisfies the following two properties: 

i) it is quasiperiodic, i.e., y(x + 2z) = My(x), where the monodromy operator M defines 
a class of adjoint elements in the matrix group SL(3, R) (which acts projectively on R P2), and 

2) it is locally convex (does not contain points of inflection). 

In turn, a nonflattening curve in the projective space uniquely defines a linear differ- 
ential equation. This correspondence between curves and equations is described by multidimen- 
sional analogues of the Schwartz derivative. In addition, projectively equivalent curves 
correspond to the same equation. Let us carry out this calculation for Eq. (i). Suppose that 
the curve y(x) ~ R P 2 can be written as 7(x) = (fl(x), f2(x)) in the affine chart. We lift it 
to a curve r(x) = (It(x)~(x), /2(x)%(x), %(x)) in R 3 in such a way that the vector r"' is a linear 
combination of vectors r and r'. The function %(x) is defined uniquely up to multiplication 
by scalars: 

] /~ i~-.3 

The coordinates of the curve r(x) in R 3, i.e., k, flk, f2 ~, are the solutions of the result- 
ing equation (i). 

1.2. Action of the Group Diff+S I. Tensor Interpretation of Solutions. Define an action 
of the grup Diff+S I of diffeomorphisms of the circle which preserve its orientation on the 
space of equations (i) such that its action on the corresponding curves in RP 2 is a change 
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of variables: g*y(x) = y(g-l(x)). Eq. (2), which is used to determine the corresponding 
equation from a curve 7(x), shows that under this action its solutions transform as follows: 

g*y (x) = y (g-~ ( x ) ) / ( r  ~ (z) ') .  (3) 

Thus, solutions of Eq. (i) can be regarded as a vector field on the line. 

1.3. Action of the Space of Tensor Fields of Degree --2 on Equations and Curves in RP 2. 
An action M of a tensor field h = h(x)(dX) -2 on a certain geometrical object is a linear map- 
ping which commutes with changes of variable and defines an infinitesimal deformation of these 
objects. 

Proposition i.i. An action of a tensor field h = h(x)(dx) -2 on a locally convex u = 
(f1(x), f2(x) in RP 2 is defined by 

~]~ = h/~ --  (1/2) h'/i + vh]~, (4 )  

w h e r e  i ---- t ,  2, v = (log ~)'/3 = (log (]'d~--/~]~))'/3. 

P r o o f :  a )  We f i r s t  p r o v e  t h e  c o m m u t a b i l i t y  w i t h  t h e  g r o u p  o f  d i f f e o m o r p h i s m s .  A m a p p i n g  
k ~ g ( x )  maps  h ( x )  t o  h (g:i  (x)) (g-1 (x),)-2, g*/i (x) ---- /~ (g-1 (x)). M o r e o v e r ,  v i s  mapped  t o  g*u (x) = v 
(g--1 (x)) g-1 (x)' ~- g"/g', and an e x p r e s s i o n  Vhf  i i s  t r a n s f o r m e d  l i k e  a f u n c t i o n :  g*Vj,/i (x) = Vj,]i 
(g-~ (x)). 

f2). 
tions of Eq. (i) corresponding to (4), which will be used later. 

LEMMA I.i. The tensor field h(x)(dx) -2 acts on solutions of Eq. (I) as follows: 

b) It remains to show that Eq. (4) does not depend on the choice of the affine chart (fl, 
While doing so, we derive the formula of action of a tensor field of degree --2 on solu- 

(4') V~y = h y " - - ( l / 2 ) h ' y ' + ( l / 6 ) h " y + ( 2 / 3 ) h u y % ,  

w h e r e  u = u ( x )  i s  t h e  p o t e n t i a l  o f  Eq. ( 1 ) .  

Proof. Every basis in the space of solutions defines a curve Y(x) = (Yl, Y:, Ys) in R 3. 
When projecting onto RP 2, i.e., fl = Yl/Y~, f2 = Y2/Y3, Eq. (4) is replaced by (4'), and the 
coefficient h"/6 + 2bu/3 of y is uniquely determined from the conservation of the Wronskian 
W3(Yl, Y2, Y~) for a small deformation ye = y + eVhY. The latter implies that the action of 
the tensor field h does not change the form of Eq. (i). The commutativity of the action of 
(4') with the change in the variable x follows from the same comanutativity for Eq. (4). Q.E.D. 

Now the invariance of (4) with respect to the choice of an affine chart follows from the 
fact that Eq. (4') is linear in y. This proves the proposition. 

1.4. The Gel'fand--Dikii Bracket. Under the action of the group Diff+S I given by (3), 
the coefficient of u is transformed as follows: g*u = u(g-1(x))(g-1(x)')z~-2S (g), where S(g) = 
g"'/g' - (3/2) (g,,/g,)2 is the Schwartz derivative. The coefficient of v is transformed in 
a rather complicated manner, but 9 = v -- u'/2 has a third-order tensor density: 3: g*v = 
~(g-l(x))(g-l(x)') 3. Therefore, the action of the tensor field f = f(x)d/dx on the coef- 

2 
ficients of Eq. (i) is given by Lfu =/u'q-2uf' + 2[~',L~ = ]~'q-3f'~. Let H~ and H h be linear 

functionals of the form Is,/(x)u(x)dx, and~sh(X)~(x)dx respectively. 

LEMMA (Definition). An operator of the second Gel'fand--Dikii Hamiltonian structure is 
an operator which maps linear functionals H~ and H~ to Hamiltonian vector fields Lf and Vh, 
respectively, in the space of equations (I ): 

Remark. The Gel'fand--Dikii bracket defined by this operator is quadratic. Linear func- 
tionals on the space of equations (I) generate an algebra with quadratic relations which is 
isomorphic to Zamolodchikov's algebra, which has independently appeared in the two-dimensional 
conformal field theory (see [9]). 

w Solution of the Homolo~ical Equation. Recall that symplectic sheets of the Poisson 
bracket are submanifolds which are tangent to all Hamiltonian fields. The restriction to these 

%This equation has been derived earlier from the explicit form of the Gel'fand--Dikii bracket 
in a dissertation by T. G. Khovanova. 

466 



brackets is nondegenerate and defines a symplectic structure. The Poisson manifold is fibered 
into symplectic sheets (one and only one sheet passes through each point) (see [i0]). Two 
equations of the form (I) belong to the same symplectic sheet of the Gel'fand--Dikii bracket 
if they can be joined by a path whose tangent vector at each point can be obtained by an 
action of a vector field and a tensor field of degree -2 on the circle defined by Eqs. (3) 
and (4). 

THEOREM i. The monodromy operator and the homotopy class of equations (i) with respect 
to homotopies which preserve it are the only invariants of symplectic sheets of the second 
Gel'fand--Dikii bracket. 

Proof. A vector field f = f(x)d/dx and a tensor field h = h(x)(d/dx) 2 act on solutions 
of Eq. (i) as follows (see w 

~ ,  ~ = y/ '  - -  ]y' + hy ~ - -  h ' y ' /2  + ~ V 6  + 2hu/3) y,  ( 5 )  

The above formula is an explicit expression of an action defined in [ii]. Because of the 
linearity of this action, it preserves the monodromy operator M. From the connectivity of 
symplectic sheets it is clear that, for a fixed monodromy operator, the homotopy class of 
Eq. (I) is also invariant. 

To prove the theorem, we have to show that every infinitesimally small deformation of 
Eq. (I) preserving M can be obtained by action (5). 

The Basic Formula. The tangent vector A to the space of equations (i) is obtained by the 
following action of a vector field f(x)d/dx and a tensor field h(x)(d/dx) ~ on an equation 
Ay = 0: 

= _ _ _  

Yl Y2 Y3 
i y' y~ y~ 

19~ y~ 9~ 

Y~ Y~ Ys 
Y~ Yz Y~ , h i =  

Yl, Yz, yz[ 
Yl Yz Y~ , 
9, O, 03 

(6) 

where Yl, Y2, Y3 are linearly independent solutions of Eq. (i) normalized by a condition 
W3(Yl, Y2, Y3) = i and #i, #2, #~ is their small deformation (Ay + Ay = 0) which preserves 
the Wronskian 

(IV3 (Yx, Y~, Y~) + W3 (Yl, Y2, Y~) + W3 (Yl, Y2, 93) = 0). 

Remark 3.1. Mappings (y, y) + h and (y, y) ~ f defined by Eq. (6) are invariant differ- 
ential operators (see [12]) on the line: h:/k3(FI~FI)--+F2, /: /\~(F i ~ Yl)-~F1, where F k is the 
space of tensor fields of degree --k on the line. This means that if Yi and Yi transform as 
vector fields by diffeomorphisms then h and f transform as a tensor field of degree --2 and a 
vectqr field, respectively. The above statement is obvious for h, but it requires further 
proof in the case of f. 

Proof of the Basic Formula: Consider a system of linear equations Yi = y~h + y~(--]--h'/2) 
~-Yi(]' -~h"/6--2~h/3) (i = i, 2, 3). Let X, Y, and Z be the coefficients of y~, y~, and Yi, 
respectively. Using Kramer's rule to sol:ve this system (with a condition W3(yl, Y2, Y3) = i, 
we obtain 

X =  yl y~ Y.3 ' Y-~- - -~Yl  Y2 Y; , Z = yl Y2 Y; " 
~1 /J2 Y3[ ;Jl ~2 /J3 IYl .~2 

From the first two equations follows Eq. (6). A condition [W~(yl, Y2, Y~)]" = 0 implies that 
the last equation for Z coincides with the expression for Z in terms of f and h. To see this, 
we differentiate each line of the Wronskian, obtaining 

Y2 ~a yl y~ Y3 Yl Y~ Y3 
, ,, ,, . . . .  

I U1 Y2 Ya ~ Yl U2 - - Y X  y~ Y3 
, ,, ., . ' 
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The rest is a straightforward calculation. 

We note that if A is a small deformation preserving the monodromy operator of Eq. (i) 
then we can choose a deformation of solutions Yl, Y2, and y~ such that the monodromy matrix 
M remains the same with respect to the basis Yi" In that case, as a result of a translation 
by the period, functions f and h are multiplied by det M = i, i.e., these functions are period- 
ic. This concludes the proof of the theorem. 

COROLLARY. In the complex case, when Eqs. (i) are defined on a Riemann surface of arbi- 
trary type with deleted points, every infinitesimally small deformation of Eq. (i) with a con- 
stant monodromy group can be obtained by applying a certain holomorphic vector field and a 
holomorphic tensor field of degree --2. 

w Versal Deformations. We define a versal deformation of Eq~ (I) similarly to the 
versal deformation of a point of a manifold acted on by a Lie group (see [13]). 

A deformation of Eq. (i) Ay = 0 is the germ of a smooth mapping D of a finite-dimensional 
manifold A (the basis of the deformation) into the space of Eqs. (i) at the point 0 of A, 
where the mapping is such that D(0) = {Ay = 0}. Two deformations DI and D2 of the same equa- 
tion are called equivalent if there exists a homotopy D t between DI and D 2 such that the tan- 
gent vector Dt(l) to the space of Eqs. (I) can be obtained from a point Dt(1) by an action of 
a vector field f(X) and a tensor field h(X) of degree --2 on the circle, both of which depend 
smoothly on ~ ~ A. A deformation D' is said to be induced by D if it is obtained from D by 
a mapping of the basis onto some manifold A' (the basis of D'). 

A deformation D of Eq. (i) is called versal if every deformation of this equation is 
equivalent to an induced one from D. Hereafter we consider only miniversal deformations (we 
assume that the dimension of the deformation basis is minimal). 

The following result is a corollary of Eq. (6), as applied to the family of Eqs. (i) 
parametrized by X. 

THEOREM 2. A versal deformation of Eq. (i) is essentially a versal deformation of the 
corresponding class of adjoint elements of the group SL(3, R) induced by the monodromy oper- 
ator M. In particular, in the case where M = 1 the equation has an eight-dimensional versal 
deformation, while in general it has a two-dimensional one~ 

A similar theorem holds for Hill's equations (see [i]). In particular, the bifurcation 
diagram given in Fig. 1 in [i] is a well-known depiction of orbits of a coadjoint representa- 
tion of the group SL(2, R) (see, for example, [14]). 

w Homotopy Classes of Locally Convex Curves on ~ 2 and Symplectic Sheets of the Gel'- 
fand--Dikii Bracket. In Sec. I.i we established a relation between Eqs. (i) and locally con- 
vex quasiperiodic curves in~ ~. Theorem 1 implies that the symplectic sheets of the Gel'fand-- 
Dikii bracket in the space of Eqs. (i) are identified with homotopy classes of these curves 
on ~ 2 with respect to homotopies for a fixed monodromy operator. 

THEOREM 3. For a fixed monodromy operator there exist exactly three symplectic sheets 
of the second Gel'fand--Dikii on the space of Eqs. (i) 

Proof: Up to an orientation, the homotopy classes of closed retractable locally convex 
curves in ~ 2 are in a one~to-one correspondence with the homotopy classes of these curves in 
S 2. Little calculated thes~in [15]. 

THEOREM (Little). A locally convex closed curve in~ 2 is homotopic (up to an orienta- 
tion) to one of the three curves pictured in Fig. i. 

Theorem 3 follows from Little's theorem, whose proof is lengthy and therefore omitted 
from this article. Figure 2 illustrates its most important, and at the same time its most 
beautiful argument: a homotopy between the curve 2) and a curve with four twists. 

COROLLARY i. Nonoscillating Eqs. (i) with periodic solutions form an isolated symplectic 
sheet of the second Gel'-fand--Dikii bracket. 

Proof. Curves which are homotopic to the curve i) pictured in Fig. 1 have the distinguish- 
ing property that they intersect every equator no more than twice. This means that a curve in 
R 3 which is a lifting of this curve intersects with every hyperplane containing the origin 
no more than twice. Solutions of the equation of the form (i) which correspond to a given 
curve are restrictions of linear functionals on R B to the curve obtained by a lifting to R 3, 
so none of them are equal to zero more than twice, i.e., the obtained equation is nonoscillat- 
ing. 
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.7) 2: ~,=~ 

Fig. i 

Fig. 2 

This symplectic sheet can be of most use in the conformal field theory with additional 
symmetries (see [9]). Witten [6] quantized a similar orbit of the coadjoint representation 
in the case of the Virasoro algebra. 

COROLLARY 2. A normal form of Eq. (i) with a fixed monodromy operator has the form 

y,t, (x) -F n~y" (x) = O, zOe n = t ,  2, 3. 

Indeed, the corresponding curves are homotopic to curves i), 2), and 3), respectively. 

Remark. The problem of classification of locally convex quasiperiodic curves in S 2 with 
an arbitrary monodromy operator has been solved recently by Khesin and Shapiro (see [8]), 
which completed the classification of symplectic sheets of the second Gel'fand--Dikii bracket 
in the space of equations (I). It turns out that for a general monodromy operator there are 
also exactly three homotopy classes. 

w Legendre's Involution. A geometric interpretation of linear differential, equations 
as locally convex curves in RP r suggests the possibility of applying Legendre's transformations 
defined on such curves to this space of equations. We carry this out for Eqs. (i). 

Definition. Recall that the space~ 2., which is the dual space to RP 2, is the set of 
lines in~ 2. Legendre's transformation of a smooth locally convex curve in~[P 2 maps every 
point to a tangent at that point. The obtained curve in ~ 2. is smooth and locally convex. 
Legendre's transformation is involutive, i.e., its repeated application is the identity trans- 
formation. 

The projective spaceR P = can be identified with~ 2.. The various methods of identifica- 
tion differ by the projective map. In this way, Legendre's transformation identifies a curve 
in RP = with a class of equivalent curves in RP = and therefore defines an involution on the 
space of Eqs. (i). 

Proposition 5.1. Legendre's transformation of Eq. (i) transforms its coefficients (u, 
v) into (u, u' -- V), and every solution of the resulting equation is a com~nutator of two solu- 
tions of the original one treated as vector fields on the line: [Yl, Y2] = ' YlY2 -- Y~Yl. 

Proof: For convenience, identify~ = with RP =* using the Euclidean structure of R 3. Lift 
curves in ~ 2 to R 3 in such a way that the coordinates of the lifted curve satisfy a condition 
Ws(Yl, Y2, Y3) = 1 (see Sec. i.i). Then the lifted curve, which is Legendre dual, is equal 
to y x y', the vector product of the curve by its velocity. Indeed, the dual curve in Pd~ 2 is 
orthogonal to the radius--vector of the curve and its velocity vector. It uniquely lifts to 
R 3, and it is easy to see that the coordinates of the curve y x y satisfy a condition W3(y x 
Y')l, (Y x Y')2, (y x Y')3) = i. The coordinates of the curve y x y' have the form ([Yl 
Y2], [Ys, Yl], [Y2, Y3]), from which we deduce the second statement of the proposition. The 
first one is easy to check. 

Remark 5.1. Legendre's transformation of Eq. (I) commutes with the action of the group 
of diffeomorphisms of S l, and tensor fields of degree --2 invert. Indeed, they transform 
v = v -- u'2 into --9, and therefore the Hamiltonian V h = /hv into --V h. 

469 



Consider the stationary points of Legendre's transformation. They are Eqs. (i) such 
that u' -- v = v. They are given by a skew-self-adjqint operator A u = d3/dx 3 + ud/dx + u'/2, 
which satisfies the following remarkable properties: 

a) A u is the Hamiltonian operator of the second Hamiltonian Gel'fand--Dikii structure 
(for the Korteweg--de Vries equation) defined on Hill's equations; 

b) A u is the operator of a coadjoint representation of the Virasoro algebra; 

c) Proposition 5.1 implies that solutions of an equation AuY = 0 form a Lie algebra which 
is equal to sl(2, R); these solutions (see [4]), together with solutions of Hill's equation 
(--2d2/dx 2 + u)~ = 0 form a Lie superalgebra osp(i/2) with respect to a commutator [y, @] = 

Therefore, solutions of the equation for AuY can be written in terms of solutions of Hill's 
equation: Yl = ~'  ~2 = ~'  ~3 = ~1~2" 

Remark 5.2. The operator A u induces a natural (commuting with the action of the group of 
diffeomorphisms) imbedding of the space of Hill's equations into Eqs. (i). Here nonequivalent 
equations can become equivalent. Consider, for example, Hill's equations with monodromy oper- 
ators • Their normal form is --2d2@/dx 2 + (n2/2)~ = 0, where n = i, 2, 3 ..... After 
imbedding into Eqs. (i) they become equivalent for both even and odd n > i. 

We thank B. L. Feigin for the statement of the problem, A. A. Kirillov, S. L. Tabachnikov, 
B. A. Khesin, and B. Z. Shapiro for their useful discussion. 
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