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Clélia Pech
King’s College London

10-11 June 2013

Contents

1 Introduction 2

2 Background 2
2.1 On projective algebraic geometry . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 On cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 On algebraic groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Symmetric polynomials 6
3.1 Definition and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 The combinatorial Pieri formula . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 The Jacobi-Trudi formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Grassmannians 10
4.1 The Grassmannian as a homogeneous space . . . . . . . . . . . . . . . . . . 10
4.2 Projective embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Schubert varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Schubert classes and the cohomology ring . . . . . . . . . . . . . . . . . . . 14

5 The Pieri and Giambelli rules 15
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1 Introduction

Enumerative problems are an important part of Algebraic Geometry. The goal is to
count the number of objects (lines, curves ...) satisfying certain incidence conditions.
For example, what is the number of circles tangent to three given circles in the plane?
What is the number of plane conics through 5 points? These kinds of questions have been
extensively studied during the 19th century and form the bases of Schubert calculus.

This intensive course will focus on Schubert calculus on Grassmannians, which para-
metrise vector subspaces of a given dimension in an ambient complex vector space. It
involves the beautiful combinatorics of Young tableaux, which are also related to interest-
ing problems in representation theory and the theory of symmetric functions.

After reviewing some necessary background in Section 2, we will introduce the combi-
natorial setting we will be working with in Section 3. Section 4 will introduce the geometric
setting, by defining Grassmannians as homogeneous spaces and projective algebraic vari-
eties. In the next Section 5, we will prove two first results on Schubert calculus : the Pieri
and Giambelli formulas. After that, the main result of Schubert calculus, the Littlewood-
Richardson rule, is the subject of Section 6. Finally, we conclude in Scetion 7 by reviewing
some recent developpements of Schubert calculus, including Pieri and Giambelli rules for
other homogeneous spaces, as well as quantum Schubert calculus.

The content of this course is by no means new or original, and Sections 3-6 are heavily
inspired from the books [Ful97] and [Man01]. However, any error would be strictly my
own. Sections 3-6 are mostly self-contained, although due to time constraints, we may
refer to the previously cited books for some of the proofs. However, Section 7 may require
some more algebro-geometric background.

2 Background

In this section, we recall the main notions from algebraic geometry, algebraic groups and
cohomology theory that will be necessary in the rest of the course. The results will not be
proved. The reader wishing for more details can consult for instance [Sha94] or [Har77] for
the results of Section 2.1, [Bor91], [Spr98] or [Hum75] for Section 2.3, [Ful97, Appendix
B] or [Man01, Appendix A] for Section 2.2.

2.1 On projective algebraic geometry

For this subsection and in the rest of the document, the base field will always be C.

Definition 2.1 (Basic definitions). Let V be a C-vector space of dimension n. An al-
gebraic subset X of projective space P(V ) is a subset that is the set of zeroes of a col-
lection of homogeneous polynomials inside the coordinate ring S•V ∗ of P(V ). The ideal
I(X) =

⊕
k I(X)k of such an algebraic subset is a homogeneous ideal in S•V ∗, where

I(X)k consists of the forms of degree k that vanish on X. An algebraic subset is irre-
ducible if it is not the union of two proper algebraic subsets. It is then called an (embed-
ded) projective algebraic variety. If X is irreducible, then I(X) is prime, and the graded
ring S•V ∗/I(X) is the coordinate ring of X. An algebraic subset of X is the locus in X
defined by a homogeneous ideal inside I(X).

A basic result of algebraic geometry is Hilbert’s Nullstellensatz, which describe how
an algebraic subvariety and its ideal are related :
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Theorem 2.2 (Nullstellensatz). If I is an homogeneous ideal in S•V ∗ and X is the set
of zeroes of I, then

I(X) =
{
P ∈ S•V ∗ | ∃d ≥ 1, P d ∈ I

}
.

In particular, if I is prime, then I(X) = I.

2.2 On cohomology

In this subsection, we introduce Chow rings, the cup product, and Poincaré duality.

Definition 2.3 (Algebraic cycles). An algebraic cycle of a projective algebraic variety
X is a formal finite linear combination W =

∑
i ni[Wi], where Wi is a subvariety of X,

and ni ∈ Z is the multiplicity of Wi. Algebraic cycles form a group Z∗(X) graded by the
dimension of the cycles (or Z∗(X) if we grade by the codimension).

There is an equivalence relation on Z∗(X) called rational equivalence. To define it, we
first need to recall the following :

Definition 2.4 (Rational function). A rational function f on a projective algebraic variety
X is a regular function f : U → C, where U is an open dense subset of X.

Definition 2.5 (Rational equivalence). We say that two cycles [D], [D′] ∈ Z∗(X) of
codimension 1 are rationally equivalent, denoted [D] ∼ [D′], if there exists a rational
function f on X such that

[D]− [D′] = div(f) = (f)0 − (f)∞,

where (f)0 is the locus of the zeroes of f and (f)∞ the locus of its poles.
Now if [W ] is any cycle of X, it is rationally equivalent to zero, denoted W ∼ 0,

if there exists a finite collection (Ya)a of subvarieties of X of dimension dimW + 1 and
rational functions fa on Ya such that

[W ] =
∑
a

div(fa).

Finally, two cycles [W ], [W ′] are rationally equivalent if [W ]− [W ′] is rationally equivalent
to zero.

We may now define the intersection of two cycles :

Definition 2.6 (Intersection). Consider X a smooth projective variety, and let [W ] and
[W ′] be two cycles of X of codimensions d and d′ with proper intersection, i.e. such that
W ∩W ′ is a finite union

⋃
j Aj of subvarieties of X of codimension d + d′. In this case,

we may define the cup product of [W ] and [W ′] as follows :

[W ] ∪ [W ′] =
∑
j

i(W ∩W ′;Aj)[Aj ],

where the number i(W ∩W ′;Aj) is called the intersection multiplicity of W and W ′ at Aj.
For the definition of intersection multiplicities, we refer to [Ful84].

Remark. In what follows, we will always be able to assume that the cycles have transverse
intersection, i.e. that the intersection multiplicities are 0 or 1.

We will now quotient the group Zi(X) by the equivalence relation ∼ :
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Definition 2.7 (Chow group). The Chow groups of a smooth projective algebraic variety
X are

H i(X) := Zi(X)/Zi0(X)

where Zi0(X) ⊂ Zi(X) is the subgroup of cycles which are rationally equivalent to 0. We
write H∗(X) =

⊕
iH

i(X).

The cup product equips H∗(X) with a ring structure :

Theorem 2.8 (Chow ring). H∗(X) is a commutative ring with respect to the cup product,
called the Chow ring. We similarly define H∗(X).

Remark. We could have used other notions of (co)homology for this section, for instance
singular (co)homology. However, in our context (homogeneous spaces), this makes no
difference, hence we will indifferently write “cohomology ring” or “Chow ring”.

Definition 2.9 (Fundamental class). The fundamental cycle of a subvariety W of a
smooth projective variety X is its image [W ] ∈ H∗(X). [W ] ∈ H∗(X) is called its funda-
mental class.

Theorem 2.10 (Poincaré duality). 1. There exists a bilinear operation

∩ : Hp(X)⊗Hq(X)→ Hq−p(X)

which is compatible with the cup product.

2. The cap product with the fundamental cycle of X

• ∩ [X] : Hq(X)→ Hn−q

is an isomorphism called Poincaré duality.

To conclude this subsection, we introduce the notion of cell decompositions and give
their properties :

Definition 2.11 (Cell decomposition). A cell decomposition of an algebraic variety X is
a finite partition X =

⊔
i∈I Ci, where

1. the cells Ci are isomorphic to affine spaces Cmi ;

2. the boundary Ci \ Ci of a cell is itself a reunion of cells.

An important application of cell decompositions is that they enable us to find bases of
the cohomology of the variety.

Proposition 2.12. If X is a projective algebraic variety which admits a cell decomposi-
tion X =

⊔
i∈I Ci, then the fundamental classes of the closures of the cells generate the

cohomology of X :

H∗(X) =
⊕
i

Z
[
Ci
]
.
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2.3 On algebraic groups

Here we recall some basic notions on algebraic groups which we will need to state the
Bruhat decomposition theorem.

Definition 2.13 (Algebraic group). An algebraic group is a group which is isomorphic
to an algebraic variety, and such that all group operations (multiplication, inverse) are
morphisms of algebraic varieties. In the sequel we will always consider linear algebraic
groups, which are algebraic groups that are isomorphic to an algebraic subgroup of GLN (C)
for some N .

Example. GLN (C) itself is of course a (linear) algebraic group.

Definition 2.14 (Homogeneous spaces). A homogeneous space for an algebraic group G
is a non-empty algebraic variety X endowed with a transitive action of G which is also a
morphism of algebraic varieties.

Example. Projective space P(V ) is homogeneous under the action of GL(V ).

Definition 2.15 (Borel subgroup). A Borel subgroup B of an algebraic group G is a
maximal solvable algebraic subgroup of G.

Example. If G = GLN (C), the subgroup of invertible upper-triangular matrices is a Borel
subgroup of G.

Definition 2.16 (Tori). A torus inside an algebraic group G is an abelian subgroup of G.
It is isomorphic as an algebraic group to (C∗)N for some N . A maximal torus is a torus
that is maximal among abelian subgroups of G.

Example. The (invertible) diagonal matrices inside G = GLN (C) form a maximal torus.

Proposition 2.17. All Borel subgroups of an algebraic group G are conjugate : if B,B′

are two Borel subgroups of G, then there exists g ∈ G such that B′ = gBg−1.

Definition 2.18 (Weyl group). The Weyl group associated to an algebraic group G and
a Borel subgroup B of G is

W = NG(T )/ZG(T ),

where T is the maximal torus of B, NG(T ) = {g ∈ G | gT = Tg} is the normalizer of T
in G, and ZG(T ) = {g ∈ G | tg = gt ∀t ∈ T} is its centralizer.

Remark. The Weyl group is a finite group and its isomorphism class does not depend on
the choice of a Borel subgroup.

Example. The Weyl group of GLN (C) is the symmetric group SN .

Definition 2.19 (Parabolic subgroup). A parabolic subgroup P of an algebraic group G
is an algebraic subgroup which contains a Borel subgroup.

Proposition 2.20. An algebraic subgroup P ⊂ G is parabolic if and only if the quotient
G/P is a projective algebraic variety.

Example. The maximal parabolic subgroups of GLN (C) containing the Borel subgroup of
upper-triangular matrices are of the form(

GLk(C) Mk,N−k(C)
0 GLN−k(C)

)
for 1 ≤ k ≤ N − 1.
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Remark. Such a quotient G/P is homogeneous for the G-action given by left multiplication.
It is called a complete homogeneous space.

Example. Projective space P(V ) is a complete homogeneous space.

We now introduce the Bruhat decomposition of a complete homogeneous spaces X =
G/P . In the special case of the Grassmannian, we will prove in Prop. 4.14 that it is a cell
decomposition.

Proposition 2.21 (Bruhat decomposition). Let X = G/P be a complete homogeneous
space, B a Borel subgroup of G, W its Weyl group, and WP the Weyl group of P . Then

X =
⊔

w∈W/WP

BwP/P.

Definition 2.22 (Schubert cells, Schubert varieties). The sets Cw := BwP/P for w ∈
W/WP are the Schubert cells of X, and their closures Xw = BwP/P are its Schubert
varieties.

3 Symmetric polynomials

This section introduces the combinatorial background we will need for our study of Schu-
bert calculus on the Grassmannian. We define the ring of symmetric polynomials, of which
the cohomology ring of the Grassmannian will be a quotient (cf Cor. 5.4).

3.1 Definition and examples

Definition 3.1. A symmetric polynomial in the variables x1, . . . , xm is a polynomial P
in the variables x1, . . . , xm with integer coefficients such that for all w ∈ Sm :

P (xw(1), . . . , xw(m)) = P (x1, . . . , xm).

Symmetric polynomials in x1, . . . , xm form a ring denoted by Λm.

Here are two fundamental examples of symmetric polynomials :

Definition 3.2. An elementary symmetric polynomial in x1, . . . , xm is a polynomial of
the form

ek =
∑

1≤i1<···<ik≤m
xi1 . . . xik

for 1 ≤ k ≤ m. Similarly, a complete symmetric polynomial is a polynomial of the form

hl =
∑

1≤i1≤···≤il≤m
xi1 . . . xik

for k ≥ 1.

Example. Suppose m = 3. Then

e1 = x1 + x2 + x3, e2 = x1x2 + x2x3 + x3x1, e3 = x1x2x3

and
h1 = x1 + x2 + x3, h2 = x2

1 + x2
2 + x2

3 + x1x2 + x2x3 + x3x1.
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To define another family of symmetric polynomials, the monomial symmetric polyno-
mials, we will need the following :

Definition 3.3. A partition λ = (λ1, . . . , λ`(λ)) is a (possibly empty) finite sequence of
decreasing positive integers. The non-negative integer `(λ) is called the length of the
partition. The λi’s are called its parts, and the sum |λ| of all parts is its weight.

A partition can be represented by a combinatorial object called a Young diagram, where
a partition is drawn as a set of boxes. The diagram consists of `(λ) rows of λi boxes (drawn
from top to bottom) as in Fig. 1.

We say that a partition λ is contained in an m× k rectangle if `(λ) ≤ m and λ1 ≤ k.
Finally, a partition λ contains a partition µ, denoted λ ⊃ µ, if λi ≥ µi for all i.

λ

Figure 1: The Young diagram of the partition λ = (8, 6, 2, 2)

Now :

Definition 3.4. If α is a m-uple of non-negative integers, we write xα := xα1
1 . . . xαmm .

Then if λ is a partition with at most m parts, the monomial symmetric polynomial mλ is

mλ =
∑

α∈S(λ)

xα

where S(λ) is the set of all (distinct) m-uples obtained from λ by permutation. Note that
even if `(λ) < m, we still see λ as an m-uple in the definition of S(λ) (completing it by
the relevant number of zeroes).

Example. Suppose m = 3. Then

m2,2 = x2
1x

2
2 + x2

1x
2
3 + x2

2x
2
3, m2,1 = x2

1x2 + x1x
2
2 + x2

2x3 + x2x
2
3 + x2

3x1 + x3x
2
1.

Monomial symmetric functions mλ, with λ having at most m parts, constitute an
additive basis of Λm. This can be proved inductively by defining a total order on monomials
xλ. Moreover :

Theorem 3.5.
Λm = Z[e1, . . . , em] = Z[h1, . . . , hm]

This is the fundamental theorem of symmetric functions. The proof can be found in
[Bou72].

Finally, we will introduce Schur polynomials, which will play the same role than Schu-
bert classes of the Grassmannian :

Definition 3.6 (Schur polynomial). Write, for any m-uple α

aα =
∑
w∈Sm

ε(w)xw(α).

Let δ = (m− 1,m− 2, . . . , 1) be the smallest decreasing partition. Then for any partition
λ with at most m parts, the Schur polynomial sλ is

sλ =
aλ+δ

aδ
.
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Proposition 3.7. For any partition λ with at most m parts :

aλ+δ = det(x
λj+m−j
i )1≤i,j≤m.

Proof. The proposition is proved by induction on m, developping the determinant with
respect to the last row and noticing that

{w ∈ Sm | w(m) = j} ∼= Sm−1

for any 1 ≤ j ≤ m.

Moreover, it is easy to show that aδ = det(xm−ji )1≤i,j≤m is the Vandermonde determi-
nant, hence

aδ =
∏

1≤i<j≤m
(xi − xj)

is the basic alternating polynomial in m variables. It follows that any other alternating
polynomial, in particular aλ+δ for any partition λ with at most m parts, is divisible by aδ,
and that the quotient is a symmetric polynomial. This proves that the Schur polynomials
are indeed symmetric polynomials in the variables x1, . . . , xm.

Example. Suppose m = 3. Then

s2 = x2
1 + x2

2 + x2
3 + x1x2 + x2x3 + x3x1, s2,1,1 = (x1 + x2 + x3)x1x2x3.

Schur polynomials are another basis of the ring of symmetric functions :

Proposition 3.8. Schur polynomials (sλ), where λ spans partitions with at most m parts,
generate Λm.

Idea of proof. Consider the lexicographic order on monomials. A Schur polynomial sλ has
higher-order term xλ, same as mλ.

We can write complete and elementary symmetric polynomials as Schur polynomials,
as follows

ek = s1k , hk = sk,

where we denote by 1k the partition with k parts equal to 1. In the next subsection, we
give a rule for multiplying a Schur polynomial with an elementary or complete polynomial.

3.2 The combinatorial Pieri formula

We will first need the following :

Notation. Consider a partition λ and an integer p ≥ 1. We write µ ∈ λ⊗p if µ is obtained
by adding p boxes to λ so that no two are in the same column. Similarly, for r ≥ 1 we
write µ ∈ λ ⊗ 1r if µ is obtained by adding r boxes to λ so that no two are in the same
row.

We may now state the Pieri formula for Schur functions :

Theorem 3.9.
ersλ =

∑
µ∈λ⊗1r

sµ and hpsλ =
∑
µ∈λ⊗p

sµ.
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Proof. We have

eraλ+δ =
∑
w∈Sm

∑
1≤i1<···<ir≤m

ε(w)xw(λ+δ)xw(i1) . . . xw(ir)

Since aα+δ is non-zero if and only if α is a partition, it follows that

eraλ+δ =
∑

β∈{0,1}m
|β|=r

aλ+β+δ.

This proves that is sµ appears in the product ersλ, then µi ∈ {λi, λi + 1} for all i, hence
no two added boxes are in the same row.

Similarly

hpaλ+δ =
∑
|β|=p

aλ+β+δ.

If µ is obtained from λ by adding p boxes, and that two of these boxes are in the same
column, then there exists β of weight p and i such that µ − λ = β, β contributes non-
trivially to the sum, and βi > λi − λi+1. Now we define another sequence γ of the same
weight p by setting

γj =


βi+1 − (λi − λi+1 + 1) if j = i ;

βi + (λi − λi+1 + 1) if j = i+ 1 ;

βj otherwise.

Then aλ+γ+δ also contributes to the sum, and aλ+γ+δ = −aλ+β+δ. Hence both terms
cancel in the sum. As a consequence, such an sµ does not appear in the product hpsλ.

Example. Suppose m = 3. Then the product s2s2,1,1 is

s2s2,1,1 = s4,1,1 + s3,2,1 + s3,1,1,1 + s2,2,1,1,

as shown in Fig. 2.

Figure 2: Partitions µ ∈ (2, 1, 1)⊗ 2

In the next subsection, we will explain how to write a Schur polynomial as a polynomial
in the elementary / complete symmetric polynomials.

3.3 The Jacobi-Trudi formulas

Definition 3.10 (Transpose partition). Let λ be a partition. We denote by λ∗ the partition
obtained from λ by exchamging the role of rows and columns.

We may now state the result :

Theorem 3.11 (Jacobi-Trudi formulas). If λ is a partition with at most m parts, then

sλ = det(hλi+j−i)1≤j≤m and sλ∗ = det(eλi+j−i)1≤j≤m.
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Proof. We only prove the first identity. The other is proved in a similar fashion. Write
l := `(λ). Then

det(hλi+j−i)1≤j≤m = det(hλi+j−i)1≤j≤l.

We will use induction on l. Decomposing the determinant with respect to the last column,
we obtain

l∑
i=1

(−1)l−ihλi+l−isλ1,...,λi−1,λi+1−1,...,λl−1.

Using Pieri formula, each summand looks like∑
µ∈Pi

sµ +
∑

µ∈Pi+1

sµ,

where

Pi = {µ partition of weight |λ| | λj ≤ µj ≤ λj−1 ∀j < i, λj+1 − 1 ≤ µj ≤ λj − 1 ∀j ≥ i} .

We then see that most terms in the alternating sum cancel, which inductively gives the
first formula.

Together with the Pieri formula 3.9, the Jacobi-Trudi formula enables us to compute
the product of any two Schur functions. However, as can be seen in the following exercise,
this is lengthy and tedious :

Exercise 3.1. Compute s2
2,1 in Λ3.

We will come back to symmetric functions when studying the Littlewood-Richardson
rule in Section 6, but for now, we switch to geometry.

4 Grassmannians

We now turn to our may object of study, the Grassmannian. In this section, we first define
the Grassmannian as a homogeneous space (Subsection 4.1). We then study its embedding
into projective space (Subsection 4.2), describe its Schubert varieties (Subsection 4.3) and
the additive structure of its cohomology ring.

4.1 The Grassmannian as a homogeneous space

Definition 4.1 (Grassmannian). Let V be a C-vector space of dimension n, with basis
(e1, . . . , en), and 1 ≤ m ≤ n be an integer. The Grassmannian of m-planes in V is the set

Gr(m,V ) := {Σ ⊂ V | dim Σ = m} .

Remark. 1. The Grassmannians Gr(m,V ) and Gr(n−m,V ) are canonically isomorphic.

2. Projective space P(V ) is the Grassmannian Gr(1, V ).

3. Up to isomorphism, Gr(m,V ) does not depend on V , but only on its dimension n.
So we will often denote it by Gr(m,n).
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The Grassmannian Gr(m,n) is endowed with an action of the general linear group
G := GLn(C), given by

GLn(C) × Gr(m,n) → Gr(m,n)
(g,Σ) 7→ Im(g|Σ)

Consider the following subgroup of G :

P :=
{
g ∈ G | g|Vect(e1,...,em) ⊂ Vect(e1, . . . , em)

}
.

It is a parabolic subgroup of G, and clearly

Proposition 4.2. The Grassmannian Gr(m,n) is isomorphic to the complete homoge-
neous space GLn(C)/P .

4.2 Projective embedding

We will prove that the Grassmannian Gr(m,V ) is a subvariety of projective space P(
∧m V ),

via an explicit embedding :

Definition 4.3 (Plücker embedding). Consider the map

Φ :
Gr(m,V ) → P(

∧m V )
Σ = Vect(v1, . . . , vm) 7→ [v1 ∧ · · · ∧ vm]

The map Φ is well-defined. Indeed, if (w1, . . . , wm) is another basis of Σ, write
w1

w2
...
wm

 = P


v1

v2
...
vm

 ,

where P ∈ GLm(C) is an invertible matrix. Then w1 ∧ · · · ∧ wk = det(P )v1 ∧ · · · ∧ vk.
Moreover, the map Φ is also an embedding, since

Σ = {w ∈ V | w ∧ Φ(Σ) = 0} .

We will now prove that Gr(m,V ) is a subvariety of P(
∧m V ) given by a homogeneous

ideal generated by the Plücker relations.
An element Σ = Vect(v1, . . . , vm) ∈ Gr(m,V ) can be represented is the basis (e1, . . . , en)

of V by an m× n matrix A = (ai,j) by writing vi =
∑n

j=1 ai,jej . This matrix A depends
on the choice of a basis (v1, . . . , vm) for Σ ; however, its m ×m minors will only depend
on it by the same scalar coefficient :

Definition 4.4 (Plücker coordinates). Let 1 ≤ j1 < j2 < · · · < jm ≤ n be integers. We
define the Plücker coordinate Pj1,j2,...,jm(Σ) of Σ as the m×m minor of A corresponding
to the columns j1 < j2 < · · · < jm. As an element of P(

∧m V ), (P1,2,...,m(Σ) : · · · :
Pn−m+1,n−m+2,...,n(Σ)) only depends on Σ (and not on the choice of a basis (v1, . . . , vm)).
We extend this definition to arbitrary m-uplets of integers in {1, . . . , n} by setting

Pj1,j2,...,jm = 0

if there exists r 6= s such that jr = js, and

Pj1,j2,...,jm = ε(σ)Pjσ(1),jσ(2),...,jσ(m)
,

where σ ∈ Sm is a permutation such that jσ(1) < jσ(2) < · · · < jσ(m).
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We now define a set of quadratic relations in the Plücker coordinates :

Definition 4.5 (Plücker relations). Let i1, . . . , im, j1, . . . , jm be integers between 1 and n
and l an integer between 1 and m. The associated Plücker relation Rj1,...,jmi1,...,im

(l) is∑
σ∈S/S1×S2

ε(σ)Pi1,...,il−1,σ(il),...,σ(im)Pσ(j1),...,σ(jl),jl+1,...,jm = 0 (1)

where S (resp. S1 ; S2) is the group of permutations of the integers il, . . . , im, j1, . . . , jl
(resp. i1, . . . , il ; j1, . . . , jl).

Proposition 4.6. The Plücker relations (1) hold on Gr(m,V ) for all integers i1, . . . , im,
j1, . . . , jm between 1 and n and l between 1 and m.

Proof. Let ck for 1 ≤ k ≤ m− 1 be fixed vectors of Cm. The m+ 1-linear form which to
(bil , . . . , bim , bj1 , . . . , bjl) associates :∑

σ∈S/S1×S2

ε(σ) det(c1, . . . , cl−1, bσ(il), . . . , bσ(im)) det(bσ(j1), . . . , bσ(jl), cl, . . . , cm−1)

is alternating. Since
∧m+1 Cm = 0, it follows that it is identically zero.

Now to prove the proposition, consider Σ ∈ Gr(m,V ), denote by A this associated
matrix in the basis (e1, . . . , en) of V and set

ck =

{
Col(A, ik) if 1 ≤ k ≤ l − 1 ;

Col(A, jk+1) if 1 ≤ k ≤ m− 1.

The Plücker relation (1) is then the consequence of the previous remark.

Exercise 4.1. Describe the Plücker relations for Gr(2, 4).

Now denote by I the homogeneous ideal of C[P1,2,...,m, . . . , Pn−m+1,n−m+2,...,n] gener-
ated by the quadratic Plücker relations.

Theorem 4.7. The Grassmannian Gr(m,V ) is the algebraic subvariety of P(
∧m V ) de-

fined by the homogeneous ideal I.

Proof. Prop. 4.6 implies that the coordinates of any point on Gr(m,V ) satisfy the Plücker
relations.

Now consider a point X in P(
∧m V ) whose coordinates satisfy the relations. Fix

J = (1 ≤ j1 < j2 < · · · < jm ≤ n) such that the coordinate XJ of X on ej1 ∧ · · · ∧ ejm is
non-zero. For simplicity, assume XJ = 1. We define an m× n matrix A by setting :

ar,s = Xj1,...,jr−1,s,jr+1,...,jm

for all 1 ≤ r ≤ m, 1 ≤ s ≤ n. Denote by W the image of the map A : Cm → V . It has
dimension m. Indeed, it is clear that the submatrix of A corresponding to the columns
j ∈ J is the identity matrix.

We claim that W and X have the same coordinates in P(V ), which will mean that
X = K ∈ Gr(m,V ). We have already seen that PJ(W ) = 1. Moreover, if I has m − 1
entries in common with J , i.e. I is obtained by replacing jr with s, then the corresponding
submatrix is diagonal, with all diagonal entries equal to 1, except for one equal to ar,s.

12



Hence PI(W ) = ar,s = XI . The other cases are obtained by (descending) induction on
|I ∩ J | using the Plücker relations (1).

We are now left with proving that if f ∈ S•(
∧m V ) is a polynomial in the Plücker

coordinates which vanishes on Gr(m,V ), then f ∈ I. This is a consequence of the Null-
stellensatz (see Thm. 2.2) and of the fact that the ideal I is prime. The proof of this last
statement is the subject of Ex. 4.2. It can also be found in [Man01].

Exercise 4.2. Prove that the ideal I generated by Plücker relations is prime.

4.3 Schubert varieties

It follows from Prop. 4.2 and Section 2.3 that the Grassmannian Gr(m,n) admits the
following Bruhat decomposition :

Proposition 4.8.

Gr(m,n) =
⊔

w∈Sn/Sm×Sn−m

BwP/P

where B is the Borel subgroup of upper-triangular matrices in GLn(C).

Definition 4.9 (Schubert cells, Schubert varieties). The sets Cw := BwP/P for w ∈
Sn/Sm×Sn−m are the Schubert cells of Gr(m,n), and their closures Xw = BwP/P are
its Schubert varieties. Note that if we choose a different Borel subgroup, we will also call
the cells and varieties it defines Schubert cells or varieties.

We will now describe another set of indices for Schubert cells and Schubert varieties :

Proposition 4.10. The set of permutations w ∈ Sn/Sm×Sn−m is in 1:1 correspondence
with the set of partitions contained in an m× (n−m) rectangle.

Proof. Let us denote both sets by Πm,n and Ym,n respectively. The map

Ym,n → Πm,n

λ 7→ (1 + λm, 2 + λm−1, . . . ,m+ λ1; remaining integers in increasing order)

is a bijection.

This means we can index now Schubert varieties by partitions instead of permutations.
Finally, let us introduce a more geometric way of representing Schubert varieties :

Definition 4.11. A complete flag of V is a sequence of nested subspaces

F• = 0 = F0 ⊂ F1 ⊂ · · · ⊂ Fn−1 ⊂ Fn = V,

where dimFi = i.

Remark. The stabilizer of any complete flag is a Borel subgroup of GL(V ).

To a complete flag F• and integers p = (1 ≤ p1 < p2 < · · · < pm ≤ n), we associate a
subvariety of Gr(m,V ) as follows

Xp(F•) =
{

Σ ∈ Gr(m,V ) | dim(Σ ∩ Fpj ) ≥ j ∀1 ≤ j ≤ m
}
.

We say that Xp(F•) is defined by incidence conditions with respect to the complete flag
F•. We denote by Im,n the set of all multi-indices p = (1 ≤ p1 < p2 < · · · < pm ≤ n).

13



Proposition 4.12. There is a bijection

Ym,n → Im,n
λ 7→ p

where pj = n−m+ j − λj for all 1 ≤ j ≤ m.

Hence we can also index these varieties by partitions contained in an m × (n − m)
rectangle. We can now compare them with Schubert varieties :

Proposition 4.13. If we denote by E• the flag defined by Ei = Vect(e1, . . . , ei) for all i,
then

Xw = Xλ(E•),

where w and λ are related by the bijection of Prop. 4.10.

It follows that Schubert varieties can be defined by incidence conditions. Moreover,
complete flags are in 1:1 correspondence with Borel subgroups of GLn(C) as follows.

Let B′ be a Borel subgroup of GLn(C). As seen in Section 2.3, all Borel subgroups
are conjugate, so B′ = gBg−1 for some g ∈ GLn(C). We may then define a flag FB

′
• by

setting
FB

′
i = Vect(g(e1), . . . , g(ei)).

This flag is stabilized by B′. Conversely, if F• is a complete flag, then its stabilizer is a
Borel subgroup of GLn(C). Hence varieties defined by incidence conditions are Schubert
varieties.

Schubert varieties and Schubert cells satisfy the following :

Proposition 4.14. 1. A Schubert variety Xλ is an algebraic subvariety of codimension
|λ| of Gr(m,V ).

2. A Schubert cell Cλ is an affine space Cm(n−m)−|λ|.

3. Xλ =
⊔
µ⊃λCµ.

4. Xλ ⊃ Xµ if and only if λ ⊂ µ.

Exercise 4.3. Prove Prop. 4.14.

4.4 Schubert classes and the cohomology ring

Prop. 4.14 shows that the Bruhat decomposition of the Grassmannian is a cell decompo-
sition (cf. Def. 2.11). The cohomology classes of Schubert varieties are called Schubert
classes :

Definition 4.15 (Schubert class). The fundamental class [Xλ] of a Schubert variety Xλ

is called a Schubert class and denoted by σλ. It is an element of H`(λ)(Gr(m,n)).

Prop. 2.12 implies that Schubert classes generate the cohomology of the Grassman-
nian :

Proposition 4.16. As a Z-module, the cohomology H∗(Gr(m,n)) is generated by Schubert
classes :

H∗(Gr(m,V )) =
⊕

λ∈Rm,n

Zσλ.

Since the Grassmannian is a smooth algebraic variety (as can be seen by looking at
local coordinates), Thm. 2.8 implies that its cohomology is endowed with a ring structure
given by the cup product ∪. The goal of the next section is to study this ring structure.
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5 The Pieri and Giambelli rules

The goal of this section is to give a formula for the cup product of a Schubert class by a
special Schubert class, called the Pieri rule, and a formula that expresses a Schubert class
in terms of special Schubert classes, called the Giambelli rule.

Definition 5.1 (Special Schubert class). A partition λ = (p) for 1 ≤ p ≤ n−m is called
a row partition. Similarly, a partition µ = (1, . . . , 1) is called a column partition. Both
are called special partitions, and the associated Schubert classes σλ := σp and σµ := σ1r

are called special Schubert classes.

In Subsection 5.2, we will explain how to write a product σp ∪σλ as a sum of Schubert
classes, while in Subsection 5.3, we will show how to write a Schubert class σλ in terms
of the σp’s (and respectively for the σ1r ’s). But first, we describe how Poincaré duality
works inside the cohomology ring of the Grassmannian.

5.1 Poincaré duality

If X is a smooth algebraic variety of dimension N , we have seen in Subsection 2.2 that
there is an isomorphism Hk(X) ∼= HN−k(X), called Poincaré duality. Moreover, we have
an isomorphism Hk(X) ∼= Hk(X), hence finally

Hk(X) ∼= HN−k(X).

Explicitely, if (γi)i∈I is a basis of H∗(X), then the Poincaré dual basis (γ∨i )i∈I is given by∫
[X]

γi ∪ α =

{
1 if α = γ∨i ,

0 otherwise.

Now we see that the Schubert basis of H∗(Gr(m,V )) is Poincaré self-dual :

Proposition 5.2. Let λ and µ be two partitions contained in an m × (n −m) rectangle
and such that |λ|+ |µ| = m(n−m). Then

σλ ∪ σµ =

{
σpt if µ 6= λ∨,

0 otherwise.

Proof. The proof is geometric and uses the description of Schubert varieties by incidence
conditions with respect to complete flags (see Prop. 4.13 and above). Let E be the
standard flag of V and E− be the opposite flag, i.e.

E−i = Vect(en, en−1, . . . , en+1−i).

The flags E and E− being in general position (since dim(Ei ∩ E−j ) = 0 if i + j ≤ n and

dim(Ei ∩E−j ) = i+ j − n otherwise), it follows that the cup product can be computed by
looking at the intersection

Xλ(E•) ∩Xµ(E−• ).

If Σ is an element of this intersection, then

dim(Σ ∩ En−m+i−λi ∩ E
−
n+1−i−µm+1−i

) ≥ 1,
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hence dim(En−m+i−λi ∩ E
−
n+1−i−µm+1−i

) ≥ 1, which implies that λi + µm+1−i ≤ n − m
for all 1 ≤ i ≤ m. By definition of the dual partition, this means that µ ⊂ λ∨. Since
|λ|+ |µ| = m(n−m), it follows that Xλ(E•) ∩Xµ(E−• ) 6= 0 implies µ = λ∨.

Finally, if µ = λ∨, we see that

Xλ(E•) ∩Xµ(E−• ) =

{
m⊕
i=1

Cen−m+i−λi

}
.

5.2 The Pieri rule

We will now use Prop. 5.2 to prove :

Theorem 5.3 (Pieri rule for Gr(m,V )). 1. The cup product of a special Schubert class
σp (1 ≤ p ≤ n−m) with a Schubert class σλ is given by

σp ∪ σλ =
∑

µ⊂m×(n−m)
µ∈λ⊗p

σµ.

2. Similarly, if 1 ≤ r ≤ m :

σr ∪ σλ =
∑

µ⊂m×(n−m)
µ∈λ⊗1r

σµ.

Proof. Prop. 5.2 means that if |λ|+ |ν|+p = m(n−m)−p, then the theorem is equivalent
to

σλ ∪ σν ∪ σp =

{
1 if n−m− λm ≥ ν1 ≥ n−m− λm−1 ≥ · · · ≥ n−m− λ1 ≥ νm
0 otherwise.

Notice also that we may assume that λi + νm+1−i ≤ n −m for all 1 ≤ i ≤ m, otherwise
σλ ∪ σν = 0. Write

Wi := En−m+i−λi ∩ E
−
n+1−i−νm+1−i

.

The cup product above is non-zero if and only if the Wi’s are direct summands. Write

W :=

m∑
i=1

Wi =

m⋂
i=1

(En−m+i−λi + E−n−i−νm−i)

If Σ ∈ Xλ(E•) ∩Xν(E−• ), then dim(Σ ∩ En−m+i−λi) ≥ i and dim(Σ ∩ E−n+1−i−νm+1−i
) ≥

m + 1 − i. Hence Σ ⊂ En−m+i−λi + E−n−i−νm−i for all 1 ≤ i ≤ m. Indeed, either

En−m+i−λi + E−n−i−νm−i = V , or the sum is direct. In this case

dim(Σ ∩ (En−m+i−λi ⊕ E
−
n−i−νm−i)) ≥ i+ (m− i) = m,

hence we still have Σ ⊂ En−m+i−λi + E−n−i−νm−i . It now follows that Σ ⊂W .
We now consider a linear subspace L of dimension n−m+ 1− p of V . The variety

Xp(L) = {Σ ∈ Gr(m,V ) | dim(Σ ∩ L) ≥ 1}

is a special Schubert variety with cohomology class σp.
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If the Wi’s are not direct summands, then dimW ≤ m + p − 1, hence there exists a
linear subspace L of dimension n−m+ 1− p such that L ∩W = 0. In this case

Xλ(E•) ∩Xν(E−• ) ∩Xp(L) = ∅.

Otherwise, for a generic L, the intersection L ∩W has dimension 1. Let l ∈ V generate
this intersection, and write

l =

m∑
i=1

wi

with wi ∈ Wi. The wi have to be in W , which means that they form a basis. Hence the
triple intersection Xλ(E•) ∩Xν(E−• ) ∩Xp(L) is reduced to a point. Since it is transverse,
this concludes the proof.

An important corollary of the Pieri rule is that we can now define a ring homomorphism
from the ring of symmetric functions to the Chow ring of the Grassmannian :

Corollary 5.4. The map

Θm,n : Λm → H∗(Gr(m,n))
sλ 7→ σλ,

where we set σλ = 0 if λ is not contained in an m× (n−m) rectangle, is a surjective ring
homomorphism.

It particular, this implies that the special Schubert classes generate H∗(Gr(m,n)) :

Proposition 5.5. Special Schubert classes σp with 1 ≤ p ≤ n −m (resp. σ1r with 1 ≤
r ≤ m) are multiplicative generators of the cohomology of the Grassmannian.

Proof. The result is a consequence of Cor. 5.4 and Thm. 3.5, using the fact that
Θm,n(er) = σ1r and Θm,n(hp) = σp.

In the next subsection, Cor. 5.4 and the Jacobi-Trudi formulas will enable us to write
any Schubert class as a polynomial in special Schubert classes.

5.3 The Giambelli rule

Theorem 5.6 (The Giambelli rule). Any Schubert class σλ ∈ H∗(Gr(m,n)) can be ex-
pressed as

σλ = det(σλi+j−i)1≤i,j≤m,

where we set σp = 1 if p = 0 and σp = 0 if p < 0 or p > n−m.

Using the Pieri rule 5.3 and the above Giambelli rule, it is possible to compute any
cup product σλ∪σµ, by first expressing σµ in terms of special classes, and then computing
the product of σλ with each of these special classes. However, this approach is neither
practical nor effective. In the next section, we will introduce a combinatorial formula for
computing such products directly.
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6 The Littlewood-Richardson rule

In this section, we will prove a positive combinatorial formula for the product of two
Schubert classes. It will be a consequence of a similar formula for the product of two
Schur functions, using Cor. 5.4. The proof will rely heavily on the combinatorics of Young
tableaux, which we introduce in the next subsection.

Due to time restrictions, we will not be able to prove all intermediate results in their
full generality. However, we will provide references at each step, and illustrate the results
by detailed examples.

6.1 Young tableaux

Definition 6.1 (Young tableaux). A semi-standard Young tableau T is the data of a
Young diagram, together with a numbering of each box by positive integers, so that numbers
are non-decreasing along rows (from left to right) and increasing along columns (from top
to bottom), as in Fig. 3. Such a tableau is standard if it is numbered by successive
integers starting from 1, each appearing only once. The shape λ(T ) of a Young tableau is
its support partition, and its weight µ(T ) is defined as

µ(T )i = #{entries of T equal to i}

1 1 2 2 3

2 3 4

3

5

Figure 3: A semi-standard (but not standard) Young tableau

Example. The tableau T of Fig. 3 has shape λ(T ) = (5, 3, 1, 1) and weight µ(T ) =
(2, 3, 3, 1, 1).

6.2 The Knuth correspondence

Theorem 6.2 (Knuth correspondence). There exists a bijective correspondence between
matrices A with non-negative integer entries, and pairs (S, T ) of semi-standard Young
tableaux of the same shape. Under this correspondence, the column sums (resp. the row
sums) of A are given by the weight of T (resp. of S).

This result can be proved constructively by a method due to Fulton. Here we introduce
the method and illustrate it by an example. For a complete proof, we refer to [Ful97, Chap.
4].

Consider a matrix A with non-negative entries, and view it as a stack of boxes, where
in the cell (i, j), we put ai,j numbered balls, disposed from northwest (NW) to south-east
(SE). We number these balls starting with 1 so that, for each ball, if the maximal number
indexing a ball to the NW of this ball is i, then the ball is numbered with i+ 1.

Example. If

A =


0 0 0 2
1 1 1 0
0 1 0 1
2 0 0 0
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then the associated picture is

(a)

1 2 3

3 4

(b)

where

(a) =
1

2
and (b) =

2
3

By construction, for all i, the balls numbered i form a SW to NE chain (i1, j1)→ · · · →
(ip, jp). We construct a new picture by replacing these chains by the chain (i1, j2)→ · · · →
(ip−1, jp). Doing this for all i and renumbering in the same way as for A, we obtain a picture
which is associated to a matrix with non-negative entries. We denote this matrix by ∂A.

Example. In our example

∂A =


0 0 0 0
0 0 0 2
0 0 1 0
0 2 0 0


We then iterate this operation. After a finite number of steps k, we will obtain ∂kA = 0,

at which point we stop.

Example. In our example

∂2A =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 1

 , ∂3A =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 , ∂4A = 0.

Finally, we denote by pi,j (resp. qi,j) the smallest index of a column (resp. of a row)
of the ball matrix associated to ∂i−1A in which the integer j appears. We can now define
two semi-standard tableaux P (A) (resp. Q(A)) so that the cell (i, j) is numbered with the
index pi,j (resp. qi,j).

Example. In our example :

P (A) =
1 1 1 4

2 2

3 4

4

and Q(A) =
1 1 2 3

2 2

3 4

4

We check that the weights of these tableaux correspondend indeed to the column and row
sums of A.

6.3 The plactic ring

We first define a non-commutative ring which will be associated to the ring of symmetric
polynomials
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Definition 6.3 (Plactic ring). The plactic ring Pm is the ring of polynomials in m non-
commutative variables x1, . . . , xm with integer coefficients, subject to the Knuth relations

xixkxj ∼ xkxixj if i ≤ j < k,

xjxkxi ∼ xjxixk if i < j ≤ k.

Now if T is a semi-standard Young tableau, we may associate to it an element of the
plactic ring as follows :

Definition 6.4 (Word of a tableau). If T is a Young tableau, we denote by m(T ) the
element of the plactic ring obtained by reading its entries from bottom to top and from left
to right.

Example. If

T = 1 1 2 2 3

2 3 4

3

5

then m(T ) = x5x3x2x3x4x1x1x2x2x3.

Theorem 6.5. Each Knuth equivalence class contains the word of a unique tableau. As a
consequence, it follows that the plactic ring has a set of tableau as a basis over the integers.

Proof. See [Man01, Prop. 1.5.11]

In the plactic ring, products are easy to compute. We will use the correspondence
between tableaux and elements of the plactic ring to compute the product of two tableaux.
In the next subsection, we describe an algorithm which achieves this.

6.4 The jeu de taquin

Definition 6.6 (Skew tableau). Let λ ⊃ µ be two partitions. The complement λ \ µ of µ
inside λ is called a skew partition. Any semi-standard numbering of λ \µ is called a skew
tableau.

Jeu de taquin is an algorithm which associates to a skew tableau a Knuth-equivalent
semi-standard Young tableau. It is defined as follows :

1. Choose a corner of the skew tableau, and denote by x (resp. y) the index of the cell
just below (resp. to the right) of this corner.

2. If x ≤ y, slide x in into the place of the corner. Otherwise slide y.

3. Repeat the procedure until there is no corner left and the tableau obtained is semi-
standard.

Example. Consider the skew tableau

1 1 2

1 2 3

2 2
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Jeu de taquin gives

• 1 1 2

1 2 3

2 2

→ 1 1 1 2

• 2 3

2 2

→ 1 1 1 2

• 2 2 3

2

→ • 1 1 1 2

2 2 2 3

and then

1 • 1 1 2

2 2 2 3
→ 1 1 • 1 2

2 2 2 3
→ 1 1 1 • 2

2 2 2 3
→ 1 1 1 2

2 2 2 3

Using Knuth relations it is easy to check that

Proposition 6.7. The jeu de taquin is compatible with Knuth equivalence.

It follows from this that the tableau obtained from a skew tableau by jeu de taquin
does not depend on the choice of a corner made at each step.

Thanks to jeu de taquin, we may now define the product of two Young tableaux T1

and T2 by constructing a skew tableau T1,2 as follows

T1,2 =
T2

T1

and then turning it into a tableau using jeu de taquin.

Example. Let us compute the product of

T1 =
1 1 2

2
and T2 =

1 2 2

2 3

3

We start from

T1,2 =
1 2 2

2 3

• 3

1 2 2

2 3

3

Skipping easy steps, jeu de taquin gives

1 2 2

• 2 3

1 2 2 3

2 3

3

→ • 1 2 2

1 2 2 2 3

2 3 3

3

→ • 1 2 2

1 2 2 2 3

2 3 3

3

→ 1 • 2 2

1 2 2 2 3

2 3 3

3

and then
1 2 2 2

1 2 2 3

2 3 3

3

→ 1 2 2 2

1 2 2 3

2 3 3

3

→ 1 2 2 2

1 2 2 3

2 3 3

3

The last tableau is the product.
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We will now state a multiplication rule for Schur functions called the Littlewood-
Richardson rule.

6.5 The Littelwood-Richardson rule

Proposition 6.8. Let T and T ′ be two semi-standard tableaux with shapes µ and µ′. Then
there exists a one to one correspondence between pairs (S, S′) of tableaux with shapes λ, µ
and product T ′ on one side, and skew tableaux Q with shape µ/λ Knuth-equivalent to T
on the other side.

Proof. See [Man01, 1.5.20]

Corollary 6.9. In the plactic ring, a product of Schur functions decomposes as a sum of
Schur functions.

Definition 6.10 (Yamanouchi words). A word x1 . . . xr is Yamanouchi if for all s and i,
the subword xs . . . xr has at least as many i’s as (i+ 1)’s.

Definition 6.11 (Canonical tableau). A tableau is canonical if each of its cells is labeled
with its row index.

Proposition 6.12. A word is Yamanouchi if and only if its associated tableau is canonical.

Proof. The Yamanouchi property is preserved by Knuth equivalence. Morever, suppose
that the word m(T ) of a tableau T is Yamanouchi. Look at the first row of T and denote
by xs . . . xr the associated word. It contains at least as many ones than twos. Suppose it
contains at least one two. Then xr = 2, which contradicts the Yamanouchi. So the first
row of T is labeled only by ones, and similarly, its second row is labeled only by twos,
...

Theorem 6.13 (Combinatorial Littelwood-Richardson rule). The coefficient cνλµ of sν in
the product sλsµ is equal to the number of skew tableaux with shape ν/µ and weight λ, for
which the associated word is Yamanouchi.

Theorem 6.14 (Geometric Littelwood-Richardson rule). The cup product of Schubert
classes σλ ∪ σµ inside the cohomology of the Grassmannian Gr(m,n) is given by

σλ ∪ σµ =
∑

ν⊂m×(n−m)

cνλµσν .

Proof. The theorem is the consequence of Cor. 5.4 and Thm. 6.13.

Example. The product σ2,1 ∪ σ2,1 inside Gr(3, 7) is σ4,2 + σ4,1,1 + σ3,3 + 2σ3,2,1 + σ2,2,2.

7 Generalisations

In this last section, we briefly introduce two current generalisations of Schubert calculus
on the Grassmannian : Schubert calculus on other complete homogeneous spaces and
quantum Schubert calculus. Except for quantum Schubert calculus on the Grassmannian,
we will mainly give references to the results which are known in this context. This is pretty
much a current area of research, and there is much left to study. Unlike other sections,
this section requires some more background on algebraic geometry and algebraic groups.
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7.1 Quantum Schubert calculus on Grassmannians

The quantum cohomology ring of a smooth complex projective variety X is a deformation
of its cohomology ring. While the cohomology ring of X encodes how subvarieties inter-
sect, its quantum cohomology ring encodes how they are linked by rational curves. More
precisely, the quantum cohomology ring is constructed from so-called Gromov-Witten in-
variants, which, in good cases such as for homogeneous spaces, count the number of
rational curves meeting three given subvarieties.

In those cases, the Gromov-Witten invariant of degree d ≥ 0 associated to three coho-
mology classes γ1, γ2, γ3 representing generic subvarieties Y1, Y2, Y3, is equal to the number
of rational curves of degree d meeting Y1, Y2, Y3 if this number is finite, or to zero otherwise.

Now the quantum cohomology ring QH∗(X) of X is defined as follows. If γ1 and γ2

are two cohomology classes on X, their quantum product γ1 ? γ2 is given by

γ1 ? γ2 =

∞∑
d=0

qd
∑
γ3

Iβ
(
γ1, γ2, γ

∨
3

)
γ3,

where γ3 runs over a basis of H∗(X) and γ∨3 runs over the Poincaré dual basis.
We will now describe the main ideas of a very elegant proof due to Buch [Buc03] of

quantum Pieri and Giambelli rules for the Grassmannian Gr(m,n). Before that, quan-
tum cohomology of the Grassmannian had been studied by Witten [Wit95] and Bertram
[Ber97]. This proof uses the so-called quantum-to-classical principle, which states that in
some cases, the quantum product can be computed form the usual cup product on an
auxiliary homogeneous space.

The idea of the quantum-to-classical principle is to associate two vector spaces to a
rational curve in a homogeneous space : its kernel and its span. For Gr(m,n), they are
defined as follows :

Definition 7.1 (Kernel and span). Let C be a rational curve of degree d in Gr(m,n).
Points of C then represent vector subspaces of dimension m inside Cn. We call kernel of
C, denoted by Ker(C), the biggest vector space contained in all those spaces. Similarly,
we call span of C the smallest vector space containing all those spaces, and we denote it
by Span(C).

The dimension of the kernel and span is bounded :

dim KerC ≥ m− d and dim SpanC ≤ m+ d.

Incidence conditions on C can be rewritten as incidence conditions on Ker(C) and
Span(C). For instance, if we denote by λ̂ the partition obtained by removing the first d
columns of a partition λ – i.e. by setting λ̂i = max(λi − d, 0), we get :

Proposition 7.2 ([Buc03]). Let C ⊂ Gr(m,n) be a rational curve of degree d ≤ n −m,
W be a vector space of dimension m+ d containing Span(C) and F• be a complete flag. If
a partition λ is such that C ∩Xλ(F•) 6= ∅, then W belongs to the Schubert variety Xλ̂(F•)
of Gr(m+ d, n).

The quantum-to-classical principle rephrases the Gromov-Witten invariants of Gr(m,n)
in terms of classical intersection theory on Schubert varieties on the two-step flag variety
F(m − d,m + d;n) (a point of this flag variety corresponding to a pair kernel-span as-
sociated to a rational curve), or even, as in the above Prop. 7.2, in the Grassmannian
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Gr(m + d, n). The computations can then be done using the classical Pieri rule 5.3 and
Giambelli rule 5.6.

In this fashion, Buch obtains the following rules, which were originally proved by
[Ber97] using more complicated methods.

Theorem 7.3 (Quantum Pieri rule). Let λ ⊂ m×(n−m) be a partition and 1 ≤ p ≤ n−m
be an integer. Then

σp ? σλ =
∑
µ

σµ + q
∑
ν

σν ,

where the first sum is given by the classical Pieri formula, and in the second sum, ν runs
over all partitions ν obtained by removing n− p boxes from λ in such a way that :

λ1 − 1 ≥ ν1 ≥ λ2 − 1 ≥ ν2 ≥ · · · ≥ λm − 1 ≥ νm ≥ 0.

Example. In Gr(3, 6), we have σ1 ? σ3,2,1 = σ3,3,1 + σ3,2,2 + qσ1.

Unexpectedly, the quantum Giambelli rule is identical to the usual Giambelli rule :

Theorem 7.4 (Quantum Giambelli rule).

σλ = det (σλi+j−i)1≤i,j≤m ,

where the product is the quantum product.

To conclude the section, we mention another application of the quantum-to-classical
principle [Cos09], for computing the quantum Littelwood-Richardson rule.

7.2 Schubert calculus for other homogeneous spaces

In this section, we review quickly some results concerning Schubert calculus on other ho-
mogeneous spaces. Indeed, it follows from Bruhat decomposition 2.21 that every complete
homogeneous space has a cohomology generated by Schubert classes, hence possesses a
Schubert calculus.

Orthogonal and symplectic Grassmannians. A Pieri rule has been proved by Pra-
gacz and Ratajski (cf [PR96] and [PR03]). More recent results are mentioned in the next
subsection.

Flag varieties. Let V be a C-vector space of dimension N and 0 < r1 < · · · < rk < N
be an increasing sequence of integers. A flag of V of type (r1, . . . , rk) is an increasing
sequence 0 ⊂ V1 ⊂ · · · ⊂ Vk ⊂ V of subspaces of V such that dimVi = ri for all i. If
k = N − 1, 0 ⊂ V1 ⊂ · · · ⊂ VN−1 ⊂ V is a complete flag.

The set F (r1, . . . , rk;V ) of flags of V of type (r1, . . . , rk) only depends on the dimension
of V , and has the structure of a smooth projective variety. It is called a flag variety. It is
homogeneous under GL(N). More precisely

F (r1, . . . , rk;N) ∼= GL(N)/Pr1,...,rk ,

where Pr1,...,rk is associated to the vertices r1, . . . , rk of the Dynkin diagram of GL(N).
Coskun proved in [Cos09] a Littelwood-Richardson rule for (type A) two-step flag

varieties, and he exposed and preliminary version for the general case in [Cos].
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7.3 Quantum Schubert calculus on other homogeneous spaces

Here we review some results concerning the quantum cohomology of other homogeneous
spaces ; we refer to [Tam07] for more details.

Orthogonal and symplectic Grassmannians. Schubert classes of orthogonal Grass-
mannians are indexed by so-called k-strict partitions. Buch, Kresch and Tamvakis proved
a quantum Pieri rule (cf [BKT09]), and a quantum Giambelli rule (cf [BKT08]). Another
quantum Pieri rule is stated in [LL], but without the corresponding Giambelli rule.

Minuscule and adjoint homogeneous spaces. Let G be an algebraic group, and P
be a maximal parabolic of G associated to a fundamental weight ω. A fundamental weight
ω is minuscule if |〈ω, α̌〉| ≤ 1 for any root α. If ω is minuscule, then X = G/P is also
said to be minuscule. Finally, X = G/P is called adjoint if P is the parabolic associated
to the longest root, and co-adjoint if P is associated to the longest short root. A table
describing all those types of varieties can be found in [CP09].

In [CMP08], [CMP07] and [CMP10], using a quantum-to-classical principle, Chaput,
Manivel and Perrin study the quantum cohomology ring of minuscule varieties. In [CP09],
Chaput and Perrin extend part of these results to (co)-adjoint varieties.

Flag varieties. In [GK95], Givental and Kim gave a presentation of the quantum coho-
mology of flag varieties. In [CF99], Ciocan-Fontanine gave quantum Pieri and Giambelli
formulas ; other references can be found in [FW04].

Generalised flag varieties. The quantum cohomology of generalised flag varieties is
not known in general. However, in [FW04], Fulton and Woodward proved a quantum
Chevalley formula for all G/P , i.e a formula for the quantum product of a Schubert class
by a Schubert divisor.

An unpublished result of Peterson [Pet] relates the quantum cohomology of G/P and
the homology of the associated affine Grassmannian. A proof can be found in [LS10]. This
result allows to express Gromov-Witten invariants of G/P in terms of those of G/B (cf
[Woo05]). It has been used by Leung and Li in [LL10].

References

[Ber97] A. Bertram. Quantum Schubert calculus. Advances in Mathematics, 128(2):289–
305, 1997.

[BKT08] A.S. Buch, A. Kresch, and H. Tamvakis. Quantum Giambelli formulas for
isotropic Grassmannians. Arxiv preprint arXiv:0812.0970, 2008.

[BKT09] A.S. Buch, A. Kresch, and H. Tamvakis. Quantum Pieri rules for isotropic
Grassmannians. Inventiones Mathematicae, 178(2):345–405, 2009.

[Bor91] Armand Borel. Linear algebraic groups, volume 126 of Graduate Texts in Math-
ematics. Springer-Verlag, New York, second edition, 1991.

[Bou72] Nicolas Bourbaki. Commutative algebra, volume 8. Hermann, 1972.

[Buc03] A.S. Buch. Quantum cohomology of Grassmannians. Compositio Mathematica,
137(2):227–235, 2003.

25
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