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Abstract

Chaput, Manivel and Perrin proved in [3] a formula describing the quantum product by
Schubert classes associated to cominuscule weights in a rational projective homogeneous space
X. In the case where X has Picard rank one, we relate this formula to the stratification of
X by P-orbits, where P is the parabolic subgroup associated to the cominuscule weight. We
deduce a decomposition of the Hasse diagram of X, i.e the diagram describing the cup-product
with the hyperplane class. For all classical Grassmannians, we give a complete description of
parabolic orbits associated to cominuscule weights and we make the decomposition of the
Hasse diagram explicit.
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1 Introduction

Let G be a semisimple algebraic group over C, B be a Borel subgroup and 7" C B be a maximal
torus. We denote by ® the set of roots of G with respect to T, @+ the subset of positive roots
with respect to B, A = {«1,...,a,} the subset of simple roots and W the Weyl group of G. A
fundamental weight w is said to be minuscule if [(a",w)| <1 for all & € @, where " is the coroot
of a. Tt is said to be cominuscule if it is minuscule for the dual root system. Fundamental weights
will be denoted w1, . ..,wy,, in the same order as in [1].

Let @ D B be a parabolic subgroup of G and denote by X the homogeneous space G/Q. In
[3], Chaput, Manivel and Perrin proved a formula describing the quantum product in X by special
Schubert classes associated to cominuscule weights. These classes correspond to the elements
of the image of Seidel’s representation 71 (G*!) — QH*(G/Q);:. [11], where G* = G/Z(G) and
QH"(G/Q);5. is the group of invertible elements in the small quantum cohomology ring QH*(G/Q)
localized in the quantum parameters. Before stating this formula, we introduce some notation for
the quantum cohomology of X.

The (small) quantum cohomology ring QH*(X) of a homogeneous variety X = G/Q is a defor-
mation of its cohomology ring. Consider the parameter ring

A= Za/gqﬁ BeHS(X,Z),a5 €7y,
B

where the sums are finite, Hj (X, Z) denotes the set of effective cycles in Hy(X,Z) and the ¢° are
formal parameters such that ¢°¢? = ¢®+# . As a Z-module, the quantum cohomology ring QH" (X)
is isomorphic to H* (X, Z)®zA. Moreover, it admits a ring structure defined by the quantum product
*, which is a deformation of the cup-product. A precise definition for the quantum product can be
found in [5]. The group Hy(X,Z) contains ®Y/®Y, where ®V denotes the coroot lattice of G and
@é the coroot lattice of (), hence positive coroots can be seen as effective classes 8 € Hy (X, Z).
Now let Z be the set of vertices of the Dynkin diagram of G corresponding to cominuscule
weights. If i € Z, let v; be the shortest element of the Weyl group W such that v;w; = wow;’,
where w;” is the fundamental coweight associated to i and wy is the longest element of . Then
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the quantum product in X by the Schubert class o, Poincaré dual to the Schubert cycle [ Xy, u,]
is given by the following formula :

Theorem 1 ([3, Thm.1]). For allw € W and for all i € T, we have :

Y —1 \
W, —w W
Oy; X O = an( ! (e ))U?Jﬂw

where 1q : ®¥ — @Y /@Y is the natural surjection.

The aim of this paper is to relate the above theorem to a stratification of X = G/Q by P;-orbits
when @ is a maximal parabolic and P; is the maximal parabolic associated to the weight w;. In
Section 2, we recall some well-known facts about parabolic orbits and we describe the parabolic
orbits associated to cominuscule weights in the classical Grassmannians. Then in Section 3, we
explain the link between Thm. 1 and the stratification by parabolic orbits in X. We deduce in
Section 4 a decomposition of the Hasse diagram of the classical Grassmannians.

2 Parabolic orbits

In 2.1 we recall some classical facts about parabolic orbits in (generalized) flag varieties, and in
2.2, we give a more explicit description of parabolic orbits associated to cominuscule weights in the
classical Grassmannians.

2.1 Parabolic orbits in generalized flag varieties

A generalized flag variety is a variety of the form X = G/Q, where G is a semisimple algebraic
group, B a Borel subgroup and ¢ O B a parabolic subgroup. Now consider a second parabolic
subgroup P D B. We call P-orbits or parabolic orbits the orbits of X under the action of P by
left multiplication. Here are some elementary properties of parabolic orbits, which can be found
in [10, Sec. 2.1] :

Proposition 2. 1. Every P-orbit can be written as PwQ/Q with w € W.

2. The P-orbits are smooth and locally closed, indexzed by double cosets Wp\W/Wq, where Wp
and Wq denote the Weyl groups associated to P and Q). Moreover, they define a stratification
of X :

X = L] PuwQ/Q.

WPwWQGWP\W/WQ

3. The P-orbits are B-stable, hence they are a union of Schubert cells :
PuwQ/Q = U BuwpuwwoQ/Q.

(wp,wQ)EWpXWQ

We denote by W the set of minimal length representatives of cosets in W/W¢, which inherits
the Bruhat order of W. Let us describe the double cosets indexing parabolic orbits :

Proposition 3. Let £ = WpwWg be a double coset in Wp\W/Wq. Then ENW? contains unique
minimal and mazimal elements Wpin and Wia,. Moreover, it is equal to the interval [Wpin, Wimaz)
for the Bruhat order in W€<.

This statement in proved in [7]. In particular, we see that parabolic orbits correspond to some
sub-intervals of W®. The next result describes them as the total space of a vector bundle over
another generalized flag variety.

First of all, consider the Levi decomposition P = L x U, where L is a Levi subgroup and U is
the unipotent radical of P. If O is a P-orbit associated to a double coset Wpwy,inW¢, then we
define the following subset of the set A of simple roots of G :

Koy = {5 € AP) |y}, 5Wimin € AQ)}

Wmin min
where for any parabolic subgroup R C G, A(R) C A is such that the associated reflections, together

with B, generate R. Denote by R, ,, the parabolic subgroup of L generated by K, ., and BNL.
We have the following geometric description of parabolic orbits :
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Theorem 4 ([9], Thm. 1.1). Consider the P-orbit O associated to a double coset WpwimWeq,
where P 1s a parabolic subgroup associated to a cominuscule weight. Then there exists a represen-
tation V... of R such that O = L xg,, Vi, and the map O — L/R is a vector
bundle.

Wmin Wmin

Remark 5. e An analogous result is proved in [10, Prop. 5].

e Note that if P is not associated to a cominuscule weight, we still have a locally trivial map
with affine fibers, but it is no longer a vector bundle.

A consequence of Thm. 4 is that the cohomology ring of the parabolic orbit O and of the
generalized flag variety L/R,, , are isomorphic (see [4, Chap. 3]), which will help us to find
decompositions of the Hasse diagrams in Section 4.

2.2 Parabolic orbits associated to cominuscule weights in the classical
Grassmannians

For us, a classical Grassmannian will be a homogeneous space X = G/Q, where G is of type A,,
B, C, or D, and @ is a maximal parabolic subgroup of G. In type A,, it corresponds to the usual
Grassmannians G(m,n+1) for 1 < m < n, while in type C,,, we get the symplectic Grassmannians
IG(m,2n) with 1 < m < n. Finally, in type B,, (resp. in type D,,), we obtain the odd orthogonal
(resp. even orthogonal) Grassmannians OG(m,2n + 1) (resp. OG(m,2n)), where 1 < m < n. In
type D,,, we furthermore exclude the case where m = n — 1, since it corresponds to a variety with
Picard number two.
We start by giving the list of cominuscule weights, including the exceptional cases :

Table 1: Cominuscule weights

Type Classical Grassmannians Cominuscule weights
A, Gmn+1)1<m<n w; (1 <i<mn)

B, OG(m,2n+1)1<m<n w1

C, IG(m,2n) 1<m<mn wh,

D, OG(m,2n) 1<m<n,m#n—1 wi, wy_1, wn

Eg E¢/P;1<j<6 W1, We

E; E;/P;1<j<T7 wr

In the following sections, following Thm. 4, we describe the parabolic orbits associated to the
above cominuscule weights for classical Grassmannians. We will not treat the exceptional cases in
general since in these examples, flags and Schubert varieties are not so easily described. We will
only mention the case of the Cayley plane Eg/P; in Section 4. However, it would probably be
possible to get similar results for all exceptional cases, using the description of flags introduced by
Iliev and Manivel in [8] for type Eg and by Garibaldi in [6] for type E7.

We will denote by P, the maximal parabolic subgroup containing the Borel subgroup B and
associated to the cominuscule fundamental weight w;. In 2.2.1, we give a geometric description of
the P,,-orbits, whereas in 2.2.2, we give a combinatorial description of the double cosets indexing
them.

2.2.1 Geometric description of parabolic orbits

First we need to recall the characterization of the flag stabilized by the Borel subgroup B in each
of the classical types :

Type A,, : B is the stabilizer of a (uniquely defined) complete flag
0=FEyCE, C---CE, CE,;, =C"!,
the element E; being an i-dimensional subspace of C"+1.
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Type B, : B is the stabilizer of a type B,, complete isotropic flag
0=FyCFE,C---CE,CEpy1 C-C FEa, C Eopyq =C?H,

where the vector spaces Fi, ..., FE, are isotropic and for each 1 < ¢ < n, we have
Epyi = Ef{+1—i-

Type C,, : B is the stabilizer of a type C,, complete isotropic flag
0=FyCFE, C---CE,CEp41 C--C Fy, =C>,
where the E; are isotropic and for each 0 < i < n, we have F,,y; = E,JL;Z-.

Type D,, : B is the stabilizer of a type D,, complete isotropic flag

E,
C ¢
0 = Ey C -+ CEp_o £ CEnHC <o C By, = C2»
B,
where the vector spaces E1,..., E,_» are isotropic, F,, is a type 1 maximal isotropic

subspace, E!, a type 2 isotropic subspace, E,, 1 = (E,NE’ )" and for each 1 <i <n—1,
En+1+i =El

n—1—i*

Now we prove that P-orbits associated to cominuscule weights in the classical Grassmannians
can be described by the relative position of their elements with respect to a certain partial flag
associated to the cominuscule weight defining P. In the following proposition, the unique complete
flag stabilized by the Borel subgroup will be denoted as above .

Proposition 6. 1. If X = G(m,n+1) and P = P,,, for 1 <i <n, then the P-orbits are the
Oq:={¥ e X |dm(ENE;) =d},
for max(0,i +m —n —1) < d < min(m, ).
2. a) If X = OG(m,2n + 1) with m <n and P = P,,,, then the P-orbits are

Oy ={SeX|E¢E},
O1:={SeX|SCE andS 2 Ei},
Oy ={2e€X|XDE}.

b) If X = OG(n,2n+ 1) and P = P,,,, then the P-orbits are

Op:={2eX|XpE},
012:{E€X|ZDE1}.

3. If X =1G(m,2n) and P = P, , then the P-orbits are the
Og:={Xe X |dm(XENE,) =d}
for 0 <d<m.

4. a) If X = OG(m,2n) withm <n —1 and P = P,,, then the P-orbits are defined as in case
2a.

b) If X = OG(m,2n) withm <n—1 and P = P,,,_,, then the P-orbits are the
O4:={Xe€ X |dm(XNE),)=d}

for 0 <d<m.
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¢) If X = OG(m,2n) withm <n—1 and P = P,,, then the P-orbits are defined as in case
4b, with E! replaced by E,.

d) If X = 0G(n,2n) 2 OG(n — 1,2n — 1) and P = P,,,, then the P-orbits are defined as in
case 2b.

e) If X = OG(n,2n) and P = P,,,_,, then the P-orbits are the
Oy:={Se X |dm(ENE,) =2d+¢}

for 0 <d < |%51], where € =0 if n is odd and 1 if n is even.

f) If X = OG(n,2n) and P = P, , then the P-orbits are defined as in case 4e, with E!,
replaced by E, and € replaced by € := 1 — €',

Proof. The parabolic subgroup P is the stabilizer of the following partial flags :
e F, in case 1 ;
e [ C Ef in cases 2, 4a and 4d ;
e E, = E in cases 3, 4c and 4f ;
e E/ = E'" in cases 4b and 4e.

Hence the dimensions of the intersections with each element of these partial flags are constant
on the P-orbits, and conversely, the sets where these dimensions are constant are exactly the
P-orbits. O

We conclude the section by giving in each classical type an explicit description of the fibration
introduced in Thm. 4. In the following result, the orbits O, are the ones defined in Prop. 6.

Proposition 7. 1. If X = G(m,n+1) and P = P, for 1 <i<mn, then the fibrations are the

Od — G(d, El) X G(m—d,(C”“/Ei)
o= (ENE,X/(ENE;))

2. a) If X = OG(m,2n + 1) with m <n and P = P,,,, then the fibrations are the

Os — OG(m—e¢ Ef/Ey)
X - [(ENEf]
where e =1 ifd=0,2 and e =0 if d = 1.
b) If X = OG(n,2n+ 1) and P = P,,,, then the fibrations are the

04 — OG(n—1,EL/E)
. (S EL]

3. If X =1G(m,2n) and P = P, , then the fibrations are the

O — F(dyn—m+d;E,)
S = ((EnE,) c(EtnE,))

4. a) If X = OG(m,2n) withm <n—1 and P = P,,, then the fibrations are defined as in case
2a.

b) If X = OG(m,2n) withm <n—1 and P = P,,,_,, then the fibrations are

Oq4 — F(d,n—m+d;E})
Y = ((ENE))C(StnE)))

¢) If X = OG(m,2n) withm <n—1 and P = P, , then the fibrations are defined as in case
3.
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d) If X =0G(n,2n) 2 O0G(n—1,2n—1) and P = P,,, then the fibrations are defined as in
case 2b.

e) If X = OG(n,2n) and P = P,,,_,, then the fibrations are

Oy — G(2d+¢€,E.)
S~  NNE,

where € =0 if n is odd and 1 if n is even.

f) If X = OG(n,2n) and P = P, , then the fibrations are defined as in case je, with E!,
replaced by E, and € replaced by e := 1 — ¢'.

Proof. We only describe Cases 1, 2a, 3 and 4f with n even. The other cases are very similar.
1. Since Oy = {¥ € X | dim(X N E;) = d}, the map is well defined. Moreover, the fiber at a
pair (31,%2) € G(d, E;) x G(m — d,C" " /E;) is

(10 |dimY =m —d,% = 8y mod E;} = ClimTxdim B _ ¢lm=d)i,
2a) For d = 0, the fiber over ¥; € OG(m — 1, E{-/E)) is

{¥@&L|¥ =% mod By, L C % \ Ef, L isotropic}
g(cdim 31 xdim E; % (Cdim fodim ¥1—dim L—1 _ (Canm.

For d = 1, the fiber over ¥ € OG(m, E{-/E;) is
{E/ | ¥ =% mod El} o dim By dim®y _ om

Finally, for d = 2, the map is an isomorphism.
3. The fiber over (X1 C ¥9) € F(d,n —m+d; E,) is

{19 |dimY =m—d,Y =23 mod E,, Y C Iy isotropic }

~dim 3 (dim By, —dim ;) — S dm 2 =1 B@im® o1 C(m—d)(n—d)— m=Dp=d=)

4f) We assume n is even. The fiber over 3 € G(2d, E,,) is

{£18Y |dimY =m—2d,%Y = %{ mod E,¥ C %1,¥’ isotropic}

gcdil’n E/z_dim E'(d2im = —1) _(n72d)(;172d—1)

_ ¢(n—2d)? O
Remark 8. In Thm. 4, the fibrations for parabolic orbits are described combinatorially. Tedious
but straightforward calculations show that these fibrations are indeed the same as those described

in the above proposition.

2.2.2 Combinatorial description of parabolic orbits

We begin by recalling the description of the elements of the Weyl group in type A, (respectively
in types B, C,, and D,,) as permutations (resp. signed permutations) of {1,...,n}. We do not
have such a description in the exceptional cases.

In type A, the Weyl group is W = &,,, and we denote w € W as w = (ay,...,a,) where
{1,...,n} ={a1,...,a,}, which means that w(i) = a;.

In types B,, and C,, the Weyl group is W = &,, x Z%, and we denote w € W as w = (b1, ...,b,),
where b; = a; or —a; and {1,...,n} = {ay,...,a,}, which means that w(i) = a; if b; = a; and
’U)(’L) = a; if bz = —a;.

Finally, in type D,,, the Weyl group is W = &,, x Z5 ', and we denote elements of W as in
the previous case, with the additional condition that the number of negative parts —a; should be
even.

We can now state a proposition describing, for all the classical types, the double coset &; €
Wp\W/Wg indexing the P-orbit Oy defined in Prop. 6 :
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Proposition 9. 1. If X = G(m,n+1) and P = P, for 1 <i <n, then

Ea={weW|[#{1<j<mlw() <i}=d}.

2. a) If X =O0G(m,2n+ 1) with m <n and P = P,,, then

S ={weW |3 <j<muw(y)=-1}
E={weW|d <j<muw(j)e{l,-1}}
E={weW |3 <j<muw(y)=1}.

b) If X = OG(n,2n+ 1) and P = B,,,, then

E={weW |3 <j<nw()=-1}
Er={weW |31 <j<nw(y) =1},

3. If X =1G(m,2n) and P = P,,, then

Ea={weW|#{l <j<m|wQj)>0}=d}.

4. a) If X = OG(m,2n) with m <n—1 and P = P,,, then &, is defined as in case 2a.
b) If X = OG(m,2n) withm <n—1 and P=P,,, ,, then

Ea={weW|[#{j <m|w(j) >0} =dw(j) #n,—nVj<mj
Udw [#{7 <m |w(j) >0} =d+1,3) <m,w(j) =n}.

¢) If X = OG(m,2n) withm <n—1 and P = P, , then & is defined as in case 3.
d) If X = O0G(n,2n) 2 OG(n —1,2n—1) and P = P,,, then &, is defined as in case 2b.
e) If X = 0G(n,2n) and P = P,,,_,, then

Eg={weW|#{j|lw() >0}=2d+¢ —1 and Ij,w(j) = —n}
Uf{we W | #{w(j) >0} =2d+¢€ +1 and Fj,w(j) =n},

where € =0 if n is odd and 1 if n is even.
f) If X = 0G(n,2n) and P = P, , then

Ea={we W [#{j|w(j) >0} =2d+¢},
where e =1 — €.

Proof. The arguments for each case being similar, we only prove the proposition in Case 4b, which
is a little more complicated than the others.

Here the Weyl groups are W = &, xZSil, Wp =6, and Wy =6, x(Gp_m xZ;fmfl). Asin
the beginning of the section, we will denote elements of W as signed permutations w = (b, ..., by,).

The action of Wg on the right permutes the m first entries by, ..., b, of w on one hand, and
the n — m last entries by,41,...,b, on the other hand, and changes the sign of these last entries
while keeping the total number of minus signs even. Hence the minimal length representatives of
classes in W/Wq are of the form :

w = (u1 < <Uy e < < —21,01 < s < Up_me1, (fl)m*lvn_m) ,

where 0 <1 <m, {u;} U{z.}U{v;} ={1,...,n} and v,—mm—1 < Vp—m.

Moreover, the action of Wp on the right permutes the n — 1 values 1,...,n — 1 and exchanges
n — 1 and n while changing their signs. Hence the minimal length representatives of double cosets
in Wp\W/Wg are of the form :

wo=idorwg=(1<--<d—-1<n,—n+1<---<-n+m-—d,v),

7
http:/mc.manuscriptcentral.com/lagb



Communications in Algebra

where 1 < d < m and
v=(d< - <n-m+d—2,(-1)""n-—m+d-1)).

Now it is enough to prove that all elements of the set £; defined in the statement of the proposition
are in the same double coset as wy.

First suppose w € W is such that # {j <m | w(j) <0} = d and w(j) # n,—n for all j < m.
Using the action of Wg on the right, we see that w is in the same double coset as

wh = (a1 < < ag,—bm_a < < —bie1 < < o1, (—1)" ).
Using (several times) the action of the simple reflections s1,...,s,-1 of Wp on the left (which
together permute the values from 1 to n — 1), we deduce that w! is in the same double coset as

w=(1<-<d,—n+1<---<-n+m-—d,v),

where v = (d +1<---<n—m+d-1, (fl)m’dn). Then applying the simple reflection s,, € Wp
on the left, we get

w=(1<-<d<n,~n+2<---<-n+m-—d,v),

where v = (d+1<---<n—-m+d—1,(-1)""%(n—1)).

Finally, using the action of the simple reflections s1,...,s,_1 of Wp on the left, we obtain the
element w* = wgy, which proves that w is in the same double coset as wy.

The reasoning in the two other situations (# {j < m | w(j) > 0} =d—1and Ij < m,w(j) = —n
on one hand, # {j <m | w(j) >0} =d+ 1 and Ij < m,w(j) = n on the other hand) being very
similar, this concludes the proof. O

Notation 10. Let w € W be an element of the Weyl group. Then w belongs to one of the double
cosets Eq defined in the statement of the proposition, and we define the integer d(w) := d.

3 Link between P-orbits and the quantum product

Here we describe the link between Thm. 1 and parabolic orbits for homogeneous spaces X = G/Q,
where @ is a maximal parabolic subgroup. Since @ is maximal, we have ®V/ @é = 7. Hence for
each w € W, we may define an integer

d(w) =no(w; —w™ (W)

In the following sections, we will prove that the loci where §(w) is constant correspond to the double
cosets & indexing P-orbits. For classical Grassmannians, this proves that for every w € W, §(w)
equals the integer d(w) introduced in Notation 10.

3.1 The integer 6(w) is constant on parabolic orbits.

We start by proving that ¢ is constant on the double cosets £ = WpwWg. Consider w' € £. From
the definition of £, it follows that w’ can be written as wpwwg for some wp € Wp and wg € Wq.
Denote by w; the cominuscule weight defining P. Reflections associated to the simple roots will be
denoted by s; for 1 <1 < n.
If I # 4, we have
siwi) = wi = (a,w)oy’ = w/

hence
wpt (@) = wy. (1)

Now consider e := n¢(w™*(w}")). Then by definition of 7,

wtw)) = eay, + Yy,

pFEM
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where the ¢, are some coefficients. But if [ # m, we have

\ 4

siony) = o — (e, )0y’

Similarly, for p # m and | # p,m

andif p#mandl=p

Hence if we apply the reflection s; for I # m, the coefficient of v, does not change. We conclude
that n¢ (w w 10.)\/) =g (w™'w)). Using Equation (1), we obtain

no(wg'wtwp'w)’) = no(w™w)).

3.2 The integer §(w) changes on different parabolic orbits.

It is enough to prove that if w’ € & N W is a successor of w € £ N W& for the Bruhat order in
W, where € and &’ are two different P-orbits, then &(w’) > d(w).
Since w and w and w’ do not belong to the same P-orbit, we know that w’ = sy, w for some

positive root ag € ®T \ (@j; N @5} Indeed, if a € @JIS, then the reflection s, is in Wp, hence

stabilizes £ and if « € @5, then w’ = w in W/W¢q. Moreover, we have lg(w’) = lg(w) + 1, where
lg is the length function of W¢.

We set Lo (w) := {a e dt\ @5 | w(a) € <I>_}. There exists fy € D1\ @5 such that w(By) =
ap. Indeed, if it were not the case, then for all @ € Lg(w'), we would have sq,w(a) € &~ and
w(a) # ap, hence w(a) € @~ and o € Lg(w). This would mean that lg(w’) < lg(w), which is
absurd.

Let us now compute §(w’) :

(') =g (wi' —w ™ sa, (W) = 6(w) + (a0, 0 )nq (W™ ag) -
Since ap € ®* \ @5, we have (ag,w;’) > 0. Moreover, w(fy) = «p implies that w=!(ag) = By,
and ng(By) > 0 since By € T\ <I>+ Flnally d(w'") > §(w) as required.
We conclude that the loci
{wew®?|sw)=d}

coincide with the sets £ N WE.

4 Decomposition of the Hasse diagram

In [2], Chaput, Manivel and Perrin relate the quantum product by the point class in minuscule
varieties with a decomposition of their Hasse diagram. The Hasse diagram H of a homogeneous
space with Picard rank one is the diagram of the multiplication by the hyperplane class h. More
precisely, its vertices are the Schubert classes o, for w € W€ and o, and o, are related by an
arrow of multiplicity r if and only if o,, appears with multiplicity r in the cup-product o, U h.

The results of previous sections enable us to find decompositions of the Hasse diagram in the
non-minuscule case, corresponding to the quantum product by the Schubert classes o, associated
to cominuscule weights introduced in the statement of Thm. 1.

Let O be a P-orbit of X. It is the union of the Schubert cells C,, C X for all w in the
associated double coset £. The set & N W being an interval (cf Prop. 3), we denote it as
ENWe = [Wimin, Wmaz]. From Thm. 1, we know that O is a vector bundle over the generalized
flag variety F := L/Ry,,.., -

Here we state a result relating the Hasse diagrams of the parabolic orbit O with a similar
diagram for the flag variety F' :
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Theorem 11. Let ¢ : O — F be the fibration, i : O — X the natural embedding and h the
hyperplane class of X. Then :

1. There exists a class h' € H2(F) such that i*h = *h' ;
2. The Hasse diagram of O is isomorphic to the diagram of the multiplication by I/ in F.
Proof. 1. Since i*h € H*(O) =2 H?(F), there exists a (unique) b’ € H?(F) such that i*h = ¢*h'.

2. There exists an isomorphism W = £ N W&, where W is the set of minimal length rep-
resentatives of Wi /Wg, . Indeed, let CF be a Schubert cell of F. Since 1 is a vector
bundle, its inverse image 1 ~!(CZL') is a Schubert cell of X, which we denote by Cé((uy where
é(u) € W€, Since C’(f(u) C O, we have ¢(u) € ENW, and ¢ is the desired isomorphism.
It yields a correspondence between the vertices of the Hasse diagram of O and those of the
diagram of the multiplication by the class A’ in F.

Now we study the correspondence between the edges of both diagrams. Assume that
[Yo]UR = Zav Vo],

where Y, denotes the Schubert variety of F' associated to the element v. This means that a
generic hyperplane section of Y,, is rationally equivalent to the union of the Y, with multi-
plicities a,. Let Y, be a Schubert variety of F'. Its inverse image 1/)’1(Yu) is the closure in O
of the Schubert cell ij(u), hence it is the intersection of O with the Schubert variety X,,).

Thus X4 () N O is rationally equivalent to the union of the X,y N O with multiplicities a,,.
As a consequence, if H is a generic hyperplane, a section X,y NONH is rationally equivalent
to the union of the X4,y MO N H with multiplicities a,. If we consider the closure in O, we
deduce that X,y N H is rationally equivalent to the sum of the X,y with multiplicities a,,
plus a class Z supported in the boundary O \ O. But such a class is rationally equivalent
to the union of some Schubert varieties X, contained in O \ O, with some multiplicities b,,.
This rational equivalence stays true in the whole of X = G/P;. Taking cohomology classes,

it means that
Op(w) U h= Zava¢(v) + Zbuau.

Since the Schubert varieties X, are contained in O\, the elements v € W are not contained
ENWE. Hence they do not contribute to the arrows of the Hasse diagram of @. This proves
that the Hasse diagram of O has the same arrows as the diagram of the multiplication by
the class ' in F. O

We may now conclude by combining the previous results to describe the Hasse diagrams of the
classical Grassmannians :

Theorem 12. 1. In types A,, Cy, Dy, and in type B, for odd orthogonal Grassmannians
OG(m,2n + 1) with m #n — 1, if O is a parabolic orbit associated to a cominuscule weight
w;, the Hasse diagrams Ho and Hp of O and the corresponding flag variety F described in
Prop. 6 are isomorphic.

2. In type B, for the odd orthogonal Grassmannian OG(n —1,2n + 1), if we denote by Oy, Oy
and Oy the parabolic orbits associated to the weight wi and Fy, Fy and Fy the corresponding
flag varieties, we have Ho, = Hp, and Ho, = Hp,, but Ho, corresponds to Hp, with the
multiplicities of the arrows doubled.

Proof. In both cases, we apply Thm. 11 to the map v : O — F from Prop. 7 and the natural
embedding i : O — X = G/Q, denoting by h the hyperplane class of X. Tt follows that there
exists a unique ' € H2(F) such that i*h = ¢*(h’), and that the Hasse diagram of O is isomorphic
to the diagram of the multiplication by A’ in F. So to prove Thm. 12, we only need to prove that
h' is equal to the hyperplane class of F' in types A,, Cy,, D, , and in type B, for odd orthogonal
Grassmannians OG(m, 2n+ 1) with m # n— 1, and that it is equal to twice the hyperplane class of
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F otherwise. In ‘hyperplane class of F’, we refer of course to the minimal embedding of F' inside
projective space.

In type A,, denote by S the tautological bundle on X and S;,S» the tautological bundles on
the product of Grassmannians F. By definition h = ¢;(det §). Moreover

0—Y*S —i*S = Y*Sy — 0,

hence 1*ci(det S; ® det Sy) = i*h. Tt follows that b/ = ¢q(det Sy ® det Sy), which is indeed the
hyperplane class of F'.

In type B, for X = OG(m,2n + 1) with m < n, we will prove for each of the three P-orbits
Oq4 for d = 0,1,2 that *(detS) = *(det Sy), where S is the tautological bundle on F. Since
c1(det §) = h, it will follow that h’ = ¢1(det S1). For d = 0, we have the exact sequences

0-YNEf =X =X/(ENEL) =0
0% = FE/E, - ELf/(ENEf ®F) —0
0=YXNE -XNEf0E - (SNEL@®E)/(ENEL) =0,
which give the following equalities of determinant bundles
det(X) = det(X N By) @ det(X/(X N EL))
det(X') = det(X N EL @ Ey)
det(XNEF @ By) =det(SN Ef) @ det(Z N Ef @ Ey) /(N ED)).

We conclude by using the fact that the quadratic form induces a duality
Y/(ENEL) x (ENEF @ E)/(SNEf) — C.

For d = 1, we use the same method, only replacing ¥ N Ei- with ¥, and for d = 2, the result follows
from the exact sequence
0—-FE —-YX—X/E; —0.

Now we have proved that b/ = ¢;(det Sy), it remains to relate it to the hyperplane class H of F.
There are two cases :

H ifm<n-1

ci(det S1) = {QH ifm=n—1

Indeed, OG(n — 1,2n — 1) is projectively isomorphic to OG(n — 1,2n — 2), which is embedded in
P(V,,_,), where V,, _, is the half-spin representation. Hence the hyperplane class H is equal to the
first Chern class of the line bundle associated to the weight w,_1, while detS; is the line bundle
associated to the weight 2w,,_;.

In type B, for X = OG(n,2n + 1), we prove as in the non-maximal case that A’ = ¢;(det Sy)
is the hyperplane class of F'.

In type C),, denote by S the tautological bundle on X and S1,S5 the tautological bundles on
F'. Since h = ¢;1(det S) and

0—-YXNE,=>YX—>X/(XNE, =0

0-%'NE, - E, - E,/(StNE,) -0,

we have h/ = ¢1(det S} ® det Sy), which is indeed the hyperplane class of F'.

In type D,, for X = OG(m,2n) with m < n or for X = OG(n,2n) with P = P, , the
result is proven in an analogous way as in types B,, and C,. This leaves us with the case where
X = 0G(n,2n) and P = P,,, or P, _,. Here we treat the case P = P, , the other being very
similar. We use the two exact sequences

0—-XNE,>YX—=X/(ENE, —0

0—>XNE,—E,—E,/(ENE,) —0
and the duality /(XN E,) x E,/(2N E,) — C to prove that b’ = ¢;(det Sy). O
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Figure 1: P,,-orbits in IG(2,8)

F(1,3:4)

Figure 2: P, -orbits in OG(3,9)

Finally, we give some pictures illustrating Thm. 12. We start with a type C,, example : the
symplectic Grassmannian IG(2,8) in Figure 1. There are three orbits, two being vector bundles
over the Grassmannian G(2,4) and another over the two-step flag variety F(1,3;4).

Then we consider a type B,, example : the odd orthogonal Grassmannian OG(3,9) in Figure 2.
There are again three orbits. The first and last are vector bundles over OG(2,7). For the middle
orbit, which is a vector bundle over OG(3,7), we see as expected that the multiplicity of all arrows
is multiplied by 2.

Finally, let us recall an exceptional example, computed in [2] : the Cayley plane X = Eg/P,,, =
OP? (see Figure 3). There are three P, orbits. Indeed, we know that a partial Eg-flag associated
to P,, simply consists in a point py € X. The P,,-orbits are

Op={pe X |p¢g line through po}
01 ={pe X |pe line through pg,p # po}
O = {po}-

We can also describe these orbits as vector bundles over generalized flag varieties

0o — Qg
01 — SIO
02 — pta

where Qg = OP! is the 8-dimensional quadric and S19 = OG(5,10) is the 10-dimensional spinor
variety. Indeed, the last fibration is trivial and the second stems from the description of O; as a cone
over S1g (see [8, Lemma 4.1]). Finally, we know from [8] that the Cayley plane also parametrises the
family of QQg’s it contains, hence to py is associated an 8-dimensional quadric Q)y. The same goes
for p, to which corresponds a quadric Q. These quadrics are isomorphic to projective octonionic
lines OP', and two general such lines meet in one point in OP?, hence the first fibration.
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Figure 3: P, -orbits in Eg/P,,
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