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Abstract. This paper proves a version of mirror symmetry expressing the

(small) Dubrovin connection for even-dimensional quadrics in terms of a mirror-
dual Landau-Ginzburg model on the complement of an anticanonical divisor

in a dual quadric. We go into greater depth for all quadrics, even and odd,

treating them as a series starting with Q3 and Q4 = Gr2(4). This turns out
to work very naturally after restricting to a particular torus, and leads to a

combinatorial model for the superpotential in terms of a quiver, in the vein

of those proposed by Batyrev, Ciocan-Fontanine, Kim and van Straten for
Grassmannians in the 1990’s. The Laurent polynomial superpotentials form a

single series, despite the fact that our mirrors of even quadrics are defined on

dual quadrics, while the mirror to an odd quadric is naturally defined on a pro-
jective space. We use this combinatorial description to compute the constant

term of the J-function.
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1. Introduction

Suppose X is a smooth projective complex Fano variety X of dimension N .
Starting from X as the ‘A-model,’ Dubrovin constructed a flat connection on a
trivial bundle with fiber H∗(X,C), using Gromov-Witten invariants of X. One
incarnation of mirror symmetry reproduces the same connection via a Gauss-Manin
system on a ‘B-model’.

In our setting X will always have Picard rank 1 and the base of the trivial bundle
on the A-side can be taken to be the two-dimensional complex torus C∗q ×C∗~ with
coordinates q and ~. The Dubrovin connection is flat and therefore defines a D-
module MA, where D = C[~±1, q±1]〈∂~, ∂q〉. The B-model for X as above is a

Landau-Ginzburg model, which is a pair (X̌,W ) consisting of an affine algebraic
variety X̌ over C and a regular function Wq : X̌ → C called the superpotential. This
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data gives rise to a Gauss-Manin system, via a kind of twisted N -th (algebraic) de
Rham cohomology. Namely one defines the D-module

MB = ΩN (X̌,C[~±1, q±1])/(d− 1

~
dW ∧ )ΩN−1(X̌,C[~±1, q±1])

where D = C[~±1, q±1]〈∂~, ∂q〉, which is intended to recover the Dubrovin connec-
tion of X. One of the central problems of mirror symmetry is how to construct the
LG model (X̌,W ) given X. In the case of quadrics there are two direct approaches.
One of them is the approach due to Hori and Vafa [HV00], which applies to Fano
hypersurfaces in projective space. The other approach is via [Rie08], which applies
to homogeneous spaces G/P .

When X is a hypersurface in a complex projective space, its conjectured Landau-
Ginzburg model, the ‘Hori-Vafa mirror’, is a torus together with a Laurent poly-
nomial in N variables [HV00], [Prz09, Rmk. 19]. In the case of an N -dimensional
quadric QN the LG model of Hori and Vafa is Lq : (C∗)N → C where

(1) Lq = Y1 + Y2 + . . .+ YN−1 +
(YN + q)2

Y1Y2 · · ·YN
.

Note that this expression is indeed equivalent to the original Hori-Vafa model (see
[Prz09]).

On the other hand the smooth quadric QN may also be identified with the homo-
geneous space SON+2(C)/P . Here we think of SON+2(C) as the special orthogonal
group associated to the quadratic form on CN+2 defining QN inside PN+1. The
mirror construction from [Rie08] applies in this setting and gives a regular function
Fq on an N -dimensional affine subvariety R (generally larger than a torus) of the
Langlands dual full flag variety. If N is odd then this Langlands dual full flag
variety is SpN+1(C)/B. If N is even then it is SON+2(C)/B.

One advantage of the mirrors Fq over the Laurent polynomials Lq is that the
former have the expected number of critical points (at fixed generic value of q),
namely dim(H∗(QN )). This is not generally the case for Laurent polynomial mir-
rors, as was already observed in [EHX97]. In [EHX97] it was suggested to solve this
problem using a partial compactification and this was carried out for the first time
in the case of Q4, albeit in an ad hoc fashion. Since then a partial compactification
of the Hori-Vafa mirror in the case of all odd quadrics was obtained in [GS13], along
with a proof of the isomorphism of D-modules. This partial compactification was
then shown in [PR13a] to be isomorphic to the mirror Fq.

We note that for type A flag varieties the mirrors Fq were shown to be partial
compactifications of the Laurent polynomial mirrors of [BCFKvS00, BCFKvS98],
see [Rie08, Rie06, MR13].

In this paper we will discuss and compare four different versions of the LG models
for quadrics, and prove various identities predicted by mirror symmetry. Here is a
summary of our results.

1.1. A canonical mirror. Suppose X is a homogeneous space for an adjoint sim-
ple complex algebraic group. For cominuscule X, such as Grassmannians, La-
grangian Grassmannians, and also quadrics, the Langlands dual group naturally
acts on H∗(X,C), by the geometric Satake correspondence [Lus83, MV07, Gin95].
We exploit this to give a very natural formulation of the mirror in the even quadrics
case, compare [MR13, PR13b, PR13a]. Namely for even dimensional quadrics we
prove an isomorphism between the domain R of Fq and the complement of an
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anti-canonical divisor in a ‘mirror’ quadric Q̌N . This mirror quadric is obtained as
a closed orbit of the Langlands dual group inside P(H∗(QN ,C)∗). Therefore the
cohomology classes of QN are naturally coordinate functions on the dual quadric
Q̌N . We then obtain an LG-model Wq on Q̌N by pulling back Fq and expressing
it in the coordinates coming from the Schubert basis of H∗(QN ,C). We consider
this to be the most canonical presentation of the LG-model for QN . For odd N we
note that the analogous procedure gives an LG-model on PN , where PN is viewed
as a homogeneous space for SpN+1(C), see [PR13a].

1.2. An isomorphism of D-modules. For even dimensional quadrics we con-
struct an explicit isomorphism from the Dubrovin D-module MA to a natural sub-
module of the Gauss-Manin D-module MB . We conjecture that this submodule
is in fact all of MB so that MA and MB are isomorphic. Here we use the new
version Wq of the mirror which takes place on a dual quadric. We note that there
is a non-trivial cluster algebra structure on the coordinate ring of the mirror, which
plays a role in our proof of the isomorphism.

1.3. Laurent polynomial mirrors analogous to projective space. By re-
stricting to a natural choice of torus in R we obtain a further Laurent polynomial
expression for the mirror. Combining this with results from [PR13b] we obtain a
series of Laurent polynomial mirrors for all QN , which resemble the well-known
Laurent polynomial mirrors for projective spaces (but differ from the Hori-Vafa
mirrors).

1.4. The hypergeometric series of the quadric. We work out in two different
ways a series expansion for the coefficient of the top class in Givental’s J-function.
On the one hand we obtain the series as a residue integral on the B-model side, using
the Laurent polynomial formulation from 1.3. On the other hand the coefficients of
the series can be interpreted as 1-point descendent Gromow-Witten invariants, and
we determine these directly on the A-side, using Kontsevich-Manin reconstruction
and the usual axioms. We identify this series as hypergeometric series and identify
the differential equation which it satisfies, which is a ‘quantum differential equation’
of the quadric.

1.5. A quiver version of the superpotential. We interpret our Laurent polyno-
mial version of the mirror from 1.3 in terms of a quiver, in the spirit of [BCFKvS98,
BCFKvS00, Giv97]. The fundamental class coefficient of the J-function can be
read off directly from the quiver. This is in analogy with the residue formula of
[BCFKvS00, Section 5.1] for type A partial flag varieties, which was conjectured
there to recover that coefficient of the J-function (now proved in [MR13] for Grass-
mannians, and a consequence of [Giv97] for the full flag variety).

1.6. Comparison with the Hori-Vafa mirrors. Finally we show that the Hori-
Vafa mirrors arise out of Wq in the same way as the other Laurent polynomial
mirrors, by restriction to a specific cluster torus.

2. Landau-Ginzburg models for odd quadrics

The quadrics are cominuscule homogeneous spaces (for the Spin groups). There-
fore, in addition to the Hori-Vafa approach [HV00] for constructing LG models,
there is another LG model for each quadric on an affine variety generally larger
than a torus, which was defined by the second-named author using a Lie-theoretic
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construction [Rie08]. Namely for any projective homogeneous space X = G/P of a
simple complex algebraic group, [Rie08] constructed a conjectural LG model, which
is a regular function on an affine subvariety of the Langlands dual group. It was
shown in [Rie08] that this LG model recovers the Peterson variety presentation
[Pet97] of the quantum cohomology of X = G/P . It therefore defines an LG model
whose Jacobi ring has the correct dimension. In this section we will rewrite this
LG model in terms of natural projective coordinates on P(H∗(QN ,C)∗).

Note that for odd-dimensional quadrics Q2m−1 a recent paper [GS13] of Gor-
bounov and Smirnov constructed directly a partial compactification of the Hori-
Vafa mirrors, without making use of [Rie08].

2.1. The LG model for Q2m−1 on a Langlands dual projective space. LG
models for odd-dimensional quadrics with the expected number of critical points
have been constructed in [Rie08] (where they appear as a special case), and [GS13],
and finally [PR13a]. Here we recall the main results from the paper [PR13a], which
contains the formulation for the LG model which we will adopt.

In this section our A-model variety X = XN = X2m−1 is the quadric QN =
Q2m−1. Recall that an odd-dimensional quadric has 1-dimensional cohomology
groups in even degrees spanned by Schubert classes σi ∈ H2i(Q2m−1,C) for 0 ≤
i ≤ 2m − 1, and no other cohomology. To construct its mirror first consider the
projective space X̌ = X̌2m−1 = P2m−1 with homogeneous coordinates (p0 : p1 :
· · · : p2m−1) in one-to-one correspondence with these Schubert classes σi. Inside X̌
we have the open affine subvariety X̌◦ ⊂ P2m−1 defined by:

(2) X̌◦ = X̌◦2m−1 := X̌ \D,

where D := D0 +D1 + . . .+Dm−1 +Dm, the divisors Di being given by

D0 := {p0 = 0} ,

D` :=

{∑̀
k=0

(−1)kp`−kp2m−1−`+k = 0

}
for 1 ≤ ` ≤ m− 1,

Dm := {p2m−1 = 0} .

The divisor D is an anti-canonical divisor. Indeed, the index of X̌ = P2m−1 is 2m.
For simplicity, we will define

(3) δ` =
∑̀
k=0

(−1)kp`−kpN−`+k.

(For odd quadrics, N = 2m− 1.) We have:

Theorem 2.1 ([PR13a, Theorem 1]). The LG model Fq : R → C from [Rie08] for

X = Q2m−1 is isomorphic to Wq : X̌◦2m−1 → C defined by

(4) Wq =
p1
p0

+

m−1∑
`=1

p`+1p2m−1−`
δ`

+ q
p1

p2m−1
.

We also have another expression for the superpotential:

Proposition 2.2 ([PR13a, Proposition 8]). For X = Q2m−1 and Wq as above,

there is a torus (C∗)2m−1 ↪→ X̌◦2m−1 to which Wq pulls back giving the Laurent
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polynomial expression

(5) Wq = a1 + · · ·+ am−1 + c+ bm−1 + · · ·+ b1 + q
a1 + b1

a1 . . . am−1cbm−1 . . . b1
.

2.2. Comparison with the Hori-Vafa model for odd quadrics. Here we check
that once restricted to a certain torus, our LG model (4) is isomorphic to the Hori-
Vafa LG model. Let us consider the change of coordinates:

Yi =


pi
pi−1

for 1 ≤ i ≤ m− 1 ;
p2m−1−iδ2m−3−i
p2m−2−iδ2m−2−i

for m ≤ i ≤ 2m− 3 ;

q p1
p2m−1

for i = 2m− 2 ;

q δm−2

δm−1
for i = 2m− 1.

This change of coordinates is well-defined on the torus T = {pi 6= 0 ∀i} inside
X̌◦. Moreover, an easy calculation shows that it transforms our LG model (4)
into the Hori-Vafa model (1) for odd quadrics. Note that this change of coordi-
nates may also be obtained by combining the isomorphism between (4) and the
Gorbounov-Smirnov mirror from [PR13a, Section 6], with the comparison between
the Gourbounov-Smirnov mirror and Hori-Vafa’s mirror in [GS13].

3. Landau-Ginzburg models for even quadrics

We view the quadric X = X2m−2 := Q2m−2 of dimension 2m − 2 as a homo-
geneous space for the Spin group Spin2m(C). In this section we will introduce a
natural LG model for X2m−2 which will be defined on an open subvariety of a dual
quadric X̌2m−2 = P\PSO2m(C), see Section 3.2. Note that the projective special
orthogonal group PSO2m is the Langlands dual group to Spin2m, and both groups
have the same Dynkin diagram, namely the Dynkin diagram of type Dm. The main
result of this section, Proposition 3.6, shows that the new LG-model is isomorphic
to one defined earlier [Rie08] on a Richardson variety R inside the full flag variety
of PSO2m(C).

Note that in the following we will denote the group PSO2m(C) by G, since this
is the group we will primarily be working with. Then the A-model symmetry group
is G∨ = Spin2m(C), and we have X2m−2 = G∨/P∨, where P∨ is the parabolic
subgroup associated to the first node of the Dynkin diagram of type Dm.

◦ ◦ ◦ ◦ ◦HH
��
◦

◦
1 2 · · · · · · m−1

m◦•
◦

3.1. Notations and definitions. Let V = C2m with fixed quadratic form

Q =


1

−1
. .

.

−1
1

 .

In other words Q(vi, vj) = (−1)max(i,j)δi+j,2m+1 where {vi} is the standard basis
of C2m. For G = PSO(V,Q) = PSO(V ) we fix Chevalley generators (ei)1≤i≤m and
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(fi)1≤i≤m. To be explicit we embed so(V,Q) into gl(V ) and set

ei =

{
Ei,i+1 + E2m−i,2m−i+1 if 1 ≤ i ≤ m− 1,

Em−1,m+1 + Em,m+2 if i = m,

and fi := eTi , the transpose matrix, for every i = 1, . . . ,m. Here Ei,j = (δi,kδl,j)k,l
is the standard basis of gl(V ). For elements of the group PSO(V ), we will take
matrices to represent their equivalence classes. We have Borel subgroupsB+ = TU+

and B− = TU− consisting of upper-triangular and lower-triangular matrices in
PSO(V ), respectively. Here U+ and U− are the unipotent radicals of B+ and B−,
respectively, and T is the maximal torus of PSO(V ), consisting of diagonal matrices
(dij) with non-zero entries di,i = d−12m−i+1,2m−i+1. We let X(T ) = Hom(T,C∗),
R ⊂ X(T ) the set of roots, and R+ the positive roots. We denote the set of simple
roots by Π = {αi | 1 ≤ i ≤ m} ⊂ R+ ⊂ R ⊂ X(T ), and the set of fundamental
weights (which is the dual basis in X(T )) by {ωi | 1 ≤ i ≤ m} ⊂ X(T )⊗Z R.

The parabolic subgroup P of PSO(V ) we are interested in is the one whose Lie
algebra p is generated by all of the ei together with f2, . . . , fm, leaving out f1.
Let xi(a) := exp(aei) and yi(a) := exp(afi). The Weyl group W of PSO(V ) is
generated by simple reflections si for which we choose representatives

(6) ṡi = yi(−1)xi(1)yi(−1).

We let WP denote the parabolic subgroup of the Weyl group W , namely WP =
〈s2, . . . , sm〉. The length of a Weyl group element w is denoted by `(w). The longest
element in WP is denoted by wP . We also let w0 be the longest element in W . Next
WP is defined to be the set of minimal length coset representatives for W/WP . The
minimal length coset representative for w0 is denoted by wP .

We introduce the following notation for the elements of WP . Namely, WP =
{e, w1, . . . , wm−1, w

′
m−1, wm, wm+1, . . . w2m−2}, where

wk =


sksk−1 . . . s1 if 1 ≤ k ≤ m− 2,

smsm−2 . . . s1 if k = m− 1,

sm−1smsm−2 . . . s1 if k = m,

s2m−1−k . . . sm−2sm−1smsm−2 . . . s1 if m+ 1 ≤ k ≤ 2m− 2.

and w′m−1 = sm−1sm−2 . . . s1.
For any w ∈ W let ẇ denote the representative of w in G obtained by setting

ẇ = ṡi1 · · · ṡim , where w = si1 · · · sim is a reduced expression and ṡi is as in (6).
Moreover, each ẇk ∈ PSO(V ) can be represented by a matrix [wk] ∈ SO(V ) such
that

(7) [wk] · v2m =

{
v2m−k 1 ≤ k < m− 1,

v2m−k−1 m− 1 < k ≤ 2m− 2,

and [w′m−1] · v2m = vm+1 and [wm−1] · v2m = vm.

3.2. The dual quadric and its Plücker coordinates. Consider the homoge-
neous space X̌2m−2 = P\PSO(V ). It is canonically identified with the isotropic
Grassmannian of lines in V ∗, when this Grassmannian is viewed as a homogeneous
space via the action of PSO(V ) from the right. Moreover the isotropic Grassman-
nian of lines is also a (2m−2)-dimensional quadric X̌2m−2 =: Q̌2m−2, now in P(V ∗).
So in this case, the varieties X and X̌ are (non-canonically) isomorphic. The reason
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for this isomorphism of varieties is that the group G∨ is of simply-laced type. How-
ever Lie-theoretically we still think of X2m−2 and X̌2m−2 as being very different
homogeneous spaces, with X2m−2 = Spin2m(C)/P∨ and X̌2m−2 = P\PSO2m(C).

Definition 3.1 (Plücker coordinates). The Plücker coordinates for X̌ = P\PSO(V )
are the homogeneous coordinates coming from the embedding of X̌2m−2 into P(V ∗)
as the (right) G-orbit of the line Cv∗2m:

X̌2m−2 = P\PSO(V )→ P(V ∗) : Pg 7→ (Cv∗2m) · g.

We think of the Plücker coordinates as corresponding to the elements of WP .
Let v−ωi (respectively v+ωi) denote lowest and highest weight vectors in the highest
weight representation Vωi . Then the Plücker coordinates may be defined by:

p0(g) = 〈v−ω1
· [g], v−ω1

〉
pk(g) = 〈v−ω1

· [g], [wk] · v−ω1
〉 for 1 ≤ k ≤ 2m− 2, and

p′m−1(g) = 〈v−ω1
· [g], [w′m−1] · v−ω1

〉,

where [g] ∈ SO(V ) is any fixed matrix representing g ∈ PSO(V ). The homogeneous
coordinates of Pg are then given by

(p0(g) : . . . : pm−2(g) : p′m−1(g) : pm−1(g) : pm(g) : . . . : p2m−2(g)).

These are simply the bottom row entries of [g] read from right to left, keeping in
mind (7).

We note that as in the case of the odd quadric these Plücker coordinates are to be
thought of as B-model incarnations of the Schubert classes of Q2m−2. Namely recall
that H∗(Q2m−2,C) has a Schubert basis indexed by WP . We will use the notation
σi = σwi and σ′m−1 = σw′m−1

and σ0 = σe. As a special case of the geometric

Satake correspondence [Lus83, Gin95, MV07] we have that the (defining) projective
representation V of PSO2m(V ) is identified with the cohomology of Q2m−2,

V = H∗(Q2m−2,C),

and the standard basis vi agrees with the Schubert basis via v2m = σ0 and

(8) [wi] · v2m = σi, [w′m−1] · v2m = σ′m−1.

The Schubert classes σw are in this way naturally identified with the Plücker coor-
dinates.

3.3. The superpotential for Q2m−2 on a dual quadric. In this section we state
our theorem describing a superpotential for Q2m−2 in terms of Plücker coordinates
on the dual quadric X̌2m−2 = Q̌2m−2. Consider

(9) X̌◦ = X̌◦2m−2 := X̌ \D,
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where D := D0 +D1 + . . .+Dm−2 +Dm−1 +D′m−1, the Di’s being given by

D0 := {p0 = 0} ,

D` :=

{∑̀
k=0

(−1)kp`−kp2m−2−`+k = 0

}
for 1 ≤ ` ≤ m− 3,

Dm−2 := {p2m−2 = 0} ,
Dm−1 := {pm−1 = 0} ,
D′m−1 :=

{
p′m−1 = 0

}
.

The divisor D is an anti-canonical divisor in X̌. For simplicity, we will define

(10) δ` =
∑̀
k=0

(−1)kp`−kpN−`+k.

(For even quadrics, N = 2m− 2.) Our first result is the following theorem.

Theorem 3.1. The LG model for Q2m−2 = Spin2m/P
∨ from [Rie08] is isomorphic

to Wq : X̌◦2m−2 → C defined by

(11) Wq =
p1
p0

+

m−3∑
`=1

p`+1p2m−2−`
δ`

+
pm
pm−1

+
pm
p′m−1

+ q
p1

p2m−2
.

Before we begin the proof we need to recall the definition of the LG-model from
[Rie08].

3.4. The superpotential for Q2m−2 on a Richardson variety. Following [Rie08]
consider the (open) Richardson variety R := RwP ,w0

⊂ G/B−, namely

R := RwP ,w0
= (B+ẇPB− ∩B−ẇ0B−)/B−.

This Richardson variety R is irreducible of dimension 2m − 2, and its closure is
the Schubert variety B+ẇPB−/B−. Let TWP be the WP -fixed part of the maximal
torus T . Note that since we are in the setting of Section 3.1 we have that TWP ∼= C∗
with isomorphism given by α1. The inverse isomorphism is ω∨1 : C∗ → TWP . We
fix a d ∈ TWP . Then one can define

(12) Zd := B−ẇ0 ∩ U+dẇPU− ⊂ G,

and the map

(13) πR : Zd → R : g 7→ gB−,

is an isomorphism from Zd to the open Richardson variety [Rie08, Section 4.1].
Let q be the non-vanishing coordinate on the 1-dimensional torus TWP given by

α1 : TWP → C∗. The mirror LG model is a regular function on R depending also
on q, and hence a regular function on R× TWP . It is defined as follows [Rie08]:

(14) F : (u1ẇPB−, d) 7→ g = u1dẇP ū2 ∈ Zd 7→
∑

e∗i (u1) +
∑

f∗i (ū2),

where u1 ∈ U+, ū2 ∈ U−, and where ū2 is determined by u1 and the property that
u1dẇP ū2 ∈ Zd.

The corresponding map from R, when the coordinate q is fixed, is denoted

Fq : R → C : u1ẇPB− 7→ F(u1ẇPB−, ω
∨
1 (q)).
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Remark 1. Note that if g = u1dẇP ū2 ∈ Zd, then we have a simple identity con-
cerning the Plücker coordinates:

(p0(g) : . . . : p2m−2(g)) = (p0(ū2) : . . . : p2m−2(ū2)).

The remainder of Section 3 will be devoted to proving Theorem 3.1, which now
says that there is an isomorphism X̌◦2m−2

∼→ R under whichWq is identified with Fq.

3.5. Comparison of the superpotentials as rational functions. Fq defines a

rational function on the Schubert variety R ∈ G/B−, and Wq defines a rational

function on the quadric X̌2m−2 = P\G. As a first step towards the proof of
Theorem 3.1 we exhibit a birational isomorphism between these two projective
varieties, under which the rational functions Fq and Wq are identified.

Recall the definition of the variety Zd isomorphic to R from (12). We define
another embedding of Zd by

(15) πL : Zd → P\PSO(V ) : g 7→ Pg.

This embedding maps Zd isomorphically to an open subvariety of a big cell in the
homogeneous space P\PSO(V ).

We can now relate Fq to a rational function in the Plücker coordinates by using
πL from above and πR from (13). To summarize, these maps are given by

X̌ = P\G πL←− B−ẇ0 ∩ U+dẇPU−
πR−→ R,(16)

Pg ← [ g 7→ gB−.(17)

Now let W̃q be the rational function on X̌2m−2 defined by

(18) W̃q := (πL)∗π
∗
RFq.

In order to compare W̃q with Wq we will express it as a rational function in the

Plücker coordinates. We will then prove in Section 3.7 that the locus X̌◦2m−2 is
isomorphic to the open Richardson variety R.

Proposition 3.2. W̃q equals

p1
p0

+

m−3∑
`=1

p`+1p2m−2−`
δ`

+
pm
pm−1

+
pm
p′m−1

+ q
p1

p2m−2

as a rational function on X̌2m−2.

Along the way we will also prove the following useful proposition.

Proposition 3.3. W̃q restricted to a particular open torus chart inside X̌2m−2 has
the following Laurent polynomial expression

(19) a1 + · · ·+ am−2 + c+ d+ bm−2 + · · ·+ b1 + q
a1 + b1

a1 . . . am−2cdbm−2 . . . b1
.

The torus chart used in Proposition 3.3 will be defined in Section 3.6.



10 C. PECH, K. RIETSCH, AND L. WILLIAMS

3.6. Proof of Propositions 3.2 and 3.3. To prove the results of Section 3.5 we
first recall that

π∗RFq : g = u1dẇP ū2 ∈ Zd 7→
∑

e∗i (u1) +
∑

f∗i (ū2).

Now ū2 appearing in u1dẇP ū2 ∈ Zd can be assumed to lie in U− ∩ B+(ẇP )−1B+.
This is because we have two birational maps

Ψ1 : U− ∩B+(ẇP )−1B+ → P\G ū2 7→ Pū2,
πL : B−ẇ0 ∩ U+dẇ

PU− → P\G b−ẇ0 = u1dẇP ū2 7→ Pb−ẇ0,

which compose to give Ψ−11 ◦ πL : b−ẇ0 7→ ū2. This gives a birational map

Ψ−11 ◦ πL : Zd → U− ∩B+(ẇP )−1B+.

Now a generic element ū2 in U−∩B+(ẇP )−1B+ can be assumed to have a particular
factorisation. The smallest representative wP in W of [w0] ∈ W/WP has the
following reduced expression:

(20) wP = s1 . . . sm−2sm−1smsm−2 . . . s1.

It follows by an application of Bruhat’s lemma [Lus94] that a generic element ū2 of
U− ∩B+(ẇP )−1B+ can be written in the form

(21) ū2 = y1(a1) . . . ym−2(am−2)ym(d)ym−1(c)ym−2(bm−2) . . . y1(b1),

where ai, c, d, bj 6= 0. We have the following standard expression for the pk on
factorized elements, which is a simple consequence of their definition.

Lemma 3.4. Fix 0 ≤ k ≤ 2m − 2 an integer. Then if ū2 is of the form (21) we
have

pk(ū2) =



1 if k = 0,

a1 . . . ak−1(ak + bk) if 1 ≤ k ≤ m− 2,

a1 . . . am−2c if k = m− 1,

a1 . . . am−2cd if k = m,

a1 . . . am−2cdbm−2 . . . b2m−1−k otherwise.

and

p′m−1(ū2) = a1 . . . am−2d. �

We will also need the following:

Lemma 3.5. If u1 ∈ U+, ū2 ∈ U−, u1dẇP ū2 ∈ Zd, and ū2 can be written as in
(21), then we have the following identities:

f∗i (ū2) =


ai + bi if 1 ≤ i ≤ m− 2,

c if i = m− 1,

d if i = m.

(22)

e∗i (u1) =

{
0 if 2 ≤ i ≤ m,

q a1+b1
a1...am−1cdbm−1...b1

if i = 1.
(23)
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Proof. Equation (22) is obtained immediately from the definition of ū2. For Equa-
tion (23), notice that

e∗i (u1) =
〈u−11 · v−ωi , ei · v

−
ωi〉

〈u−11 · v
−
ωi , v

−
ωi〉

=
〈dẇP ū2 · v+ωi , ei · v

−
ωi〉

〈dẇP ū2 · v+ωi , v−ωi〉
.

Assume 2 ≤ i ≤ m. Then e∗i (u1) = 0 if and only if 〈ū2 ·v+ωi , ẇ
−1
P ei ·v−ωi〉 = 0. Now the

vector w−1P ei · v−ωi is in the µ-weight space of the i-th fundamental representation,

where µ = w−1P si(−ωi). Moreover, ū2 ∈ B+(ẇP )−1B+, hence ū2 ·v+ωi can have non-

zero components only down to the weight space of weight (wP )−1(ωi) = w−1P (−ωi).
Since l(w−1P si) > l(w−1P ) for 2 ≤ i ≤ m, this is higher than µ, which proves that
e∗i (u1) = 0.

Now assume i = 1. We have

e∗1(u1) =
〈dẇP ū2 · v+ω1

, e1 · v−ω1
〉

〈dẇP ū2 · v+ω1 , v
−
ω1〉

= (ω1 + α1 − ω1)(d)
〈ū2 · v+ω1

, ẇ−1P e1 · v−ω1
〉

〈ū2 · v+ω1 , ẇP v
−
ω1〉

= q
〈ū2 · v+ω1

, ẇ−1P e1 · v−ω1
〉

〈ū2 · v+ω1 , v
−
ω1〉

.

First look at the denominator. The only way to go from the highest weight vector
v+ω1

of the first fundamental representation to the lowest weight vector v−ω1
is to

apply g ∈ B+wB+ for w ≥ (wP )−1. Since ū2 ∈ B+(ẇP )−1B+, it follows that we
need to take all factors of ū2, and normalising v−ω1

appropriately, we get

〈ū2 · v+ω1
, v−ω1
〉 = a1 . . . am−1cdbm−1 . . . b1.

Finally, we look at the numerator 〈ū2 · v+ω1
, ẇ−1P e1 · v−ω1

〉. The vector ẇ−1P e1 · v−ω1
has

weight

µ′ = ẇ−1P s1(−ω1) = ẇ−1P (−ε2) = ε2.

Write w−1P s1 as a prefix w′ = s1s2 . . . sm−2smsm−1sm−2 . . . s2 of (wP )−1. We have
w′s1 = (wP )−1, hence the way from v+ω1

to w′ · v−ω1
is through s1. From the

factorization of ū2 in (21), it follows that 〈ū2 · v+ω1
, ẇ−1P e1 · v−ω1

〉 = a1 + b1. �

Using the expression (14) of the superpotential from [Rie08], we immediately

deduce from Lemma 3.5 the intermediate expression for W̃q as a Laurent polynomial
in Proposition 3.3. Now with the help of Lemma 3.4 and Proposition 3.3, we prove

the second expression of W̃q.

Proof of Proposition 3.2. From Lemma 3.4, it follows that for ū2 as in (21)

p`+1(ū2)p2m−2−`(ū2) = (a`+1 + b`+1)(a1 . . . a`)
2a`+1 . . . am−2cdbm−2 . . . b`+1

for 0 ≤ ` ≤ m− 3. We also get
(24)

pk(ū2)p2m−2−k(ū2) =


a1 . . . am−2cdbm−2 . . . b1 if k = 0

(a1 + b1)a1 . . . am−2cdbm−2 . . . b2 if k = 1

(ak + bk)(a1 . . . ak−1)2ak . . . am−2cdbm−2 . . . bk+1 if 2 ≤ k ≤ m− 3.
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Using (24), we find that most terms in δ`(ū2) =
∑`
k=0(−1)kp`−k(ū2)p2m−2+k−`(ū2)

cancel, and

δ`(ū2) = (a1 . . . a`)
2a`+1 . . . am−2cdbm−2 . . . b`+1.

This proves that
p`+1p2m−2−`

δ`
(ū2) = a`+1 + b`+1

for 0 ≤ ` ≤ m− 3. Moreover:

pm
pm−1

(ū2) =
a1 . . . am−2cd

a1 . . . am−2c
= d

and
pm
p′m−1

(ū2) =
a1 . . . am−2cd

a1 . . . am−2d
= c.

For the first and last terms, we obtain

p1
p0

(ū2) = a1 + b1

and
p1

p2m−2
(ū2) =

a1 + b1
a1 . . . am−1cdbm−1 . . . b1

as easy consequences of Lemma 3.4. �

3.7. Isomorphism with the Richardson variety. To prove Theorem 3.1, it now
only remains to prove that X̌◦2m−2 is isomorphic to the open Richardson variety R.

Indeed, we have proved that Fq pulls back to Wq as a rational map on X̌, where
α1(d) = q. Recall from (16) that for fixed d ∈ TWP , or equivalently, fixed value of
the parameter q, we have the following maps

X̌ = P\G πL←− B−ẇ0 ∩ U+dẇPU−
πR−→ R,

Pg ← [ g 7→ gB−.

given by taking left and right cosets, respectively. Note that g = b−ẇ0 in our
previous notation and factorizes as

g = u1dẇP ū2.

Moreover ΨR is an isomorphism, so we have Ψ := ΨL ◦ Ψ−1R : R → X̌2m−2. We
now prove:

Proposition 3.6. Ψ defines an isomorphism from R to X̌◦2m−2.

The proof uses a presentation of the coordinate ring of the open Richardson
variety R due to [GLS11]. More precisely, the result describes the coordinate ring
of the unipotent cell UP− := U− ∩ B+(ẇP )−1B+, which is isomorphic to R by the

standard map g 7→ gB−. In the particular case of X̌◦2m−2, it can be stated as
follows.

Let us define the generalized minors involved in this presentation. Let Gsc be
the simply-connected covering group of G = PSO(V ) and with Borel subgroup Bsc−
and unipotent radical Usc− projecting to B− and U− in G. Here Gsc = Spin(V ).
Since Usc−

∼= U− via this projection, we may use representations of Gsc to define
minors of elements of U−. For u ∈ U− we denote by usc its lift to Usc− .
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Definition 3.2. Let w ∈ W and ωj be a fundamental weight of Gsc. Let Vωj
be the irreducible representation of Gsc with highest weight ωj and v+ωj be a fixed
highest weight vector. Define for any u ∈ U−:

∆ωj ,w·ωj (u) = 〈uscẇ · v+ωj , v
+
ωj 〉.

Theorem 3.7 ([GLS11, Section 8]). Let si1 . . . si2m−2 = s1 . . . sm−2smsm−1sm−2 . . . s1
be the reduced expression for (ẇP )−1 coming from (20). The coordinate ring of the
unipotent cell UP− := U− ∩B+(ẇP )−1B+ inside PSO2m is

C
[
UP−
]

= C
[
∆ωir ,(ẇ

P )−1
≤r·ωir

,∆−1
ω2m−2−s,(ẇP )−1

≤s·ω2m−2−s

]
where

• 1 ≤ r ≤ 2m− 2 ; m− 1 ≤ s ≤ 2m− 2 ;
• (ẇP )−1≤r := si1 . . . sir .

If j < m then ∆ωj ,w·ωj (u) is a regular minor of the matrix usc ∈ SO2m. We
denote the minor of usc with row set {i1, . . . , ip} and column set {j1, . . . , jp} by

D
i1,...,ip
j1,...,jp

(u). We now reformulate Theorem 3.7 as follows.

Corollary 3.8. The coordinate ring C
[
UP−
]

is generated by the minors

D2,...,r,r+1
1,2,...,r , 1 ≤ r ≤ m− 2;

D2,...,2m−1−s,m+1
1,2,...,2m−1−s , m+ 1 ≤ s ≤ 2m− 3, and D2m

1 ;

the functions

∆ωm,
1
2 [−ε1+ε2+···+εm−1−εm] and ∆ωm−1,

1
2 [−ε1+ε2+···+εm],

which are Pfaffians; the inverses of minors(
D2,...,2m−1−s,m+1

1,2,...,2m−1−s

)−1
, m+ 1 ≤ s ≤ 2m− 3, and

(
D2m

1

)−1
;

and the inverses of Pfaffians

∆−1
ωm,

1
2 [−ε1+ε2+···+εm−1−εm]

and ∆−1
ωm−1,

1
2 [−ε1+ε2+···+εm]

.

A consequence of Corollary 3.8 is that the minors D2,...,2m−1−s,m+1
1,2,...,2m−1−s and D2m

1

and the Pfaffians ∆ωm,
1
2 [−ε1+ε2+···+εm−1−εm)] and ∆ωm−1,

1
2 [−ε1+ε2+···+εm)] do not

vanish for any ū2 ∈ UP− . We will use that fact to prove that the map Ψ lands in

fact in X̌◦. We need two lemmas.

Lemma 3.9. We have the following equalities of generalised minors and Plücker
coordinates:

p2m−2 = D2m
1

pm−1 = ∆ωm−1,
1
2 [−ε1+ε2+···+εm)]

p′m−1 = ∆ωm,
1
2 [−ε1+ε2+···+εm−1−εm)]

Proof. The lemma follows immediately from the definitions of Plücker coordinates
and of generalised minors. �

Recall the definition of the elements ū2, which have a factorisation given by (21).
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Lemma 3.10. The minor D2,...,2m−1−s,m+1
1,2,...,2m−1−s (ū2) is equal to

δs−m(ū2) =

m∑
k=s

(−1)s−kpk−m(ū2)p3m−2−k(ū2).

for m+ 1 ≤ s ≤ 2m− 3.

Proof. Developing D2,...,2m−1−s,m+1
1,2,...,2m−1−s (ū2) with respect to the (2m−1−s)-th column,

we see that it is equal to

Dm+1
2m−1−s(ū2)×D2,...,2m−1−s

1,2,...,2m−2−s(ū2)−D2,...,2m−2−s,m+1
1,...,2m−2−s (ū2).

Since ū2 is orthogonal for Q, we have

D2,...,2m−1−s
1,2,...,2m−2−s(ū2) = D1,...,s+1,2m

1,...,s+2 (ū2),

and since ū2 is in U−,

D1,...,s+1,2m
1,...,s+2 (ū2) = D2m

s+2(ū2) = p2m−2−s(ū2).

Finally

D2,...,2m−1−s,m+1
1,2,...,2m−1−s (ū2) = Dm+1

2m−1−s(ū2)p2m−2−s(ū2)−D2,...,2m−2−s,m+1
1,...,2m−2−s (ū2),

hence

D2,...,2m−1−s,m+1
1,2,...,2m−1−s (ū2) =

2m−2∑
k=s

(−1)k−sDm+1
2m−1−s(ū2)p2m−2−s(ū2).

We also have Dm+1
2m−1−s(ū2) = db2m−2 . . . b2m−1−s for m+ 1 ≤ s ≤ 2m− 2. Indeed,

by definition

Dm+1
2m−1−s(ū2) = 〈v∗m+1 · ū2, v2m−1−s〉 = db2m−2 . . . b2m−1−s.

Hence

D2,...,2m−1−s,m+1
1,2,...,2m−1−s (ū2) =

2m−2∑
k=s

(−1)k−sdb2m−2 . . . b2m−1−sp2m−2−s

=

m∑
k=s

(−1)s−kpk−m(ū2)p3m−2−k(ū2). �

We can now prove that the image of Ψ is contained in X̌◦2m−2. Indeed, if

ū2 ∈ UP− , then the minors D2,...,2m−1−s,m+1
1,2,...,2m−1−s (ū2) and D2m

1 (ū2) and the Pfaffi-

ans ∆ωm,
1
2 [−ε1+ε2+···+εm−1−εm)](ū2) and ∆ωm−1,

1
2 [−ε1+ε2+···+εm)](ū2) do not vanish.

Since we have proved in Lemmas 3.9 and 3.10 that those correspond precisely the
divisors involved in defining X̌◦2m−2, it follows that Pū2 ∈ X̌◦2m−2. We may now

prove the isomorphism between R and X̌◦2m−2.

Proof of Proposition 3.6. The map Ψ : UP− → X̌◦2m−2 is an algebraic map between

affine varieties, which induces a pullback map C[X̌◦2m−2] → C[UP− ] between their
coordinate rings. Injectivity of the pullback map is a simple consequence of the
fact that the map UP− → X̌2m−2 is dominant.

We now prove that C[X̌◦2m−2] → C[UP− ] is surjective. To do this, it is enough
to find a pre-image for each of the functions (minors, Pfaffians, inverses of minors,
inverses of Pfaffians) generating C[UP− ].

We have already seen that the inverses of minors and Pfaffians correspond to the
inverses of denominators of W , which are by definition well-defined on X̌◦2m−2.
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Let us now consider the minors D2,...,r,r+1
1,2,...,r (ū2) for 1 ≤ r ≤ m− 2 and

D2,...,2m−1−s,m+1
1,2,...,2m−1−s for m+ 1 ≤ s ≤ 2m− 3.

In Lemma 3.10, we proved

D2,...,2m−1−s,m+1
1,2,...,2m−1−s = δs−m.

As in Lemma 3.10, we have:

D2,...,r+1
1,...,r = D1,...,2m−1−r

1,...,2m−r = D2m
2m−r = pr.

Finally, D2m
1 = p2m. So these minors are all well-defined functions on X̌◦2m−2.

Let us finally consider the Pfaffians

∆ωm,
1
2 [−ε1+ε2+···+εm−1−εm)] and ∆ωm−1,

1
2 [−ε1+ε2+···+εm)].

We have seen in Lemma 3.9 that they are in fact the Plücker coordinates p′m−1 and

pm−1. Those being well-defined functions on X̌◦2m−2, this concludes the proof. �

3.8. Comparison with the Hori-Vafa model for even quadrics. Here we
check that just like for odd quadrics, once restricted to the subset T1 := {x ∈
X̌◦ | pi(x) 6= 0 for all 0 ≤ i ≤ m−3}, our LG model is isomorphic to the Hori-Vafa
model. Let us consider the change of coordinates:

Yi =



pi
pi−1

for 1 ≤ i ≤ m− 2 ;
p2m−3−iδ2m−5−i
p2m−4−iδ2m−4−i

for m− 1 ≤ i ≤ 2m− 5 ;
pm
pm−1

for i = 2m− 4 ;
pm
p′m−1

for i = 2m− 3 ;

q δm−3

δm−2
for i = 2m− 2.

Again, an easy calculation shows that it transforms our LG model (11) into the
Hori-Vafa model (1) for even quadrics.

4. The A-model connection

Our expression for the LG-model W in terms of homogeneous coordinates com-
ing from X̌◦ ⊂ P(H∗(X,C)∗) makes it possible to compare the (small) Dubrovin
connection on the A side and the Gauss-Manin connection on the B side. We recall
the relevant definitions on the A-side.

Let X = QN . Consider H∗(X,C[~, q]) as a space of sections on a trivial bundle
with fiber H∗(X,C). Let Gr be the operator on sections defined on the fibres as
the ‘grading operator’ H∗(X,C) → H∗(X,C) which multiplies σ ∈ H2k(X,C) by
k. We define the Dubrovin connection by

A∇q∂qS := q
∂S

∂q
+

1

~
σ1 ?q S(25)

A∇~∂~S := ~
∂S

∂~
− 1

~
c1(TX) ?q S + Gr(S),(26)

following the conventions of Iritani [Iri09], where ?q denotes the quantum cup prod-
uct in the quantum cohomology. This defines a meromorphic flat connection, see
also [Dub96, Giv96, CK99]. Moreover it therefore turns H∗(X,C[~±1, q±1]) into a
D-module sometimes called the quantum cohomology D-module for C[~±1, q±1]〈∂~, ∂q〉.
This is the connection or D-module we consider on the A-model side.
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4.1. The dual Dubrovin connection and the J-function. In this section we
define Givental’s J-function and the quantum differential operators. Consider the
dual connection to A∇ with respect to the pairing

〈σ, τ〉 =
1

(2πi~)N

∫
X

σ ∪ τ.

Here σ ∪ τ is the usual cup product of σ and τ , which we will subsequently also
denote by στ . Explicitly, the dual connection is given by the formulas:

A∇∨q∂qS := q
∂S

∂q
− 1

~
σ1 ?q S(27)

A∇∨~∂~S := ~
∂S

∂~
+

1

~
c1(TX) ?q S + Gr(S).(28)

For the purposes of the J-function we ignore the A∇∨~∂~ part of the covariant deriva-

tive and consider A∇∨q∂q as a family of connections (in the parameter ~). Formal flat

sections indexed by the cohomology basis were written down by Givental [Giv96]
in terms of descendent Gromov-Witten invariants. We denote these sections by
S0, . . . , S2m−1 in the case of Q2m−1, and by S0, . . . , Sm−1, S

′
m−1, Sm, · · · , S2m−2

for Q2m−2, in keeping with the notation from (8) for Schubert classes. See [CK99,
(10.14)] for a precise definition of the sections Si.

We also consider the quantum differential operators, see for example [CK99,
Definition 10.3.2], as the differential operators P which are formal power series in

~q∂q, q, ~
and which annihilate the top coefficients of Givental’s flat sections, for example,
P · 〈Sj , σ0〉 = 0 for the flat section Sj .

Definition 4.1. We define Givental’s J-function in our setting as

J = (2πi~)N
∑
〈Sj , σ0〉σPD(j)

where the sum is over all the Schubert classes, including σ′m−1 in the even case,
and where σPD(j) stands for the Poincaré dual cohomology class to σj .

4.2. The hypergeometric series of QN . A special role is played by the term
〈SN , σ0〉, appearing as the coefficient of the fundamental class in the definition of
J-function. This term is special in that it is a power series in q = ~−Nq. We define
it as in [BCFKvS98]:

Definition 4.2. The hypergeometric series AX of X is the unique power series
of the form AX = 1 +

∑∞
k=1 akq

k, for which P (q∂q, q, 1)AX = 0 for all quantum
differential operators P (~q∂q, q, ~) specialized to ~ = 1.

The hypergeometric series of the quadric may be obtained by setting ~ to 1 in
〈SN , σ0〉. Or in our example 〈SN , 1〉 = AX(~−Nq).

The hypergeometric series of the quadric counts certain 1-pointed Gromov-
Witten invariants. Let

(29) Id(ψ
a1
1 γ1, . . . , ψ

ar
r γr)

denote the degree d descendant Gromov-Witten invariant associated to the coho-
mology classes γ1, . . . , γr, where the ψ-class ψi denotes the first Chern class of the
ith cotangent bundle of the moduli space of degree d genus 0 stable maps with r
marked points. [CK99, ]. Let ψ denote ψ1.
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Indeed, if we write

JQN =
∑

JQNi σPD(i),

we have

JQNN = 1 +

∞∑
d=1

qdId

(
σNe

ln(q)σ1
~

~− ψ
, σ0

)

= 1 +

∞∑
d=1

∞∑
j=0

∞∑
k=0

qd

~
Id

(
σN

(
ln(q)σ1

~

)j
1

j!

(
ψ

~

)k
, σ0

)

The cup-product σN

(
ln(q)σ1

~

)j
is nonzero if and only if j = 0. Therefore we have

JQNN = 1 +

∞∑
d=1

∞∑
k=0

qd

~
Id

(
σN

(
ψ

~

)k
, σ0

)
.

Now we use the fact that the dimension of the moduli space of stable mapsM0,2(QN , d)
is (d+ 1)N − 1, which gives

JQNN = 1 +

∞∑
d=1

qd

~
Id

(
σN

(
ψ

~

)dN−1
, σ0

)
.

Next we use the fundamental class axiom to get

JQNN = 1 +

∞∑
d=1

( q

~N
)d
Id
(
σNψ

dN−2) .
When we set ~ = 1, this is exactly the hypergeometric series of the quadric, so we
obtain the following geometric interpretation of AX(q):

(30) ad = Id
(
σNψ

dN−2) .
5. The B-model connection

For the B-model, recall that X̌◦ is the complement of an anti-canonical divisor
in X̌. Therefore there is an up to scalar unique non-vanishing holomorphic n-form
on X̌◦ which we will fix and call ω. Let Ωk(X̌◦) denote the space of all holomorphic
k-forms.

Definition 5.1. Define the C[~, q]-module

G
Wq

0 := Ωn(X̌◦)[~, q]/(~d+ dWq ∧ −)Ωn−1(X̌◦)[~, q].

It has a meromorphic (Gauss-Manin) connection given by

B∇q∂q [α] = q
∂

∂q
[α]− 1

~

[
∂Wq

∂q
α

]
,(31)

B∇~∂~ [α] = ~
∂

∂~
[α] +

1

~
[Wqα].(32)

Let GWq = G
Wq

0 ⊗C[~,q] C[~±1, q±1]. We view GWq as a C[~±1, q±1]〈∂~, ∂q〉-module

with q∂q acting by B∇q∂q and ~∂~ acting by B∇~∂~ .
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5.1. The case of odd-dimensional quadrics. For odd-dimensional quadrics, an
isomorphism between the connections (or D-modules) on the two sides has been
proved by Gorbounov and Smirnov in [GS13], for their LG model constructed there.
And the two first-named authors have established in [PR13a] that the Gorbounov-
Smirnov LG model is isomorphic to the one obtained from the general construction
of [Rie08] for homogeneous spaces. Hence we obtain the following result.

Theorem 5.1. The map

H∗(Q2m−1,C) → H2m−1
dR (X̌◦2m−1, d+ dWq ∧ −)

σi 7→ [piω]

defines an isomorphism of bundles with connection between the A-model and the
B-model for X = Q2m−1.

5.2. The case of even-dimensional quadrics. We need to prove a similar result
to Theorem 5.1 for even quadrics Q2m−2. To do this we will use the cluster algebra
structure on our mirror X̌◦2m−2 introduced in Section 3.7. We want to prove the
following theorem.

Theorem 5.2. For X = Q2m−2 with its mirror LG-model (X̌◦2m−2,W ) from The-
orem 3.1, the map

H∗(Q2m−2,C[~±1, q±1]) → GWq

σi 7→ [piω]

defines an injective homomorphism of D-modules. Here the D-module on the left
hand side is the one defined in terms of the (small) Dubrovin connection in the A-
model, and the D-module on the right hand side is the one defined via the B-model
Gauss-Manin connection.

It would be interesting to see if the proof of cohomological tameness of the
superpotential in the odd quadrics case given in [GS13] with Nemethi and Sabbah
could be adapted to give a proof of the same property in the even case. This would
imply that the injective homomorphism in Theorem 5.2 is an isomorphism.

We recall from Section 3.7 and [GLS11] that the cluster structure on C[X̌◦2m−2]
admits the following initial quiver:

p1 p2 . . . pm−3 pm−2

δ1δ0 δ2 . . . δm−3 pm−1 p′m−1

Here the initial cluster variables correspond to the vertices in the top row of the
quiver, while the frozen variables (or coefficients) correspond to the vertices in the
bottom row. Recall that the pi’s are Plücker coordinates, and the δi’s are defined as
in (10). Hence we see that the coordinate ring of X̌0

2m−2 has a cluster structure of

type Am−21 . In particular, it is of finite type, and there are 2m−2 different clusters,
consisting of

• the cluster variables q1, . . . , qm−2, where qi ∈ {pi, p2m−2−i} ;
• the frozen variables (or coefficients) δ0, . . . , δm−3, pm−1 and p′m−1.
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The exchange relations are

pip2m−2−i =

{
δi−1 + δi for 1 ≤ i ≤ m− 3 ;

δm−3 + pm−1p
′
m−1 for i = m− 2.

(33)

To prove Theorem 5.2, consider the following identities inQH∗(Q2m−2,C), which
are a special case of results in [FW04]:

σ1 ?q σi =


σi+1 for 0 ≤ i ≤ m− 3 or m− 1 ≤ i ≤ 2m− 4 ;

σm−1 + σ′m−1 for i = m− 2 ;

σ2m−2 + qσ0 for i = 2m− 3 ;

qσ1 for i = 2m− 2,

(34)

and

(35) σ1 ?q σ
′
m−1 = σm.

We need to prove that there are similar identities on the B side:

[
q
∂Wq

∂q
piω

]
=


[pi+1ω] for 0 ≤ i ≤ m− 3 or m− 1 ≤ i ≤ 2m− 4 ;

[(pm−1 + p′m−1)ω] for i = m− 2 ;

[(p2m−2 + q)ω] for i = 2m− 3 ;

[qp1ω] for i = 2m− 2,

(36)

and

(37)

[
q
∂Wq

∂q
p′m−1ω

]
= [pmω].

The proof of these identities in GWq proceeds by constructing closed (2m − 3)-
forms νi and ν′m−1 such that the relation corresponding to pi will follow from

[dWq ∧ νi] = [(~d+ dWq ∧ −)νi] = 0

and similarly for p′m−1.
Concretely, we will pick a cluster C containing a particular Plücker coordinate,

say pi, and use the following Ansatz for constructing νi. We define a vector field,

(38) ξi = pi

 ∑
c∈C\{pi}

mcc∂c


and define an associated (2m− 3)-form by insertion νi = ιξiω, and analogously for
ν′m−1 = ιξ′m−1

ω.

To prove those identities, we will work in two cluster charts:

• the chart C1 corresponding to the initial cluster

{p1, . . . , pm−2, δ1, . . . , δm−3, pm−1, p′m−1};

• the chart C2 corresponding to the cluster

{p2m−3, . . . , pm, δ1, . . . , δm−3, pm−1, p′m−1}.
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Let us first start with C1 and expressWq in this chart using the exchange relations
(33), having set p0 = 1 :

Wq =p1 +

m−3∑
`=1

(
p`+1δ`−1
p`δ`

+
p`+1

p`

)
+

δm−3
pm−2pm−1

+
δm−3

pm−2p′m−1
(39)

+
pm−1
pm−2

+
p′m−1
pm−2

+ q
p1
δ0
.

The partial derivatives of Wq are:

p1
∂Wq

∂p1
= p1 −

p2δ0
p1δ1

− p2
p1

+ q
p1
δ0

(40)

pi
∂Wq

∂pi
=

piδi−2
pi−1δi−1

+
pi
pi−1

− pi+1δi−1
piδi

− pi+1

pi
for 2 ≤ i ≤ m− 3(41)

pm−2
∂Wq

∂pm−2
=
pm−2δm−4
pm−3δm−3

+
pm−2
pm−3

− δm−3
pm−2pm−1

− δm−3
pm−2p′m−1

− pm−1
pm−2

−
p′m−1
pm−2

(42)

δ0
∂Wq

∂δ0
=
p2δ0
p1δ1

− q p1
δ0

(43)

δi
∂Wq

∂δi
= −pi+1δi−1

piδi
+

pi+2δi
pi+1δi+1

for 1 ≤ i ≤ m− 4(44)

δm−3
∂Wq

∂δm−3
= −pm−2δm−4

pm−3δm−3
+

δm−3
pm−2pm−1

+
δm−3

pm−2p′m−1

(45)

pm−1
∂Wq

∂pm−1
= − δm−3

pm−2pm−1
− δm−3
pm−2p′m−1

+
pm−1
pm−2

(46)

p′m−1
∂Wq

∂p′m−1
= − δm−3

pm−2pm−1
− δm−3
pm−2p′m−1

+
p′m−1
pm−2

.

(47)

Hence

m−1∑
j=1

pj
∂Wq

∂pj
+ p′m−1

∂Wq

∂p′m−1
+ 2

m−3∑
j=0

δj
∂Wq

∂δj
= p1 − q

p1
δ0

(48)

m−1∑
j=i

pj
∂Wq

∂pj
+ p′m−1

∂Wq

∂p′m−1
+

m−3∑
j=0

δj
∂Wq

∂δj
+

m−3∑
j=i−1

δj
∂Wq

∂δj
=

pi
pi−1

− q p1
δ0

(49)

for 2 ≤ i ≤ m− 2

pm−1
∂Wq

∂pm−1
+ p′m−1

∂Wq

∂p′m−1
+

m−3∑
j=0

δj
∂Wq

∂δj
= −q p1

δ0
+
pm−1 + p′m−1

pm−2
,(50)

which is equivalent to the identity (37) for 0 ≤ i ≤ m− 2.
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To prove the remaining identities, we use the cluster chart C2. In this chart, Wq

takes the following form:

Wq =
δ0

p2m−3
+

δ1
p2m−3

+

m−4∑
`=1

(
p2m−2−`
p2m−3−`

+
p2m−2−`δ`+1

p2m−3−`δ`

)
+

pm
pm−1

(51)

+
pm
p′m−1

+
pm+1

pm
+
pm−1p

′
m−1pm+1

pmδm−3
+

q

p2m−3
+ q

δ1
p2m−3δ0

.

Working out the partial derivatives of Wq as before, we get

p′m−1
∂Wq

∂p′m−1
+

2m−3∑
j=m

pj
∂Wq

∂pj
+

m−3∑
j=0

δj
∂Wq

∂δj
= − pm

pm−1
+

q

p2m−3
+ q

δ1
p2m−3δ0

(52)

pm−1
∂Wq

∂pm−1
+

2m−3∑
j=m

pj
∂Wq

∂pj
+

m−3∑
j=0

δj
∂Wq

∂δj
= − pm

p′m−1
+

q

p2m−3
+ q

δ1
p2m−3δ0

(53)

2m−3∑
j=i

pj
∂Wq

∂pj
+

2m−2−i∑
j=0

δj
∂Wq

∂δj
=

pi
pi−1

− q

p2m−3
− q δ1

p2m−3δ0
(54)

for m+ 1 ≤ i ≤ 2m− 4

δ0
∂Wq

∂δ0
=

δ0
p2m−3

− q δ1
p2m−3δ0

(55)

0 = q
δ0 + δ1
p2m−3δ0

δ0 − q
δ0 + δ1
p2m−3

(56)

This gives us the identities (36) for m− 1 ≤ i ≤ 2m− 2, as well as the identity
(37).

6. The hypergeometric series of QN

Recall from Section 4 the definition of the quantum differential operators and
the hypergeometric series of QN . We will denote by AN (q) the hypergeometric
series of the quadric QN .

The main result of this section is the following.

Theorem 6.1. The hypergeometric series of the quadric QN is

AN (q) = 1 +
∑
k≥1

1

(k!)N

(
2k

k

)
qk.

The theorem allows us to deduce a formula for some 1-pointed Gromov-Witten
invariants, using Theorem 6.1 and Equation (30).

Corollary 6.2. The Gromov-Witten invariant Id(σNψ
Nd−2) satisfies

Id(σNψ
Nd−2) =

1

(d!)N

(
2d

d

)
.

We give an A-model and a B-model proof of Theorem 6.1.

B-model proof. Our B-model proof works by calculating the constant term of the
exponential exp( 1

~Wq) of the superpotential, and showing that it equals

AN (q, ~) =
∑
k≥0

1

~kN
1

(k!)N

(
2k

k

)
qk.
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Let us consider the case that N = 2m+ 1. In this case recall from (5) that the
superpotential is

Wq = a1 + · · ·+ am + c+ bm + · · ·+ b1 +
q

a2 . . . amcbm . . . b1
+

q

a1 . . . amcbm . . . b2
.

To compute the constant term of exp( 1
~Wq), we consider 1 + 1

~Wq + 1
~2

W 2
q

2! +

1
~3

W 3
q

3! + . . . , and we pick out from each
W i
q

~ii! any term which is a monomial in

q alone, i.e. any term λqj where λ ∈ Q[ 1~ ]. Here we just need to look at each
WkN
q

~kN (kN)!
for k = 0, 1, 2, . . . , because the expansion of

W i
q

~ii! for i not a multiple of N

will contain no terms of the form λqj for λ ∈ Q[ 1~ ].

Now let us analyze
WkN
q

~kN (kN)!
for N = 2m + 1. A (Laurent) monomial in the

expansion of W
k(2m+1)
q is obtained by choosing one term in each of the k(2m+ 1)

factors. Some of the monomials in the expansion will be pure in the variable q
alone – in which case they will equal qk. We need to show that the number of such
monomials divided by (k(2m+ 1))! equals

(
2k
k

)
/(k!)k(2m+1). To count the number

of such monomials, we need to pick one term in each of the k(2m + 1) factors so
that we:

• choose i terms which are q
a2...amcb1...bm

for some 0 ≤ i ≤ k;

• choose k − i terms which are q
a1...amcb2...bm

;
• choose k terms which are c;
• choose i terms which are b1;
• choose k − i terms which are a1;
• for each j such that 2 ≤ j ≤ m, choose k terms which are aj ;
• for each j such that 2 ≤ j ≤ m, choose k terms which are bj .

The number of ways to do this is the sum of multinomial coefficients

k∑
i=0

(
k(2m+ 1)

i, k − i, k, i, k − i, k . . . k

)
,

where the number of k’s in the string k . . . k above is 2m − 2. Recall here that if
q1 + q2 + · · · + qr = p are positive integers, then the corresponding multinomial
coefficient is defined by (

p

q1, q2, . . . , qr

)
=

p!

q1!q2! . . . qr!
.

So the coefficient of qk in

W
k(2m+1)
q

(k(2m+ 1))!

equals

1

(k(2m+ 1))!

k∑
i=0

(
k(2m+ 1)

k, . . . , k, i, k − i, i, k − i

)
=

1

(k!)2m−1

k∑
i=0

1

i!(k − i)!i!(k − 1)!

=
1

(k!)2m+1

k∑
i=0

(
k

i

)2

=
1

(k!)2m+1

(
2k

k

)
,
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and therefore the coefficient of qk in

W
k(2m+1)
q

~k(2m+1)(k(2m+ 1))!

equals 1
~k(2m+1)

1
(k!)2m+1

(
2k
k

)
.

This completes the proof when N = 2m + 1. The proof when N = 2m is
completely analogous, using the formula from Proposition 3.3 for the superpotential.

�

A-model proof. Our A-model proof works by recovering Corollary 6.2 from Kontsevich-
Manin’s recurrence relations for Gromov-Witten invariants [KM98]. Define

βk,d = Id(ψ
Nd−1−kσN , σk),

so that Id(σNψ
dN−2) = 1

dβ1,d by the divisor axiom.
Let us first assume that N = 2m − 1 is odd. Using the divisor axiom and

topological recursion, we get:

dβk,d = Id(ψ
Nd−1−kσN , σk, σ1) =


βk+1,d if k 6∈ {m− 1, N − 1, N}
2βm,d if k = m− 1

βN,d + β0,d−1 if k = N − 1

β1,d−1 if k = N .

An easy computation then gives β1,d+1 = β1,d
2(2d+1)
d(d+1)N

, and β1,1 = 2, which yields

Corollary 6.2. �
Similarly, in the case where N = 2m− 2 is even:

dβk,d = Id(ψ
Nd−1−kσN , σk, σ1) =


βk+1,d if k 6∈ {m− 2, N − 1, N}
βm−1,d + β′m−1,d if k = m− 2

βN,d + β0,d−1 if k = N − 1

β1,d−1 if k = N ,

and

dβ′m−1,d = βm,d.

Corollary 6.2 is then easily checked. �

We also compute the constant term of p` exp( 1
~Wq) for each Plücker coordinate

p`. This is a series in q which also has an interpretation in terms of descendant
Gromov-Witten invariants.
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Theorem 6.3. Let QN be an even or odd quadric. Then the constant term coeffi-
cient of p` exp( 1

~Wq) is given by:

∑
k≥0

1

~kN−`
· 1

(k!)N+1
·
(

2k

k

)
k · qk if ` = 1,

∑
k≥0

1

~kN−`
· 1

(k!)N
· 1

2

(
2k

k

)
k`−1(k − 1) · qk if 2 ≤ ` ≤

⌊
N − 1

2

⌋
,

∑
k≥0

1

~kN−`
· 1

(k!)N
· 1

2

(
2k

k

)
k` · qk if

⌊
N + 1

2

⌋
≤ ` ≤ N − 1,

∑
k≥0

1

~(k+1)N−` ·
1

(k!)N
· k

k + 1
·
(

2k

k

)
· qk+1 if ` = N ,

Proof. The proof is entirely analogous to the B-model proof of Theorem 6.1. We
will give the proof in one representative case, but omit the other cases, which are
extremely similar.

Let us consider the case that N = 2m, and m + 2 ≤ ` ≤ 2m − 1. In this
case recall that p` = a1 . . . am−1cdbm−1 . . . b2m+1−`, and recall from (19) that the
superpotential Wq equals

a1+· · ·+am−1+c+d+bm−1+· · ·+b1+
q

a2 . . . am−1cdbm−1 . . . b1
+

q

a1 . . . am−1cdbm−1 . . . b2
.

To compute the constant term of p` exp( 1
~Wq), we consider p`(1+ 1

~Wq+ 1
~2

W 2
q

2! +

1
~3

W 3
q

3! + . . . ), and we pick out from each p`
W i
q

~ii! every term which has the form λqj

where λ ∈ Q[ 1~ ]. Here we just need to look at each
WkN−`
q

~kN−`(kN−`)! for k = 1, 2, . . . ,

because the expansion of p`
W i
q

~ii! for i not of the form kN − ` will contain no terms

of the form λqj for λ ∈ Q[ 1~ ].

Now let us analyze p`
WkN−`
q

~kN−`(kN−`)! for N = 2m. A (Laurent) monomial in the

expansion of p`W
k(2m)−`
q is obtained by choosing one term in each of the k(2m)− `

factors. Some of the monomials in the expansion will be pure in the variable q
alone – in which case they will equal qk. We need to show that the number of such
monomials divided by (k(2m)− `)! equals 1

2

(
2k
k

)
k`/(k!)k(2m). To count the number

of such monomials, we need to pick one term in each of the k(2m) − ` factors so
that we:

• choose i terms which are q
a2...am−1cdbm−1...b1

for some 0 ≤ i ≤ k;

• choose k − i terms which are q
a1...am−1cdbm−1...b2

;

• choose k − 1 terms which are c;
• choose k − 1 terms which are d;
• choose i terms which are b1;
• choose k − i− 1 terms which are a1;
• for each j such that 2 ≤ j ≤ m− 1, choose k − 1 terms which are aj ;
• for each j such that 2 ≤ j ≤ 2m− `, choose k terms which are bj .
• for each j such that 2m− ` < j ≤ m− 1, choose k − 1 terms which are bj .
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The number of ways to do this is the sum of multinomial coefficients

(57)

k∑
i=0

(
k(2m)− `

i, i, k − i, k − i− 1, k . . . k, k − 1 . . . k − 1

)
,

where the number of k’s in the string k . . . k above is 2m− `− 1, and the number
of k − 1’s in the string k − 1 . . . k − 1 above is ` − 1. When we simplify (57) and

divide by (k(2m)− `)!, we obtain 1
2

(
2k
k

)
k`/(k!)k(2m), as desired. �

7. A quiver description of the Laurent polynomial mirrors

As Gr2(4) is defined by a single (quadratic) Plücker relation, the hypergeometric
series for Gr2(4) must agree with the one for Q4. This hypergeometric series was ob-
tained earlier in [BCFKvS98], and it was shown to agree with a residue integral for
a (conjectural) Laurent polynomial superpotential. Indeed [BCFKvS98] described
conjectural Laurent polynomial mirrors for all Grassmannians using quivers, along
the lines of Givental’s mirrors for SLn/B from [Giv97], and worked out the residue
integrals which give rise to the hypergeometric series of the Grassmannians. These
are also described in terms of the quivers.

For Gr2(4) the quiver from [BCFKvS98] is shown in Figure 1. The superpoten-
tial can be read off easily. There are two versions. In the left hand picture the
coordinates tij of (C∗)4 are in bijection vertices of the quiver. To each arrow we
associate a Laurent monomial by taking the coordinate at the head of the arrow
divided by the coordinate at the tail. The Laurent polynomial corresponding to
the quiver is the sum of all of the Laurent monomials associated to the arrows.

?

1

q

?

t
t22

tt12t11

t21 t
t

-

?

??

-

- ?

1

q

?

t
t

t
t

-

?

?
m4

m2

m1

m3

?

-

-

Figure 1. The quiver for Gr2(4).

The labels mi of the arrows in the right hand version are another natural choice
of coordinates on the torus. Indeed these are coordinates coming from factoriza-
tions into one-parameter subgroups of Lie theoretic mirrors, compare [MR13]. We
suppose the remaining arrows are labelled in such a way that the square commutes
and a/any path leading from 1 to q has labels whose product equals q. These are
Laurent monomials in the variables mi. Then the Laurent polynomial superpoten-
tial is obtained in [BCFKvS98] as the sum of the labels of all of the arrows of the
quiver. In the case of Gr2(4) it is

m1 +m2 +m3 +m4 +
m1m2

m3
+ q

1

m1m2m3
.

This is equivalent to the superpotential for Q4,

a1 + c+ d+ b1 + q
a1 + b1
a1b1cd

.



26 C. PECH, K. RIETSCH, AND L. WILLIAMS

This superpotential comes from the quiver

?

1

q

?

t
d

c

b1 a1t
t
t

?

?

?

?

@
@
@R

@
@
@R

Figure 2. The quiver for Q4.

More generally, our Laurent polynomial mirrors for QN can be described using
quivers in a completely analogous way, see Figure 3. Here the top N − 2 vertical
arrows are labeled from top to bottom by a2, a3, . . . , am−1, c, bm−1, . . . , b2 for odd
quadricsQ2m−1, and by a2, a3, . . . , am−2, c, d, bm−2, . . . , b2 for even quadricsQ2m−2.
Note the relation with the factorization (21).

Remark 2. It is interesting to note that our quivers (restricted to the vertices which
are not labeled by q) are orientations of type D Dynkin diagrams. So we have three
ways to associate a Dynkin diagram to a quadric: the type of its symmetry group,
the type of the cluster algebra associated to its coordinate ring, and the type of the
quiver defining its superpotential. See Table 1 below.
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b1 a1 b1 a1
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t
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t
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?
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@
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@
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a2

c

d
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Figure 3. The quiver for QN , plus the labeled quivers for Q5 and Q6.
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Quadric Type of symmetry group Cluster type Superpotential Quiver

Q3 B2 A1 D4

Q4 D3 A1 D5

Q5 B3 A2
1 D6

Q6 D4 A2
1 D7

Q7 B4 A3
1 D8

...
...

...
...

Table 1. Dynkin diagrams associated to quadrics

8. The hypergeometric equation of a quadric

Justifying its name, the hypergeometric series of the quadric computed in The-
orem 6.1 is a generalised hypergeometric series; indeed, the general k-th coefficient
of the series is a rational function of k. Following standard notation we will denote
by

pFr (a1, . . . , ap; b1, . . . , br; z)

the series whose general term βk is such that

βk+1

βk
=

(a1 + k) . . . (ap + k)

(b1 + k) . . . (br + k)(1 + k)

and β0 = 1. We immediately get that

AN (q, ~) = 1FN

(
1

2
; 1, . . . , 1;

4

~N
q

)
.

It is well-known that the hypergeometric series w = pFr (a1, . . . , ap; b1, . . . , br; z)
satisfies the differential equation

z

p∏
n=1

(z
∂

∂z
+ an)w = z

∂

∂z

r∏
n=1

(z
∂

∂z
+ bn − 1)w,

see for example [AOD10, (16.8.3)]. As a consequence, we obtain a differential
equation satisfied by the hypergeometric series of the quadric.

Proposition 8.1. The hypergeometric series of the N -dimensional quadric QN
satisfies the following differential equation :[(

~q
∂

∂q

)N+1

− q
(

4~q
∂

∂q
+ 2~

)]
AN (q, ~) = 0.

Let us check that this quantum differential equation gives rise to a relation in
quantum cohomology. Indeed (see for instance [CK99]), if P (~q ∂∂q , q, ~)AN = 0,

then P (σ1, q, 0) = 0 in QH∗(QN ,C). Here we should have:

σN+1
1 − 4qσ1 = 0,

which indeed holds in QH∗(QN ,C), for example by an application of the quantum
Chevalley formula, see [FW04].

Note that the differential system for the flat sections of the Dubrovin connection
on QN can also be rewritten as a generalised hypergeometric differential equation,
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along the lines of [Dub99, Example 4.4] for projective spaces. We expect in this
way to obtain the hypergeometric equation appearing in Proposition 8.1 directly
from the A-model side.
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