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Introduction
Motivation

Quantum cohomology has been extensively studied for

I homogeneous spaces ;

I toric varieties.

But

I very few explicit formulas for non-homogeneous non-toric
varieties ;

I quasi-homogeneous varieties (e.g odd symplectic
Grassmannians) should provide interesting examples.
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Introduction
What are odd symplectic Grassmannians ?

Studied by Mihai (2007).

Definition
ω antisymmetric form of maximal rank on C2n+1.

IGω(m, 2n + 1) := {Σ ∈ G(m, 2n + 1) | Σ is isotropic for ω} .

Remarks

1. independant of the form ω ;

2. endowed with an action of the odd symplectic group :

Sp2n+1 := {g ∈ GL(2n + 1) | ∀u, v ∈ V ω(gu, gv) = ω(u, v)} ;

3. odd symplectic Grassmannians of lines are the m = 2 case.
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Introduction
What are odd symplectic Grassmannians ?

Properties (of IG(m, 2n + 1))

1. smooth subvariety of dimension m(2n + 1−m)− m(m−1)
2 of

G(m, 2n + 1).

2. two orbits under the action of Sp2n+1 :
I closed orbit O := {Σ ∈ IG(m, 2n + 1) | Σ ⊃ K}, isomorphic to

IG(m − 1, 2n) ;
I open orbit {Σ ∈ IG(m, 2n + 1) | Σ 6⊃ K}, isomorphic to the

dual of the tautological bundle over IG(m, 2n) ;

where K = Ker(ω).



Classical cohomology
Schubert varieties for the symplectic Grassmannian

Schubert varieties of the symplectic Grassmannian IG(m, 2n)

I are subvarieties defined by incidence conditions with respect
to an isotropic flag ;

I can be indexed by k-strict partitions
(cf Buch-Kresch-Tamvakis), i.e

λ = (2n−m ≥ λ1 ≥ · · · ≥ λm ≥ 0) such that λj > k ⇒ λj > λj+1,

with k = n −m ;

I correspond to classes σλ ∈ H|λ|(IG,Z) generating the
cohomology ring H∗(IG,Z) as a Z-module.



Classical cohomology
Schubert varieties for IG(m, 2n + 1)

Embedding in the symplectic Grassmannian :

I IG(m, 2n + 1) ↪→ IG(m, 2n + 2) identifies IG(m, 2n + 1) with
a Schubert variety of IG(m, 2n + 2) (Mihai) ;

I hence “induced” Schubert varieties for IG(m, 2n + 1) and
decomposition H∗(IG(m, 2n + 1),Z) =

⊕
λ Zσλ.

For IG(2, 2n + 1), Schubert varieties are indexed by

I “usual” (n− 2)-strict partitions λ = (2n− 1 ≥ λ1 ≥ λ2 ≥ 0) ;

I the “partition” λ = (2n − 1,−1) corresponding to the class of
the closed orbit O.
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Classical cohomology
Special Schubert classes ; Pieri and Giambelli formulas

H∗(IG(2, 2n + 1),Z) is generated as a ring by two sets of special
Schubert classes :

1. “rows” σp for 1 ≤ p ≤ 2n − 1, plus the class σ2n−1,−1 ;

2. “columns” σ1 and σ1,1.

Definition

I A Pieri formula is a rule for multiplying any Schubert class
with a special class ;

I A Giambelli formula is a rule expressing any Schubert class as
a polynomial in special classes.

Knowing both formulas, all cup-products of Schubert classes can
be computed.
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Classical cohomology
A Pieri formula for IG(2, 2n + 1)

I i : IG(m, 2n + 1) ↪→ IG(m, 2n + 2) induces a restriction map
in cohomology, which happens to be surjective.

I For m = 2 the map and its “inverse” can be explicitely
computed.

I So Pieri rules for IG(2, 2n + 2) (cf Pragasz-Ratajski,
BKT) can be “pulled back” to IG(2, 2n + 1), hence

Proposition (Pieri formula for IG(2, 2n + 1))

σa,b · σ1 =

{
σa+1,b + σa,b+1 if a + b 6= 2n − 3,

σa,b+1 + 2σa+1,b + σa+2,b−1 if a + b = 2n − 3.

σa,b · σ1,1 =

{
σa+1,b+1 if a + b 6= 2n − 4, 2n − 3,

σa+1,b+1 + σa+2,b if a + b = 2n − 4 or 2n − 3.



Classical cohomology
Giambelli formula and presentation

To find a Giambelli formula for IG(2, 2n + 1) :

I use the well-known Giambelli formula on G(2, 2n + 1) ;

I “pull it back” to IG(2n + 1) by the natural embedding
IG(2, 2n + 1) ↪→ G(2, 2n + 1) ;

I get an explicit formula.

Proposition (Presentation of H∗ (IG(2, 2n + 1),Z))

The ring H∗ (IG(2, 2n + 1),Z) is generated by the classes σ1, σ1,1
and the relations are

det (σ11+j−i )1≤i ,j≤2n = 0

1

σ1
det (σ11+j−i )1≤i ,j≤2n+1 = 0



Quantum cohomology
Definition

Goal : compute the small quantum product

σα,β ? σγ,δ =
∑
d≥0

∑
Id(σα,β · σγ,δ · σ̌ε,ζ)︸ ︷︷ ︸
Gromov-Witten invariant

σε,ζqd ,

where

I q is the quantum parameter and has degree 2n ;

I σε,ζ runs through the Schubert classes ; σ̌ε,ζ runs through the
corresponding dual basis.

Idea : to compute the GW invariants, use their enumerative
interpretation.



Quantum cohomology
Definition

Goal : compute the small quantum product

σα,β ? σγ,δ =
∑
d≥0

∑
Id(σα,β · σγ,δ · σ̌ε,ζ)︸ ︷︷ ︸
Gromov-Witten invariant

σε,ζqd ,

where

I q is the quantum parameter and has degree 2n ;

I σε,ζ runs through the Schubert classes ; σ̌ε,ζ runs through the
corresponding dual basis.

Idea : to compute the GW invariants, use their enumerative
interpretation.



Quantum cohomology
Enumerativity of GW invariants

What does it mean ?

Id(γ1, γ2, γ3) = number of degree d rational curves through Γ1, Γ2, Γ3,

where Γi ’s are cycles Poincaré dual to the classes γi .
What are the obstructions ?

1. moduli space may not have the expected dimension ;

2. maybe Γi ’s can’t be made to intersect transversely ;

3. stable maps with reducible source may contribute ;

4. a curve may cut one of the Γi ’s in several points, contributing
several times to the invariant ;

5. similarly a curve may cut one of the Γi ’s with multiplicities.



Quantum cohomology
The moduli spaces M0,2(IG, 1) and M0,3(IG, 1)

Proposition

The moduli spaces M0,2(IG, 1) and M0,3(IG, 1) are smooth (as
stacks) and of the expected dimension.

Idea of proof : We prove that H1(f ∗T IG) = 0 for each stable f .

I If no irreducible component of the source of f is entirely
mapped into O, use the generic global generation of f ∗T IG
due to the transitive Sp2n+1-action on IG \O ;

I Else use the tangent exact sequence of the closed orbit and
prove that H1(f ∗T NO) = 0.
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Quantum cohomology
Graber’s lemma

For homogeneous varieties, enumerativity of GW invariants comes
from Kleiman’s lemma. For quasi-homogeneous spaces there is a
version by Graber :

Lemma

I G a connected algebraic group ;

I X a quasi-G -homogeneous variety ;

I f : Z → X a morphism from an irreducible scheme ;

I Y ⊂ X intersecting the orbit stratification properly.

Then there exists a dense open subset U of G such that ∀g ∈ U,
f −1(gY ) is either empty or has pure dimension
dim Y + dim Z − dim X .



Quantum cohomology
Enumerativity theorem

Theorem

I r = 2 or 3 ;

I Y1, . . . ,Yr cycles in IG representing γ1, . . . , γr and
intersecting O generically transversely ;

I deg γi ≥ 2 for all i ;

I
∑r

i=1 deg γi = dimM0,r (IG, 1).

Then there exists a dense open subset U ⊂ Spr2n+1 such that for
all g1, . . . , gr ∈ U, the Gromov-Witten invariant I1(γ1, . . . , γr ) is
equal to the number of lines of IG incident to the translates
g1Y1, . . . , grYr .

Idea of proof : We get rid of the last three obstructions to
enumerativity using Graber’s lemma.
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Quantum cohomology
Finding subvarieties with transverse intersection

Problem :

I To compute an invariant with the enumerativity theorem we
need transverse cycles.

I Schubert varieties can never be made to intersect transversely.

Solution :

I Use pullbacks of the Schubert varieties of the type A
Grassmannian G(2, 2n + 1) ;

I They can be made to intersect transversely on the
homogeneous space G(2, 2n + 1) ;

I Corresponding pullbacks to IG(2, 2n + 1) stay transverse.
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Quantum cohomology
Quantum Pieri rule for IG(2, 2n + 1)

Theorem

σ1 ? σa,b =


σa+1,b + σa,b+1 if a + b 6= 2n − 3 and a 6= 2n − 1,
σa,b+1 + 2σa+1,b + σa+2,b−1 if a + b = 2n − 3,
σ2n−1,b+1 + qσb if a = 2n − 1 and 0 ≤ b ≤ 2n − 3,
q(σ2n−1,−1 + σ2n−2) if a = 2n − 1 and b = 2n − 2.

σ1,1 ? σa,b =


σa+1,b+1 if a + b 6= 2n − 4, 2n − 3 and a 6= 2n − 1,
σa+1,b+1 + σa+2,b if a + b = 2n − 4 or 2n − 3,
qσb+1 if a = 2n − 1 and b 6= 2n − 3,
q(σ2n−1,−1 + σ2n−2) if a = 2n − 1 and b = 2n − 3.



Quantum cohomology
Quantum Hasse diagrams

Figure: Quantum Hasse diagrams of IG(2, 6) and IG(2, 7)



Quantum cohomology
Quantum presentation

Proposition (Presentation of QH∗ (IG(2, 2n + 1),Z))

The ring QH∗ (IG(2, 2n + 1),Z) is generated by the classes σ1,
σ1,1 and the quantum parameter q. The relations are

det (σ11+j−i )1≤i ,j≤2n = 0

1

σ1
det (σ11+j−i )1≤i ,j≤2n+1 + q = 0

Corollary

1. QH∗ (IG(2, 2n + 1),Z)q 6=0 is semisimple ;

2. hence Dubrovin’s conjecture holds for IG(2, 2n + 1).
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Conclusion

Main results :

I Enumerativity of GW invariants ;

I Quantum Pieri formula ;

I Quantum presentation and semisimplicity.

Next step :

I The m > 2 case ?
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