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A Landau-Ginzburg model for Lagrangian Grassmannians,
Langlands duality and relations in quantum cohomology

C. Pech and K. Rietsch

Abstract

In [Rie08], the second author defined a Landau-Ginzburg model for homogeneous spaces G/P ,
as a regular function on an affine subvariety of the Langlands dual group. In this paper, we
reformulate this LG-model in the case of the Lagrangian Grassmannian LG(m) as a function Wt

on the complement X̌◦ of an anticanonical divisor in a Langlands dual orthogonal Grassmannian
X̌, in the spirit of work by R. Marsh and the second author [MR13] for type A Grassmannians.
This LG model, (X̌◦,Wt), has some very interesting features, which are not visible in the
type A case, to do with the non-triviality of Langlands duality. Moreover X̌ is embedded in
P(H∗(LG(m),C)∗) and Wt is expressed in terms of coordinates which identify with Schubert
classes of LG(m). We make use of this identification to formulate a precise conjecture relating
the Gauss-Manin system for our superpotential with the small Dubrovin connection of LG(m).
Finally, our expression for Wt leads us to conjecture new formulas in the quantum Schubert
calculus of LG(m).

1. Introduction

For a complex simple, simply connected algebraic group G and parabolic subgroup P ,
the homogeneous space G/P has a Landau-Ginzburg model defined by the second author
[Rie08], which is a regular function on an affine subvariety of the Langlands dual group and
is shown in [Rie08] to recover the Peterson variety presentation [Pet97] of the quantum
cohomology of G/P . In the case of type A Grassmannians R. Marsh and the second author
[MR13] reformulated this Landau-Ginzburg model as a rational function on a Langlands dual
Grassmannian, and used this formulation to prove a version of the mirror symmetry conjecture
about flat sections of the A-model connection stated in [BCFKvS00].

In this paper we formulate an LG-model (X̌◦,Wt) for G/P in the case of a Lagrangian
Grassmannian X = LG(m), where X̌ is a minimal co-orthogonal Grassmannian naturally
embedded into P (H∗(X,C)∗), and X̌◦ is the complement of a particular anticanonical divisor
inside X̌. Moreover, the coordinate ring of the affine variety X̌◦ is endowed with a cluster
algebra structure (see [GLS11]). We prove that this LG model is isomorphic to the LG-model
from [Rie08], and therefore recovers the quantum cohomology ring of X. This LG-model has
some very interesting features, which are not visible in the case of type A Grassmannians. These
are to do with the non-triviality of Langlands duality. Our methods are mostly representation-
theoretic, making use of the geometric Satake correspondence (see Remark 1) and of the Clifford
algebra to construct maps between representations of Spin2m+1.

We conjecture that our superpotential gives rise to integral solutions of the quantum
differential equations of LG(m). Our expression for Wt also leads us to conjecture new formulas
in the quantum Schubert calculus of LG(m).
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To give an idea of our result, which is very explicit, we give the first two interesting
examples here. Note that the Schubert basis of H∗(LG(m),C) is indexed by strict partitions λ
fitting in an m×m box and can be identified with coordinates pλ on the Grassmannian X̌ =
OGco(m+ 1, 2m+ 1) of (m+ 1)-dimensional co-isotropic subspaces of C2m+1 endowed with
a non-degenerate quadratic form. Note that OGco(m+ 1, 2m+ 1) is canonically isomorphic
to the maximal orthogonal Grassmannian OG(m, 2n+ 1). Moreover, it is related to X by
Langlands duality. The goal of this paper is to give an explicit description of a Landau-
Ginzburg model for LG(m) as a regular function on an open dense affine subvariety X̌◦ of
OGco(m+ 1, 2m+ 1). As an example, for LG(2) our Landau-Ginzburg model is

Wt =
p

p∅
+

p2

p p − p∅p
+ et

p

p
,

which is regular on X̌◦ =
{
p∅(p p − p∅p )p 6= 0

}
⊂ OGco(3, 5). For LG(3) we obtain

Wt =
p

p∅
+
p p − p∅p
p p − p∅p

+

p p − p p

p p − p p
+ et

p

p
,

which is regular on X̌◦ =

{
p∅(p p − p∅p )(p p − p p )p 6= 0

}
inside OGco(4, 7). We

generalise these definitions of X̌◦ and Wt in Section 3.2 and construct an isomorphism of
X̌◦ with the open Richardson variety appearing in [Rie08]. In Section 3.6 we prove that the
pullback of the LG-model on the Richardson variety from the same paper agrees with Wt.

Notice how the above formulas have 3, 4 summands, these numbers being the index of
X = LG(2), LG(3), respectively. Indeed this comes from the fact that in all of the cases Wt

represents the anticanonical class of X in a natural sense (in the Jacobi ring for example),
and each summand represents a hyperplane class. On the other hand, because one expects Wt

to be regular in the complement of an anticanonical divisor, and indeed the degrees of the
denominators of Wt add up to the index of X̌. That is, in the above two cases to 4 and 6, these
being the index of OGco(3, 5) and OGco(4, 7), respectively. This is exactly what is achieved
by the quadratic terms in the LG(m) cases, with 1 + 2 + 1 = 4, and 1 + 2 + 2 + 1 = 6 (and so
forth, in our general formula).

For usual Grassmannians X and X̌ are isomorphic so have the same index. Therefore
numerators and denominators in Wt are allowed to be sections of O(1), in agreement with
the formulas in [MR13].

Acknowledgements. The second author thanks Dale Peterson for his inspiring work and
lectures.

2. Background

In [Rie08], the second author gave a Lie-theoretic construction of a Landau-Ginzburg model
of any complete homogeneous space X of a simple complex algebraic group. The LG-model
(R,F) is set in the world of the Langlands dual group.

2.1. Notation

Let X be a complete homogeneous space for a simple complex algebraic group. For the
purposes of this paper we will denote the group acting on X by G∨ and assume that G∨

is simply connected, and we will denote its Langlands dual group by G, which is therefore
an adjoint group. For G∨ we may fix Chevalley generators (e∨i )1≤i≤m and (f∨i )1≤i≤m and
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correspondingly Borel subgroups B∨+ = T∨U∨+ and B∨− = T∨U∨−. We may assume that X =
G∨/P∨ for a parabolic subgroup P∨ which contains B∨+. The parabolic P∨ is determined by
a choice of subset of the (f∨i )1≤i≤m. This set also determines a parabolic subgroup P of G,
where we also have the analogous Borel subgroups B+ = TU+ and B− = TU− and Chevalley
generators (ei)1≤i≤m and (fi)1≤i≤m. Let Π = {αi | i ∈ I} denote the set of simple roots. The
set of all roots is R = R+ tR−, where R+ is the subset of positive roots and R− the subset of
negative roots.

Denote by W the Weyl group of G (canonically identified with the Weyl group of G∨), and
let WP be the Weyl group of the parabolic subgroup P . Let TWP be the WP -fixed sub-torus.
If α is a positive root, we denote by sα ∈W the associated reflection. Let R+

P be the set of all
positive roots α such that sα ∈WP , ΠP be the set of simple roots in R+

P , and ΠP = Π \ΠP .
When α = αi is a simple root, we set si := sαi . Moreover, we denote the length of w ∈W by
`(w). It is equal to the minimum number of simple reflections whose product is w. We also let
w0 and wP , be the longest elements in W and WP , respectively, and define WP to be the set
of minimal length coset representatives for W/WP . The minimal length coset representative
for w0 is denoted by wP , so that w0 = wPwP . Let ẇ denote a representative of w ∈W in G.
Later on we will make a specific choice for ẇ.

Using the exponential map we may think of U+ and U− as being embedded in the completed
universal enveloping algebra Û+, respectively Û+. Accordingly e∗i (u) will denote the coefficient
of ei in u ∈ U+ after this embedding, and analogously for f∗i and ū ∈ U−.

2.2. Quantum cohomology of G/P

The quantum cohomology ring of a smooth complex projective variety X is a deformation
of its cohomology ring. While the cohomology ring of X encodes the way its subvarieties
intersect each other, the quantum cohomology ring encodes the way they are connected by
rational curves. The structure constants of the (small) quantum cohomology ring are called
Gromov-Witten invariants. When X = G/P is homogeneous, Gromov-Witten invariants count
the number of rational curves of given degree intersecting three given Schubert varieties of X.

The quantum cohomology rings of a full flag variety was first described by Givental and
B. Kim [GK95, Kim99], who related it to a degenerate leaf of the Toda lattice of the Langlands
dual group. Soon after, Dale Peterson came up with a new point of view in which all of the
quantum cohomology rings of complete homogeneous spaces for one group are encoded in terms
of strata of one remarkable subvariety of the Langlands dual full flag variety. This so-called
Peterson variety Y is defined as follows. In our conventions Peterson’s variety Y encoding the
quantum cohomology rings of G∨-homogeneous spaces is a subvariety of G/B−. Denote by n−
the Lie algebra of U−, and by [n−, n−] its commutator subalgebra. The annihilator in g∗ of a
subspace l of g is denoted by l⊥. Consider the coadjoint action of G on g∗ and the ‘principal
nilpotent’ element F =

∑
e∗i in g∗. Then

Y := {gB− | g−1 · F ∈ [n−, n−]⊥}.

First note that this variety has an open stratum YB = Y ∩ (B+B−/B−) which is isomorphic to
the degenerate leaf of the Toda lattice for G via the map YB ↪→ g∗ defined by u+B− 7→ u−1

+ · F .
By Peterson’s theory, the quantum cohomology rings for all other G∨/P∨ are described by the
coordinate rings of the smaller strata YP = Y ∩ (B+ẇPB−/B−), where we take the intersection
in the possibly non-reduced sense.

Theorem 2.1 Peterson. The quantum cohomology of G∨/P∨ is isomorphic to the
coordinate ring C[YP ] of the stratum YP of the Peterson variety Y.
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In [FW04], Fulton and Woodward proved a quantum Chevalley formula for X = G/P , i.e.
a formula giving the product of an arbitrary Schubert class by any Schubert class associated
to a Schubert divisor. Here we state this formula, which we will refer to in Section 4. Note that
for P = B, the formula is a result of Peterson [Pet97].

If si is a simple reflection, we denote by Γi ∈ H2(X,Z) the associated dimension 1 Schubert
cycle, and we define, for α ∈ R+ \R+

P :

d(α) :=

m∑
i=1

α∨(ωi)Γi.

Now set qd(α) :=
∏m
i=1 q

α∨(ωi)
i , where qi is the quantum parameter associated to Γi. Finally,

for α ∈ R+ \R+
P , we define nα :=

∫
Γα
c1(TX), where Γα ∈ H2(X,Z) is the dimension 1 cycle

associated to the reflection sα (it is a linear combination of the Γi).

Theorem 2.2 [FW04]. For 1 ≤ i ≤ m and w ∈WP we have

σsi ? σw =
∑
α

α∨(ωi)σwsα +
∑
α

qd(α)α∨(ωi)σwsα ,

where the first sum is over roots α ∈ R+ \R+
P such that l(wsα) = l(w) + 1, and the second

sum over roots α ∈ R+ \R+
P such that l(wsα) = l(w) + 1− nα.

2.3. The Lie-theoretic LG model construction

We recall how the mirror Landau-Ginzburg models are defined in [Rie08]. Let us fix a
parabolic P . We consider the open Richardson variety R := RwP ,w0 ⊂ G/B−, namely

R := RwP ,w0 = (B+ẇPB− ∩B−ẇ0B−)/B−.

Instead of the whole stratum YP of the Peterson variety the LG-model is related to the open
dense subset Y ∗P := Y ∩R, whose coordinate ring in Peterson’s theory encodes the quantum
cohomology ring qH∗(G∨/P∨) with quantum parameters made invertible. We note that in this
setting if g = u1dẇP ū2 = b−ẇ0 represents an element gB− ∈ R lying in Y ∗P , then the values of
the functions on Y ∗P corresponding to the quantum parameters are just the values αj(d) for the
simple roots αj ∈ ΠP . Indeed, fixing d ∈ TWP determines a finite subscheme of Y ∗P = Y ∩R
which we denote by Y ∗P,d = Y ∗P ×TWP {d} and for which the non-reduced coordinate ring C[Y ∗P,d]
becomes identified with the quantum cohomology ring of G∨/P∨ with quantum parameters
fixed to the values αj(d) in Peterson’s theory.

Now let us define

Z = ZG∨/P∨ := B−ẇ0 ∩ U+T
WP ẇPU−.

There is an isomorphism

Z → R× TWP ,
g = u1dẇP ū2 = b−ẇ0 7→ (gB−, d).

Observe that gB− = b−ẇ0B− = u1ẇPB−. Note that our conventions differ from [Rie08] in
that we have translated the original definition of the variety Z by ẇ0. The mirror superpotential
to X = G∨/P∨ is now defined to be the regular function F : Z → C defined by

F(u1dẇP ū2) =

m∑
i=1

e∗i (u1) +

m∑
i=1

f∗i (ū2). (2.1)

Although u1 and ū2 are not uniquely determined for g ∈ Z, the function F is well-defined,
as was shown in [Rie08]. Actually, there is another small difference with [Rie08], in that in
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[Rie08] the group on the mirror side is assumed adjoint, whereas here we have assumed G to be
simply connected. However we could have carried out the above definitions for G/Center(G),
and in the following it will not matter.

The superpotential F may also be interpreted as a family of functions Fh : R → C depending
holomorphically on a parameter h ∈ hWP , by setting

Fh(u1ẇPB−) =

m∑
i=1

e∗i (u1) +

m∑
i=1

f∗i (ū2) (2.2)

where u1 ∈ U+ and u1ẇPB− ∈ R, and where ū2 ∈ U− is related to u1 by u1e
hẇP ū2 ∈ Z.

Equivalently the relationship between u1 and ū2 can be expressed as

ū2 ·B+ = e−hẇ−1
P u−1

1 ·B−.

where g ·B denotes the conjugation action of g ∈ G on a Borel subgroup B.
The main result in [Rie08] describes the critical point scheme of Fh as subscheme of R lying

inside the Peterson variety. We denote by Y ∗P,eh the (non-reduced) fiber over eh of the Peterson
variety, namely

Y ∗P,eh = Y ∗P ×TWP {eh}.

Theorem 2.3 [Rie08]. The critical point scheme of Fh agrees with Y ∗P,eh .

Putting this together with Peterson’s presentation this result can be interpreted as follows.
Suppose h ∈ hWP represents a Kähler class [ωh] under the identification hWP = H2(G∨/P∨).

Corollary 2.4. The Jacobi ring C[Zh]/(∂Fh) of Fh : Zh → C is isomorphic to the
quantum cohomology ring of the Kähler manifold (G∨/P∨, [ωh]) in its presentation due to
Dale Peterson[Pet97].

In [MR13], R. Marsh and the second author gave an expression of the Landau-Ginzburg
model of the Grassmannian in terms of Plücker coordinates and then described the A-model
connection. Here we will express the Landau-Ginzburg model of the Lagrangian Grassmannian
in terms of generalized Plücker coordinates, i.e the coordinates of its minimal embedding
OGco(m+ 1, 2m+ 1) ↪→ P(V ∗Spin).

3. The Lagrangian Grassmannian and its LG model

Let G∨ = PSp2m(C), the adjoint group of type Cm, with Dynkin diagram

. . .

Let P∨ := Pω∨m be the parabolic subgroup associated to them-th fundamental weight ω∨m ofG∨.
The quotient G∨/P∨ is the homogeneous space called the Lagrangian Grassmannian, which
parametrizes Lagrangian subspaces in a 2m-dimensional complex symplectic vector space. It
is also denoted by X = LG(m) and will play the role of the A-model for us.

Now the Langlands dual group G is the simply connected group of type Bm, namely the
spin group Spin2m+1(C),

. . .
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The parabolic subgroup of Spin2m+1(C) associated to the m-th fundamental weight is denoted
P = Pωm . In this (B-model) setting we consider the quotient from the left X̌ := P\G. This
quotient may be interpreted as the co-isotropic Grassmannian OGco(m+ 1, 2m+ 1) in a vector
space of row vectors. We consider it in its minimal embedding, namely the homogeneous space
X̌ := P\G is embedded in P(V ∗ωm) as right G-orbit of the highest weight vector w∗∅. We will
express the mirror Landau-Ginzburg model to LG(m) as a rational function on the orthogonal
Grassmannian X̌ in the homogeneous coordinates of this embedding.

Remark 1. Note that the Lagrangian Grassmannian X = LG(m) is a cominuscule
homogeneous space of type Cm, and therefore its cohomology appears in geometric Satake
correspondence [Lus83, MV07, Gin97] as

H∗(LG(m)) = IH∗(GrωmG∨ ) = V
Spin2m+1
ωm .

In other words it is canonically identified with the unique minuscule representation, the spin

representation V
Spin2m+1
ωm also denoted VSpin, of the Langlands dual group, G = Spin2m+1.

Therefore, essentially tautologically, P(V ∗Spin) has homogeneous coordinates given by the
Schubert basis of H∗(LG(m)). This works of course for the other cominuscule homogeneous
spaces. For instance, our recent preprint [PR13] deals with the case of odd-dimensional
quadrics.

3.1. Notations and conventions

Let v1, . . . , v2m+1 be the standard basis of V = C2m+1, and fix the symmetric non-degenerate
bilinear form

〈vi, v2m+2−j〉 = 2Φ(vi, v2m+2−j) = (−1)m+1−iδi,j .

We may also use the notation v̄j = v2m+2−j (with decreasing j) for the basis elements
vm+2, . . . , v2m+1 and set ε(i) := (−1)m+1−i so that Φ(vi, v̄i) = ε(i). The subspace of V spanned
by the first m basis vectors v1, . . . , vm is maximal isotropic and denoted by W .

We let G = Spin(V ) = Spin(V,Φ), which is the universal covering group of SO(V,Φ). The
Lie algebra of G = Spin(V ) is therefore so(V ) = so(V,Φ) which we view as lying in gl(V ). We
have explicit Chevalley generators ei, fi given by

ei = Ei,i+1 + E2m+1−i,2m+2−i for i = 1, . . . ,m− 1,

em =
√

2Em,m+1 +
√

2Em+1,m+2,

fi = eTi for i = 1, . . . ,m.

Here Ei,j is the (2m+ 1)× (2m+ 1)-matrix with (i, j)-entry 1 and all other entries 0. We
also define the corresponding group homomorphisms xi : C→ G and yi : C→ G, namely
xi(a) := exp(aei) and yi(a) := exp(afi). For Weyl group elements we can now choose specific
representatives by setting ṡi := xi(1)yi(−1)xi(1), and ẇ = ṡi1 . . . ṡin where w = si1 . . . sin is a
reduced expression.

Next we introduce notations for the Clifford algebra Cl(V ) and the Spin representation VSpin,
see also [Var04] whose conventions we follow for the most part. The Clifford algebra Cl(V ) is
the algebra quotient of the tensor algebra T (V ) by the ideal generated by the expressions

v ⊗ v′ + v′ ⊗ v − 2Φ(v, v′).

So it is the algebra with generators vm+1 and vi, v̄i for i = 1, . . . ,m, with relations

viv̄i + v̄ivi = ε(i), v2
m+1 =

1

2
,
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and where all other generators anti-commute. The Clifford algebra is Z/2Z-graded, as the
relations are in even degrees only, and the even part of Cl(V ) is denoted by Cl+(V ).

Since Spin(V ) acts on V , it acts on
∧•

V , and because it preserves the bilinear form Φ, it
also acts on Cl(V ). The anti-symmetrization map∧k

V → Cl(V )

vi1 ∧ . . . ∧ vik 7→
1

k!
(
∑
σ∈Sk

viσ(1)viσ(2) · · · viσ(k)).

is an embedding of representations, and we will usually identify elements of
∧k

V with their
images, as we are mainly interested in the algebra structure of the Clifford algebra. The
representation

∧2
V is isomorphic to the adjoint representation. Moreover the image of

∧2
V in

Cl(V ) is indeed a Lie algebra under the commutator Lie bracket of Cl(V ), and it is isomorphic
to so(V ) as such. In particular our generators ei, fi can be identified with elements of

∧2
V

and their images in Cl(V ). Under this identification they are given by

ei = ε(i+ 1)vi ∧ v̄i+1 = ε(i+ 1)viv̄i+1 for i = 1, . . . ,m− 1

em =
√

2vm ∧ vm+1 =
√

2vmvm+1,

fi = ε(i)vi+1 ∧ v̄i = ε(i)vi+1v̄i for i = 1, . . . ,m− 1,

fm =
√

2v̄m ∧ vm+1 =
√

2v̄mvm+1.

Putting all of the anti-symmetrization maps together gives an isomorphism of so(V )-modules∧
• V −→ Cl(V ).

Moreover the even wedge powers map to the even part Cl+(V ) of the Clifford algebra and odd
ones to the odd part, Cl−(V ). Therefore we have two isomorphisms of so(V )-modules

α+ :
∧

even V −→ Cl+(V ), (3.1)

α− :
∧

odd V −→ Cl−(V ). (3.2)

The Spin representation, as a vector space, is VSpin =
∧•

W . Its standard basis elements are
the elements wI := vi1 ∧ . . . ∧ vik with i1 < i2 < · · · < ik, where I = {i1, . . . , ik} is any subset
of {1, . . . ,m}. We sometimes write [vi1 ∧ . . . ∧ vik ] instead of vi1 ∧ . . . ∧ vik when we mean the
element of VSpin. Note that if I = ∅ then w∅ = [1].

The subsets I are also in one-to-one correspondence with strict partitions λ contained in an
m×m square, by sending the empty set to the empty partition, and

I = {i1, . . . , ik} 7→ λ = (m+ 1− i1,m+ 1− i2, . . . ,m+ 1− ik).

In this correspondence the k-row partitions correspond to the basis elements in the k-th graded
component,

∧k
W , of VSpin. We may denote wI also by wλ. If λ is a strict partition contained in

an m×m rectangle, then we denote by |λ| the sum of all its parts and by PD(λ) the Poincaré
dual partition.

The Spin representation of so(V ) extends to a representation of the Clifford algebra, which
can be defined on generators by

vi · wI = vi ∧ wI , vm+1 · wI =
(−1)|I|√

2
wI , v̄j · wI = iv̄j (wI),

where iv̄i is the insertion operator on
∧•

W , for v̄i identified with the linear form 2Φ(v̄i, )
on W .

We recall the important fact that the even subalgebra Cl+(V ) of the Clifford algebra is
isomorphic to End(VSpin) via the action just defined. Combined with the map (3.1) we obtain
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an isomorphism of so(V )-modules

κ+ :
∧

even V −→ End(VSpin). (3.3)

Moreover there is also an isomorphism of so(V )-modules,

κ− :
∧

odd V −→ End(VSpin) (3.4)

given by antisymmetrization, α− :
∧

odd → Cl−(V ) followed by the action of Cl−(V ) on VSpin.
The standard basis {wI} of VSpin defined above is also precisely the integral weight basis

obtained by successively applying generators ei to the lowest weight vector w∅ = [1], and it
agrees with the MV -basis of VSpin, which in this case is one and the same as the Schubert basis
of H∗(LG(m)). We will use the notation σλ for the Schubert basis element naturally identified
with wλ.

The generalized Plücker coordinates on our OGco(m+ 1, 2m+ 1) = P\G are the sections of
O(1) in the embedding P\G ↪→ P(V ∗Spin) which are given by the basis elements wλ of VSpin

described above. Explicitly, we define

pλ(g) := 〈w∗∅ · g, wλ〉 = w∗∅(g · wλ),

where w∗∅ is the dual basis vector to w∅, which is therefore a highest weight vector of V ∗ωm , and
where wλ is as above. We may think of an element Pg ∈ OGco(m+ 1, V ∗) = P\G as specified
by its homogeneous coordinates (pλ1

(g) : pλ2
(g) : . . . : pλ2m

(g)), where λ1, . . . , λ2m are the strict
partitions in m×m in some ordering.

To summarize, associated to strict partitions λ ⊂ m×m, or equivalently subsets I of
{1, . . . ,m}, we have elements

σλ ∈ H∗(LG(m)), wλ ∈ VSpin, and pλ ∈ Γ[OOGco(m+1,V ∗)(1)],

all canonically identified. We may also denote them by σI , wI and pI , respectively.
For a later section we will also require an explicit isomorphism V ∼= V ∗. Since V

has on it a quadratic form, we have that V ∼= V ∗ by v 7→ 〈v, 〉 and V ∗ has basis
v∗1 , . . . , v

∗
m+1, v

∗
m+2, . . . , v

∗
2m+1. Under the isomorphism with V this basis corresponds to

v∗1 = ε(1)v̄1 v∗2m+1 = v̄∗1 = ε(1)v1

v∗2 = ε(2)v̄2 v∗2m = v̄∗2 = ε(2)v2

...
...

v∗m = −v̄m v∗m+2 = v̄∗m = −vm
v∗m+1 = vm+1.

This also enables us to describe an equivariant isomorphism between
∧m

V and
∧m+1

V , which
is the composition of

c :
∧

m V →
∧

m+1 V ∗

obtained by contraction with (−1)
m(m+1)

2 v∗1 ∧ · · · ∧ v∗2m+1 and of

d :
∧

m+1 V ∗ →
∧

m+1 V

defined using the isomorphism V ∼= V ∗ given by the quadratic form.

3.2. Definition of Wt and X̌◦

We will now explain our formula for Wt : OGco(m+ 1, V ∗) 99K C in terms of the coordinates
pλ. Here are some particular partitions which will play an important role. Let ρl := (l, l −
1, . . . , 2, 1) be the length l staircase partition and let µl := (m,m− 1, . . . ,m+ 1− l) be the
maximal strict partition with l lines contained in an m×m rectangle. For ρl with l < m there



AN LG MODEL FOR LAGRANGIAN GRASSMANNIANS Page 9 of 24

is a unique strict partition obtained by adding a single box to the Young diagram. It is obtained
by adding one box to the first line, and we denote it by ρl,+. If J is any subset of {1, . . . , l},
we denote by ρJl the partition obtained after removing for every j ∈ J the j-th line from the
Young diagram of ρl (and similarly for ρJl,+). On the other hand we denote by µJl the partition

obtained by adding for each j ∈ J a row of l + 1− j boxes to the bottom of µl. Similarly, µJl,+
is obtained by adding for each j ∈ J a row of l + 1− j + δj,1 boxes to the bottom of µl. If
the resulting Young diagram does not give a strict partition, then we set µJl = 0, respectively
µJl,+ = 0. Finally, set s(J) :=

∑
j∈J j for any subset J of {1, . . . ,m}.

Using the above notations, we define Wt : OGco(m+ 1, V ∗)→ C by

Wt :=
pρ0,+
pρ0

+

m−1∑
l=1

∑
J⊂{1,...,l}

(−1)s(J)pρJl,+pµJl,+∑
J⊂{1,...,l}

(−1)s(J)pρJl pµJl
+ et

pρm−1

pρm
. (3.5)

This is a rational function on X̌ = OGco(m+ 1, V ∗). Inside X̌ the denominators in Wt give
rise to divisors

D0 := {p∅ = 0}, Dm := {pρm = 0}

and

Dl :=

 ∑
J⊂{1,...,l}

(−1)s(J)pρJl pµJl = 0

 , where l = 1, . . . ,m− 1.

Then

D := D0 +D1 + . . .+Dm−1 +Dm

is an anticanonical divisor. Indeed, the index of X̌ = OGco(m+ 1, V ∗) is 2m. We define X̌◦ :=
X̌ \D. The restriction of our rational function Wt to X̌◦ is regular, and is again denoted Wt.

3.3. Statement of results

We would like to compare Wt : X̌◦ → C with the known super-potential of X = LG(m)
defined as a special case of (2.2). Explicitly recall that LG(m) = G∨/P∨ for G∨ = PSp(2m)
with P∨ the parabolic corresponding to the m-th node of the Dynkin diagram Cm. The
function Fh for h ∈ hWP is therefore defined on the open Richardson variety R = B+wPB− ∩
B−ẇ0B−/B− inside the full flag variety ofG = Spin(V ), where P is the parabolic corresponding
to the m-th node of Bm. So we would like to relate our variety X̌ = P\G = OGco(m+ 1, V ∗),
or rather its open part X̌◦, with this open Richardson variety. The parameter t in Wt and the
h ∈ hWP appearing in Fh should be thought of as equivalent, by the relation h = tω∨m.

For fixed parameter t we define the following maps

OGco(m+ 1, V ∗) = P\G ΨL←− B−ẇ0 ∩ U+e
tω∨mẇP U̇−

ΨR−→ R,
Pg ←− g → gB−.

given by taking left and right cosets, respectively. Note that g = b−ẇ0 in our previous notation
and factorizes as

g = u1e
tω∨mẇP ū2,

Moreover ΨR is an isomorphism, so we can define

Ψ := ΨL ◦Ψ−1
R : R → OGco(m+ 1, V ∗).

Our main goals here are to prove the two following theorems.
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Theorem 3.1. Let X = LG(m) and t ∈ C. The regular function Wt on X̌◦ defined in (3.5)
pulls back under Ψ to the Landau-Ginzburg model (R,Fh) from Theorem 2.4, where h and t
are related by h = tω∨m.

Theorem 3.2. Ψ defines an isomorphism from R to X̌◦.

3.4. Outline of the proof of Theorems 3.1 and 3.2

Let h = tω∨m as in Theorem 3.1, and define Zh := B−ẇ0 ∩ U+e
hẇP ẇ

−1
0 U−. The super-

potential Fh pulls back under Zh → G/B− to F̃h : Zh → C where

F̃h(u1e
hẇP ū2) =

m∑
i=1

e∗i (u1) +

m∑
i=1

f∗i (ū2).

To prove Theorem 3.1 we need to show that Wt pulls back to F̃h under Zhẇ0
ΨL−→ P\G =

OGco(m+ 1, 2m+ 1). We will do this in two steps.
We consider two related projective embeddings of X̌ = OGco(m+ 1, V ∗), the standard

one corresponding to
∧m+1

V ∗ = V ∗2ωm , and the minimal one corresponding to the (right)
representation V ∗Spin = V ∗ωm of G = Spin(V ) composed with its Veronese embedding. So

π1 : P\G ↪→ P(
∧

m+1 V ∗),

Pg 7→
〈
v∗m+1 ∧ v∗m+2 ∧ · · · ∧ v∗2m+1 · g

〉
,

π2 : P\G ↪→ P(Sym2(V ∗Spin)),

Pg 7→
〈
(w∗∅ · w

∗
∅) · g

〉
.

The interesting numerators and denominators in Wt are made up of sections in
Γ[OP(Sym2(V ∗Spin))(1)] = Sym2(VSpin). However the pullback of F̃h to X̌ is not easy to refor-
mulate directly in those terms. It can be more easily expressed in terms of sections in
Γ[OP(

∧m+1 V ∗)(1)] =
∧m+1

V , which correspond to (m+ 1)× (m+ 1)-minors. The two embed-
dings are however related by an embedding of projective spaces coming from the inclusion of
representations ∧

m+1 V ∗ ↪→ Sym2(V ∗Spin),

Therefore dually we have a surjection of representations

Sym2(VSpin)�
∧

m+1V, (3.6)

which is the restriction map Γ[OP(Sym2(V ∗Spin))(1)]→ Γ[OP(
∧m+1 V ∗)(1)].

The first step of the proof of Theorem 3.1 is to express F̃h in terms of (m+ 1)× (m+ 1)-
minors, which is done in Section 3.5. The conclusion of the proof of Theorem 3.1 involves the
explicit construction of the map (3.6) of representations in terms of the Clifford Algebra. This
is done in Section 3.6. The expression of Wt in terms of minors is then used in Section 3.7 to
prove Theorem 3.2.

3.5. A formula for F̃h in terms of minors

Definition 3.1. If g ∈ Spin(V ) we consider it as acting from the right on
∧n

V ∗ and from
the left on

∧n
V for any n = 1, . . . , 2m+ 1. The bases {v∗i } and {vi} give rise to bases of

∧n
V ∗

and
∧n

V , and we use the following notation for the matrix coefficients (minors of g acting in
the representation V ). Let I = {i1 < . . . < ir} be a set indexing rows, and J = {j1 < · · · < jr}
a set indexing columns, then

DI
J(g) := 〈v∗i1 ∧ · · · ∧ v

∗
ir · g , vj1 ∧ · · · ∧ vjr 〉.
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We begin by arguing that ū2 appearing in u1e
hẇP ū2 ∈ Zh can be assumed to lie in U− ∩

B+(ẇP )−1B+. This is because we have two birational maps

Ψ1 : U− ∩B+(ẇP )−1B+ → P\G : ū2 7→ Pū2,

Ψ2 : B− ∩ U+e
hẇPU− → P\G : b− = u1e

hẇP ū2 7→ Pb−,

which compose to give Ψ−1
1 ◦Ψ2 : b− 7→ ū2. This gives a birational map

Ψ−1
1 ◦Ψ2 : Zh → U− ∩B+(ẇP )−1B+.

Now a generic element ū2 in U− ∩B+(ẇP )−1B+ can be assumed to have a particular
factorisation. Let N :=

(
m+1

2

)
. The smallest representative wP in W of [w0] ∈W/WP has

the following reduced expression :

wP = (sm)(sm−1sm) . . . (s1s2 . . . sm) = si1 . . . siN ,

It follows that as a generic element of U− ∩B+(ẇP )−1B+, the element ū2 can be assumed to
be written as:(

ym(am,m)ym−1(am−1,m) . . . y1(a1,m)
)
. . .
(
ym(am,2)ym−1(am−1,2)

)
ym(am,1).

where ai,j 6= 0, or equivalently as

ū2 = ym(bN ) . . . y2(bN−m+2)y1(bN−m+1) . . . ym(b3)ym−1(b2)ym(b1). (3.7)

with nonzero bi. Note that the k-th factor here is yiN−k+1
(bN−k+1).

We may think of the Plücker coordinate pλ as a function on G. Then we have the following
standard expression for the pλ on factorized elements.

Lemma 3.3. Fix λ a strict partition in an m×m square, and w ∈WP the corresponding
Weyl group element. Note that the length `(w) equals |λ|. Then if ū2 is of the form (3.7) we
have

pλ(ū2) =
∑
J

bj1 . . . bjm .

where the sum is over subsets J = {j1 < j2 < . . . < jm} of {1, . . . , N} for which sij1 . . . sijm is
a reduced expression of w.

Proof. Recall that by definition pλ(ū2) =
〈
w∗∅ · ū2, wλ

〉
= w∗∅(ū2 · wλ) and wλ = eij1 . . . eijm ·

w∅ if w = sij1 . . . sijm is a reduced expression. So in an expansion for ū2 the coefficients of
fijm . . . fij1 will contribute a summand of bj1 . . . bjm to pλ(ū2).

Proposition 3.4. If u1 and ū2 are as above then we have the following identities

f∗m(ū2) =
pρ0,+(ū2)

pρ0(ū2)
, (3.8)

e∗i (u1) = 0 for all 1 ≤ i ≤ m− 1, (3.9)

e∗m(u1) = et
pρm−1(ū2)

pρm(ū2)
, (3.10)

where ρ0 = ∅ and ρ0,+ = .

Proof. For (3.8) notice that in fact p∅(ū2) = 1 and

p (ū2) =
〈
w∗∅ · ū2, w

〉
= w∗∅(ū2 · w ).
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Then (3.8) is apparent since fm · w = w∅. In fact (3.8) does not depend on the special form
of u1 and ū2. The equations (3.9) and (3.10) are consequences of the Lemmas A.2 and A.3,
respectively, as well as the Lemma 3.3.

Proposition 3.5.

f∗j (ū2) =
Dm+1,...,2m+1
j,j+2,...,j+m+1(ū2)

Dm+1,...,2m+1
j+1,...,j+m+1(ū2)

for all 1 ≤ j ≤ m− 1 (3.11)

Proof. The result is a consequence of the vanishing of the following minor of ū2 :

Dj+1,m+1,...,2m+1
j,j+1,...,j+m+1 (ū2),

which is equal to

〈v∗j+1 ∧ v∗m+1 · · · ∧ v∗2m+1 · g , vj ∧ vj+1 · · · ∧ vj+m+1〉.

Define an element in the enveloping algebra

e :=
(
e(a1,m)
m e

(a1,m−1)
m−1 . . . e

(a1,1)
1

)
. . .
(
e(am−1,m)
m e

(am−1,m−1)
m−1

)
e(am,m)
m ,

where ai,j ∈ {0, 1, 2} if j = m and ai,j ∈ {0, 1} otherwise. Here e
(a)
i = 1

a!e
a
i . Due to the shape

of ū2, the minor is zero if for any such e, v∗j+1 ∧ v∗m+1 · · · ∧ v∗2m+1 · e has zero v∗j ∧ v∗j+1 · · · ∧
v∗j+m+1-component. Assume by contradiction that there exists an e such that this component
is nonzero.

First suppose j = m− 1. Then since v∗m ∧ v∗m+1 · · · ∧ v∗2m+1 · em = 0, the exponent a1,m in
e has to be zero. Now the v∗2m+1 has to be moved to v∗2m, which means that v∗m needs to be
moved before to v∗m−1 by an em−1. Since only one e1 appears in the expression of e, it means
that a1,m−1 = 1. Hence v∗m ∧ v∗m+1 · · · ∧ v∗2m+1 · e is equal to

v∗m−1 ∧ v∗m+1 ∧ · · · ∧ v∗2m+1 ·
(
e
a1,m−2

m−2 . . . e
a1,1
1

)
. . .
(
eam−1,m
m e

am−1,m−1

m−1

)
eam,mm .

Since v∗m−1 ∧ v∗m+1 ∧ · · · ∧ v∗2m+1 · ei = 0 for all 1 ≤ i ≤ m− 2, it follows that a1,m−2 = · · · =
a1,2 = a1,1 = 0, which means that the v∗2m+1 can never be moved to v∗2m. Hence there exists
no e such that v∗j+1 ∧ v∗m+1 · · · ∧ v∗2m+1 · e has nonzero v∗j ∧ v∗j+1 · · · ∧ v∗j+m+1-component.

Now suppose j < m− 1. v∗2m+1 has to be moved to v∗2m by the only e1 in the expression of e,
hence a1,1 = 1. But v∗m+1, . . . , v

∗
2m need to be moved before, hence a1,i = 1 for 1 ≤ i ≤ m− 1

and a1,m = 2. It follows that v∗j+1 ∧ v∗m+1 · · · ∧ v∗2m+1 · e is equal to(
v∗j+1 ∧ v∗m · · · ∧ v∗2m + v∗1 ∧ v∗m · · · ∧ v∗m−j ∧ v∗m+2−j ∧ · · · ∧ v∗2m+1

)
· e′,

where

e′ :=
(
ea2,mm e

a2,m−1

m−1 . . . e
a2,2
2

)
. . .
(
eam−1,m
m e

am−1,m−1

m−1

)
eam,mm .

Then

v∗1 ∧ v∗m · · · ∧ v∗m−j ∧ v∗m+2−j ∧ · · · ∧ v∗2m+1 · e′

has clearly no non-zero v∗j ∧ v∗j+1 · · · ∧ v∗j+m+1-component, hence we focus on v∗j+1 ∧ v∗m · · · ∧
v∗2m · e′.

If j = m− 2, then v∗2m has to be moved to v∗2m−1 by the only e2 in e′. Hence a2,2 = 1.
But v∗m−1 ∧ v∗m · · · ∧ v∗2m · em = 0, which means that a2,m = 0. It follows that v∗m+1 cannot be
moved to v∗m before having to move the v∗2m, and hence that a suitable e does not exist.

Finally if j ≤ m− 3, then v∗j+1 ∧ v∗m · · · ∧ v∗2m · ei = 0 for all j + 1 ≤ i ≤ m, hence a2,j+1 =
· · · = a2,m = 0. It follows that the v∗m+1−j cannot be moved before the v∗2m has to be by the
only remaining e2 in e′. This concludes the proof of the minor vanishing.



AN LG MODEL FOR LAGRANGIAN GRASSMANNIANS Page 13 of 24

To prove the proposition, we only need to expand this vanishing minor with respect to the
(j + 1)-st row. Indeed, due to ū2 being lower triangular, this row has only two non-zero entries
: 1 on the (j + 1)-st column and f∗j (ū2) on the j-th column.

3.6. The Clifford Algebra and homogeneous coordinates

3.6.1. Setting In this section we study the surjection of representations from (3.6), that is

π : Sym2(VSpin)→
∧

m+1V,

which is also interpreted as the restriction map of homogeneous coordinates

Γ[OP(Sym2(V ∗Spin))(1)]→ Γ[OP(
∧m+1 V ∗)(1)].

Of course in representation-theoretic terms the map π exists just because
∧
m+1V is

irreducible with highest weight 2ωm and this highest weight also occurs in Sym2(VSpin) with
multiplicity one. But in order to compute with this map we will need to use a more intrinsic
construction. We first note the following auxiliary lemma, whose proof is straightforward.

Lemma 3.6. The isomorphism

δ : VSpin → V ∗Spin

vλ 7→ (−1)|λ|vPD(λ)

is so(V )-equivariant.

For the construction of the map π first we define an equivariant embedding

ιVSpin
: Sym2(VSpin) ↪→ VSpin ⊗ VSpin

δ⊗idVSpin−→ V ∗Spin ⊗ VSpin = End(VSpin).

Then there are two subtly different cases to distinguish.

Case 1: If m is odd then we construct π as follows. Applying the constructions from
Section 3.1 we have an isomorphism of representations (3.4),

κ−1
− : End(VSpin)→ Cl−(V )→

m⊕
k=0

∧
2k+1 V.

Because m is odd we have a projection onto the summand with k = m−1
2 ,

pr∧m :

m⊕
k=0

∧
2k+1 V →

∧
m V.

Recall also the equivariant isomorphisms from Subsection 3.1 :

c :
∧

m V →
∧

m+1 V ∗

and

d :
∧

m+1 V ∗ →
∧

m+1 V.

Composing ιVSpin
with these four maps gives us our homomorphism of representations

π : Sym2(VSpin) −→
∧

m+1 V.
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Case 2: Suppose m is even. In this case we use the even part of the Clifford algebra of V ,
namely we use the inverse of the isomorphism from (3.3)

κ−1
+ : End(VSpin)→ Cl+(V )→

m⊕
k=0

∧
2k V.

Since m is even we have a projection onto the middle summand, k = m
2 ,

pr∧m :

m⊕
k=0

∧
2k V ∗ →

∧
m V.

Finally we use the isomorphism of representations c as in Case 1,

c :
∧

m V
∼−→
∧

m+1 V ∗

as well as the map

d :
∧

m+1 V ∗ →
∧

m+1 V.

Composing ιVSpin
with these four maps gives us our homomorphism of representations

π : Sym2(VSpin) −→
∧

m+1 V

in the case where m is even.

3.6.2. Statement

Definition 3.2. Corresponding to the quadratic denominators in Wt we define elements
of Sym2(VSpin) by

D(j) :=
∑
I

(−1)s(I)wρIm+1−j
wµIm+1−j

and

N(j) :=
∑
I

(−1)s(I)wρIm+1−j,+
wµIm+1−j,+

where the sums are over all subsets I ⊂ {1, . . . ,m+ 1− j} and j = 2, . . . ,m.

We will prove the following formulas.

Proposition 3.7. Let j = 2, . . . ,m. We have∑
I

(−1)s(I)pρIm+1−j
(ū2)pµIm+1−j

(ū2) = Dm+1,...,2m+1
m+2−j,...,2m+2−j(ū2)

and ∑
I

(−1)s(I)pρIm+1−j,+
(ū2)pµIm+1−j,+

(ū2) = Dm+1,...,2m+1
m+1−j,m+3−j...,2m+2−j(ū2)

where the sums are over all subsets I ⊂ {1, . . . ,m+ 1− j}.

Note that this proposition gives us an alternative definition of X̌◦.

Corollary 3.8. The affine open subset X̌◦ of X̌ = P\G is{
Pg ∈ X̌ | Dm+1,...,2m+1

m+1−j,m+3−j...,2m+2−j(g) 6= 0, j = 1, . . . ,m− 1, p∅(g) 6= 0, pρm(g) 6= 0
}
.
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We remark that the Plücker coordinates p∅(g) and pρm(g) are Pfaffians of g.

3.6.3. Proof of Proposition 3.7 To prove Proposition 3.7, we will need to compare
D(j),N(j) ∈ Sym2(VSpin) to the elements of

∧m+1
V defined below.

Definition 3.3. Inside the exterior power
∧m+1

V , if 2 ≤ j ≤ m we consider the elements

v∧(j) := vj ∧ · · · ∧ vj+m
v∧(j),+ := vj−1 ∧ vj+1 ∧ · · · ∧ vj+m

of
∧m+1

V .

We will show :

Proposition 3.9. The projection map π : Sym2(VSpin) −→
∧m+1

V takes D(j) to v∧(j) and
N(j) to v∧(j),+.

We will in fact prove this proposition only for the denominators D(j), the case of the
numerators N(j) being extremely similar.

Definition 3.4. If I = {1 ≤ i1 < · · · < ir ≤ 2m+ 1}, we define vI to be the product
vi1 · · · · · vir in Cl(V ). For I = {j, j + 1, . . . , j +m} we also denote vI by v(j), so v(j) =
vjvj+1 · · · vj+m. Moreover, if L is a subset of {j, . . . ,m}, we write vL(j) for the Clifford algebra
element obtained from the product v(j) by removing all of the factors vl and v̄l = v2m+2−l for
which l ∈ L.

Lemma 3.10. The map ιVSpin : Sym2(VSpin) ↪→ End(VSpin) maps D(j) to

βm,j ·
∑
I

[
w∗µIj−1

⊗ wµIm+1−j
+ (−1)(m+1−j)(j−1)w∗ρIj−1

⊗ wρIm+1−j

]
(3.12)

where

βm,j :=
(−1)

(m+1−j)(m+2−j)
2

2

and the sum is over all subsets I of {1, . . . ,m+ 1− j}.

Proof. First wρIm+1−j
wµIm+1−j

maps to

1

2
(wρIm+1−j

⊗ wµIm+1−j
+ wµIm+1−j

⊗ wρIm+1−j
) ∈ VSpin ⊗ VSpin.

Then according to Lemma 3.6 :

wρIm+1−j
7→ (−1)

(m+1−j)(m+2−j)
2 −s(I)w∗µIj−1

∈ V ∗Spin

wµIm+1−j
7→ (−1)

m(m+1)
2 − j(j−1)

2 +s(I)w∗ρIj−1
∈ V ∗Spin,

hence the result.

We now need to map the element (3.12) to the Clifford algebra of V .
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Proposition 3.11.

D(j) 7→
(−1)

m(m+1)
2

2
[2v1,...,m+1−j,2m+3−j,...,2m+1 +

∑
I({1,...,m+1−j}

 ∏
l∈{1,...,m+1−j}\I

(−1)l

 vI∪{2m+3−j,...,m+j}∪I

 ∈ Cl(V ). (3.13)

Proof. We assume j > m+1
2 , the other case being symmetric. For convenience, let us denote

the right-hand side as A(j) ∈ Cl(V ). Because of the definition of the Clifford algebra :

v1,...,m+1−j,2m+3−j,...,2m+1 = (−1)m(m+1−j)v{1,...,m+1−j}∪{1,...,m+1−j} t(j),

where t(j) = v2m+3−j . . . vm+j . Similarly

vI∪{2m+3−j,...,m+j}∪I = (−1)m|I|vI∪I t(j).

We will use two lemmas :

Lemma 3.12. Let I be a subset of {1, . . . ,m}. Then

vI∪I 7→

(∏
i∈I

ε(i)

)∑
L

w∗L ⊗ wL ∈ End(VSpin),

where the sum is over all subsets L of {1, . . . ,m} containing I.

Proof Proof of lemma 3.12. First notice that

vi · wL =

{
0 if i 6∈ L
(−1)#{l∈L|l<i}ε(i)wL\{i} otherwise,

and

vivi · wL =

{
0 if i 6∈ L
ε(i)wL otherwise.

Hence vI∪I is zero unless L ⊃ I. Now assume L ⊃ I and write I = {i1 < i2 < · · · < ir}. From
the definition of the Clifford algebra, it follows that vI∪I =

∏r
p=1 vipvip . Hence :

vI∪I · wL =

(
r∏
p=1

ε(ip)

)
wL.

The claim follows.

Lemma 3.13. The element t(j) = v2m+3−j . . . vm+j of Cl(V ) maps to j−1∏
p=m+2−j

ε(p)

 ∑
K1,K2

(−1)m|K1|w∗K1∪{m+2−j,...,j−1}∪K2
⊗ wK1∪K2

in End(VSpin), where K1 is any subset of {1, . . . ,m+ 1− j} and K2 is any subset of {j, . . . ,m}.

Proof Proof of lemma 3.13. As in the proof of Lemma 3.12, we notice that t(j) · wL =
0 if L 6⊃ {m+ 2− j, . . . , j − 1}. Now write L = L1 ∪ {m+ 2− j, . . . , j − 1} ∪ L2, where L1 ⊂
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{1, . . . ,m+ 1− j} and L2 ⊂ {j, . . . ,m}. We have

vm+j · wL = (−1)m|L1|ε(m+ 2− j)wL1∪{m+3−j,...,j−1}∪L2
.

Recursively, we obtain :

t(j) · wL = (−1)m|L1|

 j−1∏
p=m+2−j

ε(p)

wL1∪L2
,

hence the lemma.

Now to prove Proposition 3.11, first assume L = {1, . . . , j − 1} ∪ L2, where L2 ⊂ {j, . . . ,m}.
Then

v1,...,m+1−j,2m+3−j,...,2m+1 · wL =

(
j−1∏
p=1

ε(p)

)
wL1∪L2 ,

and  ∏
l∈{1,...,m+1−j}\I

(−1)l

 vI∪{2m+3−j,...,m+j}∪I · wL

is equal to (
j−1∏
p=1

ε(p)

)
(−1)|I|(−1)m+1−jwL1∪L2

.

Hence

A(j) · wL =

(
j−1∏
p=1

ε(p)

)2 + (−1)m+1−j
∑

I({1,...,m+1−j}

(−1)|I|

wL1∪L2

=

(
j−1∏
p=1

ε(p)

)
wL1∪L2 .

Now assume L = L1 ∪ {m+ 2− j, . . . , j − 1} ∪ L2, where L1 ( {1, . . . ,m+ 1− j} and L2 ⊂
{j, . . . ,m}. Then

A(j) · wL =

(
j−1∏
p=1

ε(p)

)
(−1)m|L1|(−1)(m+1)(m+1−j)

∑
I⊂L1

(−1)|I|wL1∪L2
.

Finally :

A(j) · wL =

{
0 if L1 6= ∅(∏j−1

p=1 ε(p)
)

(−1)(m+1)(m+1−j)wL2
otherwise.

Looking precisely at the expression of D(j) in End(VSpin), this concludes the proof of the
proposition.

Corollary 3.14. We have :

pr∧m ◦ κ−1
± ◦ ιVSpin(D(j)) = (−1)

m(m+1)
2 v1 ∧ · · · ∧ vm+1−j ∧ v2m+3−j ∧ · · · ∧ v2m+1

where κ± is κ− if m is odd and κ+ otherwise.

Proof. The result is a simple consequence of Proposition 3.11 and of the definition of the
antisymmetrisation maps (3.1) and (3.2).
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We can now prove Proposition 3.9 :

Proof Proof of Proposition 3.9. From Corollary 3.14, we know that D(j) maps to

(−1)
m(m+1)

2 v1 ∧ · · · ∧ vm+1−j ∧ v2m+3−j ∧ · · · ∧ v2m+1 in
∧m

V . Now the latter element is
mapped by the contraction c to

(−1)(m+1)(j−1)v∗m+2−j ∧ · · · ∧ v∗2m+2−j .

Then we map this to
∧m+1

V using the isomorphism d. The element v∗m+2−j ∧ · · · ∧ v∗2m+2−j
maps to : m∏

i=m+2−j
ε(i)

 m∏
k=j

ε(k)

 vj+m ∧ vj+m+1 ∧ · · · ∧ vj(−1)j
2+m2−mj+1v∧(j).

Now

D(j) 7→ v∧(j),

which concludes the proof.

3.7. Isomorphism with the open Richardson variety

Here we prove Theorem 3.2. We use the presentation of the coordinate ring of the open
Richardson variety due to [GLS11], which we reformulate here using our notations. First notice
that the open Richardson variety R ∼= B−ẇ0 ∩ U+ẇPU− is isomorphic to the ‘unipotent cell’
U− ∩B+(ẇP )−1B+, in the terminology of [GLS11], via the map

UP− := U− ∩B+(ẇP )−1B+ → R : ū2 7→ ū2ẇ0B−.

To state the result we need to recall the definition of a generalized minor. In our setting
G = Spin2m+1(C).

Definition 3.5. Let v ∈W and ωj a fundamental weight of Spin2m+1(C). Let Vωj denote
the irreducible representation with highest weight ωj and v+

ωj a fixed highest weight vector.
Then for any g ∈ Spin2m+1(C) we can set

∆ωj ,v·ωj (g) =
〈
gv̇ · v+

ωj , v
+
ωj

〉
.

where the brackets
〈
v , v+

ωj

〉
refers to the coefficient of v+

ωj in the projection of v to the weight

space of v+
ωj .

If gv̇ has a decomposition into factors U−TU+ then this agrees with ωj applied to the torus
part of gv̇, which is the definition given by Fomin and Zelevinsky [FZ99].

Theorem 3.15 [GLS11, Section 8]. For P = Pωm , the coordinate ring of the unipotent cell
UP− := U− ∩B+(ẇP )−1B+ is described as follows. Consider the reduced expression of (wP )−1

given by

(wP )−1 = si1 . . . siN = (sm . . . s2s1) . . . (smsm−1)(sm),

with length denoted N = m(m+1)
2 . For every 1 ≤ r ≤ N , we let

(wP )−1
≤r := si1 . . . sir

and consider indices r1, r2, . . . rm given by

rk =

m∑
i=m+1−k

i =

(
m+ 1

2

)
−
(
m− k + 1

2

)
.
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Note that irk = k. Then the coordinate ring of UP− is given by

C
[
UP−
]

= C
[
∆ωir ,(w

P )−1
≤r·ωir

,∆−1

ωk,(wP )−1
≤rk
·ωk

]
1≤r≤N,1≤k≤m

.

Let us now reformulate the description of this coordinate ring for our purposes.

Corollary 3.16. The coordinate ring C
[
UP−
]

is generated by the ordinary minors

D1,...,m−j−t,m+2,...,m+2+t
1,2,...,m+1−j , 0 ≤ t ≤ m− 1, 2 ≤ j ≤ m− t (3.14)

together with the Pfaffians

∆ωm,
1
2 [ε1+···+εm−1−r−(εm−r+···+εm)], 0 ≤ r ≤ m− 1 (3.15)

the inverses of minors (
Dm+2,...,m+1+rk

1,...,rk

)−1

, 1 ≤ k ≤ m− 1, (3.16)

and the inverse of Pfaffian

∆−1
ωm,− 1

2 (ε1+···+εm)
, (3.17)

Note that the D1,...,m−j−t,m+2,...,m+2+t
1,2,...,m+1−j are the minors defined in Section 3.6. We may now

prove the isomorphism :

Proof Proof of Theorem 3.2. Our first step is to prove that the map (UP− → X̌; ū2 7→ Pū2)
lands inside X̌◦. Recall from Corollary 3.8 the description of X̌◦ using minors,

X̌◦ =
{
Pg | Dm+1,...,2m+1

j+1,...,j+m+1(g) 6= 0 for all 1 ≤ j ≤ m− 1, p∅(g) 6= 0, pρm(g) 6= 0
}
.

Let ū2 be in UP− . Using the isomorphism between
∧m

V and
∧m+1

V from Section 3.1, we get

Dm+1,...,2m+1
j+1,...,j+m+1(ū2) = Dm+2,...,2m+1

1,...,m−j,2m+2−j,...,2m+1(ū2).

Now using that ū2 is in U−, we get

Dm+2,...,2m+1
1,...,m−j,2m+2−j,...,2m+1(ū2) = Dm+2,...,2m+1−j

1,...,m−j (ū2).

By Cor. 3.16, for all ū2 ∈ UP− , the following minors do not vanish,

Dm+2,...,m+1+rk
1,...,rk

(ū2)

for 1 ≤ k ≤ m− 1. Setting k = m− j we find that Pū2 is in X̌◦.
So we now have an algebraic map between affine varieties UP− → X̌◦, which induces a pullback

map C[UP− ]→ C[X̌◦] between their coordinate rings. We now prove that this map is a ring
isomorphism. Injectivity is a simple consequence of the fact that the map UP− → X̌ is dominant.

We now prove surjectivity. To do this, it is enough to find a pre-image for each of the functions
(minors, Pfaffians and inverses of minors) generating C[UP− ]. We have already seen that the
inverses of minors correspond to the inverses of denominators of W , which are by definition
well-defined functions on X̌◦. Let us now consider the minors D1,...,m−j−t,m+2,...,m+2+t

1,2,...,m+1−j (ū2) for
0 ≤ t ≤ m− 1 and 2 ≤ j ≤ m− t. Since ū2 is in U−, we have :

D1,...,m−j−t,m+2,...,m+2+t
1,...,m+1−j (ū2) = D1,...,m−j−t,m+2,...,2m+1

1,...,m+1−j,m+3+t,...,2m+1(ū2)

= Dm+2,...,2m+1
m−j−t+1,...,m+1−j,m+3+t,...,2m+1(ū2).
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Now using the isomorphism between
∧m C2m+1 and

∧m+1 C2m+1, we get

Dm+2,...,2m+1
m−j−t+1,...,m+1−j,m+3+t,...,2m+1(ū2) = Dm+1,...,2m+1

m−t,...,m+j,m+j+t+2,...,2m+1(ū2).

Since the minor Dm+1,...,2m+1
m−t,...,m+j,m+j+t+2,...,2m+1 is a well-defined element of the homogeneous

coordinate ring of X̌ = P\G, it gives in particular a well-defined function on X̌◦ after setting
p∅ to 1.

Let us finally consider the Pfaffians ∆ωm,
1
2 [ε1+···+εm−1−r−(εm−r+···+εm)] (0 ≤ r ≤ m− 1). By

definition

∆ωm,
1
2 [ε1+···+εm−1−r−(εm−r+···+εm)] = 〈w∗∅ · g , wρm−r 〉,

where wλ is the element of VSpin associated to a strict partition λ as in Subsection 3.1. By
definition of the Plücker coordinates, the right-hand side is equal to the Plücker coordinate
pρm−r (g) which gives well-defined functions on X̌◦.

This concludes the proofs of Theorems 3.1 and 3.2. We now state some related conjectures.

4. Relations in the quantum cohomology of LG(m)

In [Rie08], the second author proved an isomorphism between the quantum cohomology
ring of X = G∨/P∨ and the Jacobi ring of the LG-model (R,Fh) (either at fixed quantum
parameter q = eh as in Corollary 2.4 or over the ring C[q, q−1]). By Theorem 3.1 together with
Theorem 3.2 our LG-model (X̌,Wt) is isomorphic to this one, and is therefore related to the
quantum cohomology ring of LG(m) in the same way. Therefore we expect the denominators
appearing in the expression of Wt, once written with Schubert classes replacing the Plücker
coordinates, to represent invertible elements in this quantum cohomology ring. We have a
precise conjecture for which elements these are.

Conjecture 4.1. The following relation holds in the quantum cohomology of LG(m) for
all 1 ≤ l ≤ m− 1 : ∑

J⊂{1,...,l}

(−1)s(J)σρJl ? σµJl = ql. (4.1)

Remark 2. If l = 1, the relation (4.1) is a consequence of the quantum Chevalley formula
2.2. Indeed, this formula implies that

σ1 ? σm = σm,1 + q,

which, rewritten as

σ1 ? σm − σ∅ ? σm,1 = q,

is exactly the relation (4.1) with l = 1. For l > 1 however, to the best of the authors’ knowledge,
the relations (4.1) are new.

5. The B-model connection

Our expression for the LG-model W in terms of homogeneous coordinates coming from
X̌◦ ⊂ P(H∗(X,C)∗) makes it possible to state very concretely a mirror conjecture in the spirit
of Dubrovin and Givental. Namely we conjecture an explicit isomorphism between a Gauss-
Manin connection associated to (X̌◦,W ), and a D-module associated to X arising from the
small Dubrovin connection, see [Dub96, Giv96, CK99].
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Let X = LG(m). Consider H∗(X,C[~, et]) as space of sections on a trivial bundle with fiber
H∗(X) and let

A∇∂tS :=
dS

dt
+

1

~
σ ?et S (5.1)

A∇~∂~S := ~
∂S

∂~
− 1

~
c1(TX) ?et S + Gr(S) (5.2)

define a meromorphic flat connection on this bundle. Here Gr is the ‘grading operator’ defined
as the diagonal map H∗(X,C)→ H∗(X,C) which multiplies σ ∈ H2k(X,C) by k, and we are
using the convenient notation et for q and ∂t for q∂q. This is our A-model side.

For the B-model let N = m(m+1)
2 denote the dimension of X̌. Recall that X̌◦ is OGco(m+

1, 2m+ 1) with an anticanonical divisor removed. Therefore there is an up to scalar unique
non-vanishing holomorphic N-form on X̌◦ which we will fix and call ω. Let Ωk(X̌◦) denote the
space of all holomorphic k-forms.

Definition 5.1. Define the C[~, et]-module

GWt
0 := ΩN (X)[~, et]/(~d+ dWt ∧ −)ΩN−1(X)[~, et].

It has a meromorphic (Gauss-Manin) connection given by

B∇∂t [α] =
∂

∂t
[α]− 1

~
[
∂Wt

∂t
α], (5.3)

B∇∂~ [α] =
∂

∂~
[α] +

1

~2
[Wt α]. (5.4)

We conjecture that the function Wt is cohomologically tame [Sab99] and the elements [pλω]
freely generate GWt

0 , where the pλ’s are the Plücker coordinate on OGco(m+ 1, V ∗) and λ runs
through the strict partitions inside an m×m box.

Independently of this we conjecture the following.

Conjecture 5.1. The differential operators ~B∇∂t and ~B∇~∂~ preserve the C[~, et]-
submodule ḠWt

0 of GWt
0 generated by the [ pλω]. Moreover the assignment σλ 7→ [pλω] defines

an isomorphism of H∗(X,C[~, et]) with ḠWt
0 under which A∇ is identified with B∇.

Appendix A. Laurent polynomial version of Wt

Here we give a Laurent polynomial expression for the restriction of Wt to a particular torus,
see Proposition A.1. The lemmas used in the proof are also used in the proof of Theorem 3.1. We
observe that our Laurent polynomial formula for the superpotential of LG(m) has similarities
with the much simpler case of projective space.

Let us pull back Wt to the open subset of X̌ defined as the image of the map (C∗)N ↪→ P\G
which sends (b1, . . . , bN ) to Pū2, where as in Section 3.5

ū2 = ym(bN ) . . . y2(bN−m+2)y1(bN−m+1) . . . ym(b3)ym−1(b2)ym(b1). (A.1)

Proposition A.1 Laurent polynomial restriction of Wt. The Landau-Ginzburg model Wt

of X = LG(m) defined in Theorem 2.4 restricts to the open torus defined above to give

W̃t(b1, . . . , bN ) =

N∑
j=1

bj + et
N (b1, . . . , bN )∏N

j=1 bj
,
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where

N (b1, . . . , bN ) :=
∑

bji1 . . . bjiN−m ,

and the sum is over all subsets {i1 < · · · < iN−m} of {1, . . . , N} such that (sji1 . . . sjiN )s1 . . . sm
is a reduced expression for wP .

Proof. We will rename the coordinates bi when convenient by ai,j , in terms of which ū2 is
given by (

ym(am,m)ym−1(am−1,m) . . . y1(a1,m)
)
. . .
(
ym(am,2)ym−1(am−1,2)

)
ym(am,1).

As a consequence of the shape of ū2 and the definition of the yi, we immediately obtain :

f∗i (ū2) =

m∑
j=m+1−i

a
(i)
j . (A.2)

We now need to compute the e∗i (u1), where u1 is such that u1e
hẇP ū2 ∈ B−ẇ0.

Lemma A.2.

e∗i (u1) = 0 for all 1 ≤ i ≤ m− 1 (A.3)

Proof Proof of Lemma A.2. From [Rie08], we know that

e∗i (u1) =
〈u−1

1 v−ωi , ei · v
−
ωi〉

〈u−1
1 v−ωi , v

−
ωi〉

=
〈ehẇP ū2ẇ0

−1v−ωi , ei · v
−
ωi〉

〈ehẇP ū2ẇ0
−1v−ωi , v

−
−ωi〉

=
〈ehẇP ū2v

+
ωi , ei · v

−
ωi〉

〈ehẇP ū2v
+
ωi , v

−
ωi〉

.

Now e∗i (u1) = 0 if and only if 〈u2v
+
ωi , ẇ

−1
P ei · v−ωi〉 = 0. The vector ẇ−1

P ei · v−ωi is in the µ-
weight space of the i-th fundamental representation, where µ := w−1

P si(−ωi). Moreover,
u2 ∈ B+(ẇP )−1B+, hence it can only have non-zero components down to the weight space
of weight (wP )−1(ωi) = w−1

P (−ωi). However, µ is lower than w−1
P (−ωi) when i 6= m.

We are left with computing e∗m(u1) :

Lemma A.3.

e∗m(u1) = et
N (b1, . . . , bN )∏N

j=1 bj
(A.4)

Proof Proof of Lemma A.3. As in the proof of Lemma A.2, we have

e∗m(u1) =
〈ehẇP ū2v

+
ωm , em · v

−
ωm〉

〈ehẇP ū2v
+
ωm , v

−
ωm〉

= (ωm + αm − ωm)(eh)
〈ẇP ū2v

+
ωm , em · v

−
ωm〉

〈ẇP ū2v
+
ωm , v

−
ωm〉

= et
〈ẇP ū2v

+
ωm , em · v

−
ωm〉

〈ẇP ū2v
+
ωm , v

−
ωm〉

.
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Indeed, αm(eh) = et. Moreover, 〈ẇPu2v
+
ωm , v

−
ωm〉 = 〈u2v

+
ωm , ẇP

−1v−ωm〉 = 〈u2v
+
ωm , v

−
ωm〉. Now

the only way to go from the lowest weight vector v−ωm of the m-th fundamental representation
to the highest v+

ωm is to apply w0. Since u2 ∈ B(wP )−1B, it follows that we need to take all

factors of u2, hence 〈ẇPu2v
+
ωm , v

−
ωm〉 =

∏N
j=1 bj .

Now we prove that 〈ẇPu2v
+
ωm , em · v

−
ωm〉 = N (b1, . . . , bN ). Indeed :

〈ẇPu2v
+
ωm , em · v

−
ωm〉 = 〈u2v

+
ωm , ẇP

−1em · v−ωm〉,

and the weight of the vector ẇP
−1em · v−ωm is µ′ := 1

2 (ε1 − ε2 − · · · − εm). Now consider the
Weyl group element

w′ := sm(sm−1sm) . . . (s2 . . . sm−1sm).

We have

w′ · ωm =
1

2
(ε1 − ε2 − · · · − εm).

Hence the way to the µ′-weight space is through one of the reduced expression for w′, which
concludes the proof of the claim.

Now the proof of Proposition A.1 follows immediately from Theorem 2.4 and the equations
(A.2), (A.3) and (A.4).

The expression for the Landau-Ginzburg model in Proposition A.1 is quite close to the usual
expression for the Landau-Ginzburg model of projective space Pn, which looks like :

W Pn
t = x1 + x2 + · · ·+ xn +

et

x1x2 . . . xn
.

Indeed, it is the sum of as many parameters as the dimension of the variety, plus a more
complicated et-term depending on those parameters. To the best of our knowledge, this
expression is new for LG(m) with m > 2. However, for the three-dimensional quadric LG(2),
we obtain :

W
LG(2)
t = a2,1 + a1,2 + a2,2 + et

a2,1 + a2,2

a2,1a1,2a2,2
,

which, up to a toric change of coordinates, corresponds to one of the expressions of [Prz07].
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