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Abstract

We develop a local index theory for Fourier-integral operators associ-
ated to non-proper and non-isometric actions of Lie groupoids on smooth
submersions. To such action is associated a short exact sequence of alge-
bras, relating genuine Fourier-integral operators to their non-commutative
symbol. We then compute the connecting map induced by this extension
on periodic cyclic cohomology. When cyclic cohomology is localized at
appropriate isotropic submanifolds of the groupoid in question, we find
that the connecting map is expressed in terms of an explicit Wodzicki-
type residue formula, which involves the jets of non-commutative symbols
at the fixed-point set of the action.
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1 Introduction

This article concerns the index theory of a certain class of operators associated
to smooth actions of Lie groupoids on manifolds. When a Lie groupoid G acts
properly on a submersion of smooth manifolds M → B, the index theory of
a G-equivariant family of elliptic pseudodifferential operators on M is rather
well-understood [6, 4]. In his fundamental article [2], Connes introduced cyclic
cohomology techniques in order to deal with the K-theoretic index of a G-
equivariant elliptic family. His result and subsequent generalizations use in a
crucial manner the properness of the action, or in other circumstances, the
fact that the action is isometric with respect to some Riemannian data on M .
Much less is known about improper or non-isometric actions. Already in the
much simpler case of a discrete group G acting by diffeomorphisms on a closed
manifold M one wishes to study operators of the form∑

g∈G
PgUg : C∞(M)→ C∞(M) , (1)

where Pg is a pseudodifferential operator (say of order ≤ 0) for any g, and Ug
is the representation of g as a diffeomorphism on M . Such an operator is not
pseudodifferential, and belongs to the larger class of Fourier-integral operators
[10]. Its principal symbol is not a smooth function on the cosphere bundle S∗M .
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Instead, it defines an element of the non-commutative crossed product algebra
C∞(S∗M) o G, or equivalently, the smooth convolution algebra of the étale
groupoid S∗M o G. When G is infinite this groupoid is not proper and the
associated convolution algebra can be highly non-commutative. In the case of
the group G = Z, Savin and Sternin recently computed the index of an elliptic
operator like (1) as a pairing between its leading symbol and a cyclic cohomology
class of the algebra C∞(S∗M)oG, see [17] and references therein. In the present
article we want to unify these various index theorems and generalize them in
two directions:

• Develop an index theory for operators whose non-commutative leading
symbol belongs to the smooth convolution algebra of a not necessarily
proper groupoid such as the crossed product S∗M oG above,

• Evaluate the K-theoretical index of such operators on a wide range of
cyclic cohomology classes, not necessarily localized at units.

The general situation considered in this article is the following. Let G⇒ B be a
Lie groupoid acting smoothly on a (surjective) submersion π : M → B of smooth
manifolds. This basically means that any morphism g ∈ G with source s(g) ∈ B
and range r(g) ∈ B induces a diffeomorphism from the fiber Mr(g) = π−1(r(g))
to the fiber Ms(g) = π−1(s(g)), in a way compatible with the composition of
morphisms in G. We do not impose any restriction on this action (except
smoothness), in particular, it is not necessarily proper nor isometric. Denote by
S∗πM the bundle over M whose fiber at a point x ∈ M is the cotangent sphere
of the submanifold Mπ(x) at x. Hence, S∗πM is the “vertical” cosphere bundle
over the submersion M . It is still endowed with a smooth action of G, and we
consider the action groupoid S∗πM oG. Its smooth convolution algebra

A = C∞c (S∗πM) oG (2)

is highly non-commutative in general. It may naturally be identified with the
algebra of leading symbols of “vertical non-commutative pseudodifferential oper-
ators” on M . Let us explain what are these operators. Denote by CL0

c(M)→ B
the bundle with base B, whose fiber over a point b ∈ B is the algebra of com-
pactly supported classical pseudodifferential operators of order ≤ 0 on the man-
ifold Mb = π−1(b). This bundle carries a natural action of G. Hence the algebra
of smooth compactly supported sections of vertical classical pseudodifferential
operators C∞c (B,CL0

c(M)) can be twisted by the action of G. This leads to the
crossed-product algebra of non-commutative pseudodifferential operators

E = C∞c (B,CL0
c(M)) oG . (3)

Clearly the projection of classical pseudodifferential operators of order ≤ 0 onto
the homogeneous component of degree 0 of their symbol extends to a surjective
homomorphism of algebras E → A , whose kernel is the two-sided ideal B =
C∞c (B,CL−1

c (M)) oG of operators of order ≤ −1 in E . One thus gets a short
exact sequence (extension) of algebras

(E) : 0→ B → E → A → 0 . (4)

We say that an operator in the algebra E (unitalized) is elliptic if its leading
symbol is invertible in the algebra A (unitalized). This is a purely algebraic
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notion. An invertible leading symbol naturally defines an algebraic K-theory
class in K1(A ). The index map of the extension (E) is the morphism

IndE : K1(A )→ K0(B) (5)

induced on algebraic K-theory in low degrees [11]. Thus, if [u] ∈ K1(A ) is
represented by the non-commutative symbol u ∈ GL∞(A ) of an elliptic oper-
ator, its index IndE([u]) is a K-theory element represented by an idempotent
(matrix) in B. Our goal is to evaluate this index on genuine cyclic cohomology
classes of B. In fact, as shown by Cuntz and Quillen in [9], periodic cyclic
cohomology satisfies excision in full generality. This means that the extension
(E) leads to a cohomology long exact sequence, with connecting map

E∗ : HP •(B)→ HP •+1(A ) . (6)

Then Nistor [12] (see also [14]) remarked that the index map IndE in algebraic
K-theory is adjoint to the excision map E∗ with respect to the Chern-Connes
pairing. Hence for any [u] ∈ K1(A ) and [τ ] ∈ HP 0(B) one has the equality of
pairings

〈[τ ], IndE([u])〉 = 〈E∗([τ ]), [u]〉 . (7)

The left-hand side of this equality is a number, or “higher index” caracterizing
the K-theoretic index class of an elliptic operator. The right-hand side computes
the higher index by means of a “formula” involving the leading symbol of this
operator. The difficulty is then to compute the image of cyclic cocycles [τ ]
under the excision map, which is actually not easy at all. We will use the
general theory developed in [14, 15] for the explicit computation of the excision
map in terms of local formulas. The first step in this direction is to find which
classes [τ ] are “good enough” to allow this computation. In our case, the algebra
B = C∞c (B,CL−1

c (M)) o G is a finitely-summable thickening of the smooth
convolution algebra of the pullback groupoid π∗G ⇒ M . The latter is Morita
equivalent to the groupoidG⇒ B, and the topological cyclic cohomology of their
respective convolution algebras C∞c (M)oπ∗G and C∞c (B)oG are isomorphic.
The topological cyclic cohomology of a smooth convolution algebra is defined
according to its natural locally convex topology. We construct a canonical map
(Proposition 4.6)

τ∗ : HP •top(C∞c (B) oG)→ HP •(C∞c (B,CL−1
c (M)) oG) . (8)

By doing so we need to establish not so well-known properties of localization
and Morita invariance of the periodic cyclic cohomology of smooth convolution
algebras for general Lie groupoids. To our knowledge this was previously done
only in the case of foliation groupoids (see [1, 7]), that is, groupoids which are
Morita equivalent to étale ones. The following result shows that on the range
of (8) the excision map E∗ factors through the topological cyclic cohomology of
the convolution algebra A = C∞c (S∗πM) oG:
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Theorem 4.7 Let G ⇒ B be a Lie groupoid and π : M → B a G-equivariant
surjective submersion. Then one has a commutative diagram

HP •(C∞c (B,CL−1
c (M)) oG)

E∗ // HP •+1(C∞c (S∗πM) oG)

HP •top(C∞c (B) oG)

τ∗

OO

π!
G // HP •+1

top (C∞c (S∗πM) oG)

OO

(9)

It remains to compute the map π!
G. Let O ⊂ G be an Ad-invariant isotropic

submanifold of G. This means that the range and source maps O ⇒ B coincide,
and O is globally invariant under the adjoint action of G. Then one has the
notion of topological cyclic cohomology HP •top(C∞c (B) o G)[O] localized at O,
togetether with a forgetful map from the localized to the delocalized cohomol-
ogy. Under suitable non-degeneracy hypotheses concerning the action of O on
M , we are able to calculate the map π!

G by means of explicit formulas involving
residues of zeta-functions. The use of zeta-function is motivated by the ap-
proach of Connes and Moscovici to the local index formula in non-commutative
geometry [5]. These residues generalize the well-known Wodzicki residue for
classical pseudodifferential operators [19]. They are given by integrals, over the
cosphere bundle of the fixed point set for O, of certain local expessions in the
complete symbol of the operators involved. As a refinement of Theorem 4.7 we
obtain the following result.

Theorem 5.6 Let G ⇒ B be a Lie groupoid and let O be an Ad-invariant
isotropic submanifold of G. Let π : M → B be a G-equivariant surjective
submersion and assume the action of O on M non-degenerate. Then one has a
commutative diagram

HP •(C∞c (B,CL−1
c (M)) oG)

E∗ // HP •+1(C∞c (S∗πM) oG)

HP •top(C∞c (B) oG)[O]

τ∗

OO

π!
G // HP •+1

top (C∞c (S∗πM) oG)[π∗O]

OO

(10)

where the isotropic submanifold π∗O ⊂ S∗πM o G is the pullback of O by the
submersion S∗πM → B. The map π!

G is given by an explicit residue formula.

We will explain how to extract local index formulas from this theorem in a
forthcoming paper.

Let us now give a brief description of the article. Section 2 recalls elemen-
tary notions about Lie groupoids, convolution algebras, and pseudodifferential
operators. We introduce the basic extension associated to the action of a Lie
groupoid on a submersion and describe the index map. In section 3 we review
the cyclic cohomology of the smooth convolution algebra of a Lie groupoid, both
in the algebraic and topological case, and establish the properties of localization
and Morita invariance. In section 4 we recall the computation of the excision
map from [14] and prove Theorem 4.7. In section 5 we use zeta-function renor-
malization techniques in order to prove the residue Theorem 5.6.
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2 Convolution algebras

In this section we recall some basic facts about Lie groupoids, convolution alge-
bras, pseudodifferential operators, and define the index of a non-commutative
elliptic symbol as an algebraic K-theory class.

Definition 2.1 A Lie groupoid G⇒ B consists of:

a) Two smooth manifolds B = G(0) (the set of units) and G = G(1) (the set of
morphisms). We will assume that B and G are Hausdorff and without bound-
ary;
b) Two submersions r, s : G→ B called the range and source map respectively;
c) A smooth map m : G(2) → G, where G(2) = {(g1, g2) ∈ G×G | s(g1) = r(g2)}
is the set of composable arrows, called the product map. We usually write
m(g1, g2) = g1g2;
d) A smooth embedding u : B ↪→ G and a diffeomorphism i : G → G called the
unit and inverse map respectively. We usually write u(b) = b for any b ∈ B and
i(g) = g−1 for any g ∈ G.

These data are subject to compatibility conditions: for all composable morphisms
g1, g2, g3 ∈ G one has

i) r(g1g2) = r(g1) and s(g1g2) = s(g2);
ii) (g1g2)g3 = g1(g2g3) (associativity of the product);
iii) gs(g) = g and r(g)g = g (units);
iv) gg−1 = r(g) and g−1g = s(g) (inverse).

Following the standard convention we denote by G(n) the submanifold of com-
posable n-tuples of morphisms (g1, . . . , gn) in Gn. One should keep in mind that
a morphism g ∈ G may be represented by a left-oriented arrow

r(g)
g←− s(g)

and the product of morphisms is the concatenation of arrows. For any unit b ∈
B, we denote by Gb = {g ∈ G | s(g) = b} the fiber of the source map over b, and
by Gb = {g ∈ G | r(g) = b} the fiber of the range map. These are submanifolds
in G. At any point b ∈ B, the intersection Gbb = Gb ∩ Gb is a Lie group called
the isotropy group at b. The isotropy subset I = {g ∈ G | r(g) = s(g)} is
the union of all isotropy groups. It is a closed subset in G but generally not
a submanifold; the isotropy groups Gbb may have jumps when b varies. Let us
recall some basic constructions.

Definition 2.2 Let G⇒ B be a Lie groupoid and π : M → B a submersion of
smooth manifolds. The pullback groupoid of G by π is the Lie groupoid

π∗G⇒M (11)
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where π∗G = {(x, g, y) ∈ M × G × M | π(x) = r(g) , π(y) = s(g)}, with
range map (x, g, y) 7→ x, source map (x, g, y) 7→ y, and product of composable
morphisms (x, g1, y) · (y, g2, z) = (x, g1g2, z).

Definition 2.3 Two Lie groupoids G1 ⇒ B1 and G2 ⇒ B2 are Morita equiva-
lent if there exists a smooth manifold M and two surjective submersions

B1
π1←−M π2−→ B2

together with an isomorphism π∗1G1
∼= π∗2G2 between the pullback groupoids.

Morita equivalence is an equivalence relation among Lie groupoids.

Definition 2.4 Let M be a smooth manifold and G ⇒ B a Lie groupoid. A
right G-action on M is given by
a) A smooth submersion π : M → B;
b) A map from the fibered product M ×(π,r)G = {(x, g) ∈M ×G | π(x) = r(g)}
to M , sending a pair (x, g) to the element x · g such that π(x · g) = s(g) and
(x · g1) · g2 = x · (g1g2) whenever g1 and g2 can be composed.

We call such π : M → B a G-equivariant submersion.

Note that the fibered product manifoldM×(π,r)G endowed with the composition
law (x, g1) · (y, g2) = (x, g1g2) whenever x · g1 = y, is a Lie groupoid with range
map (x, g) 7→ x and source map (x, g) 7→ x · g. We usually denote this action
groupoid by MoG⇒M . It should not be confused with the pullback groupoid
π∗G.
Let Mb = π−1(b) be the preimage of a point b ∈ B. Since π is a submersion Mb

is a submanifold of M . Any element g ∈ G induces a diffeomorphism Mr(g) →
Ms(g) by x 7→ x · g. We extend this to a diffeomorphism T ∗Mr(g) → T ∗Ms(g)

between the cotangent bundles of the respective submanifolds in M . One has
a natural action of the multiplicative group R×+ on the fibers of the cotangent
bundle and the quotient S∗Mb = T ∗Mb/R×+ defines the cosphere bundle over
Mb. Moreover the diffeomorphism induced by g commutes with the action of
R×+, hence descends to a diffeomorphism S∗Mr(γ) → S∗Ms(γ). The collection

S∗πM =
⋃
b∈B

S∗Mb (12)

of vertical cosphere bundles is also clearly a G-equivariant submersion with base
B.

We now define the smooth convolution algebra of a Lie groupoid (r, s) : G⇒
B. The kernel Ker s∗ of the tangent map s∗ : TG → TB is the vector bundle
over G whose vectors are tangent to the fibers Gb = s−1(b) of the source map.
These vectors are the infinitesimal generators of the left multiplication of G on
itself. Since left and right multiplication commute, the fibers (Ker s∗)g1 and
(Ker s∗)g2 are canonically isomorphic whenever r(g1) = r(g2). The restriction
of Ker s∗ to the submanifold of units B ⊂ G yields a vector bundle AG over B
called the Lie algebroid of G, and one has a canonical identification

r∗(AG) ∼= Ker s∗
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of vector bundles over G. Hence, any section of AG over B can be pulled back
by the rank map r to a “right-invariant” section of Ker s∗ over G. Passing to the
dual bundle A∗G of the Lie algebroid and taking the maximal exterior power,
one thus gets an isomorphism between the line bundle r∗(|ΛmaxA∗G|) and the
line bundle |Λmax(Ker s∗)

∗| of 1-densities along the submanifolds Gb = s−1(b).
The smooth convolution algebra of G is then defined as the C-vector space

C∞c (B) oG := C∞c (G, r∗(|ΛmaxA∗G|)) (13)

of smooth (complexified) sections of this line bundle. The product of two sec-
tions a1, a2 ∈ C∞c (B) o G evaluated on a point g ∈ G is given by an integral
over all possible decompositions of g into products g1g2,

(a1a2)(g) =

∫
g1g2=g

a1(g1) a2(g2) , (14)

where a1(g1)a2(g2) ∈ |ΛmaxA∗G|r(g1) ⊗ |ΛmaxA∗G|r(g2). The integral makes
sense because r(g1) = r(g) is fixed, and when the point g2 varies in Gs(g) the
line |ΛmaxA∗G|r(g2) runs over the fibers of the 1-density bundle over Gs(g). This
product is associative but not commutative in general. The convolution algebra
is not unital unless G is étale (i.e. r and s are local diffeomorphisms, equivalently
the Lie algebroid is reduced to its zero-section B) and B is compact. In the
latter case the unit e of the convolution algebra is e(g) = 0 for g /∈ B and
e(b) = 1 for b ∈ B.
By choosing a trivialisation of |ΛmaxA∗G|, that is a nowhere vanishing section,
one obtains by pullback a right-invariant section of the 1-density bundle, or
equivalently smooth Haar system on G. A choice of Haar system allows one to
identify the convolution algebra of G with the space of complex-valued functions
with compact support on G,

C∞c (B) oG ∼= C∞c (G)

and transfer the convolution product on the latter. Since a choice of Haar
system is non-canonical, it is sometimes more convenient to use the completely
canonical definition of the product given above.
Let R → B is a G-equivariant associative algebra bundle, that is, a bundle
of associative algebras over B endowed with an action by isomorphisms Ug :
Rs(g) → Rr(g), ∀g ∈ G, compatible with the products in G. We suppose that
the sections of this bundle are endowed with some “smooth” structure ensuring
that the subsequent constructions make sense. Then we define the convolution
algebra of G twisted by the bundle R as the space of compactly supported
sections

C∞c (B,R) oG := C∞c (G, r∗(R⊗ |ΛmaxA∗G|)) (15)

endowed with a slight generalization of the above convolution product. For two
sections a1, a2 ∈ C∞c (B,R) oG we set

(a1a2)(g) =

∫
g1g2=g

a1(g1) · Ug1a2(g2) , (16)

where the isomorphism Ug1 : Rs(g1)⊗|ΛmaxA∗G|s(g1) → Rr(g1)⊗|ΛmaxA∗G|s(g1)

acts on the fiber of R but not on the fiber of the density bundle. As an example
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let π : M → B be a G-equivariant submersion, and take R as the bundle whose
fiber over b ∈ B is the commutative algebra of smooth functions with compact
support C∞c (Mb). Then

C∞c (B,R) oG ∼= C∞c (M) oG

is canonically isomorphic to the smooth convolution algebra of the action groupoid
MoG. We will sometimes use the notation C∞p (B,R)oG for the crossed prod-
uct algebra of properly supported sections of the bundle r∗(R⊗|ΛmaxA∗G|) over
G.

Now let CLmc (Mb) be the space of compactly supported classical (1-step poly-
homogeneous) pseudodifferential operators of order m ∈ Z, acting on the space
of smooth functions with compact support on manifold Mb. Such a linear op-
erator on C∞c (Mb) has distribution kernel with compact support in Mb ×Mb,
and in a local coordinate system (x, p) on T ∗Mb its symbol has an asymptotic
expansion σ(x, p) ∼

∑
j≥0 σm−j(x, p), with σm−j(x, p) a positively homoge-

neous function of degree m − j ∈ Z in the variable p. For any g ∈ G and any
P ∈ CLmc (Ms(g)), the pushforward UgPU

−1
g ∈ CLmc (Mr(g)) is the adjoint action

of the linear isomorphism Ug : C∞c (Ms(g))→ C∞c (Mr(g)) induced by the diffeo-
morphism g. We denote by CLc(M) → B the bundle over the base manifold
B, whose fiber at a point b ∈ B is the algebra CLc(Mb). Hence CLc(M) is
a G-bundle. The subbundle L−∞c (M) whose fiber is the algebra of smoothing
operators with compact support, is a two-sided ideal in CLc(M). The quotient
CSc(Mc) = CLc(M)/L−∞c (M) defines the algebra bundle of formal symbols over
B. We will essentially focus on the algebra bundle CL0

c(M) of classical pseu-
dodifferential operators of order ≤ 0, and its two-sided ideal CL−1

c (M). The
quotient LS0

c(M) = CL0(M)/CL−1(M) of leading symbols is isomorphic to the
bundle whose fiber over a point b ∈ B is the commutative algebra C∞c (S∗Mb)
of smooth compactly supported functions on the cosphere bundle of Mb. One
thus has a commutative diagram of algebra bundles over B

0 // L−∞c (M) //

��

CL0
c(M) // CS0

c(M) //

��

0

0 // CL−1
c (M) // CL0

c(M) // LS0
c(M) // 0

(17)

where the rows are exact sequences. The left vertical arrow is an injection,
whereas the right vertical arrow is a surjection. Since all bundles are G-bundles,
one can form the corresponding convolution algebras by crossed product with
the action of G. Notice there are canonical isomorphisms

C∞c (B,L−∞c (M))oG ∼= C∞c (M)oπ∗G , C∞c (B,LS0
c(M))oG ∼= C∞c (S∗πM)oG

where C∞c (M)oπ∗G is the smooth convolution algebra of the pullback groupoid
π∗G⇒M , and C∞c (S∗πM) oG is the smooth convolution algebra of the action
groupoid S∗πM oG⇒ S∗πM . All arrows of (17) being G-equivariant homomor-
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phisms of algebra bundles over B, one gets a commutative diagram

0 // C∞c (M) o π∗G //

��

C∞c (B,CL0
c(M)) oG // C∞c (B,CS0

c(M)) oG //

��

0

0 // C∞c (B,CL−1
c (M)) oG // C∞c (B,CL0

c(M)) oG // C∞c (S∗πM) oG // 0

where the rows are short exact sequences of associative algebras. The bot-
tom row is our main object of interest. We set A = C∞c (S∗πM) o G, B =
C∞c (B,CL−1

c (M)) oG, E = C∞c (B,CL0
c(M)) oG and consider the extension

(E) : 0→ B → E → A → 0 . (18)

The boundary map of Milnor [11] associates to any algebraic K-theory class
[u] ∈ K1(A ) an index IndE([u]) ∈ K0(B). Recall that a class [u] is represented
by an element u in the group GL∞(A ) of invertible infinite matrices of the
form u = 1 + v with v ∈ M∞(A ). We can choose two matrices P and Q with
entries in the algebra E (with a unit adjoined), which project respectively to u
and its inverse u−1. Then P and Q are inverse to each other modulo the ideal
of matrices with entries in B. The index IndE([u]) ∈ K0(B) is represented by
the difference of idempotents [e]− [e0] where

e =

(
1− (1−QP )2 Q(2− PQ)(1− PQ)

(1− PQ)P (1− PQ)2

)
, e0 =

(
1 0
0 0

)
. (19)

Definition 2.5 Let G ⇒ B be a Lie groupoid and π : M → B a smooth G-
equivariant submersion. Set A = C∞c (S∗πM)oG and B = C∞c (B,CL−1

c (M))o
G. An invertible matrix u ∈ GL∞(A ) is called an elliptic symbol. Its index is
the K-theory class

IndE([u]) ∈ K0(B) , (20)

the image of [u] ∈ K1(A ) under the boundary map associated to the natural
extension (E) : 0→ B → E → A → 0.

3 Cyclic homology

We recall the basic notions of cyclic homology. Let A be an associative C-
algebra. The space of noncommutative n-forms over A is ΩnA = A + ⊗A ⊗n

for all n ≥ 1, where A + = A ⊕ C is the algebra obtained by adjoining a unit.
For n = 0 one has Ω0A = A . We write a0da1 . . . dan (reps. da1 . . . dan) for the
generic element a0 ⊗ a1 ⊗ . . . ⊗ an (reps. 1 ⊗ a1 ⊗ . . . ⊗ an) in ΩnA . A differ-
ential d : ΩnA → Ωn+1A is defined by d(a0da1 . . . dan) = d(a0da1 . . . dan) and
d(da1 . . . dan) = 0, and of course d2 = 0. The direct sum ΩA =

⊕
n≥0 ΩnA

is gifted with the unique graded product satisfying the Leibniz rule d(ω1ω2) =
dω1ω2 + (−1)n1ω1dω2 for all ωi ∈ ΩniA . This turns ΩA into a differential
graded algebra. The Hochschild boundary operator b : ΩnA → Ωn−1A is
defined by b(ωda) = (−1)n−1[ω, a] for all ω of degree n− 1 and a ∈ A . Equiv-
alently

b(a0da1 . . . dan) = a0a1da2 . . . dan +

n−1∑
i=1

(−1)ia0da1 . . . d(aiai+1) . . . dan

+(−1)nana0da1 . . . dan−1 (21)
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for all a0 ∈ A + and ai ∈ A , i ≥ 1. Let κ = 1 − (bd + db) be the Karoubi
operator. One has κ(ωda) = (−1)ndaω for all n-form ω and a ∈ A . The Connes
boundary operator B : ΩnA → Ωn+1A is defined by B = (1 + κ+ . . .+ κn)d,
or equivalently

B(a0da1 . . . dan) =

n∑
i=0

(−1)nidai . . . danda0 . . . dai−1 . (22)

One has b2 = bB +Bb = B2 = 0, hence ΩA endowed with the operators (b, B)
is a bicomplex. By definition the cyclic homology HC•(A ) is the homology of
the following total complex with boundary b+B:

b
��

b
��

b
��

Ω2A

b

��

Ω1A

b

��

Boo Ω0A
Boo

Ω1A

b

��

Ω0A
Boo

Ω0A

(23)

A cyclic homology class in HCn(A ) is therefore represented by an inhomoge-
neous differential form ωn + ωn−2 + . . . ∈ ΩnA ⊕ Ωn−2A ⊕ . . . which is closed
in the sense bωn + Bωn−2 = 0, bωn−2 + Bωn−4 = 0, etc... The obvious shift of
degree two obtained by deleting the first column of the cyclic bicomplex gives
rise to the periodicity operator S : HCn(A )→ HCn−2(A ). Now complete the
space of differential forms ΩA by taking direct products instead of direct sums,
and write Ω̂A =

∏
n≥0 ΩnA . The operator b + B extends to a well-defined

boundary operator on the completed space. The periodic cyclic homology of A
is defined as the homology of this complex:

HP•(A ) = H•(Ω̂A , b+B) . (24)

By construction the periodic cyclic homology is Z2-graded, that is HPn(A ) ∼=
HPn+2(A ) for all n. Since the complex (Ω̂A , b + B) can be recovered as the
projective limit (under the operation S) of the cyclic bicomplex of A , the pe-
riodic and non-periodic cyclic homologies are related by a Milnor lim1 exact
sequence

0→ lim←−
S

1HC•−1(C∞c (G))→ HP•(C
∞
c (G))→ lim←−

S

HC•(C
∞
c (G))→ 0 (25)

The cyclic cohomology groups HCn(A ) are defined through the dual complex
of (23) over C. One simply has to replace the vector space ΩnA by its dual
ΩnA ′ = Hom(ΩA ,C) over C, and transpose the boundaries (b, B). The peri-
odicity operator S : HCn(A ) → HCn+2(A ) now raises the degree by two.
Periodic cyclic cohomology is defined as the cohomology of the direct sum
ΩA ′ =

⊕
n≥0 ΩnA ′, which is a Z2-graded complex once endowed with the

transposed of the operator b+B:

HP •(A ) = H•(ΩA ′, b+B) . (26)
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The link between periodic and non-periodic cyclic cohomology is simpler than
the case of homology, since HP •(A ) is the inductive limit over S of the groups
HC•(A ). There are obvious bilinear pairings HCn(A ) × HCn(A ) → C and
HPn(A )×HPn(A )→ C.

Let G ⇒ B be a Lie groupoid. For notational convenience we suppose that
a smooth Haar system on G has been fixed, so the smooth convolution algebra
A = C∞c (B) o G is isomorphic to C∞c (G). The space of noncommutative n-
forms ΩnC∞c (G) = C∞c (G)+ ⊗C∞c (G)⊗n is a subspace of the smooth functions
with compact support on the union of manifolds Gn+1 ∪ Gn. Indeed a generic
n-form a0da1 . . . dan, with ai ∈ C∞c (G), is a function of n+ 1 points in G,

(a0da1 . . . dan)(g0, g1, . . . , gn) = a0(g0)a1(g1) . . . an(gn) ,

while a n-form da1 . . . dan is a function of n points:

(da1 . . . dan)(g1, . . . , gn) = a1(g1) . . . an(gn) .

Thus ΩC∞c (G) is actually a (complicated) subspace of the smooth compactly
supported functions on the manifold

⋃
n≥0(Gn+1 ∪ Gn). Let I = I(1) be the

isotropy subset of G, i.e. the set of morphisms g ∈ G such that r(g) = s(g).
Following [1], we define the set of loops I(n) ⊂ Gn for higher n as

I(n) = {(g1, . . . , gn) ∈ Gn | s(gi) = r(gi+1) ∀i < n , s(gn) = r(g1)} (27)

We want to show that the periodic cyclic (co)homology of C∞c (G) can be local-
ized, in the sense that the information of the cyclic bicomplex is entirely con-
tained in the vicinity of the set of loops. To make it precise, let ΩnC∞c (G)0 ⊂
ΩnC∞c (G) be the subspace of functions vanishing on some neighborhood of the
set of loops I(n+1)∪I(n) ⊂ Gn+1∪Gn. We define the quotient space of localized
forms

ΩnC∞c (G)(I) = ΩnC∞c (G)/ΩnC∞c (G)0 (28)

Clearly the direct sum ΩC∞c (G)0 =
⊕

n≥0 ΩnC∞c (G)0 is stable by the boundary
operators b, B hence yields a subcomplex of the cyclic bicomplex. Consequently,
the operators b, B descend to the quotient ΩC∞c (G)(I). This leads to a localized
cyclic bicomplex. The localized periodic cyclic homology of C∞c (G) is defined

accordingly, through the completion Ω̂C∞c (G)(I) =
∏
n≥0 ΩnC∞c (G)(I):

HP•(C
∞
c (G))(I) = H•(Ω̂C

∞
c (G)(I), b+B) (29)

The localized periodic cyclic cohomology of C∞c (G) is defined by duality. We
let ΩnC∞c (G)′(I) = Hom(ΩnC∞c (G)(I),C) be the space of C-linear functionals

on localized n-forms. This is exactly the set of linear maps ϕ : ΩnC∞c (G)→ C
vanishing on the subspace ΩnC∞c (G)0. Then the direct sum ΩC∞c (G)′(I) =⊕

n≥0 ΩnC∞c (G)′(I) is a Z2-graded complex with boundary the transposed of
b+B, whence

HP •(C∞c (G))(I) = H•(Hom(ΩC∞c (G)(I),C), b+B) . (30)

Proposition 3.1 (Localization: algebraic case) Let G be any Lie groupoid
with isotropy subset I. Then the projection of cyclic bicomplexes ΩC∞c (G) →
ΩC∞c (G)(I) induces isomorphisms

HP•(C
∞
c (G)) ∼= HP•(C

∞
c (G))(I) , HP •(C∞c (G)) ∼= HP •(C∞c (G))(I) . (31)
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Proof: Denote by HC•(C
∞
c (G))0 and HP•(C

∞
c (G))0 the cyclic homologies com-

puted by the subcomplex ΩC∞c (G)0 of forms vanishing in the vicinity of loops.
Our goal is to prove that HP•(C

∞
c (G))0 = 0. Then using the homology six-term

exact sequence

HP0(C∞c (G))0
// HP0(C∞c (G)) // HP0(C∞c (G))(I)

��
HP1(C∞c (G))(I)

OO

HP1(C∞c (G))oo HP1(C∞c (G))0
oo

associated to the exact sequence of complexes 0 → Ω̂C∞c (G)0 → Ω̂C∞c (G) →
Ω̂C∞c (G)(I) → 0 gives the first isomorphism in (31). We first show that the
periodicity operator S : HCn(C∞c (G))0 → HCn−2(C∞c (G))0 vanishes. Let
(Ui)i∈I be a locally finite open covering of the space B of units in G, where
I ⊆ N is an ordered, at most countable set (thus each compact subset of B
intersects a finite number of Ui’s). Let (ci)i∈I be a partition of unity relative to
this covering, in the sense that ci ∈ C∞c (Ui) for all i ∈ I and

∑
i∈I ci(x)2 = 1

for all x ∈ B. We view each function ci ∈ C∞c (B) as a multiplier of the algebra
C∞c (G): for any a ∈ C∞c (G) and g ∈ G set

(cia)(g) := ci(r(g)) a(g) , (aci)(g) := a(g) ci(s(g)) .

We use the partition of unity to build a map ρ from C∞c (G) to the algebra
of infinite matrices M∞(C∞c (G)) as follows: for each a ∈ C∞c (G), the matrix
element of ρ(a) in position (i, j) is ciacj . By the compactness of the support
of a, only a finite number of matrix elements are non-zero. The condition∑
i c

2
i = 1 shows that ρ is a homomorphism of algebras. Therefore, the induced

map ρ∗ : ΩnC∞c (G) → ΩnM∞(C∞c (G)) composed with the trace of matrices
yields a morphism of cyclic bicomplexes trρ∗ : ΩC∞c (G)→ ΩC∞c (G). Explicitly
for any n-form a0da1 . . . dan we have

trρ∗(a0da1 . . . dan) =
∑

i0,...,in

(ci0a0ci1)d(ci1a1ci2) . . . d(cinanci0) ,

and similarly for trρ∗(da1 . . . dan). This morphism clearly restricts to a mor-
phism of subcomplexes ΩC∞c (G)0 → ΩC∞c (G)0. Observe also that the n-form
(ci0a0ci1)d(ci1a1ci2) . . . d(cinanci0), viewed as a smooth function on Gn+1, has
compact support consisting of multiplets (g0, g1, . . . , gn) such that s(g0) and
r(g1) are in the support of ci1 , s(g1) and r(g2) are in the support of ci2 ,
and so on. Thus, if the supports of the ci’s are small enough, the function
trρ∗(a0da1 . . . dan) can be localized to an arbitrary small neighborhood of the
set of loops I(n+1) in Gn+1. In particular if a0da1 . . . dan belongs to the subspace
ΩnC∞c (G)0, one can always find a suitably fine covering of B together with a
partition of unity such that trρ∗(a0da1 . . . dan) vanishes. The next step is to
provide a homotopy between the homomorphism ρ and the natural inclusion
C∞c (G) ↪→M∞(C∞c (G)) in the upper left matrix position. Indeed, consider the
isomorphism of algebras

M∞(C∞c (G)) ∼=
(

C∞c (G) C∞row ⊗ C∞c (G)
C∞col ⊗ C∞c (G) M∞(C∞c (G))

)
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where C∞row and C∞col are respectively the spaces of infinite row and column
matrices, with finitely many non-zero entries in C. According to this 2×2 matrix
notation one has two relevant homomorphisms ρ0, ρ1 : C∞c (G)→M∞(C∞c (G))
given by

ρ0(a) =

(
a 0
0 0

)
, ρ1(a) =

(
0 0
0 ρ(a)

)
.

Then trρ0
∗ is the identity map on ΩC∞c (G), while trρ1

∗ = trρ∗. Let u = (ui)i∈I
be the infinite row with ui = ci, and v = (vi)i∈I the infinite column with vi = ci.
Note that u and v may have infinitely many non-zero entries. Nevertheless the
scalar product uv =

∑
i c

2
i = 1 is well-defined, so that vu is an idempotent ma-

trix with infinitely many non-zero entries. From this one can produce a matrix
W and its inverse W−1, which are both multipliers of the algebra M∞(C∞c (G)):

W =

(
0 −u
v 1− vu

)
, W−1 =

(
0 u
−v 1− vu

)
One has ρ(a) = vau for all a ∈ C∞c (G), and the elements ρ0(a), ρ0(a)W ,
W−1ρ0(a) and W−1ρ0(a)W = ρ1(a) are all in M∞(C∞c (G)). A classical argu-
ment using rotation matrices in M2(C) then shows that the homomorphisms
ρ0 and ρ1 are homotopic after tensoring by M2(C). Hence the morphisms of
cyclic bicomplexes trρ0

∗ = Id and trρ1
∗ = trρ∗ induce the same maps in cyclic

homology after stabilization by the periodicity operator S. Applying this to
the subcomplex ΩC∞c (G)0 shows that S : HCn(C∞c (G))0 → HCn−2(C∞c (G))0

coincides with S ◦ trρ∗. By virtue of the above observation, for any given n-
cycle ω there is a choice of open covering of B with partition of unity so that
trρ∗(ω) = 0. Hence S = 0 on HCn(C∞c (G))0 as claimed. Note that we cannot
apply this argument directly to the periodic cyclic homology HP•(C

∞
c (G))0,

because a periodic cycle is an infinite sequence of n-forms so we may find no
suitable covering of B. Instead, we use the lim1 exact sequence

0→ lim←−
S

1HC•−1(C∞c (G))0 → HP•(C
∞
c (G))0 → lim←−

S

HC•(C
∞
c (G))0 → 0

Since S = 0, one has lim←−
1HC•−1(C∞c (G))0 = 0 and lim←−HC•(C

∞
c (G))0 = 0,

hence HP•(C
∞
c (G))0 vanishes as required.

Passing to cohomology, we observe that, as a vector space over C, the non-
periodic cyclic cohomology HCn(C∞c (G))0 is the algebraic dual of the space
HCn(C∞c (G))0. Hence, by transposition of the above result, the suspension
operator S : HCn(C∞c (G))0 → HCn+2(C∞c (G))0 vanishes as well as the induc-
tive limit HP •(C∞c (G))0 = lim−→S

HC•(C∞c (G))0. The second isomorphism in

(31) then follows from the six-term exact sequence relating the periodic cyclic
cohomology groups HP •(C∞c (G))0, HP •(C∞c (G)) and HP •(C∞c (G))(I).

When an algebra A comes equipped with a locally convex topology, the
algebraic cyclic (co)homologies HP•(A ) and HP •(A ) described above can be
replaced by appropriate topological versions. The topological cyclic homology of
such an algebra is defined through a space of noncommutative differential forms
as in the algebraic case, the only difference is that one has to replace algebraic
tensor products by topological ones. The space of topological n-forms is thus
ΩntopA = A +⊗̂A ⊗̂n where A + = A ⊕ C is the algebra obtained by adjoining
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a unit, and ⊗̂ is an appropriate completion of the algebraic tensor product.
In the case of a Lie groupoid G, its smooth convolution algebra A = C∞c (G)
has the topology of an LF-space, which is the inductive limit topology, over all
compact subsets K ⊂ G, of the Fréchet spaces C∞K (G) of smooth functions with
support contained in K. In this case one may choose Grothendieck’s inductive
tensor product. Recall that if M and N are two manifolds, the inductive tensor
product of LF-spaces C∞c (M)⊗̂C∞c (N) is isomorphic to C∞c (M×N). The space
of noncommutative n-forms over the convolution algebra is thus isomorphic to

ΩntopC
∞
c (G) ∼= C∞c (Gn+1 ∪Gn) . (32)

The operators (b, B) extend by continuity to well-defined boundary operators on
the direct sum ΩtopC

∞
c (G) =

⊕
n≥0 ΩntopC

∞
c (G) and also on the direct product

Ω̂topC
∞
c (G) =

∏
n≥0 ΩntopC

∞
c (G). By definition the topological periodic cyclic

homology of the convolution algebra is

HP top
• (C∞c (G)) = H•(Ω̂topC

∞
c (G), b+B) . (33)

Passing to cohomology one has to consider an appropriate dual space to non-
commutative forms ΩntopC

∞
c (G)′ = Hom(ΩntopC

∞
c (G),C). We take the space of

continuous and linear functionals ϕ : ΩntopC
∞
c (G) → C with bounded singular-

ity order. Such a functional ϕ is exactly represented by a distribution on the
manifold Gn+1 ∪Gn whose singularity order is finite, say k: its evaluation on a
smooth function ω ∈ ΩntopC

∞
c (G) formally reads

ϕ(ω) =

∫
Gn+1

ϕ0,n(g0, . . . , gn)ω(g0, . . . , gn) +

∫
Gn

ϕ1,n(g1, . . . , gn)ω(g1, . . . , gn)

and can be extended to a continuous linear functional on functions of class
Ck. We endow the space ΩntopC

∞
c (G)′ with the weak-∗ topology. The trans-

posed of the total operator b + B acting on the direct sum ΩtopC
∞
c (G)′ =⊕

n≥0 ΩntopC
∞
c (G)′ thus yields a Z2-graded topological complex. The topologi-

cal periodic cyclic cohomology of the convolution algebra is by definition

HP •top(C∞c (G)) = H•(ΩtopC
∞
c (G)′, b+B) . (34)

We want to discuss localization of topological periodic cyclic (co)homology.
Thus let ΩntopC

∞
c (G)0 ⊂ ΩntopC

∞
c (G) be the subspace of functions vanishing

on some neighborhood of the set of loops I(n+1) ∪ I(n). This subspace is not
closed in ΩntopC

∞
c (G). We define the localized noncommutative n-forms as the

(non-Hausdorff) quotient space

ΩntopC
∞
c (G)(I) = ΩntopC

∞
c (G)/ΩntopC

∞
c (G)0 . (35)

Since the operators (b, B) descend on localized forms, we define the localized
topological periodic cyclic homology of the convolution algebra as the homology
of the direct product Ω̂topC

∞
c (G)(I) =

∏
n≥0 ΩntopC

∞
c (G)(I)

HP top
• (C∞c (G))(I) = H•(Ω̂topC

∞
c (G)(I), b+B) . (36)

The definition of localized topological cyclic cohomology is analogous to al-
gebraic setting. Let ΩntopC

∞
c (G)′(I) be the set of continuous bounded linear
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functionals ϕ : ΩntopC
∞
c (G)→ C vanishing on the subspace ΩntopC

∞
c (G)0 (hence

also on its closure). These functionals are characterized by their distribution
kernel whose support is entirely contained in the set of loops I(n+1) ∪ I(n). The
direct sum ΩtopC

∞
c (G)′(I) =

⊕
n≥0 ΩntopC

∞
c (G)′(I) endowed with the transposed

of b+B is therefore a Z2-graded subcomplex of ΩtopC
∞
c (G)′ and we set

HP •top(C∞c (G))(I) = H•(ΩtopC
∞
c (G)′(I), b+B) . (37)

Proposition 3.2 (Localization: topological case) Let G be a Lie groupoid.
The projection of cyclic bicomplexes ΩtopC

∞
c (G) → ΩtopC

∞
c (G)(I) induces an

isomorphism in periodic cyclic homology

HP top
• (C∞c (G)) ∼= HP top

• (C∞c (G))(I) . (38)

Moreover if the closure of ΩtopC
∞
c (G)0 is a direct summand in ΩtopC

∞
c (G) as a

topological vector subspace, then the natural map in periodic cyclic cohomology

HP •top(C∞c (G))(I) → HP •top(C∞c (G)) (39)

is surjective (with kernel a topological vector space which does not separate zero
from any other vector).

Proof: For cyclic homology, the proof of Proposition 3.1 applies verbatim. A
partition of unity (ci)i∈I relative to an open covering of B = G(0) yields a
continuous homomorphism ρ : C∞c (G) → M∞(C∞c (G)) by setting ρ(a)ij =
ciacj . The resulting chain map trρ∗ : ΩtopC

∞
c (G) → ΩtopC

∞
c (G) is explicitly

described as follows. Any n-form ω ∈ ΩntopC
∞
c (G) may be viewed as a smooth

function over Gn+1 ∪Gn. One has(
trρ∗(ω)

)
(g0, . . . , gn) = ω(g0, . . . , gn)×∑

i0,...,in

ci0(r(g0))ci1(s(g0))ci1(r(g1))ci2(s(g1)) . . . cin(r(gn))ci0(s(gn)) ,

and similarly on (g1, . . . , gn). This expression vanishes if ω belongs to the sub-
space ΩntopC

∞
c (G)0 and the covering of B is fine enough. The isomorphism

HP top
• (C∞c (G)) ∼= HP top

• (C∞c (G))(I) thus follows from homotopy invariance as
before.
The case of cohomology requires some care, because we can no longer use a
duality argument as in the algebraic setting. If we assume that the closure of
ΩtopC

∞
c (G)0 is a topological direct summand in ΩtopC

∞
c (G), then at the dual

level ΩtopC
∞
c (G)′ endowed with the weak-∗ topology splits as the direct sum

of ΩtopC
∞
c (G)′(I) and a closed supplementary subspace. In particular the short

exact sequence of cyclic bicomplexes 0 → ΩtopC
∞
c (G)′(I) → ΩtopC

∞
c (G)′ →

ΩtopC
∞
c (G)′0 → 0 has a continuous linear section. This implies the existence of

a six-term exact sequence with continuous maps in topological periodic cyclic
cohomology:

HP 0
top(C∞c (G))0

��

HP 0
top(C∞c (G))oo HP 0

top(C∞c (G))(I)
oo

HP 1
top(C∞c (G))(I)

// HP 1
top(C∞c (G)) // HP 1

top(C∞c (G))0

OO
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The quotient complex ΩtopC
∞
c (G)′0 is the continuous dual of the closure of

ΩtopC
∞
c (G)0 inside ΩtopC

∞
c (G). We will show that the periodic cyclic coho-

mology HP •top(C∞c (G))0 is degenerate in the sense that its topology does not
separate zero from any other element. For this we endow the manifold B with
a riemannian metric. Consider a sequence of real numbers ε > 0 with limit
ε→ 0. For each ε, we can choose an open covering (Uεi )i∈I of B together with a
partition of unity (cεi )i∈I with the following properties: over any compact subset
K ⊂ B hold
i) For all x ∈ K, the number of Ui’s containing x is bounded uniformly with
respect to x and ε;
ii) The radius of Uεi ∩K is ≤ ε for all i ∈ I and ε;
iii) The partial derivatives ∂αx c

ε
i are bounded by CK,αε

−|α| for all i ∈ I, ε > 0
and multi-index α = (α1, . . . , αn). Here n = dimB, |α| = α1 + . . . + αn and
CK,α is a constant independent of ε.
These data give rise to a homomorphism ρε : C∞c (G)→ M∞(C∞c (G)) for each
ε of the sequence, together with the associated chain map trρε∗ : ΩtopC

∞
c (G)→

ΩtopC
∞
c (G). If a n-form ω is in the closure of ΩntopC

∞
c (G)0, then as a smooth

function on Gn+1 ∪ Gn, ω vanishes as well as all its partial derivatives on the
set of loops I(n+1) ∪ I(n). This means that at a distance ε away from the set of
loops, the partial derivatives of ω grow slower than any power of ε. From points
i), ii), iii) above it follows that limε→0 trρε∗(ω) = 0. Passing to the continuous
dual, any periodic cyclic cocycle ϕ ∈ ΩtopC

∞
c (G)′0 is cohomologous to the se-

quence of cocycles ϕ ◦ trρε∗ which tends to zero in the weak-∗ topology. Hence
HP •top(C∞c (G))0 is a degenerate topological vector space as claimed. Now let V
be the range of the map p : HP •top(C∞c (G)) → HP •top(C∞c (G))0. The six-term
exact sequence of periodic cyclic cohomology gives rise to a short exact sequence

HP •top(C∞c (G))(I) → HP •top(C∞c (G))
p→ V → 0

The topology of V as a closed vector subspace of HP •top(C∞c (G))0 coincides with
the quotient topology of HP •top(C∞c (G))/Ker p. We know that it is degenerate,
hence Ker p must be dense in HP •top(C∞c (G)). Since p is continuous Ker p is
also necessarily closed. Hence one has Ker p = HP •top(C∞c (G)), and the six-
term exact sequence reduces to 0 → HP •top(C∞c (G))0 → HP •top(C∞c (G))(I) →
HP •top(C∞c (G))→ 0.

Remark 3.3 The proof of 3.2 shows that any topological cyclic cohomology
class [ϕ] ∈ HP •top(C∞c (G)) can be represented by a finite collection of distri-
butions ϕ : ΩntopC

∞
c (G) → C whose supports are contained in an arbitrarily

small open neighborhood of the localization set I(n+1) ∪ I(n). In general we do
not know whether [ϕ] can be represented by distributions with support exactly
contained in I(n+1) ∪ I(n), unless the closure of ΩtopC

∞
c (G)0 admits a topolog-

ical supplementary subspace in ΩtopC
∞
c (G). A sufficient condition for this to

be true is that the space of loops I(n) is a smooth submanifold of Gn for all n.
This happens if the foliation (B,F ) induced on the unit space of the groupoid
G⇒ B is non-singular, and is always verified, for example, by étale groupoids.
This condition can be slightly relaxed by requiring that I(n) is a union of smooth
submanifolds, with “sufficiently nice” crossings.

The fact that the quotient ΩntopC
∞
c (G)(I) is a non-Hausdorff space is inconve-

nient. In order to deal with a much nicer space we introduce a strict local-
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ization of differential forms, quotienting by the closure of ΩntopC
∞
c (G)0 inside

ΩntopC
∞
c (G):

ΩntopC
∞
c (G)[I] = ΩntopC

∞
c (G)/ΩntopC

∞
c (G)0 . (40)

We define accordingly the localized periodic cyclic cohomologyHP •top(C∞c (G))[I].
Since the distributions vanishing on the subspace ΩntopC

∞
c (G)0 and its closure

actually coincide, one always has an isomorphism

HP •top(C∞c (G))[I]
∼= HP •top(C∞c (G))(I) . (41)

More generally if an isotropic subset O ⊂ I is invariant under the adjoint action
of G, we define O(n) ⊂ Gn as the set of composable arrows (g1, . . . , gn) with
product g1 . . . gn ∈ O, and ΩntopC

∞
c (G)O0 as the functions with compact support

on Gn+1 ∪ Gn vanishing in a neighborhood of O(n+1) ∪ O(n). Then the strict
localization at O

ΩntopC
∞
c (G)[O] = ΩntopC

∞
c (G)/ΩntopC

∞
c (G)O0 (42)

is a quotient complex of the cycic bicomplex. The corresponding localized cyclic
cohomology HP •top(C∞c (G))[O] is the cohomology of the complex of distributions

with bounded singularity order, whose support is contained in O(n+1) ∪ O(n).
Note that if O(n) is a submanifold of Gn for all n, the quotient ΩntopC

∞
c (G)[O]

is the space of jets of functions to any order at the localization manifold,
i.e. the space of Taylor expansions of functions in the direction transverse to
O(n+1) ∪O(n).

We now study the invariance of cyclic homology with respect to Morita
equivalences. The following lemma is based on an idea of G. Skandalis.

Lemma 3.4 Let G⇒ B be a Lie groupoid. Let V ⊂ B be an open subset which
intersects each orbit of G and denote by GV ⇒ V the restriction groupoid. Then
one has isomorphisms in algebraic and topological periodic cyclic (co)homology

HP•(C
∞
c (GV )) ∼= HP•(C

∞
c (G)) , HP •(C∞c (GV )) ∼= HP •(C∞c (G))

HP top
• (C∞c (GV )) ∼= HP top

• (C∞c (G)) , HP •top(C∞c (GV )) ∼= HP •top(C∞c (G))

induced by the inclusion of convolution algebras C∞c (GV ) ↪→ C∞c (G).

Proof: We first observe that the group of bisections of G acts by multipliers on
the convolution algebra C∞c (G). Indeed if β : B → G is a bisection, its left and
right actions on an element a ∈ C∞c (G) are defined by

(β · a)(g) = a(β−1(r(g)) · g) , (a · β)(g) = a(g · β(s(g))−1)

for all g ∈ G. One checks that the usual relations β1 · (β2 · a) = β1β2 · a,
(β · a1)a2 = β · a1a2 etc... are fulfilled, i.e. the group of bisections acts by
multipliers on C∞c (G). If β : U → G is only a local bisection over an open
subset U ⊂ B, the actions β · a and a · β are still defined provided that the
support of a satisfies appropriate compatibility conditions with respect to the
domain and range of the local diffeomorphism φβ associated to β.
Now let (βi, Ui)i∈I be a collection of local bisections βi : Ui → G indexed by an
at most countable set I, such that: i) the collection (Ui)i∈I is a locally finite

17



covering of B and ii) the range of the local diffeomorphism φβi
: Ui → Vi is

contained in the open subset V ⊂ B for all i ∈ I. Condition ii) can be satisfied
because V intersects each orbit of G by hypothesis. Then choose a partition of
unity (ci)i∈I , with

∑
i ci(x)2 = 1, relative to the covering (Ui). One builds an

algebra homomorphism

ρ : C∞c (G)→M∞(C∞c (GV ))

by setting the (i, j) entry of the matrix ρ(a) equal to ρ(a)ij = βiciacjβ
−1
j for

all a ∈ C∞c (G). Here the functions ci are multipliers of the convolution algebra
as in the proof of Proposition 3.1. An explicit computation gives, by evaluating
on a point g ∈ G,

ρ(a)ij(g) = ci
(
φβ−1

i
(r(g))

)
a
(
β−1
i (r(g)) · g · β−1

j (s(g))−1
)
cj
(
φβ−1

j
(s(g))

)
.

Since supp (ci) ⊂ Ui and supp (cj) ⊂ Uj , the latter expression vanishes unless
φβ−1

i
(r(g)) ∈ Ui and φβ−1

j
(s(g)) ∈ Uj , that is, unless r(g) ∈ Vi and s(g) ∈ Vj .

This shows that ρ(a)ij is indeed an element of the subalgebra C∞c (GV ). The map
induced by the homomorphism ρ on differential forms composed with the trace
map yields a morphism of cyclic bicomplexes trρ∗ : ΩC∞c (G) → ΩC∞c (GV ).
We want to show that the latter is an isomorphism in periodic cyclic homology.
The obvious candidate for an inverse comes from the morphism of cyclic bi-
complexes ι∗ : ΩC∞c (GV )→ ΩC∞c (G) induced by the inclusion homomorphism
ι : C∞c (GV ) → C∞c (G). Hence it remains to prove that ι∗ ◦ trρ∗ and trρ∗ ◦ ι∗
are chain homotopic to the identity maps of the (b + B)-complexes Ω̂C∞c (G)

and Ω̂C∞c (GV ) computing the periodic cyclic homologies HP•(C
∞
c (G)) and

HP•(C
∞
c (GV )) respectively. We follow the proof of Proposition 3.1 and intro-

duce infinite row and column matrices u = (ui)i∈I and v = (vi)i∈I given by
ui = ciβ

−1
i and vi = βici. Then uv = 1, and vu is an idempotent infinite

matrix. Moreover ρ(a) = vau for all a ∈ C∞c (G) by definition. The invertible
matrices

W =

(
0 −u
v 1− vu

)
, W−1 =

(
0 u
−v 1− vu

)
are multipliers of the algebras M∞(C∞c (G)) and M∞(C∞c (GV )). Furthermore,
the identity ρ1(a) = W−1ρ0(a)W holds for all a ∈ C∞c (G), where ρ0, ρ1 :
C∞c (G)→M∞(C∞c (G)) are the homomorphisms

ρ0(a) =

(
a 0
0 0

)
, ρ1(a) =

(
0 0
0 ρ(a)

)
.

Then ι∗ ◦ trρ∗ = trρ1
∗ is chain homotopic to trρ0

∗ = id on Ω̂C∞c (G). In the same

way trρ∗ ◦ ι∗ = trρ1
∗ is chain homotopic to trρ0

∗ = id on Ω̂C∞c (GV ). The iso-
morphism HP•(C

∞
c (G)) ∼= HP•(C

∞
c (GV )) follows, as well as the isomorphism

in periodic cyclic cohomology. The proof is the same for topological periodic
cyclic (co)homology.

Lemma 3.5 Let G be Lie groupoid. Let G′ be the direct product of the pair
groupoid R× R with G. Then one has isomorphisms

HP top
• (C∞c (G)) ∼= HP top

• (C∞c (G′)) , HP •top(C∞c (G)) ∼= HP •top(C∞c (G′)) .
(43)
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Proof: The convolution algebra of the pair groupoid R × R acts as smoothing
operators on the Hilbert space of square-integrable functions on R with respect
to the Lebesgue measure: the action of k ∈ C∞c (R × R) on a function f ∈
L2(R, dx) reads

(k · f)(x) =

∫
R
k(x, y) f(y) dy .

Now choose a Hilbert basis (|ei〉)i∈N of L2(R, dx) with the following properties:
i) each |ei〉 is a smooth function with compact support on R and ii) the infinite
N × N matrix with scalar coefficients kij = 〈ei|k|ej〉 is of rapid decay for all
a ∈ C∞c (R×R). Such a basis can be obtained by modification of the orthonormal
basis of Hermite polynomials, in such a way that the unitary matrix passing
from the Hermite polynomials to (|ei〉) is of the form 1 + a matrix with rapid
decay. Thus, C∞c (R × R) is represented as a subalgebra of K , the algebra of
N × N matrices with rapid decay. There is natural locally convex topology on
K defined by the family of norms

‖k‖n =
∑

(i,j)∈N×N

(1 + i+ j)n|kij |

for all non-negative integers n, which turns K into a Fréchet algebra contain-
ing C∞c (R× R) as a dense subalgebra. In fact the inclusion C∞c (R× R)→ K ,
sending an operator k to the matrix with coeficients kij = 〈ei|k|ej〉, is contin-
uous with respect to the LF topology on C∞c (R × R). Remark also that the
convolution algebra of the product groupoid G′ = (R × R) × G is isomorphic
to C∞c (R× R)⊗̂C∞c (G), where ⊗̂ is the inductive tensor product of LF spaces.
From this observation one has a continuous inclusion ι : C∞c (G)→ C∞c (G′) de-
fined by ι(a) = |e0〉〈e0|⊗a for all a ∈ C∞c (G), where |e0〉〈e0| ∈ C∞c (R×R) is the
orthogonal projector associated to the vector |e0〉 ∈ L2(R, dx). The extension
of ι to differential forms yields a morphism of (topological) cyclic bicomplexes

ι∗ : ΩtopC
∞
c (G)→ ΩtopC

∞
c (G′) .

Now write K (C∞c (G′)) for the completed tensor product K ⊗̂C∞c (G′). Then
K (C∞c (G′)) is a completion of the algebra of infinite matrices M∞(C∞c (G′)).
We construct a continuous homomorphism ρ : C∞c (G′) → K (C∞c (G′)) by set-
ting the (i, j) entry of the matrix ρ(b) equal to ρ(b)ij = |e0〉〈e0| ⊗ 〈ei|b|ej〉 for
all b ∈ C∞c (G′). Remark that 〈ei|b|ej〉 ∈ C∞c (G), so that ρ(b)ij lies in the image
of ι. Hence the extension of ρ to differential forms composed with the matrix
trace tr : K → C and the operator trace tr′ : C∞c (R × R) → C gives rise to a
morphism of cyclic bicomplexes

tr′trρ∗ : ΩtopC
∞
c (G′)→ ΩtopC

∞
c (G) .

It remains to show that ι∗ ◦ tr′trρ∗ and tr′trρ∗ ◦ ι∗ are chain-homotopic to the
identity maps on the (b + B)-complexes Ω̂C∞c (G′) and Ω̂C∞c (G) respectively.
For any a ∈ C∞c (G) one has ρ(ι(a))ij = 0 if (i, j) 6= (0, 0) and ρ(ι(a))00 = ι(a).

Hence the ity tr′(|e0〉〈e0|) = 1 gives tr′trρ∗ ◦ ι∗ = id on Ω̂C∞c (G). In the
converse direction, a simple computation yields the equality ι∗ ◦ tr′trρ∗ = trρ∗,
hence it is sufficient to show that trρ∗ is chain-homotopic to the identity map
on Ω̂C∞c (G′). Let u = (ui)i∈N be the infinite row matrix with entries ui =
|ei〉〈e0| ∈ C∞c (R×R), and v = (vi)i∈N be the infinite column matrix with entries
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vi = |e0〉〈ei| ∈ C∞c (R× R). We regard C∞c (R× R) as an algebra of multipliers
of C∞c (G′). Then uv = 1 which allows to define as usual the invertible matrices

W =

(
0 −u
v 1− vu

)
, W−1 =

(
0 u
−v 1− vu

)
.

By definition ρ(b) = vbu for all b ∈ C∞c (G′), hence the homomorphisms ρ0, ρ1 :
C∞c (G′)→ K (C∞c (G′)) given for all b ∈ C∞c (G′) by

ρ0(b) =

(
b 0
0 0

)
, ρ1(b) =

(
0 0
0 ρ(b)

)
,

are conjugate under the adjoint action of W . The elements ρ0(b), W−1ρ0(b),
ρ0(b)W and W−1ρ0(b)W = ρ1(b) are all in K (C∞c (G′)), hence the classical ar-
gument using rotation matrices shows that ρ0 and ρ1 are stably homotopic
(notice however that W and W−1 are not multipliers of the whole algebra
K (C∞c (G′))). Consequently trρ∗ is chain-homotopic to the identity map on

Ω̂C∞c (G′) as wanted. The isomorphisms HP top
• (C∞c (G)) ∼= HP top

• (C∞c (G′))
and HP •top(C∞c (G)) ∼= HP •top(C∞c (G′)) follow.

Proposition 3.6 (Morita invariance) Let G1 ⇒ B1 and G2 ⇒ B2 be Lie

groupoids and let B1
π1←− M

π2−→ B2 be a Morita equivalence. Then one has
isomorphisms in topological periodic cyclic (co)homology

HP top
• (C∞c (G1)) ∼= HP top

• (C∞c (G2)) , HP •top(C∞c (G1)) ∼= HP •top(C∞c (G2)) .
(44)

Moreover, if the submersions π1 and π2 are étale, the isomorphisms also hold
in algebraic periodic cyclic (co)homology.

Proof: It sufficies to show that, given a groupoid G ⇒ B and a surjective
submersion π : M → B, the periodic cyclic (co)homologies of C∞c (G) and
C∞c (π∗G) are isomorphic. Let n be the dimension of the fibers of π, and denote
by π0 : B×Rn → B the projection onto the first factor. The manifolds B×Rn
and M have the same dimension. Let U = M

∐
(B×Rn) be their disjoint union.

π and π0 thus give a surjective submersion σ : U → B. Then M and B × Rn
are open subsets of U intersecting each orbit of the groupoid σ∗G. Moreover
π∗G is the restriction groupoid of σ∗G to the subset M , and π∗0G is the re-
striction groupoid of σ∗G to the subset B × Rn. By Lemma 3.4, the periodic
cyclic (co)homologies of C∞c (π∗G), C∞c (π∗0G) and C∞c (σ∗G) are isomorphic, in
the algebraic as well as topological setting. If n = 0, that is when π is étale,
π∗0G = G implies that C∞c (G) and C∞c (π∗G) have the same algebraic periodic
cyclic (co)homology. If n is arbitrary, then π∗0G is the direct product of G with
the pair groupoid Rn × Rn. By virtue of Lemma 3.5, the topological periodic
cyclic (co)homologies of C∞c (G), C∞c (π∗0G) and C∞c (π∗G) coincide.

4 Excision

A convenient way to calculate excision in periodic cyclic cohomology is provided
by the Cuntz-Quillen formalism [8, 9]. We recall that the cyclic homology of an
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associative algebra A can be entirely recovered from cyclic 0-cocycles (traces)
and cyclic 1-cocycles over suitable extensions 0 → J → R → A → 0 of A .
The basic ingredient is the X-complex of R,

X(R) : R � Ω1R\ , (45)

where Ω1R\ = Ω1R/[R,Ω1R]. For all elements x, y ∈ R we write \xdy for
the class of the one-form xdy mod [R,Ω1R]. The boundary map ∂0 : R →
Ω1R\ is the non-commutative differential x 7→ \dx, while the boundary map
∂1 : Ω1R\ → R is the commutator \xdy 7→ [x, y] induced by the Hochschild
boundary on Ω1R. One has ∂1 ◦ ∂0 = 0 = ∂0 ◦ ∂1 hence X(R) is a Z2-graded
complex, with even part R and odd part Ω1R\. If J ⊂ R is a two-sided ideal,
Cuntz and Quillen define a decreasing filtration of X(R) by the subcomplexes
FnJX(R), n ∈ Z, as follows:

F 2n
J X(R) : J n+1 + [J n,R] � \J n

(+)dR (46)

F 2n+1
J X(R) : J n+1 � \

(
J n+1

(+) dR + J n
(+)dJ

)
(47)

where J n = R and J n
(+) = R+ for n ≤ 0. In particular FnJX(R) = X(R)

whenever n < 0. The J -adic completions of R and X(R) are respectively a
pro-algebra and a pro-complex given by the projective limits

R̂ = lim←−
n

R/J n , X(R̂) = lim←−
n

X(R)/FnJX(R) . (48)

A cocycle of pro-complex τ : X(R̂)→ C is exactly a cocycle over X(R) vanish-
ing on the sub complex FnJX(R) for some n. Thus, a cocycle of even degree
is a trace on R vanishing on the large powers of the ideal J . Similarly, a
cocycle of odd degree is a cyclic 1-cocycle over R vanishing whenever one of
its arguments lies in J n for some n. The link with the cyclic homology of the
quotient algebra A = R/J shows up in the case of the universal free extension
R = TA corresponding to the non-unital tensor algebra of A :

TA = (A )⊕ (A ⊗A )⊕ (A ⊗A ⊗A )⊕ . . . (49)

The product on TA is the tensor product, and by definition the two-sided ideal
J = JA is the kernel of the multiplication homomorphism m : TA → A ,
a1⊗. . .⊗an 7→ a1 . . . an. One checks that JA is generated by the inhomogeneous
elements of the form a1a2 − a1 ⊗ a2. As a Z2-graded vector space, X(TA )
is isomorphic to the space of non-commutative differential forms ΩA . More
precisely TA is isomorphic to the space Ω+A of differential forms of even
degree over A , whereas Ω1TA\

∼= TA + ⊗A is isomorphic to the space Ω−A
of differential forms of odd degree. These isomorphisms are given by

a0da1 . . . da2n ∈ Ω2nA ↔ a0 ⊗ ω(a1, a2)⊗ . . .⊗ ω(a2n−1, a2n) ∈ TA ,

a0da1 . . . da2n+1 ∈ Ω2n+1A ↔ \(a0 ⊗ ω(a1, a2)⊗ . . .da2n+1) ∈ Ω1TA\ ,

where ω(a1, a2) = a1a2−a1⊗a2. The tensor product on TA corresponds to the
Fedosov product on Ω+A , given by ω1�ω2 = ω1ω2−dω1dω2 for all differential
forms ω1, ω2 of even degree. The ideal JA corresponds to the space of all forms
of even degree ≥ 2. Cuntz and Quillen show in [8] that the linear isomorphism
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ΩA ∼= X(TA ) is, up to a rescaling factor, a quasi-isomorphism between the
cyclic bicomplex of A and the X-complex of TA endowed with the filtration
FnJAX(TA ). In particular the periodic cyclic homology of A is the homology

of the pro-complex X(T̂A ). More generaly X(R̂) computes the periodic cyclic
homology of A provided that 0→J → R → A → 0 is a quasi-free extension,
see [8].

Let (E) : 0 → B → E → A → 0 be an arbitrary extension. As proved by
Cuntz and Quillen in [9], this extension gives rise to an excision map in periodic
cyclic cohomology

E∗ : HP •(B)→ HP •+1(A ) . (50)

We shall explain how to compute it, following [14]. The universal property of the
tensor algebra allows to lift the homomorphism E → A to an homomorphism
TE → TA sending the ideal JE to JA . We obtain in this way a commutative
diagram where all rows and columns are extensions:

0

��

0

��

0

��
0 // J //

��

JE //

��

JA //

��

0

0 // R //

��

TE //

��

TA //

��

0

0 // B //

��

E //

��

A //

��

0

0 0 0

(51)

By construction R is the kernel of the homomorphism TE → TA , and J is
the kernel of JE → JB. The above diagram allows to calculate the excision
map HP •(B)→ HP •+1(A ), once the relevant cyclic cohomology classes of B
are represented in a suitable form. To this end we note that (51) allows to define
two relevant filtrations of the complex X(TE ). The first filtration is induced by
the ideal JE . We denote the corresponding JE -adic completions with a hat:

T̂E = lim←−
k

TE /(JE )k , X(T̂E ) = lim←−
k

X(TE )/F kJEX(TE ) . (52)

The complex X(T̂E ) computes the periodic cyclic homology of E . The sec-
ond filtration is induced by the ideal JE + R. We denote the corresponding
completions with a tilde. Then we can write

T̃E = lim←−
n

TE /(JE + R)n , X(T̃E ) = lim←−
n

X(T̂E )/FnR(T̂E ) (53)

where FnRX(T̂E ) = lim←−k F
n
JEX(TE )/(FnJEX(TE )∩F kRX(TE )) is a subcomplex

of X(T̂E ).
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Lemma 4.1 ([14]) The Z2-graded complex of cochains over FnRX(T̂E ) com-
putes the periodic cyclic cohomology HP •(B) for all n ≥ 1.

Hence any periodic cyclic cohomology class over B can be represented by a
cocycle τ : FnRX(T̂E ) → C for some n ≥ 1. We will see below interesting
examples of such cocycles in the case of Lie groupoids. Let us now describe in full
generality the excision map associated to the extension 0→ B → E → A → 0,
sending a cocycle τ over FnRX(T̂E ) to a cyclic cocycle over A . This is explained
in [14] §2. We first choose any extension of τ to a linear map

τR : X(T̂E )→ C . (54)

We call τR a renormalization of τ . Of course τR is generally not a cocycle in
Hom(X(T̂E ),C). However its composite τR∂ with the X-complex boundary

map ∂ is a cocycle vanishing on the subcomplex FnRX(T̂E ) by construction.

Hence τR∂ defines a cocycle in Hom(X(T̃E ),C). Then observe that the diagonal
of (51) leads to an extension of A by the algebra TE , with kernel the ideal
JE + R. Choose any linear splitting σ : A → TE of this extension. The
universal property of the tensor algebra TA allows to lift the linear map σ to
a homomorphism of algebras σ∗ : TA → TE respecting the ideals:

0 // JA //

σ∗

��

TA //

σ∗

��

A //

σ
}}

0

0 // JE + R // TE // A // 0

(55)

Explicitly σ∗(a1⊗. . .⊗an) = σ(a1) . . . σ(an) in TE . Since σ∗ respects the ideals,

it extends to a homomorphism T̂A → T̃E . This in turn induces a chain map
still denoted σ∗ : X(T̂A )→ X(T̃E ).

Proposition 4.2 ([14]) The excision map HP •(B)→ HP •+1(A ) associated
to the extension 0 → B → E → A → 0 is realized by sending a cocycle
τ ∈ Hom(FnT (B:E )X(T̂E ),C) to the cocycle τR∂ ◦σ∗ ∈ Hom(X(T̂A ),C) for any
choice of renormalization τR and linear splitting σ : A → TE .

We now apply this formalism to the pseudodifferential extensions obtained
for groupoid actions in section 2. Let G⇒ B be a Lie groupoid and denote by

C = C∞c (B) oG

the corresponding convolution algebra. Then any cyclic cohomology class [ϕ] ∈
HP •(C ) is represented by a cocycle ϕ ∈ Hom(X(T̂C ),C) where T̂C is the JC -
adic completion of the tensor algebra TC . Taking the locally convex topology
of C into account, we find that HP •top(C ) is the cohomology of the complex

Hom(X(T̂Ctop),C) of continuous and bounded cochains. A continuous bounded
cochain of even degree is a linear map ϕ : TC → C given by a family of
distributions ϕ+

n ∈ C−∞(Gn), n ≥ 1, with singularity order bounded uniformly
in n, such that

ϕ(f1 ⊗ . . .⊗ fn) =

∫
Gn

ϕ+
n (g1, . . . , gn) f1(g1) . . . fn(gn) (56)
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for all fi ∈ C , and ϕ has to vanish on the large powers of JC . In the same way,
a continuous cochain of odd degree is a linear map ϕ : Ω1TC\ ∼= TC +⊗C → C
given by a family of distributions ϕ−n ∈ C−∞(Gn), n ≥ 1, with singularity order
bounded uniformly in n, such that

ϕ(\(f1 ⊗ . . .⊗ fn−1dfn)) =

∫
Gn

ϕ−n (g1, . . . , gn−1|gn)f1(g1) . . . fn(gn) (57)

for all fi ∈ C , and ϕ has to vanish whenever its argument lies in a large power of
JC . In view of the quasi-isomorphism of complexes Ω̂C ∼= X(T̂C ), the localiza-
tion proposition 3.2 shows that any topological cyclic cohomology class can be
represented by an X-complex cocycle ϕ = (ϕ±n )n≥1 such that each distribution
ϕ±n has a support contained in an arbitrary small neighborhood of the set of
loops I(n) ⊂ Gn.

Now let π : M → B be a G-equivariant submersion. We defined in section 2
the crossed product algebra of G with the sections of the bundle CL0

c(M)→ B
of vertical compactly supported pseudodifferential operators of order ≤ 0. This
leads to an extension 0 → B → E → A → 0 of the convolution algebra of the
groupoid S∗MB oG, where

B = C∞c (B,CL−1
c (M))oG , E = C∞c (B,CL0

c(M))oG , A = C∞c (S∗πM)oG .

Recall that the ideal C∞c (B,L−∞c (M))oG ⊂ B of smoothing operators is canon-
ically isomorphic to the smooth convolution algebra of the pullback groupoid
π∗G ⇒ M . Hence, any topological cyclic cohomology class [ϕ] ∈ HP •top(C )
corresponds to a class in HP •top(C∞c (B,L−∞c (M))oG) by virtue of the Morita
equivalence of groupoids G ∼ π∗G. Our first goal is to show that [ϕ] can be lifted
to a class [τϕ] ∈ HP •(B). This requires the following notion of connection.

Definition 4.3 A generalized connection on a submersion π : M → B is a
function h defined on a neighborhood of the diagonal in B × B, sending any
pair of neighboring points (b1, b2) to a linear operator h(b1, b2) : C∞c (Mb2) →
C∞c (Mb1) which may be decomposed as a locally finite sum

h(b1, b2) =
∑
i

hi(b1, b2) ◦ fi(b1, b2) (58)

where:
• hi(b1, b2) is a local diffeomorphism from an open subset of Mb2 to an open
subset of Mb1 , depending smoothly on (b1, b2), such that hi(b, b) = Id for all
b ∈ B;
• fi(b1, b2) is a smooth function on Mb2 with support contained in the domain
of hi(b1, b2), depending smoothly on (b1, b2), such that

∑
i fi(b, b) = 1 for all

b ∈ B. The action of fi(b1, b2) on C∞c (Mb2) is by pointwise multiplication.

A submersion always has a generalized connection. Indeed let n = dim(M/B) be
the dimension of the fibers of π : M → B and consider the trivial submersion
π0 : B × Rn → B as in the proof of Proposition 3.6. Then we can find a
locally finite open covering (Ui)i∈I of M together with local diffeomorphisms
βi : Ui → Vi ⊂ B × Rn compatible with the projections, i.e. π0 ◦ βi = π|Ui

for all i ∈ I. Let (ci)i∈I ,
∑
i c

2
i = 1, be a smooth partition of unity relative
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to the covering (Ui). For all b ∈ B let βi(b) : Ui ∩Mb → Vi ∩ {b} × Rn and
ci(b) ∈ C∞(Mb) be respectively the restriction of the diffeomorphism βi and
the function ci to the fiber Mb. Since the fibers of B × Rn are canonically
diffeomorphic, we can view βi(b1)−1βi(b2) as a local diffeomorphism from Mb2

to Mb1 for all pairs (b1, b2) ∈ B ×B. Then

h(b1, b2) =
∑
i∈I

ci(b1) ◦ βi(b1)−1βi(b2) ◦ ci(b2) , (59)

where ci(b1) and ci(b2) act by pointwise multiplication on the vector spaces
C∞c (Mb1) and C∞c (Mb2) respectively, defines a generalized connection on M ,
with local diffeomorphisms hi(b1, b2) = βi(b1)−1βi(b2) and smooth functions
fi(b1, b2) = (ci(b1) ◦ hi(b1, b2)) ci(b2). In this example the function h is defined
on the entire product B ×B and not only on a neighborhood of its diagonal.

Remark 4.4 In fact one can always find a generalized connection where the
local diffeomorphisms hi agree pairwise on their common domain in a neigh-
borhood of the diagonal. A possible construction goes as follows. Choose a
Riemannian metric on B and a horizontal distribution on M , that is, a subbun-
dle H ′ of the tangent bundle TM complementary the vertical tangent bundle
Ker(π∗ : TM → TB). That is, one has a decomposition TM = H ′ ⊕ Ker(π∗).
Then on a suitable open subset the diffeomorphism hi(b1, b2) is obtained by lift-
ing the geodesic between b2 and b1 according to the horizontal paths determined
by H ′.

We now come back to the situation of the groupoid G ⇒ B acting on the
submersion π : M → B, and fix any choice of generalized connection h. Let
e1, . . . , en be elements of the crossed product E = C∞c (B,CL0

c(M)) o G, such
that each ei belongs to the subspace C∞c (B,CL−mi

c (M)) o G with m1 + . . . +
mn > dim(M/B)+k for a given integer k. We can map the tensor e1⊗. . .⊗en ∈
TE to a compactly supported function Trhe1,...,en of class Ck on an appropriate

neighborhood V of the set of loops I(n) ⊂ Gn. This function is defined by
evaluation on any point (g1, . . . , gn) ∈ V by

Trhe1,...,en(g1, . . . , gn) = (60)

Tr
(
e1(g1)Ug1 h(s(g1), r(g2)) . . . en(gn)Ugn h(s(gn), r(g1))

)
where Tr is the ordinary trace of operators acting on the space of scalar func-
tions on the manifold Mr(g1). In order to show that this expression makes sense,

recall that ei(gi) ∈ CL−mi
c (Mr(gi)) and Ugi is the diffeomorphism from Ms(gi) to

Mr(gi) defined by the action of gi on M . Since h(s(gi), r(gi+1)) is a sum of dif-
feomorphisms composed with pointwise multiplication by smooth functions, the
product ei(gi)Ugi h(s(gi), r(gi+1)) is a compactly supported operator carrying
smooth functions on Mr(gi+1) to smooth functions on Mr(gi). Hence the product

under the trace in (60) is a sum of pseudodifferential operators in CL−mc (Mr(g1))
composed with diffeomorphisms of Mr(g1), with m = m1 + . . .+mn. Its partial
derivatives of order k with respect to the variables gi yield a sum of operators in
CL−m+k

c (Mr(g1)) composed with diffeomorphisms, which remains in the domain

of the trace. Therefore Trhe1,...,en is a function of class Ck.
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Lemma 4.5 As above let C = C∞c (B) o G, E = C∞c (B,CL0
c(M)) o G, A =

C∞c (S∗πM) o G and R = Ker(TE → TA ). Choose any generalized connection
h on the submersion π : M → B. Then the map sending a bounded continuous
cochain ϕ ∈ Hom(X(T̂Ctop),C) to the cochain τϕ ∈ Hom(FmRX(T̂E ),C) defined
by

τϕ(e1 ⊗ . . .⊗ en) =

∫
Gn

ϕ+
n (g1, . . . , gn) Trhe1,...,en(g1, . . . , gn) ,

τϕ(\(e1 ⊗ . . .⊗ en−1den)) =

∫
Gn

ϕ−n (g1, . . . , gn−1|gn) Trhe1,...,en(g1, . . . , gn)

for all ei ∈ E , n ≥ 1, is a morphism of complexes provided that m is sufficiently
large. The induced map

τ∗ : HP •top(C∞c (B) oG)→ HP •(C∞c (B,CL−1
c (M)) oG) (61)

does not depend on the choice of connection h.

Proof: The distributions ϕ± being of finite singularity order, τϕ is well-defined

provided that the function Trhe1,...,en is regular enough, that is, m sufficiently
large. Since h = Id on the diagonal of B × B, one easily checks that the trace
map e1 ⊗ . . . ⊗ en 7→ Trhe1,...,en commutes with all operators on the cyclic bi-
complexes of E and C . Therefore τϕ is a cocycle. The fact that two different
choices of generalized connections give cohomologous cocycles is a consequence
of a classical transgression formula.

Proposition 4.6 For any Lie groupoid G ⇒ B and any G-equivariant surjec-
tive submersion π : M → B, one has a commutative diagram

HP •top(C∞c (M) o π∗G) // HP •(C∞c (M) o π∗G)

HP •top(C∞c (B) oG)
τ∗ // HP •(C∞c (B,CL−1

c (M)) oG)

OO

(62)

where the left equality is the canonical isomorphism accounting for the Morita
equivalence of groupoids G ∼ π∗G, and the right vertical arrow is the re-
striction morphism induced by the inclusion of the ideal C∞c (M) o π∗G ∼=
C∞c (B,L−∞c (M)) oG into C∞c (B,CL−1

c (M)) oG.

Proof: If e1, . . . , en are smoothing operators, the trace map e1 ⊗ . . . ⊗ en 7→
Trhe1,...,en is precisely the realization of the Morita equivalence G ∼ π∗G at the
level of topological cyclic cohomology.

As remarked in section 2, there is a canonical morphism between the two
extensions (E0) and (E),

0 // C∞c (M) o π∗G //

��

C∞c (B,CL0
c(M)) oG // C∞c (B,CS0

c(M)) oG //

��

0

0 // C∞c (B,CL−1
c (M)) oG // C∞c (B,CL0

c(M)) oG // C∞c (S∗πM) oG // 0
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where the left vertical arrow is the inclusion homomorphism and the right ver-
tical arrow is the leading symbol homomorphism. By naturality, the respective
excision maps E∗0 and E∗ are compatible through the induced morphisms in
periodic cyclic cohomology, and this combined with Proposition 4.6 leads to a
commutative diagram

HP •(C∞c (M) o π∗G)
E∗0 // HP •+1(C∞c (B,CS0

c(M)) oG)

HP •(C∞c (B,CL−1
c (M)) oG)

OO

E∗ // HP •+1(C∞c (S∗πM) oG)

OO

HP •top(C∞c (B) oG)

τ∗

OO

As a consequence of Morita invariance, the excision map E∗0 restricted to the
image of topological cyclic cohomology of C∞c (M) o π∗G thus factors through
the cyclic cohomology of the leading symbol algebra C∞c (S∗πM oG). Hence all
the relevant information is carried by the excision map E∗.

Theorem 4.7 Let G ⇒ B be a Lie groupoid and π : M → B a G-equivariant
surjective submersion. Then one has a commutative diagram

HP •(C∞c (B,CL−1
c (M)) oG)

E∗ // HP •+1(C∞c (S∗πM) oG)

HP •top(C∞c (B) oG)

τ∗

OO

π!
G // HP •+1

top (C∞c (S∗πM) oG)

OO

(63)

Proof: It suffices to remark that for any cocycle ϕ ∈ Hom(X(T̂Ctop),C), the im-

age τϕ ∈ Hom(FmRX(T̂E ),C) can be renormalized in a continuous and bounded
way. For example, by inserting in the trace map (60) a projection operator onto
pseudodifferential operators of sufficiently low order.

For completeness let us recall the link between the excision map E∗ in pe-
riodic cyclic cohomology and the K-theoretic index map [12, 14]. The Chern-
Connes pairing between an even cyclic cohomology class [τ ] ∈ HP 0(B), rep-
resented by a trace τ : Rm → C, and a K-theory class [e] − [e0] ∈ K0(B) is
described as follows (see [14] §4). Suppose for simplicity that [e] is represented by
a 2×2 matrix idempotent e ∈M2(B+) satisfying the property e−e0 ∈M2(B),
where e0 =

(
1 0
0 0

)
. Looking at (51) we see that the intersection R ∩ (JE )l is a

two-sided ideal in R for any l ≥ 1, and the quotient algebra R/(R ∩ (JE )l) is
a nilpotent extension of B. Define the projective limit

R̂ = lim←−
l

R/(R ∩ (JE )l) . (64)

It is a classical result ([8]) that e can be lifted to an idempotent ê ∈ M2(R̂+),

such that ê− e0 ∈M2(R̂). Two different liftings give rise to the same K-theory

class of R̂. Since the trace τ vanishes on Rm ∩ (JE )l for large l, it extends to a
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trace on R̂m. Therefore the pairing (tr denotes the trace of 2× 2 matrices over
C)

〈[τ ], [e]〉 = τ#tr((ê− e0)2n+1) (65)

is well-defined for 2n + 1 ≥ m, and one shows that it only depends on the K-
theory class [e] and the periodic cyclic cohomology class [τ ]. The formula still
works for idempotents e ∈ M∞(B+), where tr is now the trace of matrices of
arbitrary size over C.
On the other hand, the odd cyclic cohomology class E∗([τ ]) ∈ HP 1(A ) is

represented by the cyclic 1-cocycle τR∂ ◦ σ∗ over T̂A , and can be paired with
any algebraic K-theory class of degree one [u] ∈ K1(A ) as follows. Choose
an invertible matrix u ∈ GL∞(A ) representing the class [u]. Then any lifting

û ∈ GL∞(T̂A ) of u is invertible. In particular if one chooses û = u via the

canonical linear map A → TA → T̂A , its inverse is given by the series

û−1 =

∞∑
n=0

u−1 ⊗ (1− u⊗ u−1)⊗n , (66)

where u−1 is the inverse of u in GL∞(A ). Note that 1 − u ⊗ u−1 belongs to

the ideal M∞(JA ) hence the series û−1 is convergent in GL∞(T̂A ). The cup-
product of the cyclic cocycle τR∂ ◦ σ∗ with the trace of matrices over C yields
the Chern-Connes pairing1

〈E∗([τ ]), [u]〉 = (τR∂ ◦ σ∗)#tr(û−1, û) = τR#tr([σ∗(û
−1), σ∗(û)]) (67)

which only depends on the class [u] ∈ K1(A ) and the periodic cyclic cohomology
class E∗([τ ]) ∈ HP 1(A ). The main result of [12, 14] is that the excision map
in cyclic cohomology is adjoint to the index map in algebraic K-theory. Let us
state this general theorem in the specialized case of groupoids:

Corollary 4.8 ([14]) Let G ⇒ B be a Lie groupoid with convolution algebra
C = C∞c (B)oG, and let π : M → B be a G-equivariant surjective submersion.
Let

(E) : 0→ B → E → A → 0

be the associated extension of the algebra A = C∞c (S∗πM)oG of non-commutative
symbols by B = C∞c (B,CL−1

c (M)) o G. Then for any [u] ∈ K1(A ) and any
[ϕ] ∈ HP 0

top(C ), the pairing of the index IndE([u]) ∈ K0(B) with the cyclic
cohomology class [τϕ] ∈ HP 0

top(B) is given by the formula

〈[τϕ], IndE([u])〉 = 〈E∗([τϕ]), [u]〉 (68)

where E∗([τϕ]) ∈ HP 1(A ) is represented by the above cocycle (τϕ)R∂ ◦ σ∗, for
any choice of renormalization (τϕ)R.

1In [14] we used different normalization conventions for the Chern-Connes pairing, involving
the numerical factor

√
2πi in the odd case, which was dictated by the need of compatibility

with the bivariant Chern-Connes character. Since we don’t want to discuss these matters here
we use simpler conventions.
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5 The residue formula

As before consider a Lie groupoid G ⇒ B and a G-equivariant submersion
π : M → B. Let O ⊂ G be an isotropic submanifold invariant under the
adjoint action of G. We will compute the excision map on the localized cyclic
cohomology classes [ϕ] ∈ HP •top(C∞c (B)oG)[O] by means of a residue formula.
This closely follows (and actually generalizes) the construction of [14]. In order
to make everything work, we need to impose some constraints on the structure
of the fixed points for O. Remark that any h ∈ O verifies r(h) = s(h) by
definition, hence the fiber Mr(h) carries an action of h by diffeomorphisms.

Definition 5.1 Let π : M → B be a G-equivariant submersion and O ⊂ G an
isotropic submanifold. We say that the action of O on M is non-degenerate if
the following holds:

i) For any h ∈ O, the set of fixed points Mh
r(h) is a union of isolated submanifolds

in Mr(h), depending smoothly on h;

ii) At any point x ∈ Mh
r(h) the tangent space TxMr(h) in the ambient manifold

Mr(h) splits as a direct sum

TxMr(h) = TxM
h
r(h) ⊕N

h
x (69)

of two subspaces globally invariant by the action of the tangent map h∗ associated
to the diffeomorphism. We denote h′ the restriction of h∗ to the normal subspace
Nh
x ;

iii) The endomorphism 1− h′ of Nh
x is non-singular, that is det(1− h′) 6= 0 at

any point x ∈Mh
r(h).

The non-degeneracy condition is automatically satisfied, for example, when h
acts isometrically with respect to a Riemannian metric on Mr(h). In the latter

case the subspace Nh
x is the fiber of the normal bundle, in the Riemannian

sense, of the fixed submanifold Mh
r(h) at x. Note that when h is not an isometry,

condition iii) may definitely fail; this happens for example in the situation of
conformal mappings considered in [13]. We will not cover such situations in
this article. Let us now focus on a connected component of the submanifold
Mh
r(h), say of dimension r and codimension s. We fix a local coordinate system

x = (x1, . . . , xr) of Mh
r(h), and complete it with a normal coordinate system

y = (y1, . . . , ys) in a neighborhood of the fixed submanifold with the following
properties:

• y = (0, . . . , 0) on the fixed submanifold Mh
r(h);

• The tangent vectors ∂/∂yi, i = 1,...,s, belong to the normal subspace Nh
x

at any point x ∈Mh
r(h).

Such a local coordinate system (x; y) on Mr(h) will be called adapted to the fixed

submanifold. The stability of the subspaces Nh
x implies the following important

fact: if h∗x denotes the pullback of the coordinate functions x by the diffeomor-
phism h, then the difference x− h∗x is of order 2 with respect to the variable y
near the fixed submanifold y = 0, while y − h∗y is only of order 1. This will be
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used for establishing the properties of zeta-functions.

Let b ∈ B be a point and Q ∈ CL1(Mb) be a properly supported, elliptic,
positive and invertible pseudodifferential operator of order one. For example, we
can take Q ∼

√
∆ + 1 where ∆ is a laplacian associated to a smooth Riemannian

metric on Mb. Choosing a parametrix, the complex powers Q−z are defined for
any number z ∈ C with Re(z)� 0 via an appropriate contour integral ([18])

Q−z =
1

2πi

∫
Γ

λ−z(λ−Q)−1dλ , (70)

around the positive real axis. Modulo smoothing operators, we can always
arrange Q−z to be a properly supported pseudodifferential operator. Taking
subsequent products with Q yields the complex powers Q−z for any z ∈ C. If
P is a compactly supported pseudodifferential operator of order m, the product
PQ−z is a trace-class operator provided that Re(z) > m + dimMb. The same
is true for a product PUhQ

−z, where h is a diffomorphism of Mb and Uh the
corresponding linear operator on scalar functions.

Lemma 5.2 Let O ⊂ G be an isotropic submanifold whose action on M is non-
degenerate. For any h ∈ O let Ph and Qh be respectively a pseudodifferential
operator and an elliptic positive invertible operator of order one, acting along the
fiber Mr(h) and depending smoothly on the parameter h. Then the zeta-function

z 7→ Tr(PhUhQ
−z
h ) (71)

defined for Re(z) � 0 extends to a meromorphic function with simple poles on
the complex plane, whose coefficients depend smoothly on h.

Proof: The pullback of the submersion M → B with respect to the map O → B,
h 7→ r(h) is a submersion with base O and fiber Mr(h) over any point h. Since

by hypothesis the submanifold Mh
r(h) of fixed points for h varies smoothly with

h, one can locally choose a system of vertical coordinates (x; y) on this sub-
mersion, with the following property: over any point h in a small open set
V ∈ O, x = (x1, . . . , xr) provides a coordinate system on the fixed submanifold
Mh
r(h), and y = (y1, . . . , ys) provides a normal coordinate system compatible

with the diffeomorphism h. Then we complete (x; y) into the canonical co-
ordinates (x, p; y, q) on the cotangent bundle TMr(h), such that (x, p) are the

canonical coordinates on TMh
r(h) for each h ∈ V . The trace Tr(PhUhQ

−z
h ) is

then obtained as the integral, over the manifold Mr(h), of a density expressed
in the local coordinate system by

ρzh(x; y) =

(∫∫
σzh(x, p; y, q) ei〈p,x−h∗x〉+i〈q,y−h∗y〉 d

rpdsq

(2π)r+s

)
dsydrx ,

where σzh(x, p; y, q) denotes the complete symbol of the pseudodifferential oper-
ator Q−zh Ph, of order |P |−z if |P | is the order of P . For notational simplicity we
shall drop the subscript h and keep in mind that all symbols depend smoothly
on h. Note that the symbol σz(x, p; y, q) is a holomorphic function of z. The
above integral converges for Re(z) � 0 and we want to show that ρz(x; y) can
be extended to a distribution in the variables (x, y) with values in meromor-
phic functions of z ∈ C. Hence, using local coordinate charts and a partition
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of unity we get the desired meromorphic extension of the trace. First we per-
form a change of variables (x; y) 7→ (x;u) near the submanifold of fixed points,
with u = y − h∗y. This is allowed because the matrix of partial derivatives
∂u/∂y = 1 − ∂(h∗y)/∂y is non-singular by hypothesis. Hence the density be-
comes

ρz(x;u) =

(∫ (∫
σz(x, p;u, q)

|det(1− h′)|
ei〈p,x−h∗x〉 drp

(2π)r

)
ei〈q,u〉 dsq

(2π)s

)
dsudrx

where the matrix h′ = ∂(h∗y)/∂y is a function of (x;u). The next step is to
Taylor expand the symbol σz(x, p;u, q) with respect to q, up to a certain order
n. This involves the sequence of holomorphic symbols ∂kσz(x, p;u, q)/∂qk of
order |P | − k − z:

σz(x, p;u, q) =

n∑
k=0

qk

k!

∂kσz

∂qk
(x, p;u, 0) +

qn+1

n!

∫ 1

0

(1− t)n ∂
n+1σz

∂qn+1
(x, p;u, tq) dt .

Note that the remainder Rzn(x, p;u, q) =
∫ 1

0
(1− t)n ∂

n+1σz

∂qn+1 (x, p;u, tq) dt is a not

a symbol of order |P | − n − 1 − z because of integration near t = 0. Plugging
the Taylor expansion in the above expression for ρz(x;u), one is left with the
terms

1

k!

(∫ (∫
∂kσz

∂qk
(x, p;u, 0)

ei〈p,x−h∗x〉

|det(1− h′)|
drp

(2π)r

)
qkei〈q,u〉 dsq

(2π)s

)
dsudrx

=
1

k!

(∫
∂kσz

∂qk
(x, p;u, 0)

ei〈p,x−h∗x〉

|det(1− h′)|
drp

(2π)r

)
∂kδs(u)

(i∂u)k
dsudrx

where we performed the integral over q, and δs(u) is the Dirac mass localized at
(u1, . . . , us) = (0, . . . , 0) which corresponds to the submanifold of fixed points.
Hence the k-th derivative ∂kδs(u)/∂uk is a distribution of order k supported by
this submanifold. It follows that we only need to know the Taylor expansion
around u = 0 of the integral

Ik =
1

k!

∫
∂kσz

∂qk
(x, p;u, 0)

ei〈p,x−h∗x〉

|det(1− h′)|
drp

(2π)r

up to order k in the variable u, because the higher orders are killed in the
product with the δ-distribution. Then the crucial fact is that by the non-
degeneracy hypothesis, x − h∗x is of order u2, hence the Taylor expansion of
the oscillatory term exp(i〈p, x − h∗x〉) yields a polynomial in p. Therefore Ik
reduces to the integral of a classical symbol in the variables (x, p), holomorphic
in z. By a well-known result it extends to a meromorphic function of z with
only simple poles [19]. Finally we still have to look at the remainder term∫∫

Rzn(x, p;u, q)
ei〈p,x−h∗x〉

|det(1− h′)|
qn+1ei〈q,u〉 drp

(2π)r
dsq

(2π)s

=

∫∫
Rzn(x, p;u, q)

ei〈p,x−h∗x〉

|det(1− h′)|
∂n+1ei〈q,u〉

(i∂u)n+1

drp

(2π)r
dsq

(2π)s

Here we cannot simply perform the integral over q because Rzn depends on q.
By the way, this integral will not yield a distribution localized at u = 0. Instead
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we shall move the derivatives ∂/∂u and rewrite the integral as a sum of terms
like(

i
∂

∂u

)j (∫∫ (
i
∂

∂u

)m(
Rzn(x, p;u, q)

|det(1− h′)|

)
∂kei〈p,x−h∗x〉

(−i∂u)k
ei〈q,u〉 drp

(2π)r
dsq

(2π)s

)
with j + m + k = n + 1. We have ∂kei〈p,x−h∗x〉/∂uk = f(x, p;u)ei〈p,x−h∗x〉,
where the function f(x, p;u) is a polynomial of degree at most k in p. Moreover
x−h∗x is of order u2 near u = 0, hence the derivative ∂(x−h∗x)/∂u is of order
u, and the coefficient of pl in f(x, p;u) is of order u2l−k, with 2l−k non-negative.
But a power of u amounts to a derivative ∂/∂q against ei〈q,u〉. Thus we may
replace f by a sum of differential operators pl( ∂∂q )2l−k with coefficients smooth

functions of (x;u). Each operator amounts to raise the order of Rzn(x, p;u, q)
by l − (2l − k) = k − l, which is ≤ k/2 and hence ≤ (n+ 1)/2. Explicitly

pl
(
∂

∂q

)2l−k

Rzn(x, p;u, q) =

∫ 1

0

(1− t)nt2l−k pl ∂
2l−k+n+1σz

∂q2l−k+n+1
(x, p;u, tq) dt

where pl∂2l−k+n+1σz/∂q2l−k+n+1 is a symbol of order |P |+ k− l− n− 1− z ≤
|P | − n+1

2 − z. Finally, one is left with integrals of the form

J =

(
i
∂

∂u

)j (∫∫∫ 1

0

Sz(x, p;u, tq)ei〈p,x−h∗x〉+i〈q,u〉L(t) dt
drp

(2π)r
dsq

(2π)s

)
where L(t) is a polynomial in t, and Sz(x, p;u, q) is a holomorphic symbol of
order at most |P |−n+1

2 −z. Thus Sz is dominated by the symbol (p2+q2+1)−Z/2

for Z = −|P |+ n+1
2 + z. Moreover the integral∫∫∫ 1

0

(p2 + q2 + 1)−Z/2 dt
drp

(2π)r
dsq

(2π)s

converges to a holomorphic function of Z provided Re(Z) is large enough. Hence
the integral J converges is a holomorphic function of z, provided n is chosen
sufficiently large. We conclude that Tr(PUhQ

−z) extends to a meromorphic
function with simple poles.
It remains to show the smoothness with respect to the parameter h. In fact it
is clear from the integral expression of the density ρzh and in all the subsequent
calculations, that derivating with respect to h simply amounts to replace the
holomorphic symbol σzh of order |P | − z by a new holomorphic symbol of order
|P | − z + 1. One concludes that the meromorphic function Tr(PhUhQ

−z
h ) is

infinitely differentiable with respect to the parameter h.

We now compute the residue at z = 0 of a zeta-function of type Tr(PUhQ
−z)

with P a compactly supported pseudodifferential operator on the manifold Mb,
h a diffeomorphism of Mb and Q an elliptic positive operator of order one.
Not surprisingly, the residue is given by an explicit local formula involving the
complete symbol σP of P . In particular when Uh is the identity, one recovers
the well-known Wodzicki residue [19], which can be written as an integral, over
the cosphere bundle, of a certain homogeneous component of σP . In the general
situation the residue is localized at the set of fixed points for Uh.
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Proposition 5.3 Let h be a diffeomorphism of the manifold Mb. Assume that
the set of fixed points of h is a non-degenerate smooth submanifold Mh

b ⊂ Mb

of dimension r. Choose a local coordinate system (x; y) adapted to Mh
b , and

complete it into a canonical coordinate system (x, p; y, q) on the cotangent bundle
T ∗Mb, such that (x, p) is a canonical coordinate system of T ∗Mh

b . Then for

any pseudodifferential operator P ∈ CLkc (Mb) and any elliptic strictly positive
invertible operator Q ∈ CL1(Mb), one has the localization formula

Res
z=0

Tr(PUhQ
−z) =

∫
S∗Mh

b

[
ei〈 ∂

∂q ,(1−h
′)−1 ∂

∂y 〉 · σP e
i〈p,x−h∗x〉

|det(1− h′)|

]
−r

η(dη)r−1

(2π)r

(72)
where S∗Mh

b is the cosphere bundle of the fixed submanifold, η = 〈p, dx〉 is
the canonical one-form on the cotangent bundle T ∗Mh

b , σP = σP (x, p; y, q) is
the complete symbol of P , [ ]−r is the order −r component of a symbol in the
variables (x, p; 0, 0), and h′ is the matrix of partial derivatives ∂(h∗y)/∂y.

Proof: Set u = y − h∗y. In the proof of Lemma 5.2 we established that
Tr(PUhQ

−z) is the integral of a density on Mb given in the local coordinate
chart (x;u) by an expansion

ρz(x;u) =

n∑
k=0

1

k!

(∫
∂kσz

∂qk
(x, p;u, 0)

ei〈p,x−h∗x〉

|det(1− h′)|
drp

(2π)r

)
∂kδs(u)

(i∂u)k
dsudrx

+Hn(z)

where the remainder Hn(z) is holomorphic in z provided n is sufficiently large,
and σz is the symbol of Q−zP of order |P | − z. Hence integrating over (x;u)
and taking the residue at z = 0 will only retain the finite sum over k:

Res
z=0

n∑
k=0

1

k!

∫∫∫
∂kσz

∂qk
(x, p;u, 0)

ei〈p,x−h∗x〉

|det(1− h′)|
∂kδs(u)

(i∂u)k
drp

(2π)r
dsudrx

Integrating by parts with respect to the variable u one sees that the Dirac
measure δ localizes the residue at the submanifold of fixed points u = 0:

Res
z=0

∫∫ ( n∑
k=0

1

k!

〈
∂k

∂qk
,

∂k

(−i∂u)k

〉)
· σ

zei〈p,x−h∗x〉

|det(1− h′)|

∣∣∣∣u=0
q=0

drp

(2π)r
drx

Moreover we know that x − h∗x is of order u2 near u = 0, and the Taylor
expansion of ∂kσz/∂qk(x, p;u, 0) ei〈p,x−h∗x〉 up to order k in the variable u is
a symbol with respect to the variables (x, p), of order at most |P | − k/2 − z.
Hence for high values of k the integral over (x, p) converges to a holomorphic
function of z near z = 0 and the residues vanish. Consequently we may replace

the finite sum
∑n
k=0

1
k! 〈

∂k

∂qk
, ∂k

(−i∂u)k
〉 by the exponential exp(i〈 ∂∂q ,

∂
∂u 〉) viewed

as a formal power series. Moreover, the symbol σz of the operator Q−zP has
an asymptotic expansion of the form

σz ∼ (σQ)−zσP + zσ′

where σQ is the symbol of Q and the product is simply the product of functions
in the canonical variables. The remainder zσ′ will disappear under the residue
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because the integral of a symbol with respect to (x, p) is meromorphic with
only simple poles. Hence we can replace σz by the product (σQ)−zσP . In the
same way we can move the function (σQ)−z behind the differential operators

〈 ∂
k

∂qk
, ∂

k

∂uk 〉 since the latter can only extract symbols proportional to z when

applied to (σQ)−z. Thus the above integral may be rewritten

Res
z=0

∫∫
(σQ)−z ei〈 ∂

∂q ,
∂
∂u 〉 · σP e

i〈p,x−h∗x〉

|det(1− h′)|

∣∣∣∣u=0
q=0

drp

(2π)r
drx

One recognizes the Wodzicki residue applied to pseudodifferential operator with

symbol ei〈 ∂
∂q ,

∂
∂u 〉 · σP ei〈p,x−h∗x〉/|det(1− h′)|u=0,q=0 on the cotangent bundle of

the fixed submanifold Mh
b . It is expressed as the integral of the order −r com-

ponent of the symbol over the cosphere bundle, whence formula (72).

Following [14], the zeta-renormalized trace of an operator of the form PUh
can be defined as the finite part at z = 0 of the zeta-function Tr(PUhQ

−z),
that is, the term of degree zero in the Laurent expansion of the zeta-function
at z = 0. Choose a generalized connection h on the submersion π : M → B
and a smooth section Q ∈ C∞(B,CL1(M)) of elliptic, positive and invertible
pseudodifferential operators as above. Thus at any point b ∈ B one has an
elliptic positive invertible operator Qb acting on the manifold Mb = π−1(b).
Let O ⊂ G be an Ad-invariant isotropic submanifold whose action on M is non-
degenerate. Then by inserting the complex power Q−z inside the trace map (60),
we associate to any tensor e1⊗ . . .⊗en ∈ TE the function Trh,Qe1,...,en(z) ∈ Ck(V )

defined over an appropriate neighborhood V of the submanifold O(n) ⊂ Gn:

Trh,Qe1,...,en(z)(g1, . . . , gn) = (73)

Tr
(
e1(g1)Ug1 h(s(g1), r(g2)) . . . en(gn)Ugn h(s(gn), r(g1))Q−zr(g1)

)
The regularity order k can be as large as wanted, provided that Re(z) is large
enough. Hence by Lemma 5.2, the function Trh,Qe1,...,en(z) projected to the localiza-
tion space C∞(V )[O] of jets to all order at O extends to a meromorphic function

of z with at most simple poles. This implies that the evaluation of Trh,Qe1,...,en(z)
on a distribution ϕ ∈ C−∞(V ) with support localized at O and of bounded
singularity order, yields a meromorphic function of z. We also introduce the
notation

Trh,Qe1,...,en(z)(g1, . . . , gn−1|gn) = (74)

Tr
(
e1(g1)Ug1 h(s(g1), r(g2)) . . . Q−zr(gn) en(gn)Ugn h(s(gn), r(g1))

)
Since we regard Trh,Qe1,...,en(z) as the jets of a function at the submanifold O(n),
we can take any coefficient of its Laurent expansion at z = 0 before evaluating
it on a localized distribution.

Definition 5.4 Let C = C∞c (B) o G and E = C∞c (B,CL0
c(M)) o G. Choose

any generalized connection h on the submersion π : M → B and any elliptic
section Q as above. Then for any cocycle ϕ ∈ Hom(X(T̂Ctop)[O],C) localized

at O, the zeta-renormalized cochain (τϕ)R ∈ Hom(X(T̂E ),C) is defined on TE
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and Ω1TE\ by

(τϕ)R(e1 ⊗ . . .⊗ en) =

∫
Gn

ϕ+
n (g1, . . . , gn) Pf

z=0
Trh,Qe1,...,en(z)(g1, . . . , gn) ,

(τϕ)R(\(e1 ⊗ . . .⊗ en−1den)) = (75)∫
Gn

ϕ−n (g1, . . . , gn−1|gn) Pf
z=0

Trh,Qe1,...,en(z)(g1, . . . , gn−1|gn) .

where Pfz=0 denotes the finite part at z = 0 of the corresponding zeta-functions.

Observe that (τϕ)R is well-defined on the pro-complex X(T̂E ) because eval-
uation on the distributions ϕ± kills the high powers of the ideal JE . The
zeta-function also allows to define a residue morphism

Res : X(T̃E )→ X(T̂Ctop)[O] (76)

by selecting the poles of (73) and (74) at z = 0 instead of the finite part.
The restriction of (76) to the even subspace of the X-complex is a linear map

T̃E → (T̂Ctop)[O], sending any n-tensor e1 ⊗ . . . ⊗ en ∈ TE to the jets of a

function of the variables (g1, . . . , gn) at the localization submanifold O(n) ⊂ Gn:(
Res(e1 ⊗ . . .⊗ en)

)
(g1, . . . , gn) = Res

z=0
Trh,Qe1,...,en(g1, . . . , gn)(z) .

Notice that the ideal JE ⊂ TE is sent to (JCtop)[O]. Moreover, for any fixed
k the k-jet of Res(e1 ⊗ . . . ⊗ en) vanishes whenever e1 ⊗ . . . ⊗ en belongs to a
sufficiently high power of the ideal R = Ker(TE → TA ). This is due to the fact
that the zeta-function (73) has no pole at z = 0 in this case. Hence the residue

morphism indeed extends to a well-defined linear map T̃E → (T̂Ctop)[O]. In the

odd case (76) is a linear map Ω1T̃E\ → (Ω1T̂Ctop)[O] defined in an analogous
way:(
Res(\(e1⊗. . .⊗en−1den))

)
(g1, . . . , gn−1|gn) = Res

z=0
Trh,Qe1,...,en(g1, . . . , gn−1|gn)(z) .

The crucial point is that (76) is a morphism of X-complexes. This is an easily
consequence of the fact that the zeta-functions have only simple poles: the
residues at z = 0 do not depend on the actual place of Q−z in formulas (73)
and(74). This property would fail in the presence of double poles. Following
[14] we now introduce the logarithm

lnQ = − d

dz
Q−z|z=0 . (77)

The latter is no longer a section of the classical pseudodifferential operators
CL(M), but belongs to the larger class of log-polyhomogeneous pseudodiffer-
ential operators CL(M)log. However, the difference lnQ − lnQ′ of two such
logarithms is a section of CL(M), as well as the commutator [lnQ,P ] with any
section P ∈ C∞c (B,CLc(M)). We shall enlarge the algebra E by adding the
log-polyhomogeneous operators. Define

Elog = C∞c (B,CL0
c(M)log) oG .

Thus the elements of Elog are products of logarithms by elements of E . In par-
ticular the section lnQ can be viewed as a left multiplier of Elog, as follows:
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(lnQ · e)(g) = lnQr(g)e(g) for all e ∈ E and g ∈ G. We can mimic the construc-

tion of the complex X(T̃E ), replacing everywhere classical pseudodifferential

operators by log-polyhomogeneous ones. This leads to a complex X(T̃E )log and
its subcomplex

X(T̃E )1
log ⊂ X(T̃E )log , (78)

where the superscript 1 means that we retain only the tensors having logarithmic
degree at most 1. Thus, the elements of (TE )1

log are of the form e1 ⊗ . . . ⊗ en
or e1 ⊗ . . . ⊗ lnQ · ei ⊗ . . . ⊗ en, where all ej ’s are in E . Similarly in odd
degree, the elements of (Ω1TE\)1

log are of the form \(e1⊗ . . .⊗ en−1den) , \(e1⊗
. . . lnQ · ei . . .⊗ en−1den) or \(e1 ⊗ . . .⊗ en−1d(lnQ · en)). Since the difference
of logarithms lnQr(g) − Ug lnQs(g)U

−1
g is always a classical pseudodifferential

operator on the manifold Mr(g), one sees that the residue map (76) can be
extended to a chain map

X(T̃E )1
log ∩Dom(Res)→ X(T̂Ctop)[O]

where the domain Dom(Res) is the linear span of differences of chains where
only the place of lnQ changes. For example in even degree, the chains in (TE )1

log

are linearly generated by differences

e1 ⊗ . . . lnQ · ei ⊗ . . . ej ⊗ . . .⊗ en − e1 ⊗ . . . ei ⊗ . . . lnQ · ej ⊗ . . .⊗ en

For notational convenience we introduce the convention that a right multipli-
cation of a factor ei by lnQ amounts to the left multiplication of the following
factor ei+1 by lnQ in a tensor product. In particular

e1 ⊗ . . .⊗ [lnQ, ei]⊗ ei+1 ⊗ . . .⊗ en :=

e1 ⊗ . . .⊗ lnQ · ei ⊗ ei+1 ⊗ . . .⊗ en − e1 ⊗ . . .⊗ ei ⊗ lnQ · ei+1 ⊗ . . .⊗ en
e1 ⊗ . . .⊗ en · lnQ := lnQ · e1 ⊗ . . .⊗ en

Proposition 5.5 Let C = C∞c (B)oG and E = C∞c (B,CL0
π(M))oG. Choose

any generalized connection h on the submersion π : M → B and any elliptic
section Q as above. Then for any cocycle ϕ ∈ Hom(X(T̂Ctop)[O],C) localized at
O, the boundary of the zeta-renormalized cochain (τϕ)R is the cocycle (τϕ)R∂ ∈
Hom(X(T̃E ),C) given by

(τϕ)R∂(\(e1 ⊗ . . .⊗ en−1den)) = ϕ ◦ Res(e1 ⊗ . . .⊗ en−1 ⊗ [lnQ, en]) (79)

(τϕ)R∂(e1 ⊗ . . .⊗ en) =
∑

1≤i<j≤n

ϕ ◦ Res(e1 ⊗ . . . [lnQ, ei] . . .dej . . .⊗ en)

Proof: By definition one has ∂(\(e1 ⊗ . . .⊗ en−1den)) = e1 ⊗ . . .⊗ en−1 ⊗ en −
en ⊗ e1 ⊗ . . .⊗ en−1. For all i write hii+1 = h(s(gi), r(gi+1)). Then (75) gives

(τϕ)R(e1 ⊗ . . .⊗ en−1 ⊗ en) =

∫
Gn

ϕ+
n (g1, . . . , gn)×

Pf
z=0

Tr
(
e1(g1)Ug1h

1
2 . . . en−1(gn−1)Ugn−1h

n−1
n en(nn)Ugnh

n
1Q
−z
r(g1)

)
In the same way

(τϕ)R(en ⊗ e1 ⊗ . . .⊗ en−1) =

∫
Gn

ϕ+
n (g1, . . . , gn)×

Pf
z=0

Tr
(
en(g1)Ug1h

1
2e1(g2)Ug2h

2
3 . . . en−1(gn)Ugnh

n
1Q
−z
r(g1)

)
.
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Since ϕ is an X-complex cocycle, ϕ+
n (g1, . . . , gn) is invariant under cyclic per-

mutations of (g1, . . . , gn). This and the cyclicity of the operator trace implies

(τϕ)R(en ⊗ e1 ⊗ . . .⊗ en−1) =

∫
Gn

ϕ+
n (g1, . . . , gn)×

Pf
z=0

Tr
(
e1(g1)Ug1h

1
2 . . . en−1(gn−1)Ugn−1

hn−1
n Q−zr(gn)en(gn)Ugnh

n
1

)
Thus one can write

(τϕ)R∂(\(e1 ⊗ . . .⊗ en−1den)) =

∫
Gn

ϕ+
n (g1, . . . , gn)×

Pf
z=0

Tr
(
e1(g1)Ug1h

1
2 . . . en−1(gn−1)Ugn−1h

n−1
n [en(gn)Ugnh

n
1 , Q

−z]
)

with the “commutator”

[en(gn)Ugnh
n
1 , Q

−z] = en(gn)Ugnh
n
1Q
−z
r(g1) −Q

−z
r(gn)en(gn)Ugnh

n
1

= en(gn)
(
Ugnh

n
1Q
−z
r(g1)(Ugnh

n
1 )−1 −Q−zr(gn)

)
Ugnh

n
1 − [Q−zr(gn), en(gn)]Ugnh

n
1

Now observe that Ugnh
n
1Q
−z
r(g1)(Ugnh

n
1 )−1−Q−zr(gn) and [Q−zr(gn), en(gn)] are pseu-

dodifferential operators on the manifold Mr(gn). They have an asymptotic ex-
pansion in powers of z,

Ugnh
n
1Q
−z
r(g1)(Ugnh

n
1 )−1 −Q−zr(gn)

∼ −z
(
Ugnh

n
1 ln(Qr(g1))Q

−z
r(g1)(Ugnh

n
1 )−1 − ln(Qr(gn))Q

−z
r(gn)

)
+O(z2)

[Q−zr(gn), en(gn)] ∼ −z[lnQr(gn), en(gn)]Q−zr(gn) +O(z2)

up to order z2. Hence with obvious notations

[en(gn)Ugnh
n
1 , Q

−z] ∼ z[lnQ, en(gn)Ugnh
n
1 ]Q−zr(g1) +O(z2) .

Because the zeta-functions have only simple poles, Pfz=0(zTr(. . . Q−z)) is the
residue of Tr(. . . Q−z) and the terms of order z2 are killed. Finally

(τϕ)R∂(\(e1 ⊗ . . .⊗ en−1den)) =

∫
Gn

ϕ+
n (g1, . . . , gn)×

Res
z=0

Tr
(
e1(g1)Ug1h

1
2 . . . en−1(gn−1)Ugn−1

hn−1
n [lnQ, en(gn)Ugnh

n
1 ]Q−zr(g1)

)
which is precisely (79). One proceeds similarly with the second formula.

Collecting the preceding results one gets the following refinement of Theorem
4.7 which computes the excision map by means of a residue formula.

Theorem 5.6 Let G ⇒ B be a Lie groupoid and let O be an Ad-invariant
isotropic submanifold of G. Let π : M → B be a G-equivariant surjective
submersion and assume the action of O on M non-degenerate. Then one has a
commutative diagram

HP •(C∞c (B,CL−1
c (M)) oG)

E∗ // HP •+1(C∞c (S∗πM) oG)

HP •top(C∞c (B) oG)[O]

τ∗

OO

π!
G // HP •+1

top (C∞c (S∗πM) oG)[π∗O]

OO

(80)
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where the isotropic submanifold π∗O ⊂ S∗πM o G is the pullback of O by the
submersion S∗πM → B.
Let A = C∞c (S∗πM)oG, E = C∞c (B,CL0

c(M))oG, and choose any continuous
linear splitting σ : A → E of the projection homomorphism. Then the image
of an even class [ϕ] ∈ HP 0

top(C∞c (B) o G)[O] is represented by the odd cyclic

cocycle π!
G(ϕ) ∈ Hom(Ω1T̂A\,C) over the algebra A = C∞c (S∗πM o G), given

by the residue

π!
G(ϕ)(\(a1 ⊗ . . .⊗ an−1dan)) = ϕ ◦ Res

(
σ(a1)⊗ . . .⊗ σ(an−1)⊗ [lnQ, σ(an)]

)
for all \(a1 ⊗ . . . ⊗ an−1dan) ∈ Ω1TA\. In a similar way, the image of an odd
class [ϕ] ∈ HP 1

top(C∞c (B) o G)[O] is represented by the cyclic cocycle of even

degree π!
G(ϕ) ∈ Hom(T̂A ,C) given by the residue

π!
G(ϕ)(a1⊗. . .⊗an) =

∑
1≤i<j≤n

ϕ◦Res
(
σ(a1)⊗. . . [lnQ, σ(ai)] . . .dσ(aj) . . .⊗σ(an)

)
for all a1 ⊗ . . .⊗ an ∈ TA .

Corollary 4.8 and Theorem 5.6 allow to compute the pairing 〈[τϕ], IndE([u])〉
for any elliptic symbol u ∈ GL∞(A ). For clarity we suppose u ∈ GL1(A ) but
the general case follows easily. Hence let σ(u) ∈ E + be the image of u under the
linear splitting σ : A → E (extended to unitalized algebras so that σ(1) = 1).

Take the invertible lifting û = u in T̂A +. The unitalized homomorphism σ∗ :
T̂A + → T̃E + carries û to an invertible element σ∗(û), whose inverse is given
by the convergent series

σ∗(û
−1) =

∞∑
n=0

σ(u−1)⊗ (1− σ(u)⊗ σ(u−1))⊗n ∈ GL1(T̃E ) .

Corollary 5.7 Under the hypotheses of Theorem 5.6, let [u] ∈ K1(A ) be an
elliptic symbol class element represented by an invertible matrix u ∈M∞(A )+.
Let [ϕ] ∈ HP 0

top(C∞c (B) o G)[O] be a cyclic cohomology class localized at O.
Then

〈[τϕ], [u]〉 = ϕ ◦ Res#tr
(
σ∗(û

−1)[lnQ, σ∗(û)]
)

(81)

where Q ∈ C∞(B,CL1(M)) is any section of elliptic positive invertible pseu-

dodifferential operators of order one, and û ∈M∞(T̂A )+ is the above invertible
lifting of u.
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