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Abstract It has been shown by Nistor (Doc Math J DMV 2:263–295, 1997) that
given any extension of associative algebras over C, the connecting morphism in peri-
odic cyclic homology is compatible, under the Chern–Connes character, with the index
morphism in lower algebraic K -theory. The proof relies on the abstract properties of
cyclic theory, essentially excision, which does not provide explicit formulas a priori.
Avoiding the use of excision, we explain in this article how to get explicit formulas in
a wide range of situations. The method is connected to the renormalization procedure
introduced in our previous work on the bivariant Chern character for quasihomomor-
phisms Perrot (J Geom Phys 60:1441–1473, 2010), leading to “local” index formulas
in the sense of non-commutative geometry. We illustrate these principles with the
example of the classical family index theorem: we find that the characteristic numbers
of the index bundle associated to a family of elliptic pseudodifferential operators are
expressed in terms of the (fiberwise) Wodzicki residue.

Mathematics Subject Classification (2000) 19D55 · 19K56 · 46L80 · 46L87

1 Introduction

Some years ago Cuntz and Quillen [6] were able to show that excision holds in complete
generality for periodic cyclic (co)homology of associative algebras. That is, given any
extension (short exact sequence) of algebras over C,

(E) : 0→ B→ E → A → 0 (1)
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there exists an associated six-term exact sequence relating the periodic cyclic homol-
ogy of B,E ,A , and similarly for cohomology. Using the abstract properties of the
theory, Nistor [8] then proved that the connecting morphism H P1(A ) → H P0(B)

of the cyclic homology exact sequence is compatible, via the Chern–Connes charac-
ter, with the index map induced by the extension (E) on algebraic K -theory in low
degrees [7]:

IndE : K1(A )→ K0(B). (2)

In principle this allows to state a general “higher index theorem”, in the sense
that the pairing of any periodic cyclic cohomology class [τ ] ∈ H P0(B) with the
image of (2) can be computed as the pairing of its boundary E∗([τ ]) with K1(A ).
Here E∗ : H P0(B)→ H P1(A ) denotes the connecting morphism in cohomology.
Nistor proves this theorem first in the case of a universal extension, for which the
periodic cyclic cohomology is simply represented by traces over B, the general case
then follows from the naturality of the index morphism in K -theory and the naturality
of the boundary map in periodic cyclic cohomology. Although very elegant and gen-
eral, this proof does not provide explicit formulas for the cocycle E∗([τ ]). In principle
the proof of excision in [6] should lead to explicit formulas, but they turn out to be
extremely complicated in general, and moreover are not local in contrast with, for
instance, the residue index formula of Connes and Moscovici [3].

The goal of the present article is to present an explicit construction of the con-
necting morphism E∗ avoiding as much as possible the use of excision, and giving
an alternative (direct) proof of Nistor’s index theorem. One knows from the work
of Cuntz and Quillen [5] that any cyclic cohomology class [τ ] ∈ H P0(B) can be
represented by a trace over an adequate extension 0 → J → R → B → 0 of
B, or equivalently by a trace over some power of this extension (think for example
about the operator trace on a Schatten ideal). Our basic observation is the following:
if the extensions 0 → J → R → B → 0 and 0 → B → E → A → 0
fit together in a commutative diagram, see (9), then E∗([τ ]) is explicitly given by a
fairly simple formula based on a “renormalization” procedure explained in Sect. 2.
The proof that actually any cyclic cohomology class over B can be represented in this
way requires the knowledge of excision. Fortunately many cyclic cohomology classes
appear naturally equipped with the required diagram, so we are able to circumvent
excision completely in this situation.

Let us mention that the renormalization procedure basically amounts to extend a
given trace to a linear functional, defined on a larger domain where the trace property
is usually lost. Applying some boundary operator to the renormalized functional then
gives a cocycle, whose cohomology class does not depend on the choice of renormal-
ization. The whole technique is inspired by our previous work on the bivariant Chern
character for quasihomomorphisms [11–13], where it was argued that local index
formulas automatically emerge. Moreover this is closely related to the well-known
anomalies of quantum field theory [10]: the renormalized functional corresponds to
the quantum fluctuations of a suitable gauge theory, and the boundary operator imple-
ments gauge transformations. The lack of gauge-invariance of the quantum functional

123



Extensions and renormalized traces

is thus represented by a cocycle (the anomaly), given by a local formula, whose coho-
mology class does not depend on the choice of renormalization.

The precise link between [11–13] and the present work is explained in Sect. 3.
We show that when the extension (E) is invertible in a specific sense (Definition 3.1),
the map E∗ coincides with the bivariant Chern character of the odd quasihomomor-
phism associated to the extension. This allows to give an alternative proof of Nistor’s
index theorem in Sect. 4: for any [τ ] ∈ H P0(B) and [g] ∈ K1(A ), one has the
equality of pairings

〈[τ ] , IndE ([g])〉 = √2π i 〈E∗ ([τ ]) , [g]〉 (3)

that is, the index map is adjoint to the connecting morphism in periodic cyclic coho-
mology. The overall factor

√
2π i comes from our particular choice of normalization

for the pairings between cyclic cohomology and K -theory: just note that this choice
is the only one compatible with the bivariant Chern character and Bott periodicity for
topological algebras. Since we will only consider algebras without additional structure
in this article, this factor is irrelevant. The index theorem is shown in two steps: first
we reduce to the case of an invertible extension, and then (3) is the consequence of
an explicit computation. Thus in contrast with [8], excision is not directly used in the
proof.

In Sect. 5 we show on the example of the family index theorem that our construction
of E∗([τ ]) effectively leads to a local formula, in the sense that it is expressed as a
Wodzicki-type residue. Thus we consider a proper submersion of smooth manifolds
without boundary M → B. A canonical extension (E) is obtained by taking E as
the algebra of smooth families of (fiberwise) classical pseudodifferential operators of
order zero, B as the ideal of order −1 pseudodifferential operators, and A as the
commutative algebra of smooth functions over the cotangent sphere bundle of the
fibers. The projection E → A thus carries a family of pseudodifferential operators
to its family of leading symbols. Then any de Rham cycle in the base manifold B
gives rise to a cyclic cocycle τ over the algebra B; notice however that this requires
to choose a connection on the submersion. Using zeta-function renormalization, we
find that the cyclic coho mology class E∗([τ ]) ∈ H P0(A ) is explicitly given in
terms of a fiberwise Wodzicki residue applied to some families of pseudodifferen-
tial operators, involving the connection and its curvature. Interestingly, the formula
is a higher analogue of the famous Radul cocycle [14]. Finally if Q is a family of
elliptic pseudodifferential operators with symbol class [g] ∈ K1(A ), the pairing
between [τ ] and the “index bundle” IndE ([g]) ∈ K0(B) is the evaluation of this
higher Radul cocycle on certain polynomials built from Q, its parametrix P , and the
connection.

2 Connecting morphism

Let us recall the Cuntz–Quillen [5] formalism of cyclic cohomology, since it is partic-
ularly well-adapted to extensions. The basic fact is that any cyclic cohomology class
of even degree over an associative algebra B can be represented by a trace over some
extension R
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0→J → R → B→ 0 (4)

vanishing on the large powers of the ideal J . A cyclic cohomology class of odd
degree over B can be represented by a cyclic one-cocycle on R with similar vanish-
ing properties. This motivates the definition of the X -complex of any algebra R. It is
the Z2-graded complex

X (R) : R
�d
�
b

�1R�, (5)

where �1R� = �1R/[R,�1R] is the quotient of the R-bimodule of universal one-
forms by its commutator subspace. The class of a generic element (x0dx1 mod [, ]) ∈
�1R� is usually denoted by �x0dx1. The map �d : R → �1R� thus sends x ∈ R
to �dx . Also, the Hochschild boundary map b : �1R → R vanishes on the commu-
tator subspace, hence passes to a well-defined map b : �1R� → R. Explicitly the
image of �x0dx1 by b is the commutator [x0, x1]. These maps satisfy �d ◦ b = 0 and
b ◦ �d = 0, so that X (R) endowed with the boundary operator ∂ = �d ⊕ b indeed
defines a Z2-graded complex.

If J ⊂ R is a two-sided ideal, Cuntz and Quillen define a decreasing filtration of
X (R) by the following subcomplexes indexed by integers n ∈ Z

F2n
J X (R) :J n+1 + [

J n,R
]

� �J n
(+)d R

F2n+1
J X (R) :J n+1 � �

(
J n+1

(+) d R +J n
(+)d J

)
,

(6)

where J n
(+) is equal to the power J n for n > 0 and equal to the unitalized algebra

R+ = R ⊕ C for n ≤ 0. The J -adic completions of the algebra R and of the
complex X (R) are defined as projective limits

R̂ = lim←−
n

R/J n, X
(
R̂

) = lim←−
n

X (R) /Fn
J X (R) (7)

where R̂ is viewed as a pro-algebra and X (R̂) as a pro-complex [6]. It follows that
any cocycle τ : X (R̂)→ C represents a cyclic cohomology class over B (here τ is
viewed as a linear map between pro-complexes, that is, a linear map on X (R) van-
ishing on Fn

J X (R) for some n  0). In particular let T B = B ⊕B ⊗B ⊕ . . .

be the non-unital tensor algebra and denote by JB the kernel of the multiplication
homomorphism T B → B. Then the extension 0 → JB → T B → B → 0 is
universal among all extensions 0→ J → R → B → 0 in the sense that one has
a classifying homomorphism T B → R defined up to homotopy, which restricts to
a homomorphism JB → J . Thus any cocycle over X (R̂) can be pulled back to a
cocycle over X (T̂ B). In particular the cohomology group H∗(X (T̂ B)) is isomorphic
to the periodic cyclic cohomology H P∗(B), see [5].
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It follows from the proof of excision in periodic cyclic cohomology [6], that any
extension

(E) : 0→ B→ E → A → 0 (8)

gives rise to a connecting morphism H Pi (B)→ H Pi+1(A ), i ∈ Z2. Here we shall
present a way to calculate the connecting morphism, assuming that the cyclic coho-
mology classes of B are put into a suitable form. They will be represented not only
by traces over some extension R, but more generally by traces over some power Rn :
indeed cyclic cohomology classes often arise as traces over finitely summable operator
ideals [1]. Since one has to choose extensions of both algebras B and A to represent
their cyclic cohomology, we first define the notion of a lifting for the extension (E):

Definition 2.1 We say that an extension 0 → R → M → P → 0 is a lifting of
0→ B→ E → A → 0, if both fit into a commutative diagram

0

��

0

��

0

��
0 �� J ��

��

N ��

��

Q ��

��

0

0 �� R ��

��

M ��

��

P ��

��

0

0 �� B ��

��

E ��

��

A ��

��

0

0 0 0

(9)

where all rows and columns are extensions.

Morally the columns of (9) will be used to represent cyclic cohomology classes of
B,E ,A respectively. Because the central algebra M has two distinguished ideals
R and N , there are several ways to filter the complex X (M ). First we focus on the
middle column, i.e. the extension 0→ N →M → E → 0. We denote the N -adic
completions with a hat:

M̂ = lim←−
n

M /N n, X
(
M̂

) = lim←−
n

X (M ) /Fn
N X (M ) . (10)

There is a second extension 0 → R + N → M → A → 0 associated to
the diagonal of (9). The corresponding (R +N )-adic completions will be denoted
with a tilde. Of course this completion of X (M ) could be defined via the filtra-
tion by the subcomplexes Fn

R+N X (M ), but there is an equivalent construction
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starting from the above pro-complex X (M̂ )filtered by the subcomplexes Fn
R X (M̂ ) =

lim←−k
Fn

R X (M )/(Fn
R X (M ) ∩ Fk

N X (M )):

M̃ = lim←−
n

M / (R +N )n , X
(
M̃

) = lim←−
n

X
(
M̂

)
/Fn

R X
(
M̂

)
. (11)

The cocycles over Fn
R X (M̂ ) are chain maps τ : Fn

R X (M̂ ) → C. We will show
below that they represent cyclic cohomology classes over B. Let us now describe how
to compute the connecting morphism associated to the initial extension (E) : 0 →
B → E → A → 0. The link between noncommutative index theory and quantum
field theory explained in [10,12] motivates the following definition.

Definition 2.2 Let τ be a cocycle over the subcomplex Fn
R X (M̂ ) for some n ≥ 1.

A renormalization of τ is a linear map τR : X (M̂ )→ C extending τ .

Of course τR is usually not a cocycle over X (M̂ ). Its coboundary τR∂ is however
a cocycle vanishing on Fn

R X (M̂ ) by construction. Here ∂ = �d ⊕ b is the X -com-

plex boundary map. Since Fn+k
R X (M̂ ) ⊂ Fn

R X (M̂ ) for any k ≥ 0, one sees that
τR∂ descends to a unique cocycle over X (M̃ ). It remains to pull it back to X (T̂ A )

in order to get a periodic cyclic cohomology class over A . Choose a linear splitting
σ : A →M of the diagonal homomorphism M → A . The universal property of the
tensor algebra T A allows to extend σ to a homomorphism σ∗ : T A →M by setting
σ∗(a1⊗ . . .⊗ak) = σ(a1) . . . σ (ak). Then σ∗ sends the ideal JA = Ker(T A → A )

to the ideal R +N = Ker(M → A ). This may be depicted through the following
commutative diagram where all arrows except the dashed one are homomorphisms of
algebras:

0 �� JA ��

σ∗
��

T A ��

σ∗
��

A ��

σ
��

0

0 �� R +N �� M �� A �� 0

(12)

Consequently σ∗ extends to a homomorphism of pro-algebras T̂ A → M̃ . This in
turn induces a chain map σ∗ : X (T̂ A )→ X (M̃ ).

Proposition 2.3 Consider an extension (E) : 0 → B → E → A → 0 with lift-
ing 0 → R → M → P → 0 as in diagram (9). The map sending a cocycle
τ over Fn

R X (M̂ ) to the cocycle τR∂ ◦ σ∗ over X (T̂ A ), for an arbitrary choice of
renormalization τR, descends to a morphism in cohomology

En : Hi (
Fn

R X (M̂ )
)→ H Pi+1 (A ) , i ∈ Z2. (13)

The latter does not depend on the choice of renormalization, nor on the linear split-
ting σ : A →M . If the exact sequence (E) is split by a homomorphism A → E , then
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En vanishes. Finally, En+1 composed with the natural pullback H∗(Fn
R X (M̂ )) →

H∗(Fn+1
R X (M̂ )) coincides with En.

Proof If τ ′R is another choice of linear extension for τ , the difference τ ′R−τR vanishes
on Fn

R X (M̂ ), hence descends to a cochain over X (M̃ ). The difference τ ′R∂ − τR∂ =
(τ ′R − τR)∂ is therefore a coboundary over X (M̃ ). The cyclic cohomology class of
τR∂ ◦ σ∗ is thus renormalization-independent.

If τ = ϕ∂ is the coboundary of a cochain ϕ over Fn
R X (M̂ ), then one can extend ϕ

to a cochain ϕR over X (M̂ ) and take τR = ϕR∂ . Then τR∂ = 0 and En is well-defined
in cohomology.

As observed by Cuntz and Quillen [5], two different choices of linear splittings
σ : A →M induce homotopic homomorphisms σ∗ : T̂ A → M̃ , and the resulting
chain maps X (T̂ A )→ X (M̃ ) are homotopy equivalent. Thus the cyclic cohomology
class of τR∂ ◦ σ∗ is independent of σ .

Suppose that (E) is split by a homomorphism ρ : A → E . Then choose any linear
splitting 
 : E →M of the projection homomorphism M → E and put σ = 
 ◦ ρ.
By the universality of T A one gets a commutative diagram

0 �� JA ��

σ∗
��

T A ��

σ∗
��

A ��

ρ

��
σ

��

0

0 �� N �� M �� E ��




�� 0

Since JA lands in N , the homomorphism σ∗ : T̂ A → M̃ actually factors
through M̂ . Hence the composite map τR ◦σ∗ is a well-defined cochain over X (T̂ A ),
the cocycle τR∂ ◦σ∗ = (τR ◦σ∗)∂ is a coboundary, and En vanishes. The last assertion
is obvious. ��

Remark 2.4 If N is nilpotent then the projective limit M̂ reduces to M . This has
the following important consequence concerning the cocycles of even degree τ :
F2n+1

R X (M ) → C. Indeed, such a cocycle is a linear map τ : Rn+1 → C vanish-
ing on the commutator subspace [Rn+1,M ] + [Rn,R]. In particular for n ≥ 1 the
inclusion [Rn+1,M ] ⊂ [Rn,R] holds, hence any reference to M disappears. We
can conclude that a cohomology class in H0(F2n+1

R X (M )) is simply represented by a
trace over the (n+ 1)-th power of the nilpotent extension 0→J → R → B→ 0,
that is, a linear map τ : Rn+1 → C vanishing on [Rn,R] for n  0.

In the general case N is not nilpotent, and an even cocycle τ has to verify the
additional condition that it vanishes on N k for some k  0. However one recov-
ers the nilpotent situation after replacing the second row of (9) by the new exten-
sion 0 → R/(R ∩ N k) → M /N k → P/Qk → 0, and the first row by 0 →
J /(J ∩N k)→ N /N k → Q/Qk → 0. Then τ still defines a cocycle for this
diagram and the new ideal N /N k is nilpotent. We nevertheless prefer to stay in the
general context since important examples of universal extensions are not nilpotent.
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Given any extension (E) : 0→ B → E → A → 0 there always exists a lifting
in the sense of Definition 2.1. Indeed one can consider the following universal lifting

0

��

0

��

0

��
0 �� J (B : E ) ��

��

JE ��

��

JA ��

��

0

0 �� T (B : E ) ��

��

T E ��

��

T A ��

��

0

0 �� B ��

��

E ��

��

A ��

��

0

0 0 0

(14)

where the ideal T (B : E ) (resp. J (B : E )) denotes the kernel of the homomorphism
T E → T A (resp. JE → JA ). The universal property of the tensor algebras T E
and T A induce classifying maps from the second and third column of (14) to the
second and third column of (9) respectively, and this in turn implies a classifying map
for the first column also. The central classifying homomorphism T E → M and all
other ones are defined up to homotopy, which ensures a canonical pullback morphism

H∗
(
Fn

R X (M̂ )
)→ H∗

(
Fn

T (B:E )
X (T̂ E )

)
for all n. In fact the excision property of

periodic cyclic cohomology [6] shows the following

Lemma 2.5 Let (E) : 0→ B→ E → A → 0 be an extension. Then for any n ≥ 1
one has an isomorphism

H∗
(

Fn
T (B:E )

X (T̂ E )
) ∼= H P∗(B). (15)

Proof According to the terminology of Cuntz and Quillen [5] the pro-algebra
T̂ E is a quasi-free extension of T̂ A . Moreover T̂ A is also quasi-free, hence
its homological dimension is ≤ 1. The results imply that the quotient complex
X (T̂ E )/Fn

T (B:E )
X (T̂ E ) computes the periodic cyclic homology of A provided

that n ≥ 1. Consequently all the complexes Fn
T (B:E )

X (T̂ E ) are homotopy equiv-
alent for n ≥ 1. In particular taking n = 1 one easily computes that the complex
X (T̂ E )/F1

T (B:E )
X (T̂ E ) is isomorphic to X (T̂ A ), whence a short exact sequence of

Z2-graded complexes

0→ F1
T (B:E ) X (T̂ E )→ X (T̂ E )→ X (T̂ A )→ 0

The associated six-term cohomology exact sequence relates H∗
(

F1
T (B:E )

X (T̂ E )
)

to

H P∗(E ) and H P∗(A ). Now excision ([6]) precisely says that the natural inclusion
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X (T̂ B)→ F1
T (B:E )

X (T̂ E ) is a homotopy equivalence, which yields an isomorphism

H P∗(B) ∼= H∗
(

Fn
T (B:E )

X (T̂ E )
)

for any n ≥ 1. ��

The above lemma remains unchanged if the tensor algebras T E and T A are
replaced by any quasi-free extensions of E and A respectively in Diagram (14). Thus
the cohomology groups H∗

(
Fn

R X (M̂ )
)

provide an alternative way to represent the
periodic cyclic cohomology of B. We will show in Sect. 4 how to recover the pairing
between H P0(B) and the K -theory group K0(B) in this context. For the moment
observe that the morphism En : Hi

(
Fn

R X (M̂ )
)→ H Pi+1(A ) factors through the

universal group Hi
(

Fn
T (B:E )

X (T̂ E )
) ∼= H Pi (B). We summarize these results in a

corollary.

Corollary 2.6 Given any extension (E) : 0 → B → E → A → 0 the renormal-
ization procedure of Proposition 2.3 yields a transformation

E∗ : H Pi (B)→ H Pi+1(A ), i ∈ Z2 (16)

which coincides with the connecting morphism of the extension (E) given by excision.

Proof We have only to show that the map H Pi (B) → H Pi+1(A ) is the connect-
ing morphism of the extension. Set T̃ E = lim←−n

T E /(T (B : E ) + JE )n and denote

by ι : T̂ E → T̃ E the natural homomorphism. Also let π∗ : T̂ E → T̂ A and
π̃∗ : T̃ E → T̂ A be the homomorphisms induced by the projection π : E → A .
Then one has π̃∗ ◦ ι = π∗, whence a commutative diagram of Z2-graded complexes
and chain maps

0 �� F1
T (B:E )

X (T̂ E ) �� X (T̂ E )
π∗ ��

ι

��

X (T̂ A ) �� 0

X (T̃ E )

π̃∗

������������

where the row is an exact sequence. Consider a linear splitting σ : A → T E in
Diagram (14) as follows: first choose a linear splitting A → E , and then map E into
the subspace of one-tensors in T E . The induced homomorphism σ∗ : T̂ A → T̃ E pro-
vides a right inverse for π̃∗: it is indeed sufficient to check the identity π̃∗ ◦σ∗ = IdT̂ A
on the subspace A which generates the whole tensor algebra T A .

Then by excision, we know that any class [τ ] ∈ H P∗(B) can be represented by
a cocycle τ over F1

T (B:E )
X (T̂ E ). The connecting morphism of the extension (E) is

nothing else but the boundary map associated to the above exact sequence of com-
plexes: first extend τ to a linear map τR over X (T̂ E ). Then its coboundary τR∂

descends to a unique cocycle ϕ over X (T̂ A ) such that ϕ ◦ π∗ = τR∂ . By definition
the cyclic cohomology class of ϕ is the image of [τ ].
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But observe that ϕ ◦ π̃∗ is a cocycle over X (T̃ E ), whose pullback via the map ι is
precisely τR∂ . Hence ϕ◦π̃∗ is the (unique) descent of τR∂ over X (T̃ E ). The composite
map τR∂ ◦ σ∗ = ϕ ◦ π̃∗ ◦ σ∗ = ϕ, which represents E∗([τ ]), therefore coincides with
the image of [τ ] under the connecting morphism. ��

Remark 2.7 Excision has been used only to show that any class in H P∗(B) can be
represented as a cocycle over Fn

R X (M̂ ) for an adequate diagram (9) and some n.
Once this is known, the connecting morphism E∗ is given by the straightforward
computation τ �→ τR∂ ◦ σ∗.

3 Quasihomomorphisms

The previous description of the connecting morphism is closely related to our construc-
tion of a bivariant Chern character for quasihomomorphisms [11,12], if we restrict to
a particular class of extensions:

Definition 3.1 An extension 0 → B → E → A → 0 is invertible if there exists
an algebra homomorphism ρ : A → M2(E ), such that the off-diagonal entries of the
matrix ρ are linear maps from A to the ideal B ⊂ E , and the upper left corner of the
matrix is a linear splitting of the projection homomorphism E → A .

From an invertible extension we construct a quasihomomorphism of odd degree as
follows [11]. Let C1 = C⊕εC be the first Clifford algebra: it is the Z2-graded algebra
generated by the unit 1 in degree zero and the element ε in degree one, with ε2 = 1.
Define the algebra E s = C1 ⊗ E s+, where E s+ is the (trivially graded) matrix algebra

E s+ =
(

E B
B E

)
⊂ M2(E ). (17)

E s is therefore Z2-graded and E s+ can be identified with its subalgebra of even degree.
The invertibility of the extension 0→ B → E → A → 0 is thus equivalent to the
existence of a homomorphism ρ : A → E s+. Finally let I s be the Z2-graded algebra
C1⊗M2(C). Then I s ⊗B = C1⊗M2(B) is a two-sided ideal in E s . This situation
is depicted through a quasihomomorphism of odd degree from A to B:

ρ : A → E s �I s ⊗B. (18)

The Chern character of this quasihomomorphism lives in the bivariant cyclic coho-
mology of A and B. The construction of [11] uses the formalism of Sect. 2. Thus
consider a lifting 0 → R → M → P → 0 of 0 → B → E → A → 0, that is
(Definition 2.1) a diagram of extensions
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0

��

0

��

0

��
0 �� J ��

��

N ��

��

Q ��

��

0

0 �� R ��

��

M ��

��

P ��

��

0

0 �� B ��

��

E ��

��

A ��

��

0

0 0 0

(19)

Notice that we do not require the extension 0→ R →M →P → 0 be invertible.
J and R are ideals respectively in N and M . Moreover J = R∩N . We introduce
as above the Z2-graded algebras N s = C1 ⊗N s+ and M s = C1 ⊗M s+, with

N s+ =
(

N J
J N

)
⊂ M2(N ), M s+ =

(
M R
R M

)
⊂ M2(M ). (20)

By construction N s+ is a two-sided ideal in M s+ and coincides with the kernel of
the projection homomorphism M s+ → E s+. Choose a linear lifting 
 : A →M s+ of
the homomorphism ρ : A → E s+. By the universal property of the tensor extension,
one gets an homomorphism ρ∗ : T A →M s+ compatible with the ideals:

0 �� JA ��

ρ∗
��

T A ��

ρ∗
��

A ��

ρ

��
��

0

0 �� N s+ �� M s+ �� E s+ �� 0

(21)

Define F = ε ⊗
(

1 0
0 −1

)
acting on M s as a multiplier of odd degree. Hence

F2 = 1 and the commutator [F,M s+] coincides with the subspace ε ⊗
(

0 R
R 0

)
⊂

M s . Denote by trs the supertrace of odd degree C1⊗M2(C)→ C, sending the matrix

ε ⊗
(

a b
c d

)
to −√2i(a + d) and 1 ⊗

(
a b
c d

)
to 0 (see [11]). Then for any odd

integer n one constructs a chain map χ̂n from the (b + B)-complex of non-commu-
tative differential forms over M s+, to the X -complex of M as follows. χ̂n has two
components χ̂n

0 : �nM s+ → Rn and χ̂n
1 : �n+1M s+ → �(RndM ) given by
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χ̂n
0 (x0dx1 . . . dxn) = −�(1+ n

2 )

(n + 1)!
∑

λ∈�n+1

± trs(xλ(0)[F, xλ(1)] . . . [F, xλ(n)]) (22)

χ̂n
1 (x0dx1 . . . dxn+1) = −�(1+ n

2 )

(n + 1)!
n+1∑

i=1

trs�(x0[F, x1] . . . dxi . . . [F, xn+1])

where �n+1 is the cyclic permutation group of n + 1 elements and ± denotes the
signature of permutation λ. The overall minus sign is conventional (it is cancelled by
the other minus coming from the supertrace). χ̂n is actually defined on the direct prod-
uct space �̂M s+ =

∏
k≥0 �kM s+ because it vanishes on differential forms of degree

> n+1, and its image lies in the subcomplex F2n−1
R X (M ). It clearly extends to a chain

map χ̂n : �̂M̂ s+ → F2n−1
R X (M̂ ) where M̂ s+ is the N s+ -adic completion of M s+. The

bivariant Chern character of degree n (odd) associated to the quasihomomorphism ρ

is the composition of chain maps

chn(ρ) : X (T̂ A )
γ−→ �̂T̂ A

ρ∗−→ �̂M̂ s+
χ̂n

−→ F2n−1
R X (M̂ ), (23)

where γ is the generalized Goodwillie equivalence of Cuntz-Quillen (see [11]) and
the middle arrow is the map of (b + B)-complexes induced by the homomorphism
ρ∗ : T̂ A → M̂ s+. Hence if τ is a cocycle over F2n−1

R X (M̂ ), the composite τchn(ρ)

defines a periodic cyclic cohomology class over A .

Proposition 3.2 Let (E) : 0→ B → E → A → 0 be an invertible extension with
lifting 0→ R →M →P → 0, and let ρ : A → E s �I s ⊗B be the associated
quasihomomorphism. Then for any cocycle τ over F2n−1

R X (M̂ ) representing a class
[τ ] ∈ H Pi (B), where n is odd, the equality

τchn(ρ) = √2π i E∗([τ ]) (24)

holds in H Pi+1(A ).

Proof We shall relate τchn(ρ) to E∗([τ ]) via the eta-cochain and its renormalization
introduced in [11,12]. The eta-cochain of degree n + 1 has two components η̂n+1

0 :
�n+1M s+ → Rn+1 and η̂n+1

1 : �n+2M s+ → �(Rn+1dM ) given by

η̂n+1
0 (x0dx1 . . . dxn+1) = �( n

2 + 1)

(n + 2)!
1

2
trs

(

Fx0[F, x1] . . . [F, xn+1]

+
n+1∑

i=1

(−)(n+1)i [F, xi ] . . . [F, xn+1]Fx0[F, x1] . . . [F, xi−1]
)

η̂n+1
1 (x0dx1 . . . dxn+2)

= �( n
2 + 1)

(n + 3)!
n+2∑

i=1

1

2
trs�(i x0 F + (n + 3− i)Fx0)[F, x1] . . . dxi . . . [F, xn+2].
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These components extend as above to a linear map η̂n+1 : �̂M̂ s+ → F2n+1
R X (M̂ ).

The eta-cochain makes the connection between the chain maps χ̂n and χ̂n+2 for any
odd integer n. Indeed let ∂ and (b+B) denote the boundaries on the complexes X (M̂ )

and �̂M̂ s+ respectively. The following transgression relation holds ([11]):

χ̂n − χ̂n+2 = ∂ ◦ η̂n+1 − η̂n+1 ◦ (b + B). (25)

Now let τ be a cocycle over the subcomplex F2n−1
R X (M̂ ), and choose any renor-

malization τR : X (M̂ )→ C as in Sect. 2. Hence the composite map τR∂ vanishes on
F2n−1

R X (M̂ ) but not on X (M̂ ). Define the cochain χR : �̂M̂ s+ → C by

χR :=
∑

k odd <n

−τR∂η̂k+1.

Then χR is a (b+B)-cocycle cohomologous to τ χ̂n . Indeed using the transgressions
(25) one gets

τ χ̂n − χR =
(

∑

k odd <n

τR η̂k+1

)

◦ (b + B).

Hence composition with the chain map ρ∗γ : X (T̂ A )→ �̂M̂ s+ yields the equal-
ity of cyclic cohomology classes τchn(ρ) ≡ χRρ∗γ in H Pi+1(A ). It remains to
compare χRρ∗γ and E∗([τ ]). We produce a deformation of the homomorphism ρ∗ :
T A →M s+ as follows. Recall that ρ∗ is induced by a linear lifting 
 : A →M s+ of
the homomorphism ρ : A → E s+. In matrix form we can write


 =
(

σ λ

μ σ

)
,

where σ : A →M is a linear splitting of the projection homomorphism M → A
as in Sect. 2, and λ,μ are linear maps from A to R. Consider the linear homotopy of
linear maps 
t : A →M s+, defined for any t ∈ [0, 1] by


t =
(

σ tλ
tμ σ

)
.

In particular 
0 =
(

σ 0
0 σ

)
is a diagonal matrix, and 
1 = 
. Then observe that 
t

followed by the projection M s+ =
(

M R
R M

)
→

(
A 0
0 A

)
= A ⊕A yields an

algebra homomorphism (independent of t). Hence one gets as usual an homomorphism
ρt∗ : T A →M s+ by means of the diagram
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0 �� JA ��

ρt∗
��

T A ��

ρt∗
��

A ��

��
t��

0

0 �� M2(R)+N s+ �� M s+ �� A ⊕A �� 0

where the ideal M2(R) + N s+ =
(

R +N R
R R +N

)
is the kernel of the pro-

jection M s+ → A ⊕ A . Thus ρt∗ extends to an homomorphism from T̂ A to the
pro-algebra M̃ s+ = lim←−m

M s+/(M2(R) + N s+ )m for any t ∈ [0, 1]. This provides

a homotopy between ρ0∗ =
(

σ∗ 0
0 σ ∗

)
and ρ1∗ = ρ∗. One knows that τR∂ vanishes

on F2n−1
R X (M̂ ). Hence χR descends to a (b + B)-cocycle over �̂M̃ s+, and by ho-

motopy invariance of periodic cyclic cohomology [5], the composite maps χRρt∗γ :
X (T̂ A )→ C define the same cohomology class for all t . We deduce the equality of
cyclic cohomology classes

τchn(ρ) ≡ χRρ∗γ = χRρ1∗γ ≡ χRρ0∗γ =
∑

k odd <n

−τR∂η̂k+1ρ0∗γ

in H Pi+1(A ). Since ρ0∗ is a diagonal matrix, [F, ρ0∗(x)] = 0 for any x ∈ T̂ A and the
map η̂k+1ρ0∗ vanishes unless k = −1. Hence only the term containing η̂0ρ0∗ survives
in the sum over k. One has

η0
0ρ

0∗(x) = �(1/2)
1

2
trs(Fρ0∗(x)) = −√2π i

1

2
(σ∗(x)− σ ∗(x)),

η0
1ρ

0∗(xdy) = �(1/2)
1

2
trs�(Fρ0∗(x)dρ0∗(y))

= −√2π i
1

2
�(σ∗(x)dσ∗(y)− σ ∗(x)dσ ∗(y)),

which shows that τchn(ρ) is cohomologous to
√

2π i τR∂ ◦ 1
2 (σ∗ −σ ∗), where σ∗ and

σ ∗ are viewed as chain maps from X (T̂ A ) to X (M̃ ).
Finally consider ρt∗ as a family of homomorphisms T̂ A → M2(M̃ ). The cup-

product of the cocycle τR∂ over X (M̃ ) with the usual trace over M2(C) yields a
cocycle τR∂#tr over X (M2(M̃ )). Using homotopy invariance, one has the equality of
periodic cyclic cohomology classes

τR∂σ∗ + τR∂σ ∗ = (τR∂#tr)ρ0∗ ≡ (τR∂#tr)ρ1∗ = (τR∂#tr)ρ∗ ≡ 0

where the last equality comes from Proposition 2.3 and the fact that ρ : A → M2(E )

is an homomorphism. Hence τR∂ ◦ 1
2 (σ∗ − σ ∗) ≡ τR∂σ∗ = E∗([τ ]), and τchn(ρ)

coincides with
√

2π i E∗([τ ]) in H Pi+1(A ) as wanted. ��
Remark 3.3 The above proof relates the connecting morphism of an invertible exten-
sion to the boundary of the renormalized eta-cochain, a technique introduced in [12]
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as a way of building local representatives for the bivariant Chern character of quasi-
homomorphisms. It was shown that the renormalized eta-cochain is closely related
to the quantum fluctuations of a noncommutative gauge theory, and its boundary is a
chiral anomaly whose cohomology class is necessarily independent of the choice of
renormalization. Thus we may consider the cyclic cocycle τR∂σ∗ representing E∗([τ ])
as a kind of “anomaly formula” in the framework of extensions.

4 Index theorem

First recall the definition of the algebraic K -theory groups of a (non-unital) algebra
A in low degrees. As usual denote by M∞(A ) = lim−→N

MN (A ) the inductive limit

of matrix algebras with entries in A , under the inclusion maps a �→
(

a 0
0 0

)
. Let

A + = A ⊕ C be the unitalization of A . An equivalence relation is defined on the
set of idempotents in M∞(A +) as follows: two idempotents e and e′ are equivalent if
there exists an invertible matrix g with entries in A +, such that g−1 ∈ M∞(A +) and
e′ = g−1eg (similarity). The set of equivalence classes of idempotents forms a semi-
group for the direct sum of matrices. Denote by K00(A ) its Grothendieck group and
let K0(A ) be the kernel of the morphism K00(A +)→ K00(C) = Z. The elements
of K0(A ) are represented by formal differences [e] − [ f ] of equivalence classes of
idempotents e, f ∈ M∞(A +) such that e ≡ f mod M∞(A ). Any such class can be

further reduced to a difference [e]− [pN ] where pN is the diagonal matrix

(
1N 0
0 0

)

with N units on the diagonal. For any integer N denote by GL N (A ) the group of
invertible matrices g ∈ MN (A +) such that g ≡ 1N mod MN (A ), and by GL∞(A )

the inductive limit of the groups GL N (A ) under the inclusions a �→
(

a 0
0 1

)
. Then

K1(A ) is the abelianization of GL∞(A ), i.e. its quotient by the commutator subgroup
[GL∞(A ), GL∞(A )].

Now let (E) : 0 → B → E → A → 0 be an extension. The connecting map
for the algebraic K -theory in low degree is constructed as follows [7]. Take a class
[g] ∈ K1(A ) represented by an invertible matrix g ∈ MN (A +) with g−1 ∈ MN (A ).

Then

(
g 0
0 g−1

)
∈ M2N (A +) can be lifted to an invertible matrix in M2N (E +).

Indeed, choose any preimages Q, P ∈ MN (E +) of g, g−1 respectively. Then

G =
(

0 1
−1 P

) (
1 0
Q 1

)(
1 −P
0 1

)
=

(
Q 1− Q P

P Q − 1 P + P(1− Q P)

)
(26)

is an invertible matrix in M2N (E +). Moreover the image of 1 − Q P vanishes in
MN (A +), hence 1−Q P ∈ MN (B) and similarly for P Q−1. Thus G is an invertible

lifting of

(
g 0
0 g−1

)
. Viewing pN =

(
1N 0
0 0

)
as a 2N ×2N matrix, the idempotent

e = G−1 pN G fulfills the property e ≡ pN mod M2N (B) and consequently [e]−[pN ]
determines a class in K0(B). The latter is independent of the choice of lifting G.
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Since by definition any additive map from GL∞(A ) to an abelian group factors
through K1(A ), we obtain the index morphism of the extension (E)

IndE : K1(A )→ K0(B). (27)

Before showing that the index map is adjoint to the connecting morphism in peri-
odic cyclic cohomology E∗ : H P0(B) → H P1(A ), let us explain how Connes’
pairing H P0(B) × K0(B) → C is computed when the cyclic cohomology of B
is represented by cocycles over the complexes Fn

R X (M̂ ) as in Sect. 2. We will use
the formulas established in [11] §4 in connection with the Chern–Connes character in
cyclic homology. Consider a lifting 0→ R →M →P → 0 of the extension (E):

0

��

0

��

0

��
0 �� J ��

��

N ��

��

Q ��

��

0

0 �� R ��

��

M ��

��

P ��

��

0

0 �� B ��

��

E ��

��

A ��

��

0

0 0 0

(28)

For any n ≥ 1, the intersection R∩N n is an ideal in R and the quotient R/(R∩N n)

is a nilpotent extension of B. Take R̂ as the projective limit lim←−n
R/(R ∩ N n).

Proceeding as in [5], any idempotent e ∈ M∞(B+) such that e− pN ∈ M∞(B) can
be lifted to an idempotent ê ∈ M∞(R̂+). The latter is defined up to similarity in the
matrix algebra over R̂+. One has ê − pN ∈ M∞(R̂) and the trace tr(ê − pN ) ∈ R̂
defines a cycle of even degree in the subcomplex F1

R X (M̂ ) ⊂ X (M̂ ). Thus if τ

is a cocycle of even degree over F1
R X (M̂ ), the pairing τ#tr(ê − pN ) is defined.

More generally, tr
(
(ê − pN )2n+1

)
is a cycle of even degree in F4n+1

R X (M̂ ) and

hence can be paired with any cocycle τ : F4n+1
R X (M̂ )→ C.

Lemma 4.1 Let τ : F4n+1
R X (M̂ ) → C be a cocycle of even degree. Let e ∈

M∞(B+) be an idempotent such that e − pN ∈ M∞(B), and choose an idempotent
lifting ê ∈ M∞(R̂+) of e. Then the formula

〈[τ ], [e]〉 = τ#tr
(
(ê − pN )2n+1

)
(29)

descends to a well-defined pairing lim−→n
H0

(
F4n+1

R X (M̂ )
)
× K0(B)→ C.
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Proof We have to show that τ#tr
(
(ê − pN )2n+1

)
does not depend on n (sufficiently

large), and that it is invariant when ê is conjugated by an invertible matrix u such that
u − 1 ∈ M∞(R̂+) and u−1êu ≡ pN mod M∞(R̂). For convenience we rewrite the
pairing using the Z2-graded algebra of 2 × 2 matrices over M∞(R̂+), with grading
induced by the decomposition of matrices into diagonal/off diagonal form: consider

the odd element F =
(

0 1
1 0

)
such that F2 = 1, and set f =

(
ê 0
0 pN

)
as an

idempotent of even degree. Then if trs denotes the supertrace on M2(M∞(C)) one has

τ#tr
(
(ê − pN )2n+1

)
= τ#trs

(
F([F, f ])2n+1

)
.

The right-hand-side is recognized as a Chern–Connes pairing [1] and has well-
known properties. In particular it does not depend on n provided F([F, f ])2n+1

remains in the domain of the supertrace τ#trs , and it is invariant with respect to
homotopies of f preserving the condition [F, f ] ∈ M2(M∞(R̂)). Now let u be an
invertible matrix such that u−1 ∈ M∞(R̂+) and u−1êu ≡ pN mod M∞(R̂). Let v be
the image of u under the projection R̂+ = R̂⊕C→ C. Then v is an invertible matrix
such that v − 1 ∈ M∞(C) and v−1 pN v = pN . The invertible matrix of even degree

g =
(

u 0
0 v

)
conjugates f to g−1 f g =

(
u−1êu 0

0 pN

)
, and fulfills the commutation

relation [F, g] ∈ M2(M∞(R̂)). This allows to construct a (stable) homotopy between
f and g−1 f g by a standard procedure using rotation matrices. ��
Remark 4.2 In general the definition of R̂ given here does not coincide with the
pro-algebra lim←−n

R/J n . It does coincide under strong conditions, for example when
the equality R ∩ N n = J n holds for all n. The latter condition was implicitely
assumed in [11], where the cycle tr

(
(ê − pN )2n+1

)
was taken as the definition of the

Chern character in K -theory.

Finally recall Connes’ pairing H P1(A ) × K1(A ) → C in the Cuntz-Quillen
formalism [5]. Let [ϕ] ∈ H P1(A ) be a cyclic cohomology class represented by a
cocycle of odd degree ϕ : X (T̂ A ) → C, where T̂ A is the JA -adic completion of
the tensor algebra T A . Let [g] ∈ K1(A ) be represented by an invertible element
g ∈ GL∞(A ). Then g can be lifted to an invertible element ĝ ∈ GL∞(T̂ A ), and the
one-form �(ĝ−1dĝ) ∈ �1T̂ A� is a cycle of odd degree in the complex X (T̂ A ) whose
homology class is independent of the choice of lifting. The pairing is defined as

〈[ϕ], [g]〉 = 1√
2π i

ϕ
(

ĝ−1dĝ
)

. (30)

One can think of the normalization factor 1/
√

2π i as a pure convention. How-
ever note that this normalization is uniquely determined by the compatibility of the
bivariant Chern character with Bott periodicity, see for example [11].

Theorem 4.3 Let (E) : 0 → B → E → A → 0 be an extension with lifting
0→ R →M →P → 0. Let τ : F4n+1

R X (M̂ )→ C be a cocycle representing an
element [τ ] ∈ H P0(B), and take any [g] ∈ K1(A ). Then
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〈[τ ], IndE ([g])〉 = √2π i 〈E∗([τ ]), [g]〉. (31)

Proof We will not use excision since we assume from the beginning that the
cyclic cohomology class [τ ] is represented by a cocycle over F4n+1

R X (M̂ ).
Let g ∈ GL N (A ) be an invertible element representing [g]. Thus in particular
g − 1N ∈ MN (A ). We shall replace (E) with an invertible extension as follows.
Denote by C[z, z−1] the commutative algebra of Laurent polynomials in the indeter-
minate variable z, and let C be the subalgebra of polynomials f ∈ C[z, z−1] such
that f (1) = 0. Equivalently, C is the (non-unital) commutative algebra generated
by two elements u, v with relations uv = vu = −u − v. The inclusion of C into
C[z, z−1] is recovered by setting z = 1+ u and z−1 = 1+ v. The geometric picture
is that of the algebra of trigonometric functions over the unit circle, vanishing at point
z = 1. Hence C is a suitable algebraic definition of a suspension algebra. We define
a homomorphism

α : C → MN (A )

by setting α(u) = g−1 and α(v) = g−1−1. Equivalently we may extend α to a unital
homomorphism from C+ = C[z, z−1] to MN (A +) and set α(z) = g, α(z−1) = g−1.
Thus α carries the “Bott element” [z] ∈ K1(C ) to [g] ∈ K1(A ). Define (F) as the
pullback extension of (E) (tensored with MN (C)) induced by α, that is, (F) is the first
row in the commutative diagram

0 �� MN (B) �� F ��

β

��

C ��

α

��

0

0 �� MN (B) �� MN (E )
π �� MN (A ) �� 0

Explicitly F = {(h, f ) ∈ MN (E )⊕ C |π(h) = α( f )}. The homomorphisms F →
MN (E ) and F → C are induced respectively by the projections onto the first and
second summand in MN (E )⊕ C . It is immediate from the construction of the index
map that the equality

IndE ([g]) = IndF ([z])

holds in K0(B). Now use the universal property of the tensor algebra to extend α to a
morphism from the extension 0→ JC → T C → C → 0 to the third column of Dia-
gram (28) tensored with MN (C). This yields a homomorphism α∗ : T C → MN (P)

respecting the ideals JC ⊂ T C and MN (Q) ⊂ MN (P). Again we define the pull-
back extension

0 �� MN (R) �� G ��

β∗
��

T C ��

α∗
��

0

0 �� MN (R) �� MN (M ) �� MN (P) �� 0
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and similarly the homomorphism α∗ : JC → MN (Q) restricted to the ideals yields
a pullback 0→ MN (J )→ H → T C → 0. All these extensions fit together in a
commutative diagram

0

��

0

��

0

��
0 �� MN (J ) ��

��

H ��

��

JC ��

��

0

0 �� MN (R) ��

��

G ��

��

T C ��

��

0

0 �� MN (B) ��

��

F ��

��

C ��

��

0

0 0 0

This diagram is naturally mapped to (28) (tensored with MN (C)) under the homo-
morphism β∗ : G → MN (M ). If τ is any cocycle over F4n+1

R X (M̂ ), its cup-product

with the trace of matrices yields a cocycle τ#tr over F4n+1
MN (R)

X (MN (M̂ )), which may

be pulled back to a cocycle β∗(τ ) over F4n+1
MN (R)

X (Ĝ ). One has

〈[τ ] , IndE ([g])〉 = 〈β∗ ([τ ]) , IndF ([z])〉.

Moreover the homomorphism α : C → A induces a pullback in cyclic coho-
mology α∗ : H P∗(A ) → H P∗(C ). The pair α∗, β∗ intertwines the action of the
connecting morphisms E∗ and F∗ in the sense that α∗ ◦ E∗ = F∗ ◦β∗. Therefore one
has

〈E∗ ([τ ]) , [g]〉 = 〈E∗ ([τ ]) , α ([z])〉 = 〈α∗ ◦ E∗ ([τ ]) , [z]〉 = 〈F∗ ◦ β∗ ([τ ]) , [z]〉

and the equality 〈[τ ], IndE ([g])〉 = √2π i 〈E∗([τ ]), [g]〉would follow from the equal-
ity 〈[τ ′], IndF ([z])〉 = √2π i 〈F∗([τ ′]), [z]〉 for the cocycle τ ′ = β∗(τ ). We decided
to replace the extension (E) with the extension (F) because the latter is invertible.
Indeed choose arbitrary liftings U, V ∈ F of u, v ∈ C and set Q = 1+U, P = 1+V
in F+. Then 1− Q P and 1− P Q sit in the ideal MN (B), and the map ρ defined on
generators by

ρ(u) =
(

U 1− Q P
P Q − 1 V + P(1− Q P)

)
, ρ(v) =

(
V + P(1− Q P) P Q − 1

1− Q P U

)

extends to a homomorphism ρ : C → F s+. Passing to the unitalized algebra C+, the

map ρ carries z to the invertible

(
Q 1− Q P

P Q − 1 P + P(1− Q P)

)
and z−1 to its inverse
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(
P + P(1− Q P) P Q − 1

1− Q P Q

)
. Observe that the K -theory class IndF ([z]) is repre-

sented by the idempotent e = ρ(z)−1
(

1 0
0 0

)
ρ(z) ∈ M2(MN (B)+). As explained

in Sect. 3 the invertible extension (F) determines a quasihomomorphism

ρ : C → F s �I s ⊗ MN (B).

Its bivariant Chern character ch2n+1(ρ) is a chain map X (T̂ C )→ F4n+1
MN (R)

X (Ĝ ).

By Proposition 3.2, the composite τ ′ch2n+1(ρ) represents a cyclic cohomology class
over C which coincides with

√
2π i F∗([τ ′]). Let us calculate explicitely the pairing

〈τ ′ch2n+1(ρ), [z]〉. We know that ρ lifts to a homomorphism ρ∗ : T̂ C → Ĝ s+ =
lim←−k

G s+/(H s+)k . Choose an invertible lifting ẑ ∈ (T̂ C )+ of z. The idempotent

ê = ρ∗(ẑ)−1
(

1 0
0 0

)
ρ∗(ẑ) ∈ M2

(
M̂N (R)

+)
,

where M̂N (R) = lim←−k
MN (R)/(MN (R) ∩ H k), is a lifting of the idempotent

e = IndF (z). According to Lemma 4.1 the pairing 〈[τ ′], IndF ([z])〉 is given by
τ ′#tr

(
(ê − p1)

2n+1
)
. On the other hand, the calculation performed in the proof of

[11] Theorem 6.3 part III) applies verbatim and yields

〈τ ′ch2n+1(ρ), [z]〉 = τ ′#tr
(
(ê − p1)

2n+1
)
= 〈[τ ′], IndF ([z])〉

where p1 is the 2 × 2 matrix

(
1 0
0 0

)
. Hence we conclude that 〈[τ ′], IndF ([z])〉 =

√
2π i 〈F∗([τ ′], [z]〉 as wanted. ��

Corollary 4.4 Let (E) : 0 → B → E → A → 0 be an extension with lifting
0 → R → M → P → 0. Then for any class [τ ] ∈ H P0(B) represented by a
cocycle of even degree τ : F4n+1

R X (M̂ )→ C and any class [g] ∈ K1(A ) represented
by an invertible g ∈ GL∞(A ), one has

〈[τ ], IndE ([g])〉 = τR∂#tr
(

g̃−1dg̃
)

. (32)

Here τR : X (M̂ ) → C is any renormalization of τ , and g̃ ∈ GL∞(M̃ ) is any
invertible lifting of g in the pro-algebra M̃ = lim←−k

M /(R +N )k .

Proof Choose a linear section σ : A →M of the projection homomorphism. By def-
inition the cyclic cohomology class E∗([τ ]) ∈ H P1(A ) is represented by τR∂ ◦ σ∗ :
X (T̂ A )→ X (M̃ )→ C, where σ∗ is the homomorphism T̂ A → M̃ induced by σ

(Sect. 2). Hence by Theorem 4.3, evaluating this cocycle on [g] yields the formula

〈[τ ], IndE ([g])〉 = τR∂#tr
(
σ∗(ĝ)−1dσ∗(ĝ)

)
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for any invertible lifting ĝ ∈ GL∞(T̂ A ). Then by [5] §12 the homology class of
�σ∗(ĝ)−1dσ∗(ĝ) remains unchanged if σ∗(ĝ) is replaced by any other invertible lift-
ing g̃ ∈ GL∞(M̃ ) of g. ��

5 Pseudodifferential operators

Let π : M → B be a proper submersion of smooth manifolds without boundary.
Hence at any point b ∈ B the fiber π−1(b) = Mb is a compact submanifold of M .
Define E → B as the infinite-dimensional Fréchet bundle whose fiber at a point b is
the space of smooth functions C∞(Mb). The space of smooth sections C∞(B, E) is
thus isomorphic to C∞(M). For any k ∈ Z we denote by C Lk

b = C Lk(Mb) the space
of classical pseudodifferential operators of order k on the manifold Mb. In particular
C L−1

b is a two-sided ideal in the algebra C L0
b and the quotient C L0

b/C L−1
b = L S0

b is
isomorphic to the commutative algebra of smooth functions C∞(S∗Mb) on the cotan-
gent sphere bundle of Mb. The projection homomorphism C L0

b → L S0
b is the map

which carries a pseudodifferential operator of order zero to its leading symbol. The
algebra of smooth families of fiberwise pseudodifferential operators C∞(B, C L0),
parametrized by the base manifold B, naturally acts on C∞(E) by endomorphisms.
The following algebras of smooth families of operators with compact support on B

B = C∞c (B, C L−1), E = C∞c (B, C L0), A = C∞c (B, L S0) (33)

thus lead to an extension (E) : 0→ B→ E → A → 0. Let S∗MB denote the sub-
mersion with base B, whose fiber over b ∈ B is the cosphere bundle S∗Mb. Then A
is isomorphic to the commutative algebra of smooth functions with compact support
C∞c (S∗MB). The index morphism IndE : K1(A )→ K0(B) maps a family of elliptic
symbols g ∈ GL∞(A ) to an idempotent in M∞(B+) representing a K -theory class
(index bundle) of the base manifold B. Our aim is to evaluate the image of IndE on
certain cyclic cohomology classes [τ ] ∈ H P0(B) associated to closed currents over
B. As explained before this requires to work with suitable extensions of the algebras
B,E ,A . Inspired by Cuntz and Quillen [5], the basic idea is to replace the alge-
bra of smooth functions C∞(B) with a Fedosov-type deformation of the algebra of
(ordinary) differential forms �(B). First we consider the graded space

�(B, E) =
⊕

n≥0

�n(B, E), �0(B, E) = C∞(B, E), (34)

of smooth E-valued differential forms over B. One has an isomorphism of vector
spaces �n(B, E) ∼= C∞(M, π∗(�nT ∗B)), where π∗(�nT ∗B) is the pullback of the
vector bundle �nT ∗B → B on the total space of the submersion. �(B, E) is a right
�(B)-module, for the usual exterior product of differential forms. The graded algebra
of differential forms with values in fiberwise pseudodifferential operators is defined
analogously:

�(B, C L) =
⊕

n≥0

�n(B, C L), C L =
⋃

k∈Z
C Lk . (35)
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It acts naturally as (left) endomorphisms on the module �(B, E). Then we need
some extra structure in order to define a connection on E . Recall that the set of vertical
vector fields on M is the kernel of the tangent map π∗ : T M → T B, or equivalently
the subbundle of T M tangent to the submanifolds Mb, b ∈ B. Then choose a hor-
izontal distribution H ⊂ T M , i.e. a direct summand for the vertical vector fields:
T M = Ker(π∗) ⊕ H . This provides a lifting h : C∞(B, T B) → C∞(M, H) of
the vector fields from the base to the total space of the submersion. A connection
∇ : �n(B, E)→ �n+1(B, E) is given by the usual formula

(∇ξ) (X0, . . . , Xn) =
n∑

i=0

(−)i h (Xi ) · ξ
(

X0, . . . , X̂i , . . . , Xn

)

+
∑

i< j

(−)i+ jξ
(
[Xi , X j ], X0, . . . , X̂i , . . . , X̂ j , . . . , Xn

)

(36)

for any vector fields X0, . . . , Xn over B and ξ ∈ �n(B, E). ∇ is a derivation of right
�(B)-module: ∇(ξω) = (∇ξ)ω + (−)nξdω for any ξ ∈ �n(B, E) and ω ∈ �(B).
The curvature ∇2 is the endomorphism θ ∈ �2(B, C L1) mapping two basic vector
fields X, Y ∈ C∞(B, T B) to the vertical vector field

θ(X, Y ) = [h(X), h(Y )] − h([X, Y ]) ∈ C∞(M, Ker(π∗)). (37)

For any n ∈ N let the quotient L Sn = C Ln/C Ln−1 denote the space of leading
symbols of order n. We introduce the following algebras of operator-valued differential
forms with compact support on B:

R0 =
⊕

n≥0

�n
c (B, C Ln−1), M0 =

⊕

n≥0

�n
c (B, C Ln), P0 =

⊕

n≥0

�n
c (B, L Sn)

M0 naturally acts by endomorphisms on �(B, E),R0 is a two-sided ideal in M0
and P0 is the quotient algebra. Observe that B,E ,A are exactly the subalgebras of
degree zero forms in R0,M0,P0 respectively. Now, the connection acts on endo-
morphisms by the odd derivation δ = [∇, ]. It is easy to see that δ leaves R0 and
M0 globally invariant, hence it also acts on the quotient P0. Moreover the curvature
θ ∈ �2(B, C L1) is a multiplier of R0 and M0, hence of P0 (where it actually van-
ishes). The derivation δ is not a differential since δ2 = [θ, ] �= 0. Using a trick of
Connes ([2] pp. 229), we shall enlarge M0 by adding a multiplier v such that v2 = θ

and ω1vω2 = 0 for any ω1, ω2 ∈M0. One can think of v as having form degree one.
Hence the resulting graded algebra M0[v] is the set of elements

α = ω11 + ω12v + vω21 + vω22v, ωi j ∈M0. (38)

The crucial fact is that M0[v] is provided with a differential d of degree one defined
by the relations dω = δω + vω + (−)nωv if ω ∈ M0 has degree n, and dv = 0.
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One checks that d2 = 0 which turns M0[v] into a differential graded algebra. We
denote by M the even degree subspace of M0[v] endowed with the Fedosov product

α1 � α2 = α1α2 − dα1dα2. (39)

M is an associative (trivially graded) algebra. The map M → C∞c (B, C L0), which
projects an element α = ω11+ω12v+ vω21+ vω22v to its component of degree zero
(equivalently the component of degree zero of the differential form ω11), defines a
linearly split homomorphism M → E . Hence M is an extension of E . One proceeds
similarly with R0 and P0: the algebras R and P are defined as the even subspaces
of R0[v] and P0[v] respectively, endowed with the Fedosov product (v2 = θ in
R0[v] and v2 = 0 in P0[v]). Again the projections onto the degree zero components
induce surjective homomorphisms R → B and P → A . Moreover the extension
0 → R → M → P → 0 is a lifting of (E). Putting everything together we have
built a diagram of extensions

0

��

0

��

0

��
0 �� J ��

��

N ��

��

Q ��

��

0

0 �� R ��

��

M ��

��

P ��

��

0

0 �� B ��

��

E ��

��

A ��

��

0

0 0 0

(40)

There is a concrete description of the first line. The ideal N ⊂ M is the set of
elements α = ω11 + ω12v + vω21 + vω22v, with ω11, ω22 ∈ M0 of even degree,
ω12, ω21 ∈M0 of odd degree, and ω11 has no component of degree zero. Hence α has
an overall degree ≥ 2, which means that the algebra N is nilpotent. Similarly with
J and Q. Hence according to Remark 2.4 this implies M̂ =M and any trace over
Rn+1, n ≥ 1, determines a class in H P0(B).

We shall now construct the connecting morphism of the extension (E) as explained
in Sect. 2. A linear splitting σ : A → M is obtained as follows: first choose a
“quantization map” q : A → E , which associates to any function a ∈ C∞c (B, L S0)

a family of pseudodifferential operators q(a) ∈ C∞c (B, C L0) with leading symbol a.
Then map E to the degree zero subspace of M . This yields the desired linear splitting
σ for the extension

0 �� R +N �� M �� A ��

σ

		
0

(41)
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whence a classifying homomorphism σ∗ : T A → M which intertwines the tensor
product and the Fedosov product: σ∗(a1 ⊗ . . . ⊗ an) = σ(a1) � . . . � σ(an) for
any element a1 ⊗ . . . ⊗ an ∈ T A . By construction σ∗ restricts to a homomorphism
JA → R+N . To see this, recall that the ideal JA = Ker(T A → A ) is generated
by the differences a1a2 − a1 ⊗ a2 for all pairs a1, a2 ∈ A . Then

σ∗ (a1a2 − a1 ⊗ a2) = σ (a1a2)− σ (a1)� σ(a2)

= σ (a1a2)− σ (a1) σ (a2)+ dσ (a1) dσ (a2) . (42)

The first term of the r.h.s. σ(a1a2) − σ(a1)σ (a2) ∈ C∞c (B, C L−1) lies in the
degree zero subspace of R, whereas the two-form dσ(a1)dσ(a2) lies in N . Hence
JA is mapped to the ideal R +N as claimed, and σ∗ extends to a homomorphism
of pro-algebras (recall that N is nilpotent)

σ∗ : T̂ A → M̃ = lim←−
n

M /(R +N )n = lim←−
n

M /Rn (43)

Now consider the classes in H P0(B) represented by traces on the powers of R.
We shall construct such traces by combining closed currents (cycles) in the base
manifold B with the ordinary (fiberwise) trace of pseudodifferential operators. Let
dim(M/B) = dim M − dim B be the dimension of the fibers of the submersion
π : M → B. If ω ∈ �c(B, C Lk) takes values in the space of pseudodifferential
operators of order k < − dim(M/B), the operator trace is well-defined and yields a
smooth differential form Tr(ω) ∈ �c(B).

Lemma 5.1 Let C be a cycle of dimension 2m in B. The linear functional τ : Rn+1 →
C, defined for n = dim(M/B)+ 2m

τ(ω11 + ω12v + vω21 + vω22v) = m!
(2m)!

∫

C

Tr(ω11 − ω22θ) (44)

is a trace, i.e. vanishes on the commutator subspace [Rn,R].
Proof The algebra R0 is the direct sum of the spaces �k

c(B, C Lk−1). Let us take the
n-fold (ordinary) product of operator-valued differential forms:

�k1
c (B, C Lk1−1)× . . .×�kn

c (B, C Lkn−1)→ �k1+...+kn
c (B, C Lk1+···+kn−n).

Integration over C will retain the case k1 + · · · + kn = dim C only. Hence the
pseudodifferential order k1 + · · · + kn − n is dim C − n. If moreover one chooses
n > dim(M/B)+dim C , the order is < − dim(M/B) and the corresponding pseudo-
differential operators are trace-class. This estimate does not change if one takes further
products with the multiplier θ ∈ �2(B, C L1), or if the ordinary product is replaced
by the Fedosov product (which in both cases increases the form degree by two and
the order by at most one). One concludes that the linear functional τ is well-defined
on Rn+1 provided one chooses n = dim(M/B)+ dim C .
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Then one checks as in [2] pp. 229 that τ(α) vanishes if α is the graded commutator
of elements in the DG algebra R0[v], or if α = dβ is closed. Hence τ is a trace for
the Fedosov product. ��

The factor m!/(2m)! is (up to a sign) the correct normalization needed for pass-
ing from the X -complex to the de Rham complex ([5]). Thus τ is a cocycle of even
degree over the subcomplex F2n+1

R X (M ) of the R-adic filtration of X (M ), provided
n = dim(M/B)+ dim C . The next step is to extend τ to a linear map τR :M → C

and view it as a cochain over the whole complex X (M ). We use zeta-function renor-
malization [12]. Fix a smooth family of fiberwise elliptic pseudodifferential operators
D of order one, which for simplicity we assume positive and invertible. For exam-
ple we may choose D = √�+ 1 with � a fiberwise Laplacian associated to some
smooth family of Riemannian metrics on the fibers of the submersion. The complex
powers defined by Seeley [15] and used by Paycha and Scott in the case of families
of operators [9] are given by a contour integral

D−z = 1

2π i

∫

�

λ−z(λ− D)−1dλ, (45)

for any z ∈ C with Re(z)  0, and � borders an appropriate sector containing the
positive real axis. Subsequent multiplication with Dk, k ∈ N, yields all the complex
powers D−z, z ∈ C. For ω ∈ �c(B, C L) of any pseudodifferential order, the zeta-
function z �→ Tr(ωD−z) ∈ �c(B) is holomorphic on a half-plane Re(z)  0 and
admits a meromorphic extension to the entire plane with only simple poles. Taking
the finite part of this function at z = 0 thus defines a renormalization of the operator
trace:

Pf
z=0

Tr(ωD−z) ∈ �c(B), ∀ω ∈ �c(B, C L). (46)

Definition 5.2 Let C be a cycle of dimension 2m in B and let τ be the associated trace
over Rn+1, n = dim(M/B)+ 2m. Choose an elliptic, invertible and positive family
of pseudodifferential operators D ∈ C∞(B, C L1). The zeta-function renormalization
of τ is the linear map τR :M → C

τR(ω11 + ω12v + vω21 + vω22v) = m!
(2m)!

∫

C

Pf
z=0

Tr
(
(ω11 − ω22θ)D−z) (47)

for any ω11 + ω12v + vω21 + vω22v ∈M .

Of course τR is not a trace on M because the insertion of the operator D−z destroys
the cyclicity of the operator trace. It is well-known however that the obstruction for
the zeta-renormalized trace to be a true trace on the algebra of pseudodifferential
operators is expressed in terms of the (fiberwise) Wodzicki residue [16]. Indeed if
ω1, ω2 ∈ �c(B, C L) are differential forms with values in pseudodifferential operators
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of any order, the zeta-renormalized operator trace applied to their graded commutator
yields a residue (see e.g. [9])

Pf
z=0

Tr([ω1, ω2]D−z) = Res
z=0

Tr(ω1[ln D, ω2]D−z). (48)

The logarithm ln D = − d
dz D−z |z=0 is no longer a family of classical pseudo-

differential operators, but its symbol belongs to the log-polyhomogeneous class and
differs from a classical symbol by a single term ln |ξ |. It follows that the commutator
[ln D, ω] is a classical pseudodifferential operator, and repeated use of the relation
[(λ−D)−1, ω] = (λ−D)−1[D, ω](λ−D)−1 in (45) yields an asymptotic expansion

[ln D, ω] ∼ [D, ω] D−1 − 1

2
[D, [D, ω]] D−2 + 1

3
[D, [D, [D, ω]]] D−3 − · · ·

(49)

Observe that the commutator [D, ] does not increase the order of operators since
D is of order one. Hence the nth term 1

n [D, . . . [D, ω]]D−n is of order |ω| − n , with
|ω| the order of ω, and the expansion is asymptotic in the sense that the remainder at
step n is a pseudodifferential operator of order < |ω| − n. The residue Res

z=0
Tr(ωD−z)

is a differential form over B which depends on the complete symbol of ω only and
hence kills all smoothing operators: it is the integral, over the fibers of the submersion
S∗MB → B, of the order − dim(M/B) component in the asymptotic expansion of
the symbol [16]. We define a linear functional �c(B, C L)→ C by integration of the
fiberwise Wodzicki residue over the cycle C :

−
∫

C

ω :=
∫

C

Res
z=0

Tr(ωD−z). (50)

It follows from the properties of the Wodzicki residue that (50) does not depend on
the choice of (elliptic, positive, order one) operator D, and defines a δ-closed graded
trace over �c(B, C L). This allows to express the boundary of τR viewed as a cochain
of even degree over X (M ). Indeed the boundary map ∂ : �1M� → M is given by
the Fedosov commutator ∂(α1dα2) = α1 � α2 − α2 � α1, so that the composition
τR∂(α1dα2) = τR(α1 � α2 − α2 � α1) has to be a sum of Wodzicki-type residues. It
is sufficient to evaluate τR∂ on the range of the chain map σ∗ : X (T A ) → X (M ).
In odd degree the range is linearly generated by elements of type �(σ∗(a1 ⊗ . . . ⊗
an)dσ(an+1)) ∈ �1M� for some ai ∈ A . Writing the Fedosov products by means
of differential forms, this range is contained in the linear span of elements of type
�σ0dσ1 . . . dσ2ndσ2n+1 and �dσ1 . . . dσ2ndσ2n+1, where each σ j ∈ E ⊂M is in the
subspace of zero-forms. Note that the derivative δ(λ−D)−1 = (λ−D)−1δD(λ−D)−1

of the resolvent in (45) shows that δ ln D = [∇, ln D] is a pseudodifferential operator
with asymptotic expansion

δ ln D ∼ δDD−1 − 1

2
[D, δD]D−2 + 1

3
[D, [D, δD]]D−3 − · · · (51)
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where at each step, the remainder is a pseudodifferential operator of order strictly less
than the previous terms.

Proposition 5.3 Let �σ0dσ1 . . . dσ2ndσ2n+1 and �dσ1 . . . dσ2ndσ2n+1 be generic odd
chains in X (M ) such that each σi ∈ E ⊂ M is in the subspace of zero-forms. Let
C be a cycle of even dimension with associated trace τ . Then the boundary of the
renormalized trace τR reads

τR∂ (σ0dσ1 . . . dσ2ndσ2n+1) = n!
(2n)! −

∫

C

(σ0dσ1 . . . dσ2n)11
[
ln D, σ2n+1

]

+ (n + 1)!
(2n + 2)! −

∫

C

(σ0dσ1 . . . dσ2n+1 − σ2n+1dσ0 . . . dσ2n)11 δ ln D (52)

τR∂ (dσ1 . . . dσ2ndσ2n+1) = n!
(2n)! −

∫

C

(dσ1 . . . dσ2n)11
[
ln D, σ2n+1

]
(53)

where for any α = ω11 + ω12v + vω21 + vω22v ∈ M0[v] the bracket (α)11 means
projection onto the component ω11. If k = 2n one finds

(σ0dσ1 . . . dσk)11 = σ0δσ1 . . . . . . . . . δσk

+
k−1∑

i=1

σ0δσ1 . . . σiθσi+1 . . . δσk

+
k−3∑

i=1

k−1∑

j=i+2

σ0δσ1 . . . σiθσi+1 . . . σ jθσ j+1 . . . δσk

...

+σ0σ1θσ2 . . . σk−1θσk (54)

whereas if k = 2n + 1 the last line is
∑k

i=1 σ0σ1θσ2 . . . δσi . . . σk−1θσk . Similarly
with (dσ1 . . . dσ2n)11.

Proof By definition the boundary map ∂ = b : �1M� → M carries an element
�αdβ to the Fedosov commutator α�β−β�α = [α, β]−dαdβ+dβdα. Therefore

τR∂ (σ0dσ1 . . . dσ2ndσ2n+1) = τR
([

σ0dσ1 . . . dσ2n, σ2n+1
])

+ τR (dσ2n+1dσ0 . . . dσ2n − dσ0 . . . dσ2n+1)

τR∂ (dσ1 . . . dσ2ndσ2n+1) = τR
([

dσ1 . . . dσ2n, σ2n+1
])

.

Let us first evaluate τR on a commutator [α, σ ] where α = ω11 + ω12v + vω21 +
vω22v is an element of degree 2n and σ is of form degree zero. One has ασ =
ω11σ + vω21σ and σα = σω11 + σω12v, hence
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τR ([α, σ ]) = n!
(2n)!

∫

C

Pf
z=0

Tr
(
[ω11, σ ] D−z) = n!

(2n)! −
∫

C

ω11 [ln D, σ ] .

Applying this to the forms α = σ0dσ1 . . . dσ2n or α = dσ1 . . . dσ2n and σ = σ2n+1
yields the first terms in (52, 53). Then we evaluate τR on a coboundary dα where
α = ω11 + ω12v is an odd element of form degree 2n + 1. One has dα = δω11 +
ω12θ + (δω12 − ω11)v + vω11 + vω12v, so that

τR(dα) = (n + 1)!
(2n + 2)!

∫

C

Pf
z=0

Tr
(
(δω11 + ω12θ − ω12θ)D−z)

= (n + 1)!
(2n + 2)!

∫

C

Pf
z=0

Tr(ω11δD−z)

= − (n + 1)!
(2n + 2)! −

∫

C

ω11δ ln D

where we used an integration by parts in the second equality (remark that the form
ω11 is odd), and the third equality can be found in [9]. Applying this to the form
α = σ2n+1dσ0 . . . dσ2n − σ0dσ1 . . . dσ2n+1 yields the second term in (52). Formula
(54) is a straightforward computation using dσi = δσi + vσi + σiv and v2 = θ . ��

One knows that τR∂ vanishes on the subcomplex Fn+1 X (M ) for n = dim(M/B)+
dim C , hence extends to a cocycle over X (M̃ ). Finally the cyclic cohomology class
E∗([τ ]) ∈ H P1(A ) is represented by the composition of chain maps

X (T̂ A )
σ∗−→ X (M̃ )

τR∂−→ C. (55)

Here we can interpret the fact that τR∂ extends to a cocycle over X (M̃ ) by the
property of the fiberwise Wodzicki residue that ignores the pseudodifferential opera-
tors of low order, that is, the high powers of the ideal R ⊂M . It remains to evaluate
the pairing of E∗([τ ]) with an elliptic symbol class [g] ∈ K1(A ). Let g ∈ GL∞(A )

be a representative of [g]. For notational simplicity we shall forget the stabilization
by matrices and suppose that g ∈ GL1(A ) ⊂ A +. Then σ(g) and σ(g−1) are two
families of elliptic pseudodifferential operators over B such that

1− σ(g)σ (g−1) ∈ C∞c (B, C L−1). (56)

We view C∞c (B, C L−1) = B as the degree zero subspace of R. Let Q be the
image of σ(g) under the natural map M+ → M̃+. Then Q ∈ GL1(M̃ ). Indeed,
1− σ(g)� σ(g−1) = 1− σ(g)σ (g−1)+ dσ(g)dσ(g−1) is in the ideal R +N by
virtue of (56), and one can easily show that the inverse of Q (for the Fedosov product)
is given by the series

Q−1 =
∞∑

n=0

σ(g−1)� (1− σ(g)� σ(g−1))�n ∈ M̃+. (57)
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There is an equivalent description of the Fedosov inverse involving the parametrix
P ≡ Q−1 mod N of Q. This allows to write Q−1 in terms of differential forms:

Q−1 =
[ dim B

2 ]∑

n=0

P(d Qd P)n, P =
∞∑

n=0

σ(g−1)(1− σ(g)σ (g−1))n . (58)

Now we can calculate the pairing as 〈E∗([τ ]), [g]〉 = 1√
2π i

τR∂(Q−1dQ). Com-

bining this with the explicit formula of Proposition 5.3 and the Index Theorem 4.3
gives an expression of 〈[τ ], IndE ([g])〉 in terms of Q, its parametrix P and the fiber-
wise Wodzicki residue. The computation is tedious but straightforward. We shall state
the result in an elegant way using Chern–Simons forms. Introduce an infinitesimal
parameter ε of odd degree, which means ε2 = 0. The superconnection

∇ε
D := ∇ + ε ln D (59)

acts on the algebra �c(B, C L)[ε] = �c(B, C L) ⊕ ε �c(B, C L) by graded com-
mutator. Its curvature is (∇ + ε ln D)2 = θ − εδ ln D. The “adjoint” action of Q
gives a new superconnection P∇ε

D Q. Now if ∇0 and ∇1 are two superconnections,
we let ∇t = (1− t)∇0 + t∇1 be the linear interpolation for t ∈ [0, 1]. The associated
Chern–Simons form is the following element of even degree in �c(B, C L):

cs (∇0,∇1) =
1∫

0

dt (∇1 −∇0) e∇2
t |ε, (60)

where |ε means that we only take the ε-component in �c(B, C L)[ε]. Since ∇ is of
form degree one and ε is nilpotent, the exponential is actually a polynomial in the
curvature ∇2

t . Applying this to ∇0 = ∇ε
D and ∇1 = P∇ε

D Q one has

Corollary 5.4 Let M → B be a proper submersion with connection ∇. Let [g] ∈
K1(A ) be the symbol class of an elliptic family of fiberwise pseudodifferential oper-
ators Q with parametrix P. Let C be a cycle of even dimension in the base manifold
B, and [τ ] ∈ H P0(B) the associated cyclic cohomology class. The evaluation of [τ ]
on the index class IndE ([g]) ∈ K0(B) is given by the fiberwise residue

〈[τ ] , IndE ([g])〉 = −
∫

C

cs
(∇ε

D, P∇ε
D Q

)
(61)

where∇ε
D is the superconnection∇+ε ln D, and D is any family of elliptic, invertible

and positive pseudodifferential operators of order one. ��

Let us display some useful formulas in low dimension. If C is just a point in the
base manifold B, the above pairing calculates the index of the elliptic operator Q at
point C . The formula amounts to a Wodzicki residue on one fiber:

〈[τ ] , IndE ([g])〉 = −
∫

C

P [ln D, Q] . (62)
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One recognizes the Radul cocycle [14] evaluated on Q and its parametrix. It is
instructive to check that the number (62) does not depend on the choice of D. Indeed
if D′ is another elliptic operator of order one, the difference ln D′ − ln D is a classical
pseudodifferential operator, hence the commutator with ln D′ − ln D is an inner der-
ivation. It follows from the trace property of the Wodzicki residue that (62) remains
unchanged.

Now if C is a two-dimensional cycle then the above pairing computes the evaluation
of C on the first Chern class of the index bundle associated to the elliptic family Q.
One obtains

〈[τ ] , IndE ([g])〉
= 1

2
−
∫

C

(PδQδP [ln D, Q]+ P (δQδ ln D − δ ln DδQ)+ (θ P + Pθ) [ln D, Q])

(63)

In higher dimensions the formulas involve increasing powers of δQδP and of the
curvature θ .
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