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Abstract

In this paper, we extend a previous result of A. Pillay and the

author regarding existence of rational points over elliptic and hyperel-

liptic curves with generic moduli defined over supersimple fields to the

even characteristic case. We give a detailed exposition of the affine

models of these families of curves in characteristic 2 and the transfor-

mations between members in the same rational isomorphism class.
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1 Introduction and preliminaries

After the results of Kim and Pillay ([11]), simple unstable theories as in-
troduced by Shelah ([22]) were recognized to be a good setting to carry over
ideas from Geometric Model Theory. They lead to interesting consequences
when considering additional algebraic structure, for example, fields. The first
known example of a simple unstable field was given by [3]: pseudofinite fields
(infinite models of the theory of finite fields). This was later generalized [10]
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to the case of perfect pseudo-algebraically closed (in short, PAC ) fields with
small absolute Galois group (only finitely many field extensions of every finite
degree). Recall that a perfect field is PAC if every absolutely irreducible vari-
ety defined over the field has a rational point. In fact, the above examples are
supersimple fields of SU rank 1. It was shown in [20] that supersimple fields
are perfect and have small absolute Galois group, but their definitive alge-
braic characterization (as in [14] for ω-stable fields) is still open. Motivated
by [10], Pillay posed the question whether supersimple fields were PAC ; as
shown in [6], this reduces to the question of existence of rational points on
absolutely irreducible plane curves. The first attempt was done in [21], where
it was shown that supersimple fields have cohomological dimension at most
one. It follows from this that rational curves become birationally isomorphic
to the projective line over the supersimple field. So it became natural to ask
what happens with curves of higher genus. In [17] some results were shown
for certain families of elliptic and hyperelliptic curves. These results used
s-genericity of the modulus of the curve in order to transform the equation
describing the curve into one with generic independent coefficients, so that
a generic solution can be found following the methods of [21], in particular a
clever use of the Independence Theorem. However, the proofs exhibited did
not work in characteristic 2. This article (which can be seen as a completion
of [17]) deals exclusively with the remaining case. In this situation, not only
the equations describing the curves are radically different (which involves
a dual argument, switching the roles of addition and multiplication in the
field), but no detailed description of the transformations between curves in
the same family was available. Most of the material for this article has been
extracted from the author’s Ph.D. Thesis [16] under the supervision of A.
Pillay.

We assume acquaintance with the ideas exhibited in [17], to which we
will frequently refer for comparison with the methods used there.

We fix a supersimple theory T and a sufficiently saturated model M.
Small or bounded means of smaller cardinality than the saturation of M,
unless otherwise stated. A supersimple field K is a field definable in M; it
may be assumed to be definable over ∅. Moreover, we shall assume that K
has characteristic 2. Let K be some fixed algebraic closure of K.

Recall the following definition from [17]:

Definition. Suppose SU(K) = ωαn (see [25]). Let V be a variety of dimen-
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sion d defined over a small set F ⊂ K. A point P in V (K) is s-generic over
F if SU(tp(P/F )) = ωαnd.

Note that s-genericity implies genericity in the sense of model theory if
V is an algebraic group; hence in the sense of Algebraic Geometry. However,
s-generic points need not exist (they do if V is K-rational).

We will show the following:

Theorem. Let K be a supersimple field, K0 a subfield of K whose cardinality
is smaller than the cardinality of saturation and E an elliptic curve defined
over K0 with j-invariant s-generic over ∅, or j = 0 , 1728. Then E has a
K-rational point s-generic over K0.

Moreover, let C be a hyperelliptic curve defined over K0 of genus g (g ≥ 2)
with s-generic modulus over ∅ in the space of moduli of hyperelliptic curves
of genus g. Then C has a K-rational point s-generic over K0.

Let us first make shed some remarks about moduli spaces: let g ≥ 2 be
a fixed integer. We are interested in the category C(g) whose objects are
smooth curves over K of genus g and whose arrows are morphisms between
the curves defined over K. When studying a given family of curves, we are
concerned with the rational isomorphism types of the curves over K (with
possible extra structure). The space of moduli is an abstract classification of
these isomorphism types. We want to consider the equivalence relation on
C(g) given by rationally isomorphism (considering the additional structure)
over K. Such an equivalence relation is known as a moduli problem. The
quotient set will be denoted by Mg. We need to put some algebraic structure
on Mg in order to call this set the moduli space for the moduli problem.

There is a purely algebraic construction of Mg in terms of geometric in-
variant theory. The idea can be summarized as follows: given m ∈ N with
m ≥ 3, any smooth curve C of genus g can be embedded over K as a smooth
curve of degree 2(g − 1)m in Pn, where n = (2m − 1)(g − 1) − 1. Therefore,
we attach to C such an embedding φ : C → Pn. The family of pairs (C, φ)
can be parametrized as a set K. Moreover, PGL(n+1, K) acts continuously
on K and φ is determined uniquely modulo the action of PGL(n + 1, K) on
K. We are hence interested in the collections of orbits under the group G of
rational isomorphisms over K.

It need not be the case that all orbits are closed. If this were the case,
we would consider Mg to be the quotient space of K modulo the action of G
and say that the moduli problem has a fine moduli space. This would mean
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that every orbit of smooth curves of genus g could be mapped to one and
only one point of Mg, which would then happen to be an abstract variety
of dimension 3g − 3 defined over the prime field of K. Unfortunately, the
moduli problem for all smooth curves of genus g (with no extra structure)
has no fine moduli space.

Suppose therefore that an orbit X is not closed. Then, when consider-
ing the quotient space Mg, the set X and its closure will be identified. The
techniques of geometric invariant theory show that there is a natural way
to remove non-closed orbits and obtain a quotient set Mg, which is an open
subset of a projective variety defined over the prime field of K. There exists
a natural compactification (which will also be denoted by Mg) of this set. For
the moduli problem for all smooth curves of genus g, this compactification
is irreducible of dimension 3g − 3 as a variety. Moreover, if we accidentally
removed a closed orbit at the beginning, and then considered the correspon-
dent quotient set, there is a point in the compactification which corresponds
to that orbit. The variety Mg is a coarse moduli space for the moduli prob-
lem. The family of smooth curves of genus g over K has a coarse moduli
space.

Note. If a coarse moduli space exists, then it is unique up to rational iso-
morphism. This discussion can be also applied to some specific collection of
smooth curves of genus g and then we refer to the coarse (resp. fine) moduli
space for this collection.

Recall that if C is a curve of genus g defined over a small subfield F of
K, the modulus of C is rational over the algebraic closure of F in K.

By an elliptic curve over K, we understand a pair (E, O) consisting of a
projective nonsingular curve E of genus 1 defined over K and a distinguished
K-rational point O. Such a curve E is rationally isomorphic over K to one
given by a Weierstrass equation over K mapping O to [0, 0, 1]. Hence, we
will drop the mention of O when referring to the elliptic curve E. According
to the Weierstrass equation, there are two cases to consider (Appendix A in
[24]):

• y2 + xy = x3 + a2x
2 + a6. Let us call the quantity j = a−1

6 6= 0 the
j-invariant of the curve. Any other elliptic curve E ′ over K which is
isomorphic to E over K is obtained after a change of variables of the
form:

x = x′

y = y′ + sx′
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with s in K such that s2 + s + a2 + a′
2 = 0. Note that j = j ′.

• y2 + a3y = x3 + a4x + a6 with j = 0. In this case, the changes of
variables preserving the K-isomorphism class of E are of the form:

x = u2x′ + s2

y = u3y′ + u2sx′ + t

with u , s and r in K such that:

u3 = a3/a
′
3

s4 + a3s + a4 − u4a′
4 = 0

t2 + a3t + s6 + a4s
2 + a6 − u6a′

6 = 0

It follows that two elliptic curves are rationally isomorphic over K if and
only if they have the same j-invariant. Moreover, for any j in K, there is an
elliptic curve defined over K whose j-invariant is K. That is, the space of
moduli of elliptic curves over K is the affine line.

Let now g be an integer g ≥ 2, and C a curve of genus g. Via the canonical
linear system (i.e the effective divisor on the curve equivalent to the canonical
divisor), we obtain the canonical map. We say that V is hyperelliptic if this
map is not injective. Hence, it defines a non-constant morphism of degree 2
from C onto a smooth rational curve. Since K is perfect, we may assume that
such a smooth rational curve is P1 (The 2-torsion part of Br(K) is trivial).
Hence, we have a separable 2-cover φ : C → P

1.
By Artin-Schreier theory, such a curve is a smooth model for an affine

equation of the form y2 + y = w where w is a rational function over K. By
[5] we may assume it is written in Artin-Schreier special form, that is, all
irreducible factors of the denominator of w occur with odd multiplicity and
deg(w) is either positive and odd or negative. Thus, the equation can be
rewritten as y2 + y = λ r

s2t
, with λ in K, and r , s and t monic polynomials

over K with t square-free. Such an equation is called a normal model for
a hyperelliptic curve. We rewrite the above equation as y2 + vy = u where
u = tr is monic and v = (

√
λ)−1st (note that by assumption any irreducible

divisor of v is a simple divisor of u). According to the (possible) ramification
of the cover over the point at infinity (by the Hurwitz’ formula), we obtain
the following classification ([5]):

If deg(w) is non-positive (the point at infinity is not ramified), then we
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have that deg(v) = g+1. Since deg(w) ≤ 0, we conclude that deg(u) ≤ 2g+2.
If deg(w) is odd positive, the point at infinity is ramified. Hence deg(u) =

2g + 1 and deg(v) ≤ g. The function field extension is imaginary.
Given a hyperelliptic curve C over K, a point P in P1 is a branch point

if φ ramifies at the preimage of P in C. In the case of characteristic 2, the
branch points are the poles of the rational form w (plus ∞ in the imaginary
case). There are at most g + 1 branch points.

As in the case of characteristic different from 2, the family of hyperelliptic
curves of genus g over a field K admits a coarse moduli space Tg, which is
a rational variety over K of dimension 2g − 1 (see [1]). Note that in this
case, the class of rational isomorphism in K of a hyperelliptic curve is not
uniquely determined by the set of branch points modulo PGL(2, K), since
we have to consider also transformations of the form x = x′ , y = y + b(x′)
for b in K[x] (the cover has non-trivial involutions). From [1] we obtain a
nice description of Tg as follows:

Let H0(P1,O(m)) denote the set of homogeneous forms over K of degree
m in 2 variables. Then, Tg is isomorphic to:

H0(P1,O(g + 1)) × H0(P1,O(2g + 2))

modulo the action of (K∗
nH0(P1,O(g +1)))×PGL(2, K), where we define

(a, b) ⊗ (v, u) = (bv, b2u + bav + a2)

for b in K∗, a in H0(P1,O(g+1)) and (v, u) in H0(P1,O(g+1))×H0(P1,O(2g+
2)). The action of PGL(2, K) = Aut(P1) on H0(P1,O(g+1))×H0(P1,O(2g+
2)) is the natural one.

An equivalence class (v, u) in the above quotient set is identified with the
pair of polynomials defining the curve dehomogenizing them with respect to
the second variable. As shown above, the branch points determine the degree
of v. Since dimK H0(P1,O(m)) = m+1, and denoting by T

(r)
g the set of mod-

ulus of hyperelliptic curves with at most r branch points, we deduce that, for
3 ≤ r ≤ g +1, we have that dimK T

(r)
g = (2g +3)+(r+1)− (1+ g+2)− 3 =

g + r − 2 . Note that T
(r)
g is closed in Tg.

2 Results

The same assumptions as in the previous sections hold here. In order to
prove the theorem, we will divide it into two cases, depending whether the
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curve is elliptic or hyperelliptic.

Theorem 2.1. Let E an elliptic curve defined over K with j-invariant j
s-generic over ∅, or j = 0. Then E has a K-rational point s-generic over
the set of parameters defining E.

Remark 2.2. Since the family of elliptic curves has a coarse moduli space
isomorphic to A

1, it makes sense to talk about s-generic points in the moduli
space. In this case, s-generic and generic in the sense of Model Theory
coincide.

Proof. We first consider the case of generic j-invariant. Take a Weierstrass
equation for E of the form E : y2 + xy = x3 + ax2 + b.

In this case j = b−1, hence b is also generic over ∅. Consider the transfor-
mation x = x′ , y = x′y′. It puts the equation in the form y2 + y + a = x3+b

x2 .
Take now λ in K generic over a independent from b and define e = b

λ3 . By
properties of generics, e is also generic and independent from λ over {a , b}.
Considering the transformation x = λx′ and renaming, we obtain an equa-
tion of the form y2 + y + a = λx3+e

x2 . Choose a small model N containing the

parameters {e , a , b} and some u generic over N . Define p = Lstp( u3+e
u2 /N)

and q = Lstp(λ/N).
The additive subgroup H1 = 〈w2 + w | w ∈ K〉 is definable over ∅ and of

finite index in K+ (since H1 contains a generic element). By Lemma 2.4 in
[17], there is a generic Lascar strong type r over N in C1 ∩ (a + H1), where
C1 = CN(p) · CN(q) in K∗/(K∗)N (recall notation from [17]). By Lemmas
2.3 in [17], there are x and y in K generic elements over N ∪ {λ} such that
x3+e
x2 realizes p and y2 +y +a = λx3+e

x2 holds (after applying automorphisms).
We obtain hence a K-rational point in E s-generic over {a , b}.

We now consider the case j = 0. A Weierstrass equation for E is of the
form E : y2+ay+b = x3+cx. We choose u , t and s in K generic independent
over {a , b , c} and define

a′ = au−3 b′ = u−6(t2 + at + s6 + cs2 + b) c′ = u−4(s4 + as + c)

The transformation

x = u2x′ + s2 y = u3y′ + u2sx′ + t

maps E to E ′ : y2 + a′y + b′ = x3 + c′x. Since (a′ , b′ , c′) and (s , u , t) are
interalgebraic over {a , b , c}, the curve E ′ is defined over K with generic
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independent coefficients over ∅. Hence, we may assume E already was.
The field K is perfect, so there is some λ in K with c = λ2. The transfor-

mation x = x′λ puts the equation in the form y2 +ay+b = λ3(x3 +x), where
λ is generic independent from {a , b} over ∅ (because c already was). Again,
H1 = 〈w2 + aw | w ∈ K〉 is an additive subgroup definable over {a} of finite
index. Choose d in K generic over {a , b}, and define p = Lstp(λ3/{a , b})
and q = Lstp(d3 +d/{a , b}). As in the previous case, there are x and y in K
generic over {a , b, λ} such that x3 + x realizes q, y2 + ay + b lies in H1 + b,
and y2 + ay + b = λ3(x3 + x) holds (possibly after applying automorphisms
of M). We obtain in this fashion a K-rational point for E which is s-generic
over the set of parameters defining E.

We observe that properties of generics were strongly used in order to go
from a given equation to one with generic independent coefficients. It makes
one guess that the PAC -conjecture may not hold, since it is not clear to
us how to apply the above arguments to the more general case, where the
j-invariant (or the modulus, in the next proof) is non-generic. In the case of
hyperelliptic curves, the role of the ordinal-valued SU -rank will become more
evident. Throughout the proof, we use a weight on types already stated in
[17]. We assume SU(K) = ωα n for some ordinal α and some n in N. Let p
be an m-type over A. We write w(p) = r if SU(p) = ωα r + β with β < ωα.
We write w(~a/A) for w(tp(~a/A)). If a is a single element, then w(a/A) = n if
and only if a is generic over A in K in the sense of Model Theory. By Lascar
inequalities, we have w(~a~b/A) = w(~a/A~b) + w(~b/A).

We have the following:

Theorem 2.3. Let F be a small subfield of K and C a hyperelliptic curve
defined over F with s-generic modulus m(C) in Tg over ∅. Then C has a
K-rational solution s-generic over F .

Proof. The proof goes again by finding an appropriate transformation de-
fined over K preserving the modulus of the curve and mapping C to another
curve defined over K with generic independent coefficients over ∅. We then
use the Lemmas of [17] in order to find an s-generic solution for C over F .
We treat the transformations separately according to the degree of the form
defining C.
Form of positive degree. The curve C has an equation of the form y2+v(x)y =
u(x), where u is a monic polynomial over F of degree 2g + 1 and v is also
a polynomial over F of degree at most g. Since m(C) is s-generic, it is also
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generic in the sense of Algebraic Geometry. Hence, it lies on Tg \ T
(g)
g , the

non-empty open set of the moduli space of hyperelliptic curves correspond-
ing to curves with exactly g + 1 branch points. Hence deg(v) = g (since
∞ is ramified so we are fixing one of the branch points). We will consider
transformations preserving the rational isomorphism class of C and fixing
the point of infinity.

Let ~u and ~v denote the tuples of the coefficients of the polynomials defin-
ing C. Consider now λ , µ , r , a0, . . . , adeg(v) in K generic independent over

F and define A(x) =
deg(v)
∑

i=0

aix
i. The transformation:

(x, y) →
(

λx + µ, r−1λdeg(v)(y + A(x))
)

determines a rational isomorphism defined over K between C and the curve

C ′ : y2 + yrṽ(x) = λdeg(u)−2 deg(v)r2ũ(x) + A2(x) + A(x)rṽ(x) (2.1)

We have that C ′ is another hyperelliptic curve defined over K. Suppose
that {αi}1≤i≤deg(v) and {βj}1≤j≤deg(u) are the zeroes of u and v, and likewise

{α̃i}1≤i≤deg(v) and {β̃j}1≤j≤deg(u) the zeroes of ũ and ṽ (all of them lying in
some algebraic extension of K). Hence, we have that α̃i = (αi − µ)/λ and
β̃j = (βj − µ)/λ for 1 ≤ i ≤ deg(v) and 1 ≤ j ≤ deg(u).

Write the above equation for C ′ as y2 + yv′(x) = u′(x). Let now ~u′ and
~v′ denote the tuples of coefficients of the polynomials u′ , v′.

By construction, m(C) = m(C ′) is rational over ~v′, ~u′.
Claim The tuple (~v′~u′) is s-generic over ∅.
Proof of the claim. This is a weight argument as in [17]. Since m(C) is
s-generic over ∅ in the moduli space, which has dimension 2g − 1, we have
that w(m(C)) = n(2g − 1).
Subclaim The tuple (µ, λ, r, a0, ..., adeg(v)) is interalgebraic with (~v′, ~u′) over
~u,~v.
Proof of the subclaim. We need only check that λ, µ, r, a0, ..., adeg(v) lie in
acl(~u′~v′/~u,~v). The zeroes of v′ are α̃1, . . . , α̃deg(v) (which are interalgebraic,
as a tuple, with the tuple of its coefficients, being the latter the symmetric
functions on the former set). Since deg(v) ≥ 2, this tuple is interalgebraic
with the pair (λ, µ) over the coefficients of v. Now, it follows that r is in
acl(~u′, ~v′, λ, µ/~u,~v). Comparing the right hand side of (2.1), we conclude
that ~a is in acl(~u′, ~v′, λ, µ, r/~u,~v).
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End of the proof of the subclaim.
By Lascar inequalities, we have:

1. w(~u~v ~u′~v′) = w(~u′~v′/~u~v) + w(~u~v)
subclaim

= w(λ, µ, r, a0, ..., adeg(v)/~u~v) +
w(~u~v) = (2 + 1 + deg(v) + 1)n + w(~u~v) = (4 + deg(v))n + w(~u~v) =
(4+deg(v))n+w(~u~v/m(C))+w(m(C)) = (4+deg(v))n+w(~u~v/m(C))+
(2g − 1)n = (2g + 3 + deg(v))n + w(~u~v/m(C)).

2. w(~u~v ~u′~v′) = w(~u~v/~u′~v′) + w(~u′~v′) ≤
m(C)∈acl(~u′~v′)

w(~u~v/m(C)) + w(~u′~v′).

Thus, w(~u′~v′) ≥ (2g + 3 + deg(v))n. Since (~u′~v′) is a (2g + 3 + deg(v))-
tuple, we have that it is an s-generic tuple over ∅ (note that after applying
the transformation u′ need no longer be monic).
End of the proof of the claim.
Form of degree 0. Let C come in a normal form as y2 + v(x)y = u(x) with
u and v polynomials with coefficients in F such that deg(u) = 2g + 2 and
deg(v) = g + 1. We take a , b , c and d in K defining an s-generic element in
SL(2, K) over F (that is, ad−bc = 1, and a , b and c are generic independent
over F ). We choose also λ , a0, . . . , adeg(v) in K generic independent from

{a , b , c} over F and define A(x) =
deg(v)
∑

i=0

aix
i.

Consider the following transformation:

(x, y) →
(

ax + b

cx + d
, λ−1(y + A(x))(

c

cx + d
)deg(v)

)

This transformation is defined over K and it maps C to the curve:

C ′ : y2 + yλv(
a

c
)ṽ(x) = λ2u(

a

c
)ũ(x) + A(x)2 + A(x)λv(

a

c
)ṽ(x) (2.2)

Suppose that {αi}1≤i≤deg(v) and {βj}1≤j≤deg(u) are the zeroes of u and v

and likewise, {α̃i}1≤i≤deg(v) and {β̃j}1≤j≤deg(u) the zeroes of ũ and ṽ (in some

algebraic extension of K). Then, we have that α̃i = dαi−d
a−cαi

and β̃j =
dβj−b

a−cβj
,

for 1 ≤ i ≤ deg(v) and 1 ≤ j ≤ deg(u). The curve C ′ is also hyperelliptic
and defined over K.

Rewrite the above equation for C ′ as y2 + yv′(x) = u′(x). Let ~u and ~v
(resp. ~u′ and ~v′) denote the tuples of coefficients of the polynomials u and v
( resp. u′ and v′ ). Again, the modulus of the curve m(C) = m(C ′) is rational
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over ~v′~u′.
Claim The tuple (a , b , c , λ , a0, . . . , adeg(v)) is interalgebraic with (~v′~u′) over
~u~v.
Proof of the claim. We need only prove that a , b , c , λ , a0, . . . , adeg(v) lie in
acl(~u′~v′/~u~v). The tuple of zeroes of v′ (which is interdefinable with the tuple
of its coefficients) coincides with the tuple of zeroes of ṽ. Since deg(v) ≥ 3,
this tuple is interalgebraic with the tuple (a , b , c) over ~v, because any ele-
ment of SL(2, K) is determined by the image of three points in the projective
space. Now, λ , a0, . . . , adeg(v) lie in acl(~u′, ~v′, a, b, c/~u,~v) by a similar argu-
ment as in the imaginary case.
End of the proof of the claim.
Claim The tuple (~v′~u′) is s-generic over ∅.
Proof of the claim. By Lascar inequalities, we have

1. w(~u~v ~u′~v′) = w(~u′~v′/~u~v) + w(~u~v)
claim
= w(a, b, c, λ, a0, ..., adeg(v)/~u~v) +

w(~u~v) = (3 + 1 + deg(v) + 1)n + w(~u~v) = (5 + deg(~v))n + w(~u~v) =
(5+deg(v))n+w(~u~v/m(C))+w(m(C)) = (5+deg(v))n+w(~u~v/m(C))+
(2g − 1)n = (2g + 4 + deg(v))n + w(~u~v/m(C)).

2. w(~u~v ~u′~v′) = w(~u~v/~u′~v′) + w(~u′~v′) ≤
m(C)∈acl(~u′~v′)

w(~u~v/m(C)) + w(~u′~v′).

Thus, w(~v′~u′) ≥ (2g + 4 + deg(v))n. Being the length of (~v ′~u′) exactly
2g + 4 + deg(v), we conclude that (~v′~u′) is an s-generic tuple.
End of the proof of the claim.

Form of negative degree. In this case, C has a normal equation of the
form y2 + v(x)y = u(x), where u is a monic polynomial of degree at most
2g + 1 and v is a polynomial of degree g + 1 both with coefficients in F .

Since m(C) is generic in the sense of Algebraic Geometry, it lies on the

open set Tg \T
(g)
g of moduli of hyperelliptic curves with exactly g +1 distinct

branch points. The zero set of v is contained in the zero set of u (without
counting multiplicities), therefore we have that deg(u) ≥ g + 1.

We take a , b , c and d in K defining an s-generic element in SL(2, K) over
F (that is, ad − bc = 1 and a , b and c are generic independent over F ). We
choose also λ , a0, . . . , adeg(u)−g−1 in K generic independent from {a , b , c}

over F and define A(x) =
deg(u)−g−1

∑

i=0

aix
i.
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Consider the following transformation:

(x, y) →
(

ax + b

cx + d
, λ−1(y + A(x))(

c

cx + d
)g+1

)

This transformation is defined over K and it maps C to the curve:

C ′ : y2 + yλv(
a

c
)ṽ(x) =

λ2u(
a

c
)ũ(x)(

cx + d

c
)2g+2−deg(u) + A(x)2 + A(x)λv(

a

c
)ṽ(x) (2.3)

Suppose that {αi}1≤i≤deg(v) and {βj}1≤j≤deg(u) are the zeroes of u and v,

and likewise {α̃i}1≤i≤deg(v) and {β̃j}1≤j≤deg(u) the zeroes of ũ and ṽ) (in some

algebraic extension of K). We have that α̃i = dαi−b
a−cαi

and β̃j =
dβj−b

a−cβj
, for

1 ≤ i ≤ deg(v) and 1 ≤ j ≤ deg(u). The curve C ′ is also hyperelliptic and
defined over K.

Rewrite the above equation for C ′ as y2 + yv′(x) = u′(x). Let ~u and ~v
(resp. ~u′ and ~v′) denote the tuples of coefficients of the polynomials u and v
(resp. u′ and v′), respectively. As in the previous cases, the modulus of the
curve m(C) = m(C ′) is rational over ~v′~u′.
Claim The tuple (a , b , c , λ , a0, . . . , adeg(u)−g−1) is interalgebraic with (~v′~u′)
over ~u~v.
Proof of the claim. The tuple of zeroes of v′ (which is interdefinable with ~v′)
coincides with the tuple of zeroes of ṽ, and this one is interalgebraic with the
tuple (a, b, c, d) over ~v (tracing back the transformation), since deg(v) ≥ 3
(any element of SL(2, K) is determined by its action on three different points
in P1). Now, it is clear that λ is in acl(~u′, ~v′, a, b, c, d/~u,~v). Comparing the
right hand of the equation (2.3), we also conclude that a0, . . . , adeg(u)−g−1 lie
in acl(~u′, ~v′, a, b, c, d, λ/~u,~v).
End of the proof of the claim.

By Lascar inequalities, we have:

1. w(~u~v ~u′~v′) = w(~u′~v′/~u~v)+w(~u~v) = w(a, b, c, d, λ, a0, . . . , adeg(u)−g−1/~u~v)+
w(~u~v) = (3+1+deg(u)−g−1+1)n+w(~u~v) = (4+deg(u)−g)n+w(~u~v) =
(4 + deg(u) − g)n + w(~u~v/m(C)) + w(m(C)) = (4 + deg(u) − g)n +
w(~u~v/m(C)) + (2g − 1)n = (3 + deg(u) + g)n + w(~u~v/m(C).

2. w(~u~v ~u′~v′) = w(~u~v/~u′~v′) + w(~u′~v′) ≤ w(~u~v/m(C)) + w(~u′~v′).
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Thus, w(~v′~u′) ≥ (g + 3 + deg(u))n. Since (~v′~u′) is a (g + 2 + deg(u)+ 1)-
tuple, we have that it is an s-generic tuple over ∅ (again by Lascar inequali-
ties).

Therefore, we are reduced to proving the statement of the theorem for
a hyperelliptic curve C defined over K with generic independent coefficients
over ∅ (note that, after the transformations, we do not assume that u or v
are monic). Consider the equation y2 + y = u(x)/v(x)2 and, after dividing
(if necessary), we may assume it is of the form y2 + y + a = u(x)/v(x)2 for
some a in K, with deg(u) 6= 2 deg(v).

Take λ in K generic over F ∪{~u , ~v} (recall previous notation). After the
transformation (x, y) → (λx, y), we obtain an equation of the form:

y2 + y + a = λdeg(u)−2 deg(v) u′(x)

v′(x)2

where
u′

i = uiλ
i−deg(u) v′

j = vjλ
j−deg(v)

Again, λ is generic over F ∪ {~u′ , ~v′} by properties of generics. Consider
now a small model N containing F ∪{~u′ , ~v′} independent from λ. We define

p(x) = Lstp(λdeg(u)−2 deg(v)/N) and q(x) = Lstp( u′(s)
v′(s)2

/N), with s in K generic
over N .

The additive subgroup H1 = 〈w2 + w | w ∈ K〉 is definable over ∅ and
has finite index (because it contains a generic element). By Lemma 2.4 in
[17], there is a generic Lascar strong type r over N in C1 ∩ (a + H1), where
C1 = CN(p) · CN(q) in K∗/(K∗)N . Apply Lemma 2.3 in [17] to p , q and r
to find x and y in K generic over N ∪ λ (possibly after N -automorphisms)
such that y2 + y + a realizes r, the element u′(x)/v′(x)2 is a realization of q

and y2 + y + a = λdeg(u)−2 deg(v) u′(x)
v′(x)2

holds. We therefore obtain a K-rational
point in C which is s-generic over F .

Remark 2.4. Let r ≥ 3. For imaginary hyperelliptic curves defined over K,
an s-generic point over ∅ in T

(r)
g ={ moduli of hyperelliptic curves of genus g

with at most r branch points} (as a closed subvariety of the moduli space of
hyperelliptic curves of genus g) determines an equation for C where deg(u) =
2g+1 and deg(v) = r−1 (since ∞ is ramified, we fix it). We may proceed as
in the above proof in the imaginary case, and apply a generic transformation
using now (2 + (g − 2)) generic independent parameters. Since deg(v) =
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r − 1 ≥ 2, we conclude that the new tuple of coefficients is interalgebraic
with these parameters over the previous tuple of coefficients. Via the same
weight argument as in the previous case (recall that dim(T

(r)
g ) = g + r − 2),

we conclude that the new (2g + r + 2)-tuple of coefficients is s-generic over
∅ and the above proof follows.

Therefore, we conclude the following:

Corollary 2.5. Suppose K has characteristic 2. Let F be a small subfield of
K and C an imaginary hyperelliptic curve of genus g defined over F whose
modulus is s-generic over ∅ in T

(r)
g for some r ≥ 3. Then, C has a K-rational

point s-generic over F .

Remark 2.6. The same arguments exhibited here can be in principle applied
to cyclic covers of the projective line of degree p (a prime different from 2).
Unfortunately, in order to apply Kummer theory, we need p-roots of unity in
K (which need not be the case). We could assume K has a primitive p-root of
unity, by going to a finite algebraic extension L of K (which is interpretable
in K via a basis, and hence, supersimple). Two questions come up naturally:

• If we find L-rational s-generic points in the cover, can we conclude that
there are K-rational s-generic points?

• There is a coarse moduli space of such covers (the moduli space is called
space of Hurwitz, see [4]). What is its dimension? Moreover, what are
the invariants of the cover (for example: the set of branch points modulo
PGL(2, K), etc. . . )? (This is needed to study the transformations).
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