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Noisy excitable systems in interaction

An excitable system :

e possesses a stable rest position.

o threshold phenomenon : after a sufficiently
large perturbation, follows a complex trajectory
before coming back to the rest state.
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An excitable system :

e possesses a stable rest position.

o threshold phenomenon : after a sufficiently
large perturbation, follows a complex trajectory
before coming back to the rest state.

General observation :
A large population of noisy excitable systems in mean field interaction may possess a
synchronized periodic behavior.

Aim

Rigorous proof of periodic behavior for noisy neurons in mean field interaction ?
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Active rotators

[Shinimoto, Kuramoto, 1986] Consider a population of N oscillators in S = R/(27Z) with
dynamics
N

K .
dpi s = —6V'(pi,)dt — N Z sin(pi,¢ — pj,t)dt+dBi ¢.
j=1
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Example of potential : V() = 0 — acos(9), V'(0) = 1 + asin(6).
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weakly to the solution of
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Active rotators

[Shinimoto, Kuramoto, 1986] Consider a population of N oscillators in S = R/(27Z) with

dynamics
N

K
dpis = =6V (@i )dt — ¥ > sin(pie — @ )dt+d B .
j=1

Example of potential : V() = 0 — acos(9), V'(0) = 1 + asin(6).

a<l
‘L T
6 4 2 o 2 4 &

On any time interval [0, T, the empirical measure ¢ = % Zil 3y, . converges
weakly to the solution of

a>1

1
Orps = 533% + K0y (ut/ sin(6 — w)dﬂt(w)) +60g (1t V').
s

For accurate choices of parameters (a may be larger than one) and § small enough,
this non-linear Fokker Planck PDE admits a limit cycle. [Giacomin, Pakdaman, Pellegrin
and P., 2012]
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Simulation : N = 4000, K =2,a=1.1,§ = 0.5
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Active rotato

For § = 0 we have
1
Ousa(0) = 505 (0) + K0n (s Lm0 = w)ae()),
S
and if K > 1, the model admits moreover a stable curve of synchronized stationary

solutions
My = {qd,(-) : ’lﬁ c S}, where q¢(~) = q0(~ — ’L/J)
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Active rotat

For § = 0 we have
1
Oupe (0) = 583101,(9) + K9 (Mt/ sin(0 — ¢)dut(¢)) ,
S
and if K > 1, the model admits moreover a stable curve of synchronized stationary

solutions
My = {qd,(-) : ’lﬁ c S}, where q¢(~) = q0(~ — ’L/J)

For § small the model admits an invariant curve Mg = {qf/) 1 ¢ € S}, perturbation of
Moy, with phase dynamics

NAESE) (1 += sin(¢f)) .
ak
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The model

Consider a population of N interacting units in R with dynamics

N
1
dX; = 0F(X;)dt — K | Xi — ¥ § X1 | dt+V20dB,; 4,
j=1
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N
1
dXip = OF(Xi)dt — K | Xy — > Xju | dt+V20dB;

j=1
where
k1 0 o1 0
e §>0 K= >0,0= >0,
0 kq 0 Od

e (B;)i=1...n family of standard independent Brownian motions,
e [’ smooth, and
e (F(z) — F(y)) - (z—y) < Clz — y|?,

o F(z) - Ko 22 < Clyjy <y — 2,
° |F(I)‘ gCeE‘I‘Q, (1}) g TX {lz| < 7} C‘zl

102, F(2)] < Ce1#1%, o lim|y 0
19z, F(2)] < Ce1#1%,

|szF‘(:c)\

) ko2 = O

[Baladron, Fasoli, Faugeras, Touboul, 2012], [Luson, Stannat, 2014], [Bossy, Faugeras, Talay, 2015], [Mehri, Scheutzow, Stannat,

. R, - _ 1 N
Zangeneh, 2018]] : On any time interval [0, 77, the empirical measure un,: = « >_i21 0x; ,
converges weakly to the solution of

O = V) + V- (ko= [ (@) =67 - (ue).
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o |F(z)] < Ceslel?,
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) ko2 = O

[Baladron, Fasoli, Faugeras, Touboul, 2012], [Luson, Stannat, 2014], [Bossy, Faugeras, Talay, 2015], [Mehri, Scheutzow, Stannat,

. R, - _ 1 N
Zangeneh, 2018]] : On any time interval [0, 77, the empirical measure un,: = « >_i21 0x; ,
converges weakly to the solution of

O = V) + V- (ko= [ (@) =67 - (ue).

pt is the distribution of
dX¢ = 6F(X¢)dt — K(X; — E[X¢])dt+\/20dB;.
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A toy example

. 22 —a .
Consider F(z,y) = by with a € R, b > 0.

=

7N
]
/
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FitzHugh Nagum
Consider

v
v— % —w
Fo,w)=1{ ; 3 )
c(v+a—bw)
where a € R, b,c > 0.
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A look at the literature

® [Scheutzow, 1985], [Touboul, Hermann, Faugeras, 2012] noise-induced phenomena for
non-linear Fokker-Planck equations admitting Gaussian solutions.

® [Scheutzow, 1986] existence of periodic solutions for the mean-field Brusselator
model (for large interaction, when each unit has a periodic behavior).

o [Pakdaman, Perthame, Salort, 2011] existence of periodic solutions for time elapsed
neuron network model.

e [Giacomin, Pakdaman, Pellegrin and P., 2012] noise-induced periodicity for the Active
rotators model.

® [Mischler, Quifiinao, Touboul, 2016] existence of stationary solutions for the kinetic
mean-field FitzHugh Nagumo model, uniqueness and stability for small coupling.

e [Quifiinao, Touboul, 2018] for large coupling, the kinetic mean-field FitzHugh
Nagumo model behaves as a single FitzHugh Nagumo unit.
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Slow /fast dynamics

Recall
Otpt =V - (UQV,ut) + V- (,utK(z - /d zd,ut(z)) —6V - (ue F).
R

wt is the distribution of

dX; = 6F(Xy)dt — K(X¢ — E[X,))dt+V/20dB;.
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Slow/fast dynamics

Recall
atpt =V- (UQV,ut) +V. (,utK(z — /d zd,ut(z)) —oV - (,utF).
R

wt is the distribution of

dX; = 6F(Xy)dt — K(X¢ — E[X,))dt+V/20dB;.

Denote m; = E[X¢] = [ zdp¢(z), and p; the distribution of X; — my.

(m¢, pt) is solution of the system

{ e 8 [ F(z + m¢)dpe(z)
dpe = V- (0?Vp) + V- (peKz)+V - (pi(rive — F(z +my))

which is a slow/fast system when § — 0 with m; the slow variable, p; the fast one.
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Case § = 0 and reduction

For 6 = 0 we get

0
V- (62Vp) + V- (ptKx)

Ty
atpt
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Case 6 = 0 and reduction

For 6 = 0 we get

my = 0
Opr = V- (0?Vp)+ V- (pKzx)
In this case p; is the distribution of the Ornstein Uhlenbeck process
dX; = —KXdt+V20dB;,
which has stationnary distribution ¢ ~ N(0,T') with I' = 02K 1, and satisfies in
particular

— min(ky,...,kgq)t

Pt — qllp2(q—1y < e llpo — allp2¢g-1y
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In this case p; is the distribution of the Ornstein Uhlenbeck process
dX; = —KXdt+V20dB;,

which has stationnary distribution ¢ ~ N(0,T') with I' = 02K 1, and satisfies in
particular

— min(ky,...,kgq)t

lpe —dllp2q-1) <e llpo — allp2(q-1)

Approximation for § small :

e
bt

5 [ Fw +me)da(z) = 6Fr(me)
q
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Case 6 = 0 and reduction

For 6 = 0 we get

my = 0
Opr = V- (0?Vp)+ V- (pKzx)
In this case p; is the distribution of the Ornstein Uhlenbeck process
dX; = —KXdt+V20dB;,
which has stationnary distribution ¢ ~ N(0,T') with I' = 02K 1, and satisfies in
particular

— min(ky,...,kq)t

lpe —dllp2q-1) <e llpo — allp2(q-1)

Approximation for § small :

e
bt

This corresponds to the approximation

5 [ Fw +me)da(z) = 6Fr(me)
q

Qo

ur ~ N(me,T), with 17y = §Fp(me),

which reduces the problem to a d-dimensional dynamics.
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Reduction and examples

Recall the reduction
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Reduction and examples

Recall the reduction

ur ~ N(me,T),  with 17y = §Fp(my),

»3
e For F(v,w) = ( ;()v_—l—?a—_l:iju) ) we get

2 3
) Dy
my T 3% — M

F7 s =
r () %(mu—i-a—bmw)
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»3
e For F(v,w) = ( ;()v_—l—?a—_l:iju) ) we get

191 ) - My
Fr(mp, my) = My 1 3 — Mw
%(mu +a—bmuw)

2
e For ;—11 small, if (a, b, ¢) is not a bifurcation point of 2y = F'(2), then 2, = F(2¢)

and rhy = §Fr(my) have the same type of dynamics.
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Reduction and examples

Recall the reduction

ur ~ N(me,T),  with 17y = §Fp(my),

’UB
e For F(v,w) = v oW . we get
(v,w) (i(v-l—a—bw)) &
My 172—% 7m—gfmw
Fr(my,my) = 1 3

%(mu +a—bmuw)

2
e For % small, if (a, b, ¢) is not a bifurcation point of 2, = F'(2), then 2y = F(2y)
and iy = §Fr(my) have the same type of dynamics.

o For larger values of %, this two dynamics may differ.
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Simulation for N particles, FitzHugh Nagumo model

Parameters : N = 100000, k1 = 1, k2 = 1, 02 = 0.2, 02 = 0.03, § = 0.1.
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Positively invariant manifold M

[Lugon, P., 2018a] We suppose that there exists a bounded smooth subset V' such that

’nav(m) - F[‘(m) < 0.

peLg)

Mo = {(m, @)} mera
Ms = {(m,¢°(m))}mev

m € R?

If po = g%(mo) € Mjs, then pi = g%(m¢) € My and rhy = §Fp(my).
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Positively invariant manifold M

[Lugon, P., 2018a] We suppose that there exists a bounded smooth subset V' such that

nav(m) - F[‘(m) < 0.

peLg)

Mo = {(m,q)}mera

Ms = {(m, g’ (m))}mev

If po = g%(mo) € Mjs, then pi = g%(m¢) € My and rhy = §Fp(my).

Persistence of normally hyperbolic manifolds under perturbation : [Fénichel, 1971],
[Hirsh, Pugh, Shub, 1977], [Wiggins 1994], [Bates, Lu, Zeng, 1998], [Sell, You, 2002].
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Simulation for N particles, kinetic FitzHugh Nagumo model

Parameters : N = 100000, k1 = 1, k2 =0, 02 = 0.2, 02 =0, § = 0.01.
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Kinetic FitzHugh Nagumo model

Consider the nonlinear process

)

3
Vi = & (w - Wt) dt — k1 (Vi — E[Vi])dt++/201d By
AW, = 2(Vi+a—bWy)dt
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Here Vi — E[V4] is the fast variable, we have

Vi _]F‘[‘/t] zN(Ov‘T%/kl)v

17/18



Kinetic FitzHugh Nagumo model

Consider the nonlinear process

3
dvi 5 (w - Wt) dt — k1 (Vi — E[Vi])dt++/201d By
AW, = 2(Vi+a—bWy)dt

)

Slow/fast approximation :
Here Vi — E[V4] is the fast variable, we have

Vi — E[Vi] = N(0, 0% /k1),
and we make the approximation (the dynamics of W4 is linear) :

dvi Sty dt — K (Vi — may ¢)dt-++/20dB:
dWi = (Vi +a—bW;)dt '

with

() = 6, mute ), and - (TeT00) ~ N (), )

Maw,t
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Kinetic FitzHugh Nagumo model

Consider the nonlinear process

3
dvi 5 (w - Wt) dt — k1 (Vi — E[Vi])dt++/201d By
AW, = 2(Vi+a—bWy)dt

)

Slow/fast approximation :
Here Vi — E[V4] is the fast variable, we have

Vi — E[Vi] = N(0, 0% /k1),
and we make the approximation (the dynamics of W4 is linear) :

dvi Sty dt — K (Vi — may ¢)dt-++/20dB:
dWi = (Vi +a—bW;)dt '

with

(7t ) =6y ), and (T T0) ~ (), T)

We rely on Wasserstein type distances for this model [Lugon, P., 2018b].
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Open problems

Open questions :
e long time behavior for finite but large population?
e consider other models (Morris-Lecar) ?

e consider other interactions ?
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Thank you for your attention
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