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Abstract

We study the asymptotic behaviour of mesoscopic stochastic models for systems
of reacting and diffusing particles (also known as density-dependent population pro-
cesses) as the number of particles goes to infinity. Our approach is related to the
variational approach to solving the parabolic partial differential equations that arise
as limit dynamics. We first present a result for a model that converges to a system
of reaction-diffusion equations. In addition, we discuss two models with nonlinear
diffusion that give rise to quasilinear parabolic equations in the limit.
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1 Introduction

In this paper we study the asymptotic behaviour of certain mesoscopic stochastic particle

models (or density-dependent population processes) for reaction-diffusion systems as the

number of particles goes to infinity. Mesoscopic stochastic particle models are informally

defined as follows. We think of a chemical reactor as being composed of cells or compart-

ments of mesoscopic size l. Each cell may contain up to about n particles of each species.

Particles of species j jump randomly from a cell to an adjacent one in direction ±ek ∈ Rm

according to rates dj,k± which may be functions of the particle densities in the cell (the

particle numbers divided by n) and their discrete gradients. Moreover, if we denote the

vector of particle densities in cell z at time t by ul(z, t) = (ul,1(z, t), . . . , ul,ns(z, t)), ns

being the number of species, then the number of particles in cell z changes randomly with

rate nKi(ul(z, t)) according to the stoichiometry of the ith reaction, i = 1, . . . , nr. The

model can, in the simplest case, be thought of as a combination of a continuous-time ver-

sion of the classical urn model by P. and T. Ehrenfest for diffusion through a membrane
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2 1 INTRODUCTION

and the standard stochastic model for chemical reactions (van Kampen, 1992). We call

this type of model mesoscopic because interactions between individual particles are not

taken into account explicitly.

Stochastic particle models of this type have been described and studied by many

authors in physics (Nicolis & Prigogine, 1977; Gillespie, 1977; Haken, 1983; van Kampen,

1992; Gardiner, 2004) and mathematics (Kurtz, 1977/78, 1981; Arnold & Theodosopulu,

1980; Kotelenez, 1986, 1988; Blount, 1991, 1993, 1994; Guiaş, 2002; Ball et al., 2006). In

the physical literature the model is often simply called ‘the’ stochastic model for chemical

reactions.

Our aim is to derive partial differential equations (PDEs) as macroscopic limit equa-

tions for l→ 0, n→∞ with dj,k± suitably adjusted. To this end, we generally proceed in

two steps. We first study the convergence of a semi-discrete finite-difference approxima-

tion of the limit equations where the spatial derivatives are replaced by finite differences.

Having established the convergence of the semi-discrete approximation, the second step in

the proofs consists in estimating the distance between the approximation and the particle

densities associated to the stochastic particle model in an appropriate norm. This proce-

dure is motivated by the observation that the particle densities generally satisfy a system

of stochastic differential equations that can be regarded as a spatially semi-discretised

finite-difference approximation of the macroscopic PDEs perturbed by a martingale noise

term. In previous work (Kotelenez, 1986, 1988; Blount, 1991, 1993, 1994; Guiaş, 2002)

laws of large numbers have been shown for linear and certain nonlinear models by means

of semigroup methods. In particular, the solutions of the limit equations have been char-

acterised as the mild solutions that one obtains from the semigroup approach to linear

and semilinear parabolic equations. Our method is related to the variational approach

to parabolic PDEs. The solution of the limit equation is an appropriately defined weak

solution the existence of which can be established with Hilbert-space methods.

The paper is organised as follows. In the next section we introduce the macroscopic

PDE model and the mesoscopic stochastic particle model in their most general form. In

Section 3 we describe the results for three particular instances of the general models. We

first consider a stochastic model leading to a classical system of reaction-diffusion equa-

tions as limit dynamics. Subsequently, we discuss two models with a nonlinear diffusion

mechanism. For the sake of simplicity, we restrict the discussion to a single-species model

without chemical reactions. In Section 3.2 we investigate what happens when the inten-

sity for a jump of a particle to a neighboring cell depends on the local concentration, i.e.,

dj,k± = d(ul(z))/(2m), where d is monotonously increasing. Thereafter, in Section 3.3, we

have a look at an example where the intensity for a jump to a neighboring cell depends

on the absolute value of the (discrete) concentration gradient, i.e., dj,k+ = d(∂+
k ul(z)) for
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a jump to the right and dj,k− = d(−∂−k ul(z)) for a jump to the left, respectively, for a

monotonously increasing and symmetric function d. (See below for the definition of ∂±k .)

Nonconstant diffusion coefficients play a role in the modelling of self-organisation of mi-

croorganisms (Ben-Jacob et al., 2000) and surface reactions (Naumovets, 2005). Finally,

in Section 5 the results are discussed and related to other work.

2 The general models

A basic verbal description of a chemical reactor is given in terms of its geometry and a

system of chemical equations for the reaction under consideration:

(1)

0 + n1,1 C1 + · · · + n1,ns Cns → 0 + ñ1,1 C1 + · · · + ñ1,ns Cns

...
...

0 + nnr,1 C1 + · · · + nnr,ns Cns → 0 + ñnr,1 C1 + · · · + ñnr,ns Cns .

Here ns ∈ N denotes the number of different species present in the reactor, nr ∈ N the

number of reactions and nij , ñij ∈ Z, i = 1, . . . , nr, j = 1, . . . , ns, are the stoichiometric

coefficients. All particles coming from or going to one or several reservoirs coupled to the

reactor are denoted by ‘0’. Note that we count reverse reactions separately. The term

‘chemical reaction’ is understood in a broad sense, i.e., the reactions under consideration

are not supposed to be ‘elementary reactions’ in a dilute solution. The geometry of the

chemical reactor is represented by a bounded domain G ⊂ Rm, m = 1, 2, 3, with Lipschitz

boundary. We generally assume that mass transfer in the reactor occurs only by diffusion.

In addition, we take into account inflow and outflow of mass from and to the reservoirs.

2.1 The general macroscopic model

On the macroscopic level the dynamics of the densities uj of the chemical species Cj

is described by a system of ns mass-balance equations in the space-time domain QT =

G× (0, T ), T > 0 being the time of observation:

(2) ∂tuj +∇ · J j(x,u,∇u) = fj(x,u), j = 1, . . . , ns.

Here u = (u1, . . . , uns), and ∇u =
(
(∇u1)T , . . . , (∇uns)T

)T . The vector-valued functions

J j : Rm×Rns×Rns×m → Rm are appropriate ‘constitutive laws’ for the diffusive mass flux

and the functions fj : Rm × Rns → R describe the contributions of the chemical reactions.

In addition, appropriate boundary and initial conditions have to be specified. In the

particular instances of Eq. (2) considered below we assume that the reaction functions fj

and the fluxes J j do not depend explicitly on the space variable x. The reaction functions

fj are obtained in the following way. We assume that the density uj of the jth species
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changes due to the ith reaction with rate νijKi(u), where the reaction rates Ki : Rns → R,

i = 1, . . . , nr, are functions of the local particle densities, and the matrix (νij) ∈ Znr×ns is

defined by νij = ñij − nij . Then

(3) fj(u) =
nr∑

i=1

νijKi(u).

Unfortunately, there is no unified existence theory of Eq. (2). The notions of solution

for the particular instances of Eq. (2) that will appear as limit dynamics of the stochastic

particle models are discussed below.

2.2 The general mesoscopic stochastic particle model

To motivate the set-up of our model we briefly discuss the characteristic time and length

scales in a reaction-diffusion system. In a reaction-diffusion system typically three different

characteristic length scales can be identified: the total size of the system L, a ‘diffusion

length’ l, which corresponds to the size of a well-mixed cell or compartment, and the

typical distance of a particle to its nearest neighbour λ. We postulate

λ << l << L,

which is certainly a reasonable assumption for many systems. The micro-scale λ will not

appear explicitly in the mesoscopic model. These three length scales lead in a natural way

to two ratios,

N = L/l >> 1 and n = l/λ >> 1,

which in one space dimension correspond to the number of cells and the typical number of

particles per cell (or sites per cell, if we think of the particles as being located at the points

of a sublattice), respectively. The law of large numbers we are aiming at can be regarded

as an idealisation obtained by letting both ratios tend to infinity. In our approach we

keep the system size L fixed. Hence, the cell size l and the typical inter-particle distance

λ must go to zero. Alternatively, we could fix λ and let l and L tend to infinity.

In a similar way one can identify three different time scales: a time scale which corre-

sponds to the time needed by a particle to travel the distance λ (or a hopping rate from

site to site δ) and does not appear explicitly in the mesoscopic model, a time scale which

corresponds to the ‘hopping rate’ d from cell to cell, and, finally, the time of observation

T . We assume

1/δ << 1/d << T,

so that a cell can always be regarded as well-mixed. As for the chemical reactions, we

assume that the typical time between two reaction events in a cell is of order 1/n.
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We now introduce the state space of the stochastic particle model. It will turn out to

be useful to regard the stochastic particle densities as elements of a discrete version of the

Lebesgue space L2(G). Discrete Lebesgue spaces are used in numerical analysis and are

defined, e.g., in Zeidler (1990). For the convenience of the reader we repeat the definition

here. We first choose a cubic lattice in Rm with grid mesh h ∈ I = (0, h0] ⊂ R+. More

precisely, for some fixed z0 ∈ Rm we define the set of vertices Zh(z0) by

Zh(z0) =
{
z ∈ Rm : z = h z0 + i1h e1 + . . .+ imh em, (i1, . . . , im) ∈ Zm

}
,(4)

where ek denotes the kth unit vector in Rm. The kth coordinate of a vertex is thus an

integer multiple of h shifted by h z0,k. To each vertex z ∈ Zh(z0) we assign an open

cube ch(z) ⊂ Rm with edges parallel to the coordinate axis having edge length h and z as

midpoint.

Definition 2.1. The set Gh of interior lattice points of the domain G generated by the

lattice Zh(z0) is defined as

Gh =
{
z ∈ Zh(z0) : ch(z) ⊂ G

}
.

Definition 2.2. By a lattice function we understand a function uh : Zh(z0) → R, i.e., a

function that assigns a real number to each vertex z ∈ Zh(z0). The extended version of a

lattice function is the step function ũh : Rm → R, x 7→ ∑
z∈Zh(z0) uh(z) 1ch(z)(x), where

1ch(z) is the indicator function of the open cube ch(z).

Definition 2.3. The discrete Lebesgue space L2(Gh) is the space of lattice functions that

vanish outside Gh equipped with the scalar product
(
uh, vh

)
L2(Gh)

= hm
∑

z∈Gh

uh(z) vh(z) =
∫

Rm

ũh(x) ṽh(x) dx.

For the sake of brevity, we usually skip the tilde notation and use the same symbol for

uh, ũh and ũh|G if there is no risk of confusion.

We identify the well-mixed cells in the chemical reactor represented by the domain G

with the open cubes cl(z) around the interior lattice points z ∈ Gl generated by a grid

Zl(z0). The state space Sl of the particle density process ul(t) = (ul,1(t), . . . , ul,ns(t)),

t ≥ 0, to be described below is defined as the (countable) set of vector-valued lattice

functions from the space (L2(Gl))ns that take values in the set 1
nN

ns
0 endowed with the

induced metric.

For the characterisation of the stochastic dynamics in the state space Sl we still need

the following definitions.

Definition 2.4. The set of lattice points G1
h is defined as

G1
h =

{
z ∈ Gh : z ± h ek ∈ Gh, k = 1, . . . ,m

}
.
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Definition 2.5. For a lattice function uh the discrete derivatives ∂+
k uh and ∂−k uh are

defined as the lattice functions given by

∂±k uh(z) =
uh(z ± h ek)− uh(z)

±h , k = 1 . . . ,m.

Higher derivatives are obtained by repeated application of ∂±k .

Now let, for z ∈ G1
l and j = 1, . . . , ns, χj,z ∈ Sl be the state with particle density one

for species j in cell z and zero elsewhere. For z ∈ Gl \ G1
l we define χj,z identically zero.

The stochastic dynamics of the particle densities is characterised by the following set of

transition intensities ql(·, ·) for jumps from a state ul ∈ Sl to other states.

I A particle of species j may leave cell z ∈ G1
l and jump to z ± lek:

ql(ul,ul − 1
nχj,z + 1

nχj,(z−lek)) = ndj,k−(ul,−∇−ul)ul,j(z),

ql(ul,ul − 1
nχj,z + 1

nχj,(z+lek)) = ndj,k+(ul,∇+ul)ul,j(z),
(5)

where dj,k±(·, ·) ≥ 0 is the hopping rate of species j in the direction ±ek, which

may be a function of the local densities ul,j and their discrete gradients ∇±ul,j =

(∂±1 ul,j , . . . , ∂
±
mul,j). Note that the particles vanish if they attempt to jump to a cell

at the boundary, which corresponds to homogeneous Dirichlet boundary conditions.

I The number of particles in cell z ∈ G1
l changes according to reaction i:

ql(ul,ul + 1
n

∑ns
j=1νijχj,z) = nKi(ul(z)) if ul + 1

n

∑ns
j=1νijχj,z ∈ Sl.(6)

Here we use the same reaction rates as in the deterministic model. A slight gener-

alisation could be obtained by adding lower order terms.

The intensity for other possible transitions is zero.

For simplicity we always assume that ul(0) ∈ Sl is non-random. In all cases considered

below the transition intensities q(·, ·) characterise a Markov jump process (ul(t))t≥0 (with

respect to the induced filtration) on some probability space (Ω,A , P ) with values in Sl

starting at ul(0) that corresponds to a Feller semigroup with generator Ll defined by

Llg(ul) =
∑

ũl 6=ul

ql(ul, ũl)
(
g(ũl)− g(ul)

)
, g ∈ Ĉ(Sl).(7)

Here Ĉ(Sl) denotes the space of bounded continuous functions from Sl to R. (Note that

continuity is trivial.) This follows from Theorem 3.1 in Chapter 8 of Ethier & Kurtz

(1986).

For later use we now introduce a discrete version of the Sobolev space H1
0 (G) (the

subspace of functions in L2(G) that have weak partial derivatives in L2(G) and vanish on

the boundary of G).
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Definition 2.6. By the discrete Sobolev space H1
0(Gh) we understand the set of all lattice

functions that vanish outside G1
h equipped with the scalar product

(
uh, vh

)
H1

0(Gh)
=

(
uh, vh

)
L2(Gh)

+
m∑

k=1

(
∂+

k uh, ∂
+
k vh

)
L2(Gh)

.

The space H1
0(Gh) has many properties in common with the Sobolev H1

0 (G) defined

on a continuous domain G, e.g., we have a discrete integration by parts formula and a

discrete version of Poincaré ’s inequality. (Here and in the following C denotes a generic

constant that may change from line to line.)

Lemma 2.7. For functions uh, vh ∈ H1
0(Gh) we have

(8)
(
∂+

k uh, vh

)
L2(Gh)

= −(
uh, ∂

−
k vh

)
L2(Gh)

, k = 1, . . . ,m,

and

(9)
(
uh, vh

)
H1

0(Gh)
≤ C

(∇+uh, ∇+vh

)
(L2(Gh))m ,

where the constant C depends only on the domain G.

Proof. The first assertion follows from a straightforward calculation. For the second

one we refer to Temam (2001, Proposition 3.3 in Chapter 1).

The dual space of H1
0(Gh) is denoted by H−1(Gh).

3 The results

3.1 Lipschitz-continuous reaction rates and linear diffusion

3.1.1 The macroscopic model

In this section we describe a result for a classical system of reaction-diffusion equations,

i.e., we assume, as in the general model, that there are nr reactions going on, involving ns

species. Moreover, we assume that the diffusive mass fluxes J j are given by Fick’s law:

J j(u,∇u) = −Dj∇uj , j = 1, . . . , ns.(10)

Here D1, . . . , Dns > 0 are the macroscopic diffusion coefficients. Hence, the macroscopic

PDE system (with Dirichlet boundary conditions) reads




∂tuj −Dj∆uj = fj(u) in QT

uj = 0 on ∂G× [0, T ]

uj(·, 0) = uj,0 in G,

(11)

j = 1, . . . , ns.



8 3 THE RESULTS

3.1.2 The mesoscopic stochastic particle model

A corresponding mesoscopic stochastic particle model is defined by setting dj,k± = dj/(2m)

with constant dj > 0 in (5).

3.1.3 Law of large numbers

We make the following assumptions for the reaction rates Ki:

Ki(v) ≥ 0 for all v ∈ (R+
0 )ns .(12a)

If νij < 0 then Ki(v) = 0 for all v ∈ (R+
0 )ns with vj = 0.(12b)

These two conditions should obviously be fulfilled by any set of reaction rates for physical

reasons. In addition, the rates are supposed to satisfy the Lipschitz condition

(12c) |Ki(v)−Ki(w)| ≤ cL |v −w| , v,w ∈ Rns , i = 1, . . . , nr,

for some constant cL > 0, in order to ensure global existence and uniqueness of a solution.

We briefly describe the standard weak formulation of Eq. (11). We set

(13) H1
0(G) = (H1

0 (G))ns , L2(G) = (L2(G))ns , H−1(G) = ((H1
0 (G))ns)∗,

and in the following we often skip the domain G in the notation. Let a(·, ·) be the bilinear

form on H1
0 ×H1

0 defined by

(14) a(u,v) =
ns∑

j=1

m∑

k=1

Dj

(
∂xk

uj , ∂xk
vj

)
L2 , u,v ∈ H1

0.

In the weak formulation of Eq. (11) a function u ∈ H1(0, T ; H1
0,L

2) is sought such that

d

dt

(
u(t), v

)
L2 + a(u(t),v) =

(
f(u), v

)
L2(15a)

for all v ∈ H1
0 and a.e. t ∈ [0, T ], and

u(0) = u0 ∈ L2.(15b)

Here H1(0, T ; H1
0,L

2) denotes the subspace of functions in L2(0, T ; H1
0) that have gen-

eralised time derivatives in L2(0, T ; H−1), and Eq. (15) is supposed to hold in the sense

of distributions. The existence of a unique solution of the weak problem can readily be

established with the Faedo-Galerkin method in combination with the Aubin-Lions com-

pactness theorem (see, e.g., Lions (1969), Section 5 of Chapter 1). Alternatively, one can

use the theory for linear equations together with the Banach fixed-point theorem (Evans,

1998).
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For the passage to the limit, we assume the following scaling relations for the param-

eters in the stochastic particle model:

l→ 0, n→∞,(16a)

dj

2m
l2 → Dj ,(16b)

dj

n
→ 0,(16c)

j = 1, . . . , ns. The law of large numbers then takes the following form.

Theorem 3.1 (Law of large numbers). Let u be the solution of the weak PDE problem

(15) to the initial value u0. Assume that the scaling relations (16) are satisfied and that

ul(0) converges strongly to u0 in L2. Then

E
[
‖ul − u‖2

L2(0,T ;L2)

]
= E

[
‖ul − u‖2

(L2(QT ))ns

]
→ 0.

3.2 Crowding effects

In this section we describe a result for the situation where the intensity for a diffusive

jump of a particle increases with the density in the cell, i.e., the intensity for a jump to

a neighboring cell is given by a function d = d(ul). The function d is assumed to be

monotonously increasing, which models repulsive interactions between the particles. For

the sake of simplicity we consider only a single-species model without chemical reactions.

3.2.1 The macroscopic model

The PDE that will be approached by the particle density process in the limit of large

particle numbers is





∂tu−∆(D(u)u) = 0 in QT

u = 0 on ∂G× [0, T ]

u(·, 0) = u0 in G,

(17)

where the function D : R → R+
0 is assumed to satisfy certain conditions that will be

specified below. If we assume that the function D is differentiable, then Eq. (17) can be

cast in the form (2) by setting

J(u,∇u) = −(
uD′(u) +D(u)

)∇u.(18)
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3.2.2 The mesoscopic stochastic particle model

A corresponding stochastic particle model is obtained by setting

dk−(ul,−∇−ul) = dk+(ul,∇+ul) = d(ul)/(2m), k = 1, . . . ,m,(19)

in the general model for a monotonously increasing function d : R → R+
0 . Further con-

ditions on d will be specified below. Note that (for fixed l) by construction the process

ul(t), t ≥ 0, almost surely satisfies the two estimates

sup
z∈Gl,t≥0

|ul(z, t)| <∞,(20)

(
ul(t), 1

)
L2 = ‖ul(t)‖L1(G) ≤ ‖ul(0)‖L1(G) for all t ≥ 0.(21)

3.2.3 Law of large numbers

We start again by discussing an appropriate notion of weak solvability for Eq. (17) following

Lions (1969, Section 3 of Chapter 2). Let the Hilbert space H1
0 be endowed with the scalar

product

(22)
(
u, v

)
H1

0
=

(∇u, ∇v)
L2 , u, v ∈ H1

0 .

Hence, the operator −∆ : H1
0 → H−1, interpreted as

(23)
〈−∆u, v

〉
H1

0
=

(∇u, ∇v)
(L2)m , u, v ∈ H1

0 ,

is identical to the Riesz isomorphism between the Hilbert space H1
0 and its dual H−1.

(
〈·, ·〉

H1
0

denotes the dual pairing between H1
0 and H−1.) Thus we can define on H−1 the

scalar product

(24)
(
u, v

)
H−1 =

〈
u, −∆−1v

〉
H1

0
, u, v ∈ H−1,

and we denote the corresponding norm by |||·|||H−1 . The norm |||·|||H−1 is in fact equal

to the standard norm in H−1 which is denoted by ‖·‖H−1 . In order to ensure unique

solvability of the weak problem introduced below, we make the following hypotheses for

the function D : R→ R+
0 .

D is continuous and monotonously increasing on R+
0 .(25a)

D(p) = D(−p) for all p ∈ R.(25b)

There are constants C,α > 0 such that(25c)

D(p) ≤ C and D(p) p2 ≥ αp2 for all p ∈ R.

It is then readily checked (Reichert, 2006) that the following lemma holds.
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Lemma 3.2. Let a : L2 × L2 → R be given by

(26) a(u, v) =
∫

G
D(u)u v dx, u, v ∈ L2,

and assume that D satisfies conditions (25). Then the mapping a(·, ·) induces a (generally

nonlinear) operator A : L2 → (L2)∗ by

(27)
〈
A(u), v

〉
L2 = a(u, v), u, v ∈ L2,

which is bounded, coercive, hemicontinuous and monotone.

For terminology see, e.g., Zeidler (1990). In the sequel, explicit use is made only of

the monotonicity condition

(28)
〈
A(u)−A(v), u− v

〉
L2 ≥ 0, u, v ∈ L2.

In the weak formulation of the PDE (17) a function u ∈ H1(0, T ;L2,H−1) is sought such

that
d

dt

(
u(t), v

)
H−1 + a(u(t), v) = 0(29a)

for all v ∈ L2 and a.e. t ∈ [0, T ], and

u(0) = u0 ∈ H−1.(29b)

A unique weak solution exists according to a general theorem on monotone first-order

evolution equations (see, e.g., Theorem 30.A in Zeidler (1990) or Theorem 1.2 in Chapter 2

of Lions (1969)).

For the derivation of a law of large numbers we suppose that the function d : R→ R+
0

satisfies conditions (25a) and (25b). In addition, we make the following hypotheses:

l→ 0, n→∞,(30a)

sup
R

∣∣ 1
2m l

2 d−D
∣∣ → 0,(30b)

1
n

sup
R

d→ 0.(30c)

The law of large numbers then reads as follows.

Theorem 3.3 (Law of large numbers). Let u be the solution of the weak PDE problem

(29) to the initial value u0 ∈ L2. Assume that the scaling relations (30) are satisfied and

that ul(0) converges strongly to u0 in L2. Then the particle density ul converges to u in

the following sense: For all ψ ∈ C∞0 (QT ) and ε > 0,

P

[∣∣∣∣
∫

G×[0,T ]
(ul − u)ψ dx dt

∣∣∣∣ > ε

]
→ 0.

With a little more effort it can be checked that the above theorem implies the weak

convergence of the measures ul(x, t, ω) dx dt dP (ω) on G × (0, T ) × Ω (endowed with the

product σ-field B(G)⊗B(0, T )⊗A ) to the measure u(x, t) dx dt dP (ω).
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3.3 Gradient-activated diffusion

In the present section we describe an example for nonlinear diffusion where the intensity for

a diffusive jump to a neighboring cell increases with the concentration gradient. We again

restrict the discussion to a single-species model without chemical reactions. The intensity

for a jump in direction ±ek is d(∂+
k ul) and d(−∂−k ul), respectively. It is again assumed

that the function d satisfies d(p) = d(−p) for p ∈ R, i.e., the jump intensity changes

according to the absolute value of the concentration gradient. We call this behaviour

gradient-activated diffusion.

3.3.1 The macroscopic model

The macroscopic PDE that will be approached in the limit of large particle numbers reads

(31)





∂tu−
m∑

k=1

∂xk
(D(∂xk

u) ∂xk
u) = 0 in QT

u = 0 on ∂G× [0, T ]

u(0) = u0 in G.

We assume again that D satisfies conditions (25). The PDE (31) can be cast in the form

(2) by setting

(32) Jk(u,∇u) = −D(∂xk
) ∂xk

u, k = 1, . . . ,m.

3.3.2 The mesoscopic stochastic particle model

A corresponding stochastic particle model is given by setting

dk−(ul,−∇−ul) = d(−∂−k ul(z)),(33)

dk+(ul,∇+ul) = d(∂+
k ul(z)),(34)

for a function d : R→ R+
0 that satisfies (25a) and (25b).

3.3.3 Law of large numbers

In order to discuss the existence of a solution, we return here to the functional setting of

Section (3.1), i.e., we look for a function in H1(0, T ;H1
0 , L

2) that solves an appropriate

weak formulation of Eq. (31). Again a monotonicity property plays a crucial role.

Lemma 3.4. Let a : H1
0 ×H1

0 → R be given by

(35) a(u, v) =
m∑

k=1

∫

G
D(∂xk

u) ∂xk
u ∂xk

v dx, u, v ∈ H1
0 ,
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and assume that D satisfies conditions (25) of the previous section. Then the mapping

a(·, ·) induces a (generally nonlinear) operator A : H1
0 → H−1 by

(36)
〈
A(u), v

〉
H1

0
= a(u, v), u, v ∈ H1

0 ,

which is bounded, coercive, hemicontinuous and monotone.

Proof. The proof is similar to the proof of Lemma 3.2.

The weak formulation of the PDE is obtained in the usual way by multiplying Eq. (17)

with a test function and integrating by parts:

(37a)
d

dt

(
u(t), v

)
L2 + a(u(t), v) = 0

for all v ∈ H1
0 and a.e. t ∈ [0, T ], and

(37b) u(0) = u0 ∈ L2.

Again a general theorem on first-order monotone evolution equations (Zeidler, 1990; Lions,

1969) ensures that the weak problem (37) has a unique solution.

We assume the following scaling relations:

l→ 0, n→∞,(38a)

sup
R

∣∣l2 d−D
∣∣ → 0,(38b)

1
n

sup
R
d→ 0.(38c)

The law of large numbers then reads as follows.

Theorem 3.5 (Law of large numbers). Let u be the solution of the weak PDE problem

(37) to the initial value u0. Assume that the scaling relations (38) are satisfied and that

ul(0) converges strongly to u0 in L2. Then

E
[
‖ul − u‖2

L2(0,T ;L2)

]
= E

[
‖ul − u‖2

L2(QT )

]
→ 0.

4 The convergence proofs

To prove convergence of the stochastic particle densities we consider first an auxiliary

problem where the spatial derivatives in the continuum model are replaced by finite dif-

ferences. In a second step we show that the difference between the stochastic process and

the solution of the auxiliary problem converges to zero.
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4.1 Lipschitz continuous reaction rates and linear diffusion

4.1.1 An auxiliary problem

Let Gh be the interior lattice points generated by a lattice Zh(z0) of the domain G

representing the chemical reactor, and recall that L2(Gh) = (L2(Gh))ns and H1
0(Gh) =

(H1
0(Gh))ns are the discrete versions of L2(G) and H1

0(G). A discrete analogue of the

PDE system (11) is given by





u′h,j −Dh,j∇− · ∇+uh,j = fj(uh) in G1
h × (0, T )

uh,j = 0 on (Gh \ G1
h)× [0, T ]

uh,j = uh,j,0 in G1
h,

(39)

j = 1, . . . , ns, with constants Dh,j > 0, which is an initial-value problem for a (nonlinear)

finite-dimensional system of ODEs with (globally) Lipschitz continuous right-hand side.

Hence, according to the Picard-Lindelöf theorem, it has a unique solution on the entire

interval [0, T ].

The discrete version ah(·, ·) of the bilinear form a(·, ·) defined in (14) is

(40) ah(uh,vh) =
ns∑

j=1

m∑

k=1

Dh,j

(
∂+

k uh,j , ∂
+
k vh,j

)
L2 , uh,vh ∈ H1

0,

and the solution of (39) can be regarded as a function in C1([0, T ],H1
0) that satisfies the

following discrete version of the weak formulation (15):

d

dt

(
uh(t), vh

)
L2 + ah(uh(t),vh) =

(
f(uh(t)), vh

)
L2(41)

for all vh ∈ H1
0 and t ∈ [0, T ]. Note that the bilinear form ah(·, ·) is coercive, i.e.,

(42) ah(uh,uh) ≥ α‖uh‖2
H1

0

for a constant α > 0 because of the discrete Poincaré inequality.

The solution of the auxiliary problem (39) converges to the solution of the weak prob-

lem (15) in the following sense.

Theorem 4.1. Let u be the solution of the weak PDE problem (15) to the initial value

u0, and let (uh), h↘ 0, be a sequence of solutions of the approximating problem (39) to

the initial value uh,0. Assume uh,0 → u0 strongly in L2, and Dh,j → Dj , j = 1, . . . , ns.

Then uh converges strongly to u in L2(0, T ;L2).

Sketch of proof. The proof can be carried out in analogy to the existence proof for

the weak problem (15) with the Faedo-Galerkin method by making use of the methodology
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of ‘external approximations’ as explained in Temam (2001) or Zeidler (1990). Since the

details are rather uninteresting, we give only a short sketch. More information can be

found in Reichert (2006).

By inserting uh(t) for vh in the discrete weak formulation, integrating over time and

making use of the coerciveness of the bilinear form ah(·, ·), we get

(43) ‖uh(t)‖2
L2 + 2α

∫ t

0
‖uh(s)‖2

H1
0
ds ≤ ‖uh(0)‖2

L2 + 2
∫ t

0

(
f(uh(s)), uh(s)

)
L2 ds.

Hence, in view of the Lipschitz condition (12c), we have the a-priori estimates

sup
h

max
0≤t≤T

‖uh(t)‖L2 <∞,(44)

sup
h
‖uh‖L2(0,T ;H1

0) <∞,(45)

sup
h
‖u′h‖L2(0,T ;H−1) <∞.(46)

The weak convergence in L2(0, T ; L2) of the sequence (uh) to the solution of (15) can now

be established with techniques from Temam (2001). The strong convergence follows from

a discrete analogue of the Aubin-Lions compactness theorem.

4.1.2 Convergence of the particle density

Henceforth we denote the stochastic particle density by ul and the solutions of the auxiliary

approximating problem (39) with h = l by vl. In view of Theorem 4.1, the law of large

numbers (Theorem 3.1) follows immediately from the next result.

Theorem 4.2. Let vl be the solutions of the auxiliary approximating problem (39) to the

initial value vl,0 with Dl,j = dj

2m l
2, j = 1, . . . , ns. Moreover, assume that

‖ul(0)− vl,0‖L2 → 0.

Then

sup
t≤T

E
[
‖ul(t)− vl(t)‖2

L2

]
→ 0.

The proof of Theorem 4.2 is based on a lemma that identifies a local martingale

associated to the process ‖ul(t)− vl(t)‖2
L2 , t ≤ T . Before stating and proving this lemma

we have to deal with the slight technical difficulty that reactive jumps that would lead out

of the state space, i.e., to negative particle densities, are not ‘automatically’ excluded. It

might happen that a Ki(w) is positive for a certain vector of densities w ∈ 1
nN

ns
0 although

the transition from a state ul ∈ Sl with ul(z) = w for a z ∈ Gl to ũl = ul + 1
n

∑ns
j=1νijχj,z

(i.e., ũl,j(z) = wj + 1
nνij for j = 1, . . . , ns) is not allowed because it would lead to negative
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particle densities. This might be the case if wj is close to zero for a certain j and νij

is negative, say, wj = 1/n and νij = −2. However, we may always assume (by possibly

modifying the original Ki) that there are measurable functions Kl,i : Rns → R, i =

1, . . . , nr, that converge uniformly to Ki for l→ 0, such that the transition intensities are

left unchanged and intensity zero is automatically assigned to jumps that would leave the

state space:

Kl,i(w) =




Ki(w) if wj + 1

nνij ≥ 0 for all j = 1, . . . , ns

0 otherwise
(47)

for all w ∈ 1
nN

ns
0 , and

(48) sup
Rns

|Ki −Kl,i| → 0 (l→ 0).

The vector of reaction functions corresponding to the modified rates Kl,i, which is defined

in the same way as in Eq. (3), is denoted by f l.

We define for p ∈ N the stopping time τp by

(49) τp = inf
{
t : ‖ul(t)‖L2 > p

}
∧ T.

We then have the following lemma.

Lemma 4.3. Let (Ml(t))t≤T be the process given by

Ml(t) = ‖ul(t)− vl(t)‖2
L2 − ‖ul(0)− vl(0)‖2

L2+

+ 2
∫ t

0
al(ul(s)− vl(s),ul(s)− vl(s)) ds−

− 2
∫ t

0

(
f l(ul(s))− f(vl(s)), ul(s)− vl(s)

)
L2
ds−Rl(t),

(50)

where

Rl(t) = 2
ns∑

j=1

dj

n

∫ t

0

(
ul,j(s), 1

)
L2 ds+

1
n

nr∑

i=1

ns∑

j=1

ν2
ij

∫ t

0

(
Kl,i(ul(s)), 1

)
L2 ds.(51)

Then, for each p ∈ N, the stopped process Ml(t ∧ τp))t≤T is a martingale.

Proof. 1. For arbitrary but fixed wl ∈ H1
0 we define the function g(·,wl) : Sl → R,

ul 7→ g(ul,wl) = ‖ul −wl‖2
L2 , and we are going to compute Llg(ul,wl). The generator

Ll can be written as Ll = Ld,l + Lr,l if we separate jumps due to reaction and diffusion
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events in the sum (7). We start with the computation of Ld,lg(ul,wl).

Ld,lg(ul,wl) =
ns∑

j=1

∑

z∈G1
l

m∑

k=1

n
dj

2m
ul,j(z)

(
‖ul − 1

nχj,z + 1
nχj,(z−lek) −wl‖2

L2−

− 2 ‖ul −wl‖2
L2 + ‖ul − 1

nχj,z + 1
nχj,(z+lek) −wl‖2

L2

)

=
ns∑

j=1

∑

z∈G1
l

m∑

k=1

n
dj

2m
ul,j(z)×

×
(

2
lm+2

n

(
∂−k ∂

+
k ul,j(z)− ∂−k ∂

+
k wl,j(z)

)
+ 4

lm

n2

)

=
ns∑

j=1

m∑

k=1

(
2
dj

2m
l2

(
ul,j , ∂

−
k ∂

+
k (ul,j − wl,j)

)
L2 +

2
m

dj

n

(
ul,j , 1

)
L2

)

= −2
ns∑

j=1

m∑

k=1

dj

2m
l2

(
∂+

k ul,j , ∂
+
k (ul,j − wl,j)

)
L2 + 2

ns∑

j=1

dj

n

(
ul,j , 1

)
L2

= −2 al(ul,ul −wl) + 2
ns∑

j=1

dj

n

(
ul,j , 1

)
L2 .

(52)

Here al(·, ·) is given by (40) with Dl,j = dj

2m l2. Computing the reaction part yields

Lr,lg(ul,wl) =
∑

z∈G1
l

nr∑

i=1

nKl,i(ul(z))
(
‖ul + 1

n

∑ns
j=1 νijχj,z −wl‖2

L2−

− ‖ul −wl‖2
L2

)

=
∑

z∈G1
l

nr∑

i=1

nKl,i(ul(z))
(

2
lm

n

ns∑

j=1

νij (ul,j(z)− wl,j(z)) +
lm

n2

ns∑

j=1

ν2
ij

)
.

(53)

Hence,

Lr,lg(ul,wl) =
nr∑

i=1

ns∑

j=1

∑

z∈G1
l

(
2n

lm

n
νij Kl,i(ul(z))

(
ul,j(z)− wl,j(z)

)
+

+ n
lm

n2
ν2

ij Kl,i(ul(z))
)

= 2
(
f l(ul), ul −wl

)
L2 +

1
n

nr∑

i=1

ns∑

j=1

ν2
ij

(
Kl,i(ul), 1

)
L2 .

(54)

By gathering together the different contributions we finally get

Llg(ul,wl) = −2 al(ul,ul −wl) + 2
(
f l(ul), ul −wl

)
L2+

+ 2
ns∑

j=1

dj

n

(
ul,j , 1

)
L2 +

1
n

nr∑

i=1

ns∑

j=1

ν2
ij

(
Kl,i(ul), 1

)
L2 .

(55)
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Recall that we denote by vl(t) the solutions of the approximating problem (39), and

consider the function h(·,wl) : [0, T ] → R with wl ∈ H1
0 as parameter given by

(56) t 7→ h(t,wl) = ‖wl − vl(t)‖2
L2 .

Note that

h′(t,wl) = −2
(
v′l(t), wl − vl(t)

)
L2

= 2 al

(
vl(t),wl − vl(t)

)− 2
(
f(vl(t)), wl − vl(t)

)
L2 .

(57)

2. Consider now the (unbounded) function Φ : Sl × [0, T ] → R given by

(ul, t) 7→ Φ(ul, t) = ‖ul − vl(t)‖2
L2 .(58)

It follows by Dynkin’s formula (Kallenberg, 2002, Lemma 19.21) and a truncation argu-

ment that the process

Ml(t) = ‖ul(t)− vl(t)‖2
L2 − ‖ul(0)− vl(0)‖2

L2−

−
∫ t

0

(
LlΦ(ul(s), s) + ∂sΦ(ul(s), s)

)
ds

= ‖ul(t)− vl(t)‖2
L2 − ‖ul(0)− vl(0)‖2

L2−

−
∫ t

0

(
Llg(ul(s),vl(s)) + h′(s,ul(s))

)
ds,

(59)

t ≤ T , stopped at τp, is a martingale for each p ∈ N. Plugging the explicit computations

above into Eq. (59) yields (50).

We are now ready to finish the proof of the law of large numbers.

Proof of Theorem 3.1. Let d̂ = maxj=1,...,ns dj . By stopping the local martingale (50)

and taking expectations we get the estimate

E
[
‖ul(t ∧ τp)− vl(t ∧ τp)‖2

L2

]
+ E

∫ t∧τp

0
al

(
ul(s)− vl(s),ul(s)− vl(s)

)
ds

≤ ‖ul(0)− vl(0)‖2
L2 + E

∫ t∧τp

0

∣∣∣
(
f l(ul(s))− f(vl(s)), ul(s)− vl(s)

)
L2

∣∣∣ ds+

+ 2
ns∑

j=1

dj

n
E

∫ t∧τp

0

(
ul,j(s), 1

)
L2 ds+

+
1
n

ns∑

j=1

nr∑

i=1

ν2
ij E

∫ t∧τp

0

(
Ki(ul(s)), 1

)
L2 ds.

(60)

From the coerciveness of the bilinear form al(·, ·) and a few elementary estimates it follows
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that

E
[
‖ul(t ∧ τp)− vl(t ∧ τp)‖2

L2

]
≤ ‖ul(0)− vl(0)‖2

L2 + C sup
RnS

|f l − f |+

+ C
(
(d̂+ C )/n

) ∫ T

0

(
‖vl(s)‖2

L2 + 1
)
ds+

+ C
(
(d̂+ C )/n+ sup

RnS

|f l − f |+ 1
)
E

∫ t∧τp

0
‖ul(s)− vl(s)‖2

L2 ds,

(61)

where the constant C does not depend on l. Note also that
∫ T

0
E

[
‖ul(s)‖2

L2

]
<∞.(62)

By letting p→∞ we deduce from the monotone convergence theorem and Fatou’s lemma

that the above estimate (61) is valid even with t∧ τp replaced by t. Gronwall’s inequality

then yields

E
[
‖ul(t)− vl(t)‖2

L2

]
≤

(
‖ul(0)− vl(0)‖2

L2 + C sup
RnS

|f l − f |+

+ C
(
(d̂+ C )/n

)(‖vl(s)‖2
L2(0,T ;L2)

+ T
))
×

× exp
(
C

(
(d̂+ C )/n+ sup

RnS

|f l − f |+ 1
)
T

)
.

(63)

Finally, it follows from the scaling assumptions (16) and (48) that

(64) sup
t≤T

E
[
‖ul(t)− vl(t)‖2

L2

]
→ 0.

4.2 Crowding effects

4.2.1 An auxiliary problem

Here the discrete analogue of the PDE (17) on the interior lattice points Gh is given by




u′h −∆h(Dh(uh)uh) = 0 in G1
h × (0, T )

uh = 0 on (Gh \ G1
h)× [0, T ]

uh(·, 0) = uh,0 on G1
h.

(65)

We assume that the functions Dh satisfy conditions (25a) and (25b) and that

(66) sup
R
|Dh −D| → 0 (h→ 0).

The discretised PDE (65) is in fact a system of ODEs with continuous right-hand side

which has a local solution according to the Peano theorem. Existence of a solution on the

whole interval [0, T ] follows from the derivation of the a-priori estimate (73) below.
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In analogy to the treatment of the PDE we endow the discrete Sobolev space H1
0 with

the scalar product

(67)
(
uh, vh

)
H1

0
=

(∇+uh, ∇+vh

)
(L2)m , uh, vh ∈ H1

0.

It induces a norm which is equivalent to the original one due to the discrete Poincaré

inequality. We regard −∆h as operator from H1
0 to H−1 given by

(68)
〈−∆huh, vh

〉
H1

0
=

(∇+uh, ∇+vh

)
(L2)m , uh, vh ∈ H1

0,

and H−1 is equipped with the scalar product

(69)
(
uh, vh

)
H−1 =

〈
uh, −∆−1

h vh

〉
H1

0
, uh, vh ∈ H−1.

The corresponding norm is denoted by |||·|||H−1 . It is equal to the standard norm which we

denote by ‖·‖H−1 . The solution of (65) can then be regarded as a function in C1([0, T ],L2)

that satisfies
d

dt

(
uh(t), vh

)
H−1 + ah(uh(t), vh) = 0(70)

for all vh ∈ L2 and t ∈ [0, T ], where the mapping ah : L2 × L2 → R is defined by

(71) ah(uh, vh) =
(
Dh(uh)uh, vh

)
L2 , uh, vh ∈ L2.

Note that ah(·, ·) induces a bounded monotone operator Ah : L2 → (L2)∗ by
〈
Ah(uh), vh

〉
L2 = ah(uh, vh), uh, vh ∈ L2.(72)

Compared to the example of the previous section we have introduced here a different

functional setting to establish the existence of a unique weak solution of the macroscopic

PDE (cf. Section. 3.2.3). Unfortunately, we are (without further hypotheses and regularity

considerations) only able to show weak convergence of the solution of the auxiliary problem

(65) in the space L2(0, T ;L2), which, in turn, results in a weaker law of large numbers.

Theorem 4.4. Let u be the solution of the weak problem (29) to the initial value u0 ∈ L2.

Let (uh), h↘ 0, be a sequence of solutions of the approximating problem (70) to the initial

value uh,0, and assume that uh,0 converges strongly to u0 in L2. Then uh converges weakly

to u in L2(0, T ;L2).

Sketch of proof. The a-priori estimates

sup
h

max
0≤t≤T

‖uh(t)‖H−1 <∞,(73)

sup
h
‖uh‖L2(0,T ;L2) <∞,(74)

follow immediately from the discrete weak formulation by inserting uh(t) for vh and inte-

grating over time. They ensure the existence of a weakly convergent subsequence of (uh)

in L2(0, T ;L2). The passage to the limit can be performed with techniques from (Temam,

2001) and the Minty lemma. For more details see Reichert (2006).
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4.2.2 Convergence of the particle density

Let from now on vl be the solution of the approximating problem (65) and ul the stochastic

particle density. We shall see below that by similar arguments as in the previous section

we are able to show that

(75) sup
t≤T

E
[
‖ul(t)− vl(t)‖2

H−1

]
→ 0 (l→ 0).

Unfortunately, we do not have a nice compatibility of the norms in H−1 and H−1. If a

sequence of lattice functions (uh) converges to zero with respect to the norm in H−1(Gh)

we are (to the best of our knowledge) not able to conclude that the same is true for

the extended versions (ũh|G) with respect to the norm in H−1(G). This difficulty is

circumvented by resorting to a weaker notion of convergence.

Observe that if we define for a function ψ ∈ C∞0 (QT ) approximating lattice functions

ψh(·, t) on a grid Zh(z0) simply by setting

(76) ψh(z, t) =




ψ(z, t) for z ∈ G1

h

0 otherwise,

then ψ̃h|QT
converges uniformly to ψ on QT for h→ 0. Moreover, the discrete derivatives

∂̃+
k ψh

|QT
converge uniformly to ∂xk

ψ. Furthermore, note that for ψ ∈ C∞0 (QT ),

(77)
∫ T

0

〈
ul(t), ψl(t)

〉
H1

0
dt =

∫ T

0

(
ul(t), ψl(t)

)
L2 dt =

∫ T

0

(
ũl(t), ψ̃l(t)

)
L2 dt.

The proof of Theorem (3.3) is based on the following auxiliary result that will be shown

below.

Theorem 4.5. Assume that the scaling relations (30) are satisfied, and denote by vl

the solutions of the approximating problem (65) with Dl = 1
2m l

2 d to the initial value

vl,0 = ul(0). Then

sup
t≤T

E
[
‖ul(t)− vl(t)‖2

H−1

]
→ 0.

Proof of Theorem 3.3. Let ψl be the approximating lattice function of an arbitrary

function ψ ∈ C∞0 (QT ) as defined above. (Assume that ψ is not identically zero to avoid

trivialities.) Then

P

[∣∣∣∣
∫ T

0

∫

G
ul ψ dx dt−

∫ T

0

∫

G
uψ dx dt

∣∣∣∣ > ε

]

≤ P

[∣∣∣∣
∫ T

0

∫

G
(ul − vl)ψ dx dt

∣∣∣∣ > ε/2

]
+ P

[∣∣∣∣
∫ T

0

∫

G
(u− vl)ψ dx dt

∣∣∣∣ > ε/2

]
.

(78)
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The second term in the sum vanishes for l → 0 because vl converges weakly to u in

L2(0, T ;L2). As for the first term, observe that

P

[∣∣∣∣
∫ T

0

∫

G
(ul − vl)ψ dx dt

∣∣∣∣ > ε/2

]
≤ P

[∣∣∣∣
∫ T

0

∫

G
(ul − vl)ψl dx dt

∣∣∣∣ > ε/4

]
+

+ P

[∣∣∣∣
∫ T

0

∫

G
(ul − vl) (ψ − ψl) dx dt

∣∣∣∣ > ε/4

]
.

(79)

Again the second term in the sum tends to zero for l → 0, since almost surely supl ‖ul −
vl‖L1(QT ) < ∞ (cf. (21)) and ‖ψ − ψl‖L∞(QT ) → 0. Let now C > 0 be a constant such

that ‖ψl‖L2(0,T ;H1
0) ≥ C for sufficiently small l. Then

P

[∣∣∣∣
∫ T

0

∫

G
(ul − vl)ψl dx dt

∣∣∣∣ > ε/4

]

= P

[∣∣∣∣
∫ T

0

〈
ul(t)− vl(t), ψl(t)

〉
H1

0
dt

∣∣∣∣ > ε/4

]

≤ P

[(∫ T

0
‖ul(t)− vl(t)‖2

H−1 dt

)1/2 ( ∫ T

0
‖ψl(t)‖2

H1
0
dt

)1/2

> ε/4

]

≤ P

[(∫ T

0
‖ul(t)− vl(t)‖2

H−1 dt

)1/2

> ε/(4C)

]

≤ (4C)2

ε2
E

[∫ T

0
‖ul(t)− vl(t)‖2

H−1 dt

]
→ 0.

(80)

It remains to prove the auxiliary theorem 4.5. The proof is based on the next lemma that

identifies a martingale related to the process ‖ul(t)− vl(t)‖2
H−1 , t ≤ T .

Lemma 4.6. The process (Ml(t))t≤T given by

(81)
Ml(t) = ‖ul(t)− vl(t)‖2

H−1 − ‖ul(0)− vl(0)‖2
H−1+

+ 2
∫ t

0

〈
Al(ul(s))−Al(vl(s)), ul(s)− vl(s)

〉
L2 ds−Rl(t),

where

Rl(t) =
1
n

∫ t

0

(
d(ul(s))ul(s), βl

)
L2 ,(82)

is a martingale. Here the lattice functions βl satisfy maxz∈Gl
|βl(z)| ≤ C for a constant C

independent of l.

Proof. Consider for fixed wl ∈ L2 the function g(·, wl) : Sl → R given by

ul 7→ g(ul, wl) = ‖ul − wl‖2
H−1 ,
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and recall that

(83) ‖ul − wl‖2
H−1 = |||ul − wl|||2H−1 =

(
ul − wl, (−∆l)−1(ul − wl)

)
L2 .

We are going to compute Llg(ul, wl).

Llg(ul, wl) =
∑

z∈G1
l

m∑

k=1

n
1

2m
d(ul(z))ul(z)×

×
( ∣∣∣∣∣∣ul − 1

nχz + 1
nχ(z−lek) − wl

∣∣∣∣∣∣2
H−1 − 2 |||u− w|||2H−1 +

+
∣∣∣∣∣∣ul − 1

nχz + 1
nχ(z+lek) − wl

∣∣∣∣∣∣2
H−1

)

=
∑

z∈G1
l

m∑

k=1

n
1

2m
d(ul(z))ul(z)×

×
(

2
n

(
ul − wl, χ(z−lek) − 2χz + χ(z+lek)

)
H−1+

+
1
n2

∣∣∣∣∣∣χ(z−lek) − χz

∣∣∣∣∣∣2
H−1 +

1
n2

∣∣∣∣∣∣χ(z+lek) − χz

∣∣∣∣∣∣2
H−1

)
.

(84)

We set ũl = (−∆l)−1ul, and w̃l = (−∆l)−1wl. Hence, we get

Llg(ul, wl) =
∑

z∈G1
l

n
1

2m
d(ul(z))ul(z)

(
2
n
lm+2

(
∆lũl(z)−∆lw̃l(z)

)
+

1
n2
β̃l(z)

)
,(85)

where

β̃l(z) =
m∑

k=1

((
χ(z−lek) − χz, (−∆l)−1(χ(z−lek) − χz)

)
L2+

+
(
χ(z+lek) − χz, (−∆l)−1(χ(z+lek) − χz)

)
L2

)
.

(86)

Note that

∣∣∣β̃l(z)
∣∣∣ ≤ C

m∑

k=1

(
‖χ(z−l) − χz‖2

L2 + ‖χ(z+l) − χz‖2
L2

)
≤ Cm l,(87)

since the discrete Laplacian, as its continuous analogue, has a bounded inverse. We set

βl = β̃l/(2ml). Finally, we get

Llg(ul, wl) = −2
1

2m
l2

(
d(ul)ul, ul − wl

)
L2 +

1
n

(
d(ul)ul, βl

)
L2

= −2 al(ul, ul − wl) +
1
n

(
d(ul)ul, βl

)
L2 .

(88)

Consider now for fixed wl ∈ L2 the function h(·, wl) : [0, T ] → R,

t 7→ h(t, wl) = ‖wl − vl(t)‖2
H−1 ,
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and observe that

h′(t, wl) = −2
(
v′l(t), wl − vl(t)

)
H−1 = 2 al(vl(t), wl − vl(t)).(89)

Let Φ : Sl × [0, T ], (ul, t) 7→ Φ(ul, t) = ‖ul − vl(t)‖2
H−1 . It follows again from Dynkin’s

formula that the process (Ml(t))t≤T given by

Ml(t) = Φ(ul(t), t)− Φ(ul(0), 0)−
∫ t

0

(
LlΦ(ul(s), s) + ∂sΦ(ul(s), s)

)
ds

= ‖ul(t)− vl(t)‖2
H−1 − ‖ul(0)− vl(0)‖2

H−1−

−
∫ t

0

(
Llg(ul(s), vl(s)) + h′(s, ul(s))

)
ds

(90)

is a martingale. (Here we do not have to worry about Φ being unbounded, since the

particle density process is, for fixed l, bounded by construction.) Substituting the explicit

computations in the equation above yields (81).

Proof of Theorem 4.5. We set d̂ = supR d. By taking expectations in the martingale

formula (81) and making use of the monotonicity of Al we get the estimate

E
[
‖ul(t)− vl(t)‖2

H−1

]
≤ ‖ul(0)− vl(0)‖2

H−1 + C E

∫ t

0

d̂

n

(
ul(s), 1

)
L2 ds

≤ ‖ul(0)− vl(0)‖2
H−1 + C

d̂

n
‖ul(0)‖L2 → 0.

(91)

Here the second inequality is due to the estimate (21).

4.3 Gradient-activated diffusion

4.3.1 An auxiliary problem

The approximating problem on the interior lattice points Gh is given by the following

system of ODEs:




u′h −
m∑

k=1

∂−k Dh(∂+
k uh) ∂+

k uh = 0 in G1
h × (0, T )

uh = 0 on (Gh \ G1
h)× [0, T ]

uh(·, 0) = uh,0 in G1
h,

(92)

where the function Dh : R→ R+
0 is assumed to satisfy conditions (25a) and (25b). More-

over, we assume that supR |Dh −D| → 0 for h → 0. This is again a finite-dimensional

ODE system with continuous right-hand side, and it has a local solution according to the

Peano theorem. The existence of a solution on the entire interval [0, T ] follows from the
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derivation of the a-priori estimate (96) below. We define the mapping ah : H1
0 ×H1

0 → R
by

(93) ah(uh, vh) =
m∑

k=1

(
Dh(∂+

k uh) ∂+
k uh, ∂

+
k vh

)
L2 , uh, vh ∈ H1

0.

Note that ah(·, ·) once more induces a bounded monotone operator Ah : H1
0 → H−1 by

〈
Ah(uh), vh

〉
H1

0
= ah(uh, vh), uh, vh ∈ H1

0.(94)

The solution of (92) can be regarded as a function in C1([0, T ],H1
0) that solves the discrete

weak problem

d

dt

(
uh(t), vh

)
L2 + ah(uh(t), vh) = 0(95)

for all vh ∈ H1
0 and t ∈ [0, T ].

Here, as in Section 4.1, we first show strong convergence of the solutions of the ap-

proximating problem (92) in L2(0, T ;L2).

Theorem 4.7. Let u be the solution of the weak PDE problem (15) to the initial value

u0, and let (uh), h ↘ 0, be a sequence of solutions of the approximating problem (92) to

the initial value uh,0. If uh,0 converges strongly to u0 in L2, then uh converges strongly to

u in L2(0, T ;L2).

Sketch of proof. The a-priori estimates

sup
h

max
0≤t≤T

‖uh(t)‖L2 <∞,(96)

sup
h
‖uh‖L2(0,T ;H1

0) <∞,(97)

sup
h
‖u′h‖L2(0,T ;H−1) <∞,(98)

follow from the weak formulation of the approximating problem by inserting uh(t) for vh

and integrating over time. The passage to the limit of a weakly convergent subsequence

in L2(0, T ;L2) can again be carried out with techniques from Temam (2001) and the

Minty lemma. Strong convergence follows from a discrete analogue of the Aubin-Lions

compactness theorem. For more details we refer again to Reichert (2006).

4.3.2 Convergence of the particle density

From now on vl denotes the solution of the approximating problem (31) and ul the stochas-

tic particle density. In view of Theorem 4.7, the law of large numbers is an immediate

consequence of the following result.
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Theorem 4.8. Let u be the solution of the weak problem (37) to the initial value u0.

Assume that the scaling relations (38) are satisfied, and denote by vl the solutions of

the approximating problem (92) with Dl = l2 d to the initial value vl,0 = ul(0). If ul(0)

converges strongly to u0 in L2, then

sup
t≤T

E
[
‖ul(t)− vl(t)‖2

L2

]
→ 0.

The proof of the above theorem rests again on a lemma that identifies a related mar-

tingale.

Lemma 4.9. The process (Ml(t))t≤T given by

Ml(t) = ‖ul(t)− vl(t)‖2
L2 − ‖ul(0)− vl(0)‖2

L2+

+
∫ t

0

〈
Al(ul(s))−Al(vl(s)), ul(s)− vl(s)

〉
H1

0
ds−Rl(t),

(99)

where

Rl(t) =
2
n

m∑

k=1

∫ t

0

(
(d(∂+

k ul(s)) + d(∂−k ul(s)))ul(s), 1
)
L2 ds,(100)

is a martingale.

Proof. Consider for fixed wl ∈ H1
0 the function g(·, wl) : Sl → R given by

ul 7→ g(ul, wl) = ‖ul − wl‖2
L2 .

We compute Llg(ul, wl).

Llg(ul, wl) =
∑

z∈G1
l

m∑

k=1

nd(∂+
k ul(z))ul(z)×

(
‖ul − 1

nχz + 1
nχ(z+lek) − wl‖2

L2 − ‖ul − wl‖2
L2

)
+

+
∑

z∈G1
l

m∑

k=1

nd(−∂−k ul(z))ul(z)×

×
(
‖ul − 1

nχz + 1
nχ(z−lek) − wl‖2

L2 − ‖ul − wl‖2
L2

)

=
∑

z∈G1
l

m∑

k=1

nd(∂+
k ul(z))ul(z)×(101)

×
(

2
n

(
ul − wl, χ(z+lek) − χz

)
L2 +

1
n2
‖χ(z+lek) − χz‖2

L2

)
+

+
∑

z∈G1
l

m∑

k=1

nd(−∂+
k ul(z − lek))ul(z)×
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×
(

2
n

(
ul − wl, χ(z−lek) − χz

)
L2 +

1
n2
‖χ(z−lek) − χz‖2

L2

)

=
∑

z∈G1
l

m∑

k=1

nd(∂+
k ul(z))ul(z)×

×
(

2
lm

n

(
ul(z + lek)− wl(z + lek)−

(
ul(z)− wl(z)

)))
+

+
∑

z∈G1
l

m∑

k=1

nd(−∂+
k ul(z − lek))ul(z)×

×
(

2
lm

n

(
ul(z − lek)− wl(z − lek)−

(
ul(z)− wl(z)

)))

+
∑

z∈G1
l

m∑

k=1

nul(z) 2
l

n2

(
d(∂+

k ul(z)) + d(−∂−k ul(z))
)
.

By introducing discrete derivatives and making use of assumption (25b) it follows that

Llg(ul, wl) = 2
∑

z∈G1
l

m∑

k=1

lm+1 d(∂+
k ul(z))ul(z)

(
∂+

k ul(z)− ∂+
k wl(z)

)−

− 2
∑

z∈G1
l

m∑

k=1

lm+1 d(∂+
k ul(z − lek))ul(z)×

× (
∂+

k ul(z − lek)− ∂+
k wl(z − lek)

)
+(102)

+ 2
∑

z∈G1
l

m∑

k=1

lm

n
ul(z)

(
d(∂+

k ul(z)) + d(∂−k ul(z))
)

= 2 lm
∑

z∈G1
l

m∑

k=1

ul(z) ∂−k
(
l2d(∂+

k ul)(∂+
k ul − ∂+

k wl)
)
(z)+

+ 2
∑

z∈G1
l

m∑

k=1

lm

n
ul(z)

(
d(∂+

k ul(z)) + d(∂−k ul(z))
)
.

Hence, by a discrete integration by parts,

Llg(ul, wl) = −2
m∑

k=1

(
l2 d(∂+

k ul) ∂+
k ul, ∂

+
k ul − ∂+

k wl

)
L2+

+
2
n

m∑

k=1

((
d(∂+

k ul) + d(∂−k ul)
)
ul, 1

)
L2(103)

= −2 al(ul, ul − wl) +
2
n

m∑

k=1

(
(d(∂+

k ul) + d(∂−k ul))ul, 1
)
L2 .

We now consider for arbitrary but fixed wl ∈ H1
0 the function h(·, wl) : [0, T ] → R,

t 7→ h(t, wl) = ‖wl − vl(t)‖2
L2 .
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Note that

h′(t, wl) = −2
(
v′l(t), wl − vl(t)

)
L2 = 2 al(vl(t), wl − vl(t)).(104)

Let Φ : Sl × [0, T ] → R be given by (ul, t) 7→ Φ(ul, t) = ‖ul(t)− vl(t)‖2
L2 . It follows again

from Dynkin’s formula that the process (Ml(t))t≤T defined by

Ml(t) = Φ(ul(t), t)− Φ(ul(0), 0)−
∫ t

0

(
LlΦ(ul(s), s) + ∂sΦ(ul(s), s)

)
ds

= ‖ul(t)− vl(t)‖2
L2 − ‖ul(0)− vl(0)‖2

L2−

−
∫ t

0

(
Llg(ul(s), vl(s)) + h′(s, ul(s))

)
ds

(105)

is a martingale. Substituting the explicit computations above yields (99).

Proof of Theorem 4.8. By taking expectations in Eq. (99) and making use of the

monotonicity of Al we get the estimate

E
[
‖ul(t)− vl(t)‖L2

]
≤ ‖ul(0)− vl(0)‖L2 + 2mE

∫ t

0

d̂

n

(
ul(s), 1

)
L2 ds

≤ ‖ul(0)− vl(0)‖L2 + C
d̂

n
‖ul(0)‖L2 ,

(106)

where d̂ = supR d. In view of the hypotheses, we can conclude that the right hand side

tends to zero, which finishes the proof.

5 Discussion

We have seen that by using roughly the same procedure it is possible to derive laws of large

numbers for several typical instances of the general mesoscopic stochastic particle model

introduced in Section 2.2. While the scaling relations (16a), (16b) and the corresponding

relations for the other models appear natural, condition (16c) is more difficult to justify

in physical terms. It serves to damp out the fluctuating term in the remainder Rl(t) (Eq.

(51)) that stems from diffusive jumps. Stated in terms of n and l, condition (16c) reads

(1/n)/l2 → 0. Heuristically, 1/
√
n is a measure for the size of fluctuations of the particle

densities. Therefore (1/
√
n)/l may be interpreted as a measure for the gradients of the

particle densities caused by fluctuations. Condition (16c) forces these gradients to vanish

asymptotically.

The scaling relation (16c) also appears in Arnold & Theodosopulu (1980) and Kotelenez

(1986) in their treatment of single-species models with linear reaction kinetics. In addition,

Kotelenez (1986, 1988) is able to prove a law of large numbers in a weaker norm for a

single-species model with linear or polynomial kinetics using only (16a) and (16b). Under
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the same hypotheses Blount (1994) has a stronger result for the model with polynomial

kinetics. In addition Blount (1994) discusses a law of large numbers for a particular

model where n is kept constant. However, all authors mentioned above work with particle

densities defined on the unit cube in Rm, which has the advantage that the eigenvalues

and eigenfunctions of the Laplacian are explicitly known. This knowledge is exploited in

Blount (1994) to get rid of condition (16c). Differences in the time scales of the chemical

reactions are treated in Ball et al. (2006) for some spatially homogeneous models.

A motivation for considering weak solutions of the limit equations is that the nonlinear

parabolic PDEs that appear as limit dynamics of stochastic particle models might have

solutions that are not differentiable in the classical sense, in particular, if a nonlinear

diffusion operator is involved. If, on the other hand, the solution of the limit equations is

sufficiently smooth, as is the case, e.g., for the model with linear diffusion and Lipschitz

continuous reaction rates (in case of sufficiently smooth data), one can obtain explicit

rates for the convergence of the solution vl of the approximating problem to the solution

of the limit equation u. Let us assume that ‖u − vl‖L2(0,T ;L2) = O(l), and suppose that

n = O(l−α) and d̂ = O(l−β), where α > β > 0, in order to satisfy condition (16c).

Moreover, assume that ul(0) = vl,0 and supRns |f l − f | = O(l). Then it can easily be

seen from the estimate (63) that the rate of convergence in the law of large numbers is

O(lα−β) if β + 1 > α > β, and O(l) if α ≥ β + 1. In other words, the rate of convergence

is determined by the ratio d̂/n if α− β < 1.

Although we were able to handle quite general classes of reaction-diffusion systems,

the cases considered in the present work are by no means exhaustive. The same or similar

techniques might be applied to models that include convection, cross-diffusion of different

species, or ‘freezing’ of particles (Stefan problems). The essential limiting condition seems

to be the monotonicity of the diffusion operator and its discrete analogue.

References

Arnold, L. & Theodosopulu, M. (1980), ‘Deterministic Limit of the Stochastic Model of

Chemical Reactions with Diffusion,’ Advances in Applied Probability, vol. 12(2), pp.

367–379.

Ball, K., Kurtz, T. G., Popovic, L. & Rempala, G. (2006), ‘Asymptotic analysis of

multiscale approximations to reaction networks,’ The Annals of Applied Probability,

vol. 16(4), pp. 1925–1961.

Ben-Jacob, E., Cohen, I. & Levine, H. (2000), ‘Cooperative self-organization of microor-

ganisms,’ Advances in Physics, vol. 49(4), pp. 395–554.



30 REFERENCES

Blount, D. (1991), ‘Comparison of deterministic and stochastic models of a linear chemical

reaction with diffusion,’ The Annals of Probability , vol. 19, pp. 1440–1462.

Blount, D. (1993), ‘Limit theorems for a sequence of reaction-diffusion systems,’ Stochastic

Processes and their Applications, vol. 42, pp. 1–30.

Blount, D. (1994), ‘Density-dependent limits for a nonlinear reaction-diffusion model,’ The

Annals of Probability , vol. 22(4), pp. 2040–2070.

Ethier, S. N. & Kurtz, T. G. (1986), Markov Processes: Characterization and Convergence,

Wiley, New York.

Evans, L. C. (1998), Partial differential equations, AMS, Providence.

Gardiner, C. W. (2004), Handbook of Stochastic Methods, Springer, Berlin, 3rd edn.

Gillespie, D. T. (1977), ‘Exact Stochastic Simulation of Coupled Chemical Reactions,’

Journal of Physical Chemistry , vol. 81, pp. 2340–2361.
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