The extended finite element method with integral matching

Patrick LABORDE

Institut de Mathématiques de Toulouse, UPS/CNRS

with the collaboration of Elie CHAHINE and Yves RENARD

Workshop Méthode Numériques Innovantes, Application à la Mécanique Lyon, 23-24 juin 2008

XFEM type methods

Table of contents

1 Introduction

- 2 A model problem
- **3** Standard XFEM
- 4 First improvements
- **S** XFEM with integral matching
- 6 Conclusions

Table of contents

1 Introduction

- 2 A model problem
- **3** Standard XFEM
- 4 First improvements
- 5 XFEM with integral matching
- **6** Conclusions

Introduction

Fracture Mechanics and FEM

- Crack mechanisms in various industrial situations (aeronautics, civil engineering,...)
- *FEM* is the standard tool for numerical simulations in an industrial framework

• FEM has serious difficulties solving fracture problems

Introduction

Fracture Mechanics and FEM

Presence of a crack =

Discontinuity

+

Singularity

FE mesh adapted to the geometry of the crack line

Local mesh refining near the crack tip

XFEM type methods

Fracture Mechanics and FEM

Presence of a crack =

+

Discontinuity

FE mesh adapted to the geometry of the crack line

Singularity

Local mesh refining near the crack tip

Limits of *FEM* in fracture mechanics

Crack propagation simulation incremental process

 \implies Successive updates of the mesh :

- hight computational cost
- additional errors

Introduction

Enriched FEM

To overcome the drawbacks of standard *FEM* :

Enriched finite element methods

Global displacement field

Enriched discrete space

- $u_h = w_h + e_h \qquad \qquad V_h = W_h + E_h$
 - W_h is a standard FE space
 - E_h is a space of enrichment functions

The enrichment procedure...

- uses informations about the solution
- is localized by means of a unity partition method

XFEM : eXtended Finite Element Method

[Moës et al., 1999]

Patrick LABORDE (UPS/CNRS)

XFEM type methods

The Aim of this work

- To analyse advantages and limits of the standard XFEM method
- A non-conformal *XFEM* type method (with integral matching)
- Numerical experiments : an optimal rate of convergence
- A mathematical error estimate

Table of contents

1 Introduction

2 A model problem

- **3** Standard XFEM
- 4 First improvements
- 5 XFEM with integral matching
- **6** Conclusions

Cracked solid

 Ω cracked plane domain

Isotropic linear elasticity

$$\begin{cases} \sigma(u) = D \varepsilon(u) & \text{ on } \Omega \\ -\operatorname{div} \sigma(u) = g & \text{ on } \Omega \\ u = d & \text{ on } \Gamma_D \\ \sigma(u)n = f & \text{ on } \Gamma_F \\ \sigma(u)n = 0 & \text{ on } \Gamma_C \end{cases}$$

Variational formulation

Find u such that

$$\begin{cases} u \in V \\ a(u, v - u) = L(v - u) \quad \forall v \in V \end{cases}$$

where :

$$V = \{ u : u \in \boldsymbol{H}^1(\Omega) : u = d \text{ on } \Gamma_D \}$$

and

$$a(u, v) = \int_{\Omega} \sigma(u) : \varepsilon(v) \, dx$$

$$\sigma(u) = \lambda \, tr \varepsilon(u) \, I + 2\mu \, \varepsilon(u)$$

$$X(\Omega) = \{v = (v_i) : v_i \in X(\Omega; \mathbb{R}^2)\}$$

Asymptotic displacement at the crack tip

The displacement field :

$$\begin{cases} u = u_R + u_S \\ u_S = K_I u_I + K_{II} u_{II} \end{cases}$$

where :

 $K_{I}, K_{II} \in \mathbb{R} \quad \text{(the stress intensity factors)}$ $u_{R} \in H^{2+\epsilon}(\Omega) \quad \text{for a fixed } \epsilon > 0 \quad \text{(the regular part)}$ $u_{S} \in H^{3/2-\eta}(\Omega) \quad \text{for a fixed } \eta > 0 \quad \text{(the singular part)}$

A model problem

Asymptotic displacement at the crack tip

Opening mode and shear mode :

$$u_I = \frac{1}{E} \sqrt{\frac{r}{2\pi}} (1+\nu) \begin{pmatrix} \cos\frac{\theta}{2} (\delta - \cos\theta) \\ \sin\frac{\theta}{2} (\delta - \cos\theta) \end{pmatrix}$$

$$u_{II} = \frac{1}{E} \sqrt{\frac{r}{2\pi}} (1+\nu) \left(\begin{array}{c} \sin\frac{\theta}{2}(\delta+2+\cos\theta) \\ \sin\frac{\theta}{2}(\delta-2+\cos\theta) \end{array} \right)$$

where :

 $\delta = 3 - 4\nu$ in plane stresses

[Grisvard, 1992]

Table of contents

1 Introduction

2 A model problem

- 4 First improvements
- 5 XFEM with integral matching
- **6** Conclusions

XFEM : eXtended Finite Element Method

[Moës et al., 1999]

- A FE mesh independent of the crack
- An enrichment using a Heaviside function to capture the discontinuity
- An enrichment with non-smooth functions generating the asymptotic displacement at the crack tip
- The enrichment of the FE basis is localized using shape functions

Using XFEM...

 \implies No longer remeshing or local refining

 \Rightarrow Reduced computational time, improved accuracy

XFEM : eXtended Finite Element Method

[Moës et al., 1999]

- A FE mesh independent of the crack
- An enrichment using a Heaviside function to capture the discontinuity
- An enrichment with non-smooth functions generating the asymptotic displacement at the crack tip
- The enrichment of the FE basis is localized using shape functions

Using XFEM...

- \implies No longer remeshing or local refining
- \implies Reduced computational time, improved accuracy

Patrick LABORDE (UPS/CNRS)

XFEM type methods

Enrichment strategy

- Mesh independent of the crack geometry
- Enrichment with a jump fct :

$$H(x) = \begin{cases} +1 & \text{above } \Gamma_C \\ -1 & \text{below} \end{cases}$$

• Enrichment with some singular functions :

$$F = \{F_j(x)\}_j = \{\sqrt{r}\sin\frac{\theta}{2}, \sqrt{r}\cos\frac{\theta}{2}, \sqrt{r}\sin\frac{\theta}{2}\sin\theta, \sqrt{r}\cos\frac{\theta}{2}\sin\theta\}$$

Enrichment strategy

- Mesh independent of the crack geometry
- Enrichment with a jump fct :

 $H(x) = \begin{cases} +1 & \text{above } \Gamma_C \\ -1 & \text{below} \end{cases}$

Singular enrichmentDiscontinuous enrichment

• Enrichment with some singular functions :

$$F = \{F_j(x)\}_j = \{\sqrt{r}\sin\frac{\theta}{2}, \sqrt{r}\cos\frac{\theta}{2}, \sqrt{r}\sin\frac{\theta}{2}\sin\theta, \sqrt{r}\cos\frac{\theta}{2}\sin\theta\}$$

Enrichment strategy

- Mesh independent of the crack geometry
- Enrichment with a jump fct :

$$H(x) = \begin{cases} +1 & \text{above } \Gamma_C \\ -1 & \text{below} \end{cases}$$

Singular enrichment
 Discontinuous enrichment

• Enrichment with some singular functions :

$$F = \{F_j(x)\}_j = \{\sqrt{r}\sin\frac{\theta}{2}, \sqrt{r}\cos\frac{\theta}{2}, \sqrt{r}\sin\frac{\theta}{2}\sin\theta, \sqrt{r}\cos\frac{\theta}{2}\sin\theta\}$$

• The XFEM space

$$V_h = \left\{ v_h = \sum_{i \in I} a_i \varphi_i + \sum_{i \in I_H} b_i H \psi_i + \sum_{i \in I_F} \sum_j c_{ij} F_j \psi_i : a_i, b_i, c_{ij} \in \mathbb{R}^2 \right\}$$

- $\varphi_i : P_k FE$ basis functions
- ψ_i : P_1 shape functions (partition of unity)

• The XFEM space

$$V_h = \left\{ v_h = \sum_{i \in I} a_i \varphi_i + \sum_{i \in I_H} b_i H \psi_i + \sum_{i \in I_F} \sum_j c_{ij} F_j \psi_i : a_i, b_i, c_{ij} \in \mathbb{R}^2 \right\}$$

 $\varphi_i : P_k FE$ basis functions

 ψ_i : P_1 shape functions (partition of unity)

Singular enrichment
 Discontinuous enrichment ...

• The XFEM space

$$V_h = \left\{ v_h = \sum_{i \in I} a_i \varphi_i + \sum_{i \in I_H} b_i H \psi_i + \sum_{i \in I_F} \sum_j c_{ij} F_j \psi_i : a_i, b_i, c_{ij} \in \mathbb{R}^2 \right\}$$

 $\varphi_i : P_k FE$ basis functions

 ψ_i : P_1 shape functions (partition of unity)

• The XFEM space

$$V_h = \left\{ v_h = \sum_{i \in I} a_i \varphi_i + \sum_{i \in I_H} b_i H \psi_i + \sum_{i \in I_F} \sum_j c_{ij} F_j \psi_i : a_i, b_i, c_{ij} \in \mathbb{R}^2 \right\}$$

 $\varphi_i : P_k FE$ basis functions

 ψ_i : P_1 shape functions (partition of unity)

• Discrete variational formulation

$$\begin{cases} \text{Find } u_h \in V_h \text{ such that} \\ a(u_h, v_h - u_h) = L(v_h - u_h) \quad \forall v_h \in V_h \end{cases}$$

Singular enrichment
 Discontinuous enrichment a

Convergence of standard XFEM

Nonhomogeneous Dirichlet condition (Mode I exact solution).

Standard XFEM

Von Mises, P2

Von Mises, P3

Standard XFEM

Convergence of standard XFEM

XFEM type methods

Convergence of standard XFEM

• The XFEM energy norm error is lower than the FEM error

Standard XFEM

• The *XFEM* convergence is in \sqrt{h} for P_1 finite elements

 \implies The rate of convergence is not improved with respect to *FEM* [*Stazi* et al., 2003]

• XFEM is localy non-unisolvent

(there exists two linear relations between the different $\psi_i F_j$)

Orientation

The enrichment area vanishes when $h \rightarrow 0$.

 \implies Enrich all the d.o.f. in some area independent of h around the crack tip

Table of contents

1 Introduction

- 2 A model problem
- **3** Standard XFEM
- **4** First improvements
 - 5 XFEM with integral matching
 - **6** Conclusions

Surface enrichment

• *XFEM* with fixed enrichment area

 I_F is the set of the nodes lying in a surface S independent of h, say $S = B(x_0, R)$

$$V_h = \left\{ v_h = \sum_{i \in I} a_i \varphi_i + \sum_{i \in I_H} b_i H \varphi_i + \sum_{i \in I_F} \sum_j c_{ij} F_j \psi_i \right\}$$

Surface enrichment

• XFEM with fixed enrichment area

 I_F is the set of the nodes lying in a surface S independent of h, say $S = B(x_0, R)$

$$V_h = \left\{ v_h = \sum_{i \in I} a_i \varphi_i + \sum_{i \in I_H} b_i H \varphi_i + \sum_{i \in I_F} \sum_j c_{ij} F_j \psi_i \right\}$$

Numerical tests

- ▷ Optimal convergence
- High computational cost
- $\triangleright \ \text{Non-unisolvence} \to \text{ill-conditionned system}$

[Béchet et al., 2005] [Laborde et al., 2005]

Globalized enrichment

• *XFEM* with a gathering of the d.o.f.

$$c_{ij} = c_j \qquad \sum_{i \in I_F} \psi_i = \chi$$
$$V_h = \left\{ v_h = \sum_{i \in I} a_i \varphi_i + \sum_{i \in I_H} b_i H \varphi_i + \sum_j c_j F_j \chi \right\}$$

Globalized enrichment

• *XFEM* with a gathering of the d.o.f.

$$c_{ij} = c_j \qquad \sum_{i \in I_F} \psi_i = \chi$$
$$V_h = \left\{ v_h = \sum_{i \in I} a_i \varphi_i + \sum_{i \in I_H} b_i H \varphi_i + \sum_j c_j F_j \chi \right\}$$

Numerical tests

- Negligible additional cost
- Improved condition number
- \triangleright The rate of convergence decreases by 1/2

[Laborde, Pommier, Renard & Salaün, 2005]

Cutoff XFEM

• *XFEM* with a cutoff function

$$\chi \text{ is a } C^2 \text{- function s. t.} : \begin{cases} \chi(r) = 1 & \text{if } r < R_0, \\ 0 < \chi(r) < 1 & \text{if } R_0 < r < R_1, \\ \chi(r) = 0 & \text{if } R_1 < r. \end{cases}$$
$$\mathcal{V}_h = \begin{cases} v_h : v_h = \sum_{i \in I} a_i \varphi_i + \sum_{i \in I_H} b_i H \varphi_i + \sum_j c_j F_j \chi \end{cases}$$

A mathematical result of optimal error estimate : [Chahine et al., 2006]

Numerical simulations

A regular mesh

Non-homogenuous boundary Dirichlet conditions (Mode I exact solution)

Von Mises

Convergence curves

3 🕨 🖌 3

< 口 > < 同

Different cutoff functions

Condition number

[Chahine et al., 2006]

Table of contents

1 Introduction

- 2 A model problem
- **3** Standard XFEM
- 4 First improvements
- **(5)** XFEM with integral matching
 - **6** Conclusions

From PUFEM to a non-conformal XFEM

• PUFEM

 \triangleright Let Ω_1 and Ω_2 be two overlapping subdomains of Ω

 $\triangleright \ \Omega_2$ is globaly enriched with the singular functions

► A partition of unity (α_1, α_2) is associated to (Ω_1, Ω_2)

$$V_h = \{ v_h = \alpha_1 v_{h1} + \alpha_2 v_{h2} : v_{h1} \in V_{h1}, v_{h2} \in V_{h2} \}$$

 Transition layer: The width of Ω₁ ∩ Ω₂ does not affect the (optimal) error estimate ⇒ Remove the transition layer and use a matching condition [Laborde et al., 2005]

Hybrid formulation

$$\begin{cases} u = (u_1, u_2) \in \mathcal{V} = \mathcal{V}_1 \times \mathcal{V}_2, \ \lambda \in \mathcal{W} \\ a(u, v) = L(v) + \int_{\Gamma} \lambda \cdot [v] \quad \forall v \in \mathcal{V} \\ \int_{\Gamma} \mu \cdot [u] = 0 \quad \forall \mu \in \mathcal{W}, \end{cases}$$

$$a(u,v) = \sum_{k=1}^{2} a_k(u_k, v_k) = \sum_{k=1}^{2} \int_{\Omega_k} D\varepsilon(u_k) : \varepsilon(v_k) dx$$

[u] is the *jump* of the displacement u at the interface Γ

$$\mathcal{V}_1 = \left\{ v_1 \in \boldsymbol{H}^1(\Omega_1) : v_1 = 0 \text{ on } \Gamma_D \right\}, \quad \mathcal{V}_2 = \boldsymbol{H}^1(\Omega_2)$$
$$\mathcal{W} = (\boldsymbol{H}^{1/2}(\Gamma))' = \boldsymbol{H}_{00}^{-1/2}(\Gamma)$$

Existence and uniqueness

Lemma

There exists a unique $(u, \lambda) \in \mathcal{V} \times \mathcal{W}$ solution to the elasticity problem with integral matching. Moreover, the displacement field u is solution of the global elasticity problem over Ω and the multiplier λ satisfies

 $\lambda = \sigma(u)n \ on \Gamma,$

where *n* denotes the unit normal to Γ and $\sigma(u) = D\varepsilon(u)$.

XFEM with integral matching

Discrete formulation

$$\begin{cases} u_{h} = (u_{h1}, u_{h2}) \in \mathcal{V}_{h} = \mathcal{V}_{1h} \times \mathcal{V}_{2h}, \ \lambda_{h} \in \mathcal{W}_{h} \\ a(u_{h}, v_{h}) = L(v_{h}) + b(v_{h}, \lambda_{h}) \quad \forall v^{h} \in \mathcal{V}_{h} \\ b(u_{h}, \mu_{h}) = 0 \quad \forall \mu_{h} \in \mathcal{W}_{h} \end{cases}$$

$$\mathcal{V}_{h1} = \begin{cases} v_{h1} = \sum_{i \in I(\Omega_{1})} a_{i} \varphi_{i} + \sum_{i \in I_{H}(\Omega_{1})} b_{i} H \varphi_{i} : a_{i}, b_{i} \in \mathbb{R}^{2} \end{cases}$$

$$\mathcal{V}_{h2} = \begin{cases} v_{h2} = \sum_{i \in I(\Omega_{2})} a_{i} \varphi_{i} + \sum_{i \in I_{H}(\Omega_{2})} b_{i} H \varphi_{i} + \sum_{j} c_{j} F_{j} : a_{i}, b_{i}, c_{j} \in \mathbb{R}^{2} \end{cases}$$

$$\mathcal{W}_{h} = \{\mu_{h} \in \mathbf{C}^{0}(\overline{\Gamma}) : \mu_{h} | s \in \mathbf{P}_{1}, \forall S \in \mathcal{S}_{h} \} \text{ where } \mathcal{S}^{h} \text{ subdivision of } \overline{\Gamma}.$$

Discrete formulation

Remark – The definition of \mathcal{W}_h

$$\mathcal{W}_h = \{\mu_h \in \boldsymbol{C}^0(\overline{\Gamma}) : \mu_h|_S \in \boldsymbol{P}_1, \ \forall S \in \mathcal{S}_h\}$$

does not contain any discontinuous enrichment
(so the discrete multipliers are continuous across the crack)!

Error estimate

Theorem

Let (u, λ) be the solution to the integral matching continuous problem such that

$$u_R = u - u_S \in \mathbf{H}^{2+\epsilon}(\Omega) \text{ and } \lambda \in \mathbf{H}^{1/2}(\Gamma),$$

then the solution (u_h, λ_h) to the discrete hybrid problem satisfies

$$\|u-u_h\|_{1,\Omega}+\|\lambda-\lambda_h\|_{-1/2,\Gamma}\leq Ch\left(\|u\|_{2+\epsilon,\Omega}+\|\lambda\|_{1/2,\Gamma}\right).$$

 \rightarrow Bypass the proof

Proof

Steps of the proof

• An abstract error estimate : $\|u - u_h\|_{1,\Omega}^2 + \|\lambda - \lambda_h\|_{-1/2,\Gamma}^2 \leq$

$$\leq C \left\{ \inf_{
u_h \in \mathcal{V}_h} \|u-v_h\|_{1,\Omega}^2 + \inf_{\mu_h \in \mathcal{W}_h} \|\lambda-\mu_h\|_{-1/2,\Gamma}^2
ight\}$$

• Approximation of the (discontinuous) exact multipliplier :

$$\begin{split} \inf_{\varphi_h \in Y_h} \|\varphi - \varphi_h\|_{-1/2,\Gamma} &\leq Ch \|\varphi\|_{1/2,\Gamma} \\ Y_h &= \left\{\varphi_h \in C^0(\overline{\Gamma}) \ : \ \varphi_h|_S \in P_1 \ \forall S \in \mathcal{S}_h\right\} \end{split}$$

• XFEM interpolation of the displacement field : [Chahine et al., 2007]

Proof

Steps of the proof

• An abstract error estimate : $\|u - u_h\|_{1,\Omega}^2 + \|\lambda - \lambda_h\|_{-1/2,\Gamma}^2 \leq$

$$\leq C \left\{ \inf_{ v_h \in \mathcal{V}_h} \| u - v_h \|_{1,\Omega}^2 + \inf_{ \mu_h \in \mathcal{W}_h} \| \lambda - \mu_h \|_{-1/2,\Gamma}^2
ight\}$$

• Approximation of the (discontinuous) exact multipliplier :

$$egin{aligned} &\inf_{arphi_h\in Y_h}\|arphi-arphi_h\|_{-1/2,\Gamma}\leq Ch\|arphi\|_{1/2,\Gamma}\ &Y_h=ig\{arphi_h\in C^0(\overline{\Gamma})\ :\ arphi_h|_S\in P_1\ orall S\in\mathcal{S}_hig\} \end{aligned}$$

• XFEM interpolation of the displacement field : [Chahine et al., 2007]

Proof

Steps of the proof

• An abstract error estimate : $\|u - u_h\|_{1,\Omega}^2 + \|\lambda - \lambda_h\|_{-1/2,\Gamma}^2 \leq$

$$\leq C \left\{ \inf_{ v_h \in \mathcal{V}_h} \| u - v_h \|_{1,\Omega}^2 + \inf_{ \mu_h \in \mathcal{W}_h} \| \lambda - \mu_h \|_{-1/2,\Gamma}^2
ight\}$$

• Approximation of the (discontinuous) exact multipliplier :

$$egin{aligned} &\inf_{arphi_h\in Y_h}\|arphi-arphi_h\|_{-1/2,\Gamma}\leq Ch\|arphi\|_{1/2,\Gamma}\ &Y_h=ig\{arphi_h\in C^0(\overline{\Gamma})\ :\ arphi_h|_S\in P_1\ orall S\in\mathcal{S}_hig\} \end{aligned}$$

• XFEM interpolation of the displacement field : [Chahine et al., 2007]

Numerical simulations

A regular mesh

Non-homogenuous boundary Dirichlet conditions (Mode I exact solution)

Von Mises

Number of degrees of freedom

Number of cells	FEM	XFEM	XFEM	XFEM
in each direction		surface enrichment	cut-off	integral matching
40	3402	4962	3410	3508
60	7508	11014	7510	7656
80	13202	19578	13210	13404

XFEM type methods

∃ ▶ ∢

XFEM type methods

3 🕨 🖌 3

< □ > < 同 >

XFEM type methods

Non-structured mesh

XFEM type methods

< □ > < 同

XFEM type methods

∃ ▶ ∢

Table of contents

1 Introduction

- 2 A model problem
- **3** Standard XFEM
- 4 First improvements
- 5 XFEM with integral matching

• Essential ingredients of XFEM methods

- Numerical integration
- Level sets

• Some extensions of the method, applications and challenges

- 3D fracture problems, dynamic crack propagation, geometric and constitutive nonlinearities
- Adaptative mesh techniques
- Implementation in industrial finite element codes
- Plates and shells [J. Lasry]
- More complex singularities and approximate enrichement [*E. Chahine*]

Conclusions

 \rightarrow Cutoff \rightarrow Integral matching \rightarrow Spider mode I \rightarrow Spider bimaterial \rightarrow RBXFEM

Patrick LABORDE (UPS/CNRS)

XFEM type methods

э

メロトメ 御 トメ 回 トメ