# On the active control of crack growth in elastic media $\label{eq:patrick} \mbox{Patrick Hild }^1$

# collaboration with Arnaud Münch and Yves Ousset

Supported by l'Agence Nationale de la Recherche, ANR-05-JC-0182-01.

<sup>&</sup>lt;sup>1</sup>Laboratoire de Mathématiques de Besançon, Université de Franche-Comté, UMR CNRS 6623, 16 route de Gray, 25030 Besançon, France.

## 1. Introduction - Problem statement

 $\Omega \subset \mathbb{R}^2$ : elastic structure, fixed on  $\Gamma_0 \subset \partial \Omega$ , submitted to a normal load such that

$$\boldsymbol{f}\mathcal{X}_{\Gamma_f} + \boldsymbol{h}\mathcal{X}_{\Gamma_h} \in (L^2(\partial\Omega\backslash\Gamma_0))^2$$

where

$$\boldsymbol{f} \in (L^2(\Gamma_f))^2, \quad \boldsymbol{h} \in (L^2(\Gamma_h))^2, \quad \Gamma_f, \Gamma_h \subset \partial \Omega \setminus \Gamma_0, \quad \Gamma_f \cap \Gamma_h = \emptyset.$$

The domain  $\Omega$  contains a crack  $\gamma$  of extremity  $\mathbf{F}$ , unloaded and free. The corresponding displacement field  $\mathbf{u} = (u_1, u_2)$  lies in the convex set

$$\mathbf{K} = \{ \boldsymbol{v} \in (H^1_{\Gamma_0}(\Omega))^2, [\boldsymbol{v} \cdot \boldsymbol{\nu}] \le 0 \text{ on } \gamma \} \text{ where } H^1_{\Gamma_0}(\Omega) = \{ \boldsymbol{v} \in H^1(\Omega), \boldsymbol{v} = 0 \text{ on } \Gamma_0 \},$$

and minimizes at equilibrium the energy  $J(., \gamma)$  on **K**:

$$J(\boldsymbol{v},\gamma) = \frac{1}{2} \int_{\Omega} Tr(\boldsymbol{\sigma}(\boldsymbol{v}) \,\nabla \boldsymbol{v}) dx - \int_{\Gamma_f} \boldsymbol{f} \cdot \boldsymbol{v} \, d\sigma - \int_{\Gamma_h} \boldsymbol{h} \cdot \boldsymbol{v} \, d\sigma.$$
(1)

The field  $\boldsymbol{u}$  solving (1) satisfies (2):

$$\begin{cases} -\operatorname{div} \boldsymbol{\sigma}(\boldsymbol{u}) = 0, \quad \boldsymbol{\sigma}(\boldsymbol{u}) \equiv \mathbb{A} \boldsymbol{\varepsilon}(\boldsymbol{u}), \quad \boldsymbol{\varepsilon}(\boldsymbol{u}) \equiv (\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^T)/2 \quad \text{in} \quad \Omega, \\ \boldsymbol{u} = 0 \quad \text{on} \quad \Gamma_0 \subset \partial\Omega, \quad \boldsymbol{\sigma}(\boldsymbol{u})\boldsymbol{\nu} = \boldsymbol{f} \mathcal{X}_{\Gamma_f} + \boldsymbol{h} \mathcal{X}_{\Gamma_h} \quad \text{on} \quad \partial\Omega \setminus \Gamma_0, \\ [u_{\nu}] \equiv [\boldsymbol{u} \cdot \boldsymbol{\nu}] \leq 0, \quad \sigma_{\nu} \equiv (\boldsymbol{\sigma}(\boldsymbol{u})\boldsymbol{\nu}) \cdot \boldsymbol{\nu} \leq 0, \quad [u_{\nu}]\sigma_{\nu} = 0, \quad \boldsymbol{\sigma}(\boldsymbol{u})\boldsymbol{\nu} - \sigma_{\nu}\boldsymbol{\nu} = 0 \quad \text{on} \quad \gamma. \end{cases}$$
(2)

Notation:

$$\Gamma = \partial \Omega \backslash (\Gamma_0 \cup \Gamma_f \cup \gamma).$$

In order to reduce the energy release rate g (see hereafter), one may act on the boundary load  $h\mathcal{X}_{\Gamma_h}$ .

1. In this respect, assuming fixed the main load f and its support  $\Gamma_f$ , we consider, for any L (in [0, 1]), the following nonlinear problem:

$$(P_{\Gamma_h}): \quad \inf_{\mathcal{X}_{\Gamma_h} \in \mathcal{X}_L} g(\boldsymbol{u}, \boldsymbol{h}, \mathcal{X}_{\Gamma_h}); \quad \mathcal{X}_L = \{ \mathcal{X} \in L^{\infty}(\Gamma, \{0, 1\}), \|\mathcal{X}\|_{L^1(\Gamma)} = L \|\mathcal{X}_{\Gamma}\|_{L^1(\Gamma)} \}.$$

For any fixed  $\boldsymbol{h}$  in  $(L^2(\Gamma_h))^2$ ,  $(P_{\Gamma_h})$  is an optimal design problem which consists in finding the optimal distribution of the support  $\Gamma_h \subset \Gamma$  of the additional load  $\boldsymbol{h}$ . Remark that the support  $\Gamma_h$  may *a priori* be composed of several disjoint components.

**2.** On the other hand, the support  $\Gamma_h \subset \Gamma$  of the additional force being fixed, one may also consider the following problem: for any L (in [0, 1])

$$(P_h): \inf_{\boldsymbol{h}\in(L^2_L(\Gamma_h))^2} g(\boldsymbol{u}, \boldsymbol{h}, \mathcal{X}_{\Gamma_h}); \quad (L^2_L(\Gamma_h))^2 = \{\boldsymbol{h}\in(L^2(\Gamma_h))^2, \|\boldsymbol{h}\|_{(L^2(\Gamma_h))^2} = L\|\boldsymbol{f}\|_{(L^2(\Gamma_f))^2}\},$$

which consists in optimizing the amplitude of h in order to reduce g and therefore preventing the crack growth.



Illustration of the problem  $(P_{\Gamma_h})$ : Optimization of the location of  $\Gamma_h$ , the support of the extra load  $\boldsymbol{h}$  in order to minimize the energy release rate.

## 2. The energy release rate

Crack  $\gamma$ : rectilinear in the neighborhood of F and oriented along  $e_1$ .

Field:  $\boldsymbol{\psi} = (\psi_1(x_1, x_2), 0) \in \mathbf{W} \equiv \{ \boldsymbol{\psi} \in (W^{1,\infty}(\Omega, \mathbb{R}))^2, \boldsymbol{\psi} = 0 \text{ on } \partial\Omega \setminus \gamma \}.$ 

DEFINITION 1 (ENERGY RELEASE RATE) The derivative of the functional  $-J(\boldsymbol{u}, \gamma)$  with respect to a variation of  $\gamma$  in the direction  $\boldsymbol{\psi}$  is defined as the derivative at 0 of the function  $\eta \rightarrow -J(\boldsymbol{u}, (Id + \eta \boldsymbol{\psi})(\gamma))$ , i.e.

$$J(\boldsymbol{u}, (Id + \eta \boldsymbol{\psi})(\gamma)) = J(\boldsymbol{u}, \gamma) + \eta \frac{\partial J(\boldsymbol{u}, \gamma)}{\partial \gamma} \cdot \boldsymbol{\psi} + o(\eta^2).$$

In the sequel, we denote by  $g_{\psi}(\boldsymbol{u}, \boldsymbol{h}, \mathcal{X}_{\Gamma_h})$  this derivative.

LEMMA 1 The first derivative of -J with respect to  $\gamma$  in the direction  $\psi = (\psi_1, 0) \in \mathbf{W}$  is given by

$$g_{\psi}(\boldsymbol{u},\boldsymbol{h},\mathcal{X}_{\Gamma_{h}}) = -\frac{1}{2} \int_{\Omega} Tr(\boldsymbol{\sigma}(\boldsymbol{u}) \nabla \boldsymbol{u}) div \, \boldsymbol{\psi} dx + \int_{\Omega} Tr(\boldsymbol{\sigma}(\boldsymbol{u}) \nabla \boldsymbol{u} \nabla \boldsymbol{\psi}) dx$$
$$= -\frac{1}{2} \int_{\Omega} \sigma_{ij} u_{j,i} \psi_{1,1} dx + \int_{\Omega} \sigma_{ij} u_{j,1} \psi_{1,i} dx$$

where  $\boldsymbol{u} = \boldsymbol{u}(\boldsymbol{f}, \mathcal{X}_{\Gamma_f}, \boldsymbol{h}, \mathcal{X}_{\Gamma_h})$  is the solution of the elasticity problem.

**Remark 1** A simple choice for  $\boldsymbol{\psi} = (\psi_1, 0)$  is given by the radial function

$$\psi_1(\boldsymbol{x}) = \zeta(dist(\boldsymbol{x}, \boldsymbol{F})), \quad \forall \boldsymbol{x} \in \Omega,$$

where the function  $\zeta \in C^1(\mathbb{R}^+; [0, 1])$  is defined as follows:

$$\zeta(r) = \begin{cases} 1 & r \leq r_1 \\ \frac{(r-r_2)^2(3r_1 - r_2 - 2r)}{(r_1 - r_2)^3} & r_1 \leq r \leq r_2 \\ 0 & r \geq r_2 \end{cases}$$

with  $0 < r_1 < r_2 < dist(\partial \Omega \setminus \gamma, F) = \inf_{\boldsymbol{x} \in \partial \Omega \setminus \gamma} dist(\boldsymbol{x}, F).$ 

## 3. Well-posedness and relaxation of the problems

Optimal location problem  $(P_{\Gamma_h})$ : ill-posed in general.

PROPOSITION 1 Let  $\mathbf{h} \neq 0$  be fixed in  $(L^2(\Gamma))^2$ . If  $\Gamma_h$  is composed of a finite number of disjoint components, then problem  $(P_{\Gamma_h})$  admits at least a solution.

Relaxation of  $(P_{\Gamma_h})$ :

$$(RP_{\Gamma_h}): \quad \inf_{s \in S_L} g_{\psi}(\boldsymbol{u}, \boldsymbol{h}, s); \quad S_L = \{ s \in L^{\infty}(\Gamma, [0, 1]), \|s\|_{L^1(\Gamma)} = L \|\mathcal{X}_{\Gamma}\|_{L^1(\Gamma)} \}$$

where L (in [0, 1]) is the real parameter which appears in the definition of  $(P_{\Gamma_h})$ , and  $\boldsymbol{u}$  the solution of the elasticity problem where

 $\boldsymbol{\sigma}(\boldsymbol{u})\boldsymbol{\nu} = \boldsymbol{f}\mathcal{X}_{\Gamma_f} + s(\boldsymbol{x})\boldsymbol{h}\mathcal{X}_{\Gamma_h} \quad \text{on} \quad \partial\Omega\backslash\Gamma_0, \qquad (\text{ instead of } \boldsymbol{\sigma}(\boldsymbol{u})\boldsymbol{\nu} = \boldsymbol{f}\mathcal{X}_{\Gamma_f} + \boldsymbol{h}\mathcal{X}_{\Gamma_h}),$ 

THEOREM 1

- The problem  $(RP_{\Gamma_h})$  is well-posed;
- The minimum of  $(RP_{\Gamma_h})$  equals the infimum of  $(P_{\Gamma_h})$ .

PROPOSITION 2 Let  $\Gamma_h \neq \emptyset$  be fixed in  $\Gamma$  and  $L \in [0,1]$ . The problem  $(P_h)$  admits at least a solution in  $(L_L^2(\Gamma_h))^2$ .

# 4. Derivative of $g_{\psi}$ with respect to s and h

For a fixed field  $\boldsymbol{\psi} = (\psi_1, 0)$ , find the expression of the derivatives of  $g_{\boldsymbol{\psi}}$  with respect to the variation of  $s \in L^{\infty}(\Gamma, [0, 1])$  and  $\boldsymbol{h} \in (L^2(\Gamma_h))^2$ . Penalization of the contact with a function denoted g (!).

A weak solution  $\boldsymbol{u} \in (H^1_{\Gamma_0}(\Omega))^2$  is characterized by the following formulation

$$\int_{\Omega} Tr(\boldsymbol{\sigma}(\boldsymbol{u}) \nabla \boldsymbol{v}) dx + \epsilon^{-1} \int_{\gamma} \nabla g([\boldsymbol{u}]) \cdot [\boldsymbol{v}] d\sigma = \int_{\Gamma_f} \boldsymbol{f} \cdot \boldsymbol{v} \, d\sigma + \int_{\Gamma_h} \boldsymbol{h} \cdot \boldsymbol{v} \, d\sigma, \quad \forall \boldsymbol{v} \in (H^1_{\Gamma_0}(\Omega))^2.$$

Perturbation of s:  $s^{\eta} = s + \eta s_1 \in L^{\infty}(\Gamma, [0, 1]).$ 

$$\frac{\partial g_{\psi}(\boldsymbol{u}(s),\boldsymbol{h},s)}{\partial s} \cdot s_{1} = \lim_{\eta \to 0} \frac{g_{\psi}(\boldsymbol{u}(s^{\eta}),\boldsymbol{h},s^{\eta}) - g_{\psi}(\boldsymbol{u}(s),\boldsymbol{h},s)}{\eta}$$

THEOREM 2 The first variation of  $g_{\psi}$  with respect to s in the direction  $s_1 \in L^{\infty}(\Gamma, [0, 1])$  is

$$\frac{\partial g_{\boldsymbol{\psi}}(\boldsymbol{u},\boldsymbol{h},s)}{\partial s} \cdot s_1 = -\int_{\Gamma} s_1(\boldsymbol{x})\boldsymbol{h} \cdot \boldsymbol{p} \, d\sigma, \quad \forall s_1 \in L^{\infty}(\Gamma,[0,1])$$

where  $\mathbf{p} \in (H^1_{\Gamma_0}(\Omega))^2$  is solution of the following (weak) adjoint problem:

$$\begin{split} \int_{\Omega} Tr(\boldsymbol{\sigma}(\boldsymbol{p}) \, \nabla \boldsymbol{\phi}) dx &- \int_{\Omega} Tr(\boldsymbol{\sigma}(\boldsymbol{u}) \, \nabla \boldsymbol{\phi}) div \, \boldsymbol{\psi} dx + \int_{\Omega} Tr(\boldsymbol{\sigma}(\boldsymbol{\phi}) \, \nabla \boldsymbol{u} \, \nabla \boldsymbol{\psi}) dx \\ &+ \int_{\Omega} Tr(\boldsymbol{\sigma}(\boldsymbol{u}) \, \nabla \boldsymbol{\phi} \, \nabla \boldsymbol{\psi}) dx + \epsilon^{-1} \int_{\gamma} \nabla (\nabla g([\boldsymbol{u}]) \cdot [\boldsymbol{\phi}]) \cdot [\boldsymbol{p}] \, d\sigma = 0 \end{split}$$

for all  $\phi \in (H^1_{\Gamma_0}(\Omega))^2$ .

**Remark 2** If the crack is oriented along the axis  $(O, e_1)$  and if  $\lambda, \mu$  are the Lamé coefficients, then  $\mathbf{p} = (p_1, p_2)$  is formally solution of the following equations:

$$\begin{cases} -\sigma_{ij,i}(\boldsymbol{p}) + (\sigma_{ij}(\boldsymbol{u})\psi_{1,1})_{,i} - (\sigma_{ij}(\boldsymbol{u})\psi_{1,i})_{,1} \\ -\lambda(u_{i,1}\psi_{1,i})_{,j} - \mu((u_{i,1}\psi_{1,j})_{,i} + (u_{j,1}\psi_{1,i})_{,i}) = 0 \quad in \quad \Omega, \\ \boldsymbol{p} = 0 \quad on \quad \Gamma_0, \\ \sigma_{12}(\boldsymbol{p}) = \mu u_{1,2}\psi_{1,1} + \epsilon^{-1}(g_{,11}([\boldsymbol{u}])[p_1] + g_{,12}([\boldsymbol{u}])[p_2]) \quad on \quad \gamma, \\ \sigma_{22}(\boldsymbol{p}) = (\lambda + 2\mu)u_{2,2}\psi_{1,1} + \epsilon^{-1}(g_{,12}([\boldsymbol{u}])[p_1] + g_{,22}([\boldsymbol{u}])[p_2]) \quad on \quad \gamma, \\ \boldsymbol{\sigma}(\boldsymbol{p})\boldsymbol{\nu} = 0 \quad on \quad \partial\Omega \backslash (\Gamma_0 \cup \gamma). \end{cases}$$

Similarly, assuming  $\Gamma_h$  fixed in  $\Gamma$ , we obtain the first derivative of  $g_{\psi}$  with respect to h: THEOREM 3 The first derivative of  $g_{\psi}$  with respect to h in the direction  $h_1$  is given by

$$\frac{\partial g_{\boldsymbol{\psi}}(\boldsymbol{u},\boldsymbol{h},\mathcal{X}_{\Gamma_h})}{\partial \boldsymbol{h}} \cdot \boldsymbol{h}_1 = -\int_{\Gamma_h} \boldsymbol{h}_1 \cdot \boldsymbol{p} \, d\sigma, \quad \forall \boldsymbol{h}_1 \in (L^2(\Gamma_h))^2$$

where p is the solution of the adjoint problem.

## 5. Descent algorithms

### Descent algorithm for $(RP_{\Gamma_h})$

Descent direction:  $s_1 = \boldsymbol{h} \cdot \boldsymbol{p}$ 

Size restriction on s:  $||s||_{L^1(\Gamma)} = L|\Gamma|$ : we introduce a Lagrange multiplier  $\lambda$  and a new cost function:

$$g_{\psi,\lambda}(\boldsymbol{u},\boldsymbol{h},s) = g_{\psi}(\boldsymbol{u},\boldsymbol{h},s) + \lambda(\|s\|_{L^{1}(\Gamma)} - L|\Gamma|), \quad \forall s \in L^{\infty}(\Gamma,[0,1])$$

leading to

$$\frac{\partial g_{\boldsymbol{\psi},\lambda}(\boldsymbol{u},\boldsymbol{h},s)}{\partial s} \cdot s_1 = -\int_{\Gamma} s_1(\boldsymbol{x})\boldsymbol{h} \cdot \boldsymbol{p} \ d\sigma + \lambda \int_{\Gamma} s_1(\boldsymbol{x}) d\sigma$$

and to the descent direction

$$s_1 = \boldsymbol{h} \cdot \boldsymbol{p} - \lambda$$
 on  $\Gamma$ .

Consequently, for any function  $\eta_s \in L^{\infty}(\Gamma, \mathbb{R}^+)$  with  $\|\eta_s\|_{L^1(\Gamma)}$  small enough, we have  $g_{\psi,\lambda}(\boldsymbol{u}, \boldsymbol{h}, s + \eta_s s_1) \leq g_{\psi,\lambda}(\boldsymbol{u}, \boldsymbol{h}, s)$ . The multiplier  $\lambda$  is then determined so that, for any function  $\eta_s \in L^{\infty}(\Gamma, \mathbb{R}^+)$ ,  $\|s + \eta_s s_1\|_{L^1(\Gamma)} = L|\Gamma|$ , leading to

$$\lambda = \frac{(\int_{\Gamma} s(\boldsymbol{x}) d\sigma - L|\Gamma|) + \int_{\Gamma} \eta_s(\boldsymbol{x}) \boldsymbol{h} \cdot \boldsymbol{p} \, d\sigma}{\int_{\Gamma} \eta_s(\boldsymbol{x}) d\sigma}$$

At last, the function  $\eta_s$  is chosen so that  $s + \eta_s s_1 \in [0, 1]$ , for all  $\boldsymbol{x} \in \Gamma$ . A simple and efficient choice consists in taking  $\eta_s(\boldsymbol{x}) = \varepsilon s(\boldsymbol{x})(1 - s(\boldsymbol{x}))$  for all  $\boldsymbol{x} \in \Gamma$  where  $\varepsilon$  is a small positive parameter.

Consequently, the descent algorithm to solve numerically the relaxed problem  $(RP_{\Gamma_h})$  may be structured as follows. Let  $\Omega \subset \mathbb{R}^2$ ,  $\Gamma_0$ ,  $\Gamma_f$  in  $\partial\Omega$ ,  $\boldsymbol{f} \in (L^2(\Gamma_f))^2$ ,  $\boldsymbol{h} \in (L^2(\Gamma_h))^2$ ,  $L \in (0, 1)$  and  $\varepsilon < 1$ ,  $\varepsilon_1 << 1$  be given ;

- Initialization of the density  $s^{(0)} \in L^{\infty}(\Gamma; (0, 1));$
- For  $k \ge 0$ , iterate until convergence (i.e.  $|g_{\psi,\lambda}(\boldsymbol{u},\boldsymbol{h},s^{(k+1)}) g_{\psi,\lambda}(\boldsymbol{u},\boldsymbol{h},s^{(k)})| \le \varepsilon_1 |g_{\psi,\lambda}(\boldsymbol{u},\boldsymbol{h},s^{(0)})|)$  as follows:
  - Computation of the solution  $\boldsymbol{u}(s^{(k)})$  of the elasticity problem and then the solution  $\boldsymbol{p}(s^{(k)})$  of the adjoint problem, both corresponding to  $s = s^{(k)}$ .
  - Computation of the descent direction  $s_1^{(k)} = \boldsymbol{h} \cdot \boldsymbol{p}(s^{(k)}) \lambda^{(k)}$ .
  - Update the density  $s^{(k)}$  in  $\Gamma$ :

$$s^{(k+1)} = s^{(k)} + \varepsilon s^{(k)} (1 - s^{(k)}) s_1^{(k)}, \qquad (3)$$

with  $\varepsilon \in \mathbb{R}^+$  small enough in order to ensure the decrease of the cost function and  $s^{(k+1)} \in L^{\infty}(\Gamma, [0, 1])$ .

#### **Descent algorithm for** $(P_h)$

Problem  $(P_h)$  is solved in a similar way. In order to ensure  $\mathbf{h} \in (L_L^2(\Gamma_h))^2$ , we introduce the new cost function:

$$g_{\boldsymbol{\psi},\lambda}(\boldsymbol{u},\boldsymbol{h},\mathcal{X}_{\Gamma_h}) = g_{\boldsymbol{\psi}}(\boldsymbol{u},\boldsymbol{h},\mathcal{X}_{\Gamma_h}) + \lambda(\|\boldsymbol{h}\|_{(L^2(\Gamma_h))^2}^2 - L^2\|\boldsymbol{f}\|_{(L^2(\Gamma_f))^2}^2).$$

So

$$\frac{\partial g_{\boldsymbol{\psi},\lambda}(\boldsymbol{u},\boldsymbol{h},\boldsymbol{\mathcal{X}}_{\Gamma_h})}{\partial \boldsymbol{h}} \cdot \boldsymbol{h}_1 = \int_{\Gamma_h} \boldsymbol{h}_1 \cdot (-\boldsymbol{p} + 2\lambda \boldsymbol{h}) \ d\sigma, \quad \forall \boldsymbol{h}_1 \in (L^2(\Gamma_h))^2$$

leading to the descent direction  $\boldsymbol{h}_1 = (\boldsymbol{p} - 2\lambda\boldsymbol{h})$  so that for any  $\varepsilon > 0$  small enough,  $g_{\boldsymbol{\psi},\lambda}(\boldsymbol{u}, \boldsymbol{h} + \varepsilon(\boldsymbol{p} - 2\lambda\boldsymbol{h}), \mathcal{X}_{\Gamma_h}) \leq g_{\boldsymbol{\psi},\lambda}(\boldsymbol{u}, \boldsymbol{h}, \mathcal{X}_{\Gamma_h})$ . At last, the multiplier  $\lambda$  is determined so that  $\boldsymbol{h} + \varepsilon(\boldsymbol{p} - 2\lambda\boldsymbol{h}) \in (L_L^2(\Gamma_h))^2$ ;  $\lambda$  is then solution of the polynomial equation of order two:

$$4\varepsilon \|\boldsymbol{h}\|_{(L^{2}(\Gamma_{h}))^{2}}^{2}\lambda^{2} - 4\left(\int_{\Gamma_{h}}\boldsymbol{p}\cdot\boldsymbol{h}d\sigma + \|\boldsymbol{h}\|_{(L^{2}(\Gamma_{h}))^{2}}^{2}\right)\lambda - \varepsilon^{-1}(L^{2}\|\boldsymbol{f}\|_{(L^{2}(\Gamma_{f}))^{2}}^{2} - \|\boldsymbol{h}\|_{(L^{2}(\Gamma_{h}))^{2}}^{2}) + 2\int_{\Gamma_{h}}\boldsymbol{h}\cdot\boldsymbol{p}d\sigma + \varepsilon \|\boldsymbol{p}\|_{(L^{2}(\Gamma_{h}))^{2}}^{2} = 0.$$

$$(4)$$

Observe that the two roots are real if  $\varepsilon > 0$  is small enough. The algorithm is then similar to the algorithm of the previous section, (3) being replaced by

$$\boldsymbol{h}^{(\boldsymbol{k}+1)} = \boldsymbol{h}^{(\boldsymbol{k})} + \varepsilon(\boldsymbol{p}(\boldsymbol{h}^{(\boldsymbol{k})}) - 2\lambda^{(k)}\boldsymbol{h}^{(\boldsymbol{k})})$$

where  $\lambda^{(k)}$  solves (4).

## 6. Numerical experiments

 $\Omega = (0, 1)^2$ , fixed on  $\Gamma_0 = \{1\} \times [0, 1]$  with a crack  $\gamma = [0, 0.5] \times \{a\}$ ,  $(a \in (0, 1))$ , and submitted to the load  $\mathbf{f} = (f_1, f_2) = (0, 10^6 N/m)$  on  $\Gamma_f = [0.3, 0.6] \times \{1\}$ . Lower part of  $\Omega$  (i.e.  $[0, 1] \times [0, a]$ ) with a Young modulus  $E_1$  and a Poisson ratio  $\nu_1$ Upper part of  $\Omega$  (i.e.  $[0, 1] \times [a, 1]$ ) with a Young modulus  $E_2$  and a Poisson ratio  $\nu_2$ . Standard  $P_1$  finite elements, h = 1/100, amplification of  $2 \times 10^4$  (deformation).



Setting of the problem

Young modulus of  $2 \times 10^{11} Pa$ , Poisson ratio of 0.3 and a centered crack (a = 0.5).



Initial and deformed configurations of  $\Omega$  without additional extra force (i.e.,  $\mathcal{X}_{\Gamma_h} = 0$ ) and a = 0.5:  $g_{\psi}(\boldsymbol{u}, \boldsymbol{h}, 0) \approx 1.147 N/m \ (r_1 = 0.1 \text{ and } r_2 = 0.4).$ 

#### 6.1 Problem $(RP_{\Gamma_b})$

$$\begin{split} &\Gamma = [0,1] \times \{0\} \text{ (i.e., the lower edge of the structure)}, \ \boldsymbol{h} = (0,h_2) \text{ with } h_2 = 10^6 N/m \text{ and } L = 0.3 \\ &\text{ so that } \int_{\Gamma} s(\boldsymbol{x}) h_2 d\sigma = \int_{\Gamma_f} f_2 d\sigma. \text{ Initialization with the constant density function } s^{(0)} \equiv L \text{ in } \Gamma. \\ & \frac{E_1 = E_2 = 2 \times 10^{11} Pa, \nu_1 = \nu_2 = 0.3 \text{ and } a = 0.5.}{g_{\psi}(\boldsymbol{u}, \boldsymbol{h}, s^{(0)}) \approx 0.7836 N/m.} \\ &\text{ Symmetric density } s = \mathcal{X}_{[0.3,0.6]} \in S_L: \ g_{\psi}(\boldsymbol{u}, \boldsymbol{h}, s) \approx 0.6203 N/m. \\ &\text{ Optimal density } s^{opt} \text{ for which } g_{\psi}(\boldsymbol{u}, \boldsymbol{h}, s^{opt}) \approx 0.4641 N/m; \ s^{opt} \approx \mathcal{X}_{[0.42,0.72]}. \end{split}$$



Resolution of  $(RP_{\Gamma_h})$  - Optimal density  $s^{opt}$  (Left) and corresponding deformation (Right)- $g_{\psi}(\boldsymbol{u}, \boldsymbol{h}, s^{opt}) \approx 0.4641 N/m.$ 



Evolution of  $g_{\psi}(\boldsymbol{u}, \boldsymbol{h}, s^{(k)})$  vs.  $k \in [1, 100]$  obtained with  $\varepsilon = 0.3$ .

 $\frac{E_1 = E_2 = 2 \times 10^{11} Pa, \nu_1 = \nu_2 = 0.3 \text{ and } a = 1/3.}{\text{Without additional force: } g_{\psi}(\boldsymbol{u}, \boldsymbol{h}, 0) \approx 0.3872 N/m} \text{ (obtained with } r_1 = 0.1 \text{ and } r_2 = 0.25).}$ Initial constant additional force  $s^{(0)} = L = 0.3$  on  $\Gamma$ : the rate decreases from 0.5876 N/m to  $0.1050 N/m; s^{opt} \approx \mathcal{X}_{[0.52, 0.7] \cup [0.88, 1]}$ 



Resolution of  $(RP_{\Gamma_h})$  - Optimal density  $s^{opt}$  (Left) and corresponding deformation (Right)- $g_{\psi}(\boldsymbol{u}, \boldsymbol{h}, s^{opt}) \approx 0.1050 N/m.$ 

 $\frac{E_1 = 2 \times 10^{11} Pa, E_2 = 10^{12} Pa, \nu_1 = \nu_2 = 0.3 \text{ and } a = 1/2.}{\text{Without additional force, rate} = 0.2139 N/m.}$ Choosing  $s^{(0)} = L = 0.3$ , the rate decreases from 0.2481 N/m to 0.0281 N/m;  $s^{opt} \approx \mathcal{X}_{[0.52, 0.82]}$ .



Resolution of  $(RP_{\Gamma_h})$  - Optimal density  $s^{opt}$  (Left) and corresponding deformation (Right)- $g_{\psi}(\boldsymbol{u}, \boldsymbol{h}, s^{opt}) \approx 0.0281 N/m.$ 

## **6.2 Problem** $(P_h)$ $\Gamma_h = [0, 1] \times \{0\}$ and $\boldsymbol{h}$ is normal: $\boldsymbol{h} = (0, h_2)$ . We impose that the $L^2$ -norm of the additional load $\boldsymbol{h}$ equals the $L^2$ -norm of $\boldsymbol{f}$ (L = 1). The initial computations are achieved with a constant normal load on $\Gamma_h$ , i.e.

$$h_2^{(0)} = |\Gamma_f|^{1/2} f_2 / |\Gamma_h|^{1/2} = \sqrt{0.3} f_2$$
 for which  $\boldsymbol{h}^{(0)} = (0, h_2^{(0)}) \in (L^2_{L=1}(\Gamma_h))^2$ 

 $\frac{E_1 = E_2 = 2 \times 10^{11} Pa, \, \nu_1 = \nu_2 = 0.3 \text{ and } a = 1/2.}{\text{Initial computation } g_{\psi}(\boldsymbol{u}, \boldsymbol{h}^{(0)}, \mathcal{X}_{\Gamma_h}) \approx 1.5927 N/m.}$ 



Resolution of  $(P_h)$  - Optimal density  $h_2^{opt}$  (Left) and corresponding deformation (Right)  $g_{\psi}(\boldsymbol{u}, \boldsymbol{h}^{opt}, \mathcal{X}_{\Gamma_h}) \approx 0.4328 N/m.$ 

 $\frac{E_1 = E_2 = 2 \times 10^{11} Pa, \nu_1 = \nu_2 = 0.3 \text{ and } a = 1/3.}{\text{The rate decreases from } 1.1948 N/m \text{ to } 0.0353 N/m.} \text{ (rate without additional force is } 0.3872 N/m)}$ 



Resolution of  $(P_h)$  - Optimal density  $h_2^{opt}$  (Left) and corresponding deformation (Right)  $g_{\psi}(\boldsymbol{u}, \boldsymbol{h}^{opt}, \mathcal{X}_{\Gamma_h}) \approx 0.0353 N/m.$ 

 $\frac{E_1 = 2 \times 10^{11} Pa, E_2 = 10^{12} Pa, \nu_1 = \nu_2 = 0.3 \text{ and } a = 1/2.}{\text{The rate decreases from } 0.4799 N/m \text{ to } 0.00679 N/m.}$ Initial rate is 0.2139 N/m.



Resolution of  $(P_h)$  - Optimal density  $h_2^{opt}$  (Left) and corresponding deformation (Right)  $g_{\psi}(\boldsymbol{u}, \boldsymbol{h}^{opt}, \mathcal{X}_{\Gamma_h}) \approx 0.00679 N/m.$ 

 $\frac{E_1 = E_2 = 2 \times 10^{11} Pa, \nu_1 = \nu_2 = 0.3 \text{ and } a = 1/2, \text{ without constraint on } \boldsymbol{h}.$ We obtain the value  $g_{\boldsymbol{\psi}}(\boldsymbol{u}, \boldsymbol{h}^{opt}, \mathcal{X}_{\Gamma_h}) \approx 0.0383 N/m$  (corresponding to a reduction of order 30).



Resolution of  $(P_h)$  without constraint on h- Optimal density  $h_2^{opt}$  (Left) and corresponding deformation (**Right**) -  $g_{\psi}(\boldsymbol{u}, \boldsymbol{h}^{opt}, \mathcal{X}_{\Gamma_h}) \approx 0.0383N/m$ .

#### 6.3 The case of two cracks



Resolution of  $(RP_{\Gamma_h})$  - Limit densities (top left) and deformation for  $(a_1, a_2) = (1/4, 1/2)$  (top right),  $(a_1, a_2) = (1/2, 1/2)$  (bottom left) and  $(a_1, a_2) = (1/2, 1/4)$  (bottom right).

 $(a_1, a_2) = (1/4, 1/2) : g_{\psi}(\boldsymbol{u}, \boldsymbol{h}, 0) = 1.151, \ g_{\psi}(\boldsymbol{u}, \boldsymbol{h}, s^{(0)}) = 0.861, \ g_{\psi}(\boldsymbol{u}, \boldsymbol{h}, s^{lim}) = 0.582$   $(a_1, a_2) = (1/2, 1/2) : g_{\psi}(\boldsymbol{u}, \boldsymbol{h}, 0) = 1.152, \ g_{\psi}(\boldsymbol{u}, \boldsymbol{h}, s^{(0)}) = 1.49, \ g_{\psi}(\boldsymbol{u}, \boldsymbol{h}, s^{lim}) = 0.668$  $(a_1, a_2) = (1/2, 1/4) : g_{\psi}(\boldsymbol{u}, \boldsymbol{h}, 0) = 0.232, \ g_{\psi}(\boldsymbol{u}, \boldsymbol{h}, s^{(0)}) = 0.461, \ g_{\psi}(\boldsymbol{u}, \boldsymbol{h}, s^{lim}) = 0.102$ 

Numerical values of the energy release rate (in N/m)



Penalization of the limit density  $s^{lim}$  in the case  $(a_1, a_2) = (1/2, 1/2)$  by a characteristic function  $\mathcal{X}_{\Gamma_h}^{(10)}$ .



Iso-values of the Von Mises stresses on  $\Omega$  - **a**) without extra-force  $g_{\psi}(\boldsymbol{u}, \boldsymbol{h}, 0) \approx 0.232N/m$  (**Top** left) - **b**) from  $(RP_{\Gamma_h}) g_{\psi}(\boldsymbol{u}, \boldsymbol{h}, s^{opt}) \approx 0.102N/m$  (**Top right**) and **c**) from  $(P_h) g_{\psi}(\boldsymbol{u}, \boldsymbol{h}^{opt}, \mathcal{X}_{\Gamma_h}) \approx 0.0556N/m$  (Bottom).