On the active control of crack growth in elastic media

Patrick Hild ${ }^{1}$
collaboration with Arnaud Münch and Yves Ousset
Supported by l'Agence Nationale de la Recherche, ANR-05-JC-0182-01.

${ }^{1}$ Laboratoire de Mathématiques de Besançon, Université de Franche-Comté, UMR CNRS 6623, 16 route de Gray, 25030 Besançon, France.

1. Introduction - Problem statement

$\Omega \subset \mathbb{R}^{2}$: elastic structure, fixed on $\Gamma_{0} \subset \partial \Omega$, submitted to a normal load such that

$$
\boldsymbol{f} \mathcal{X}_{\Gamma_{f}}+\boldsymbol{h} \mathcal{X}_{\Gamma_{h}} \in\left(L^{2}\left(\partial \Omega \backslash \Gamma_{0}\right)\right)^{2}
$$

where

$$
\boldsymbol{f} \in\left(L^{2}\left(\Gamma_{f}\right)\right)^{2}, \quad \boldsymbol{h} \in\left(L^{2}\left(\Gamma_{h}\right)\right)^{2}, \quad \Gamma_{f}, \Gamma_{h} \subset \partial \Omega \backslash \Gamma_{0}, \quad \Gamma_{f} \cap \Gamma_{h}=\emptyset
$$

The domain Ω contains a crack γ of extremity \boldsymbol{F}, unloaded and free. The corresponding displacement field $\boldsymbol{u}=\left(u_{1}, u_{2}\right)$ lies in the convex set

$$
\mathbf{K}=\left\{\boldsymbol{v} \in\left(H_{\Gamma_{0}}^{1}(\Omega)\right)^{2},[\boldsymbol{v} \cdot \boldsymbol{\nu}] \leq 0 \text { on } \gamma\right\} \quad \text { where } \quad H_{\Gamma_{0}}^{1}(\Omega)=\left\{v \in H^{1}(\Omega), v=0 \text { on } \Gamma_{0}\right\}
$$

and minimizes at equilibrium the energy $J(., \gamma)$ on \mathbf{K} :

$$
\begin{equation*}
J(\boldsymbol{v}, \gamma)=\frac{1}{2} \int_{\Omega} \operatorname{Tr}(\boldsymbol{\sigma}(\boldsymbol{v}) \nabla \boldsymbol{v}) d x-\int_{\Gamma_{f}} \boldsymbol{f} \cdot \boldsymbol{v} d \sigma-\int_{\Gamma_{h}} \boldsymbol{h} \cdot \boldsymbol{v} d \sigma \tag{1}
\end{equation*}
$$

The field \boldsymbol{u} solving (1) satisfies (2):

$$
\left\{\begin{array}{l}
-\operatorname{div} \boldsymbol{\sigma}(\boldsymbol{u})=0, \quad \boldsymbol{\sigma}(\boldsymbol{u}) \equiv \mathbb{A} \boldsymbol{\varepsilon}(\boldsymbol{u}), \quad \boldsymbol{\varepsilon}(\boldsymbol{u}) \equiv\left(\nabla \boldsymbol{u}+(\nabla \boldsymbol{u})^{T}\right) / 2 \quad \text { in } \Omega \tag{2}\\
\boldsymbol{u}=0 \quad \text { on } \quad \Gamma_{0} \subset \partial \Omega, \quad \boldsymbol{\sigma}(\boldsymbol{u}) \boldsymbol{\nu}=\boldsymbol{f} \mathcal{X}_{\Gamma_{f}}+\boldsymbol{h} \mathcal{X}_{\Gamma_{h}} \quad \text { on } \quad \partial \Omega \backslash \Gamma_{0}, \\
{\left[u_{\nu}\right] \equiv[\boldsymbol{u} \cdot \boldsymbol{\nu}] \leq 0, \quad \sigma_{\nu} \equiv(\boldsymbol{\sigma}(\boldsymbol{u}) \boldsymbol{\nu}) \cdot \boldsymbol{\nu} \leq 0, \quad\left[u_{\nu}\right] \sigma_{\nu}=0, \quad \boldsymbol{\sigma}(\boldsymbol{u}) \boldsymbol{\nu}-\sigma_{\nu} \boldsymbol{\nu}=0 \quad \text { on } \quad \gamma .}
\end{array}\right.
$$

Notation:

$$
\Gamma=\partial \Omega \backslash\left(\Gamma_{0} \cup \Gamma_{f} \cup \gamma\right)
$$

In order to reduce the energy release rate g (see hereafter), one may act on the boundary load $\boldsymbol{h} \mathcal{X}_{\Gamma_{h}}$.

1. In this respect, assuming fixed the main load \boldsymbol{f} and its support Γ_{f}, we consider, for any L (in $[0,1])$, the following nonlinear problem:

$$
\left(P_{\Gamma_{h}}\right): \inf _{\mathcal{X}_{\Gamma_{h}} \in \mathcal{X}_{L}} g\left(\boldsymbol{u}, \boldsymbol{h}, \mathcal{X}_{\Gamma_{h}}\right) ; \quad \mathcal{X}_{L}=\left\{\mathcal{X} \in L^{\infty}(\Gamma,\{0,1\}),\|\mathcal{X}\|_{L^{1}(\Gamma)}=L\left\|\mathcal{X}_{\Gamma}\right\|_{L^{1}(\Gamma)}\right\}
$$

For any fixed \boldsymbol{h} in $\left(L^{2}\left(\Gamma_{h}\right)\right)^{2},\left(P_{\Gamma_{h}}\right)$ is an optimal design problem which consists in finding the optimal distribution of the support $\Gamma_{h} \subset \Gamma$ of the additional load \boldsymbol{h}. Remark that the support Γ_{h} may a priori be composed of several disjoint components.
2. On the other hand, the support $\Gamma_{h} \subset \Gamma$ of the additional force being fixed, one may also consider the following problem: for any L (in $[0,1]$)

$$
\left(P_{h}\right): \inf _{\boldsymbol{h} \in\left(L_{L}^{2}\left(\Gamma_{h}\right)\right)^{2}} g\left(\boldsymbol{u}, \boldsymbol{h}, \mathcal{X}_{\Gamma_{h}}\right) ; \quad\left(L_{L}^{2}\left(\Gamma_{h}\right)\right)^{2}=\left\{\boldsymbol{h} \in\left(L^{2}\left(\Gamma_{h}\right)\right)^{2},\|\boldsymbol{h}\|_{\left(L^{2}\left(\Gamma_{h}\right)\right)^{2}}=L\|\boldsymbol{f}\|_{\left(L^{2}\left(\Gamma_{f}\right)\right)^{2}}\right\}
$$

which consists in optimizing the amplitude of \boldsymbol{h} in order to reduce g and therefore preventing the crack growth.

Illustration of the problem $\left(P_{\Gamma_{h}}\right)$: Optimization of the location of Γ_{h}, the support of the extra load \boldsymbol{h} in order to minimize the energy release rate.

2. The energy release rate

Crack γ : rectilinear in the neighborhood of \boldsymbol{F} and oriented along \boldsymbol{e}_{1}.
Field: $\boldsymbol{\psi}=\left(\psi_{1}\left(x_{1}, x_{2}\right), 0\right) \in \mathbf{W} \equiv\left\{\boldsymbol{\psi} \in\left(W^{1, \infty}(\Omega, \mathbb{R})\right)^{2}, \boldsymbol{\psi}=0\right.$ on $\left.\partial \Omega \backslash \gamma\right\}$.
Definition 1 (Energy Release Rate) The derivative of the functional - J (\boldsymbol{u}, γ) with respect to a variation of γ in the direction $\boldsymbol{\psi}$ is defined as the derivative at 0 of the function $\eta \rightarrow-J(\boldsymbol{u},(I d+\eta \boldsymbol{\psi})(\gamma))$, i.e.

$$
J(\boldsymbol{u},(I d+\eta \boldsymbol{\psi})(\gamma))=J(\boldsymbol{u}, \gamma)+\eta \frac{\partial J(\boldsymbol{u}, \gamma)}{\partial \gamma} \cdot \boldsymbol{\psi}+o\left(\eta^{2}\right)
$$

In the sequel, we denote by $g_{\boldsymbol{\psi}}\left(\boldsymbol{u}, \boldsymbol{h}, \mathcal{X}_{\Gamma_{h}}\right)$ this derivative.
Lemma 1 The first derivative of $-J$ with respect to γ in the direction $\boldsymbol{\psi}=\left(\psi_{1}, 0\right) \in \mathbf{W}$ is given by

$$
\begin{aligned}
g_{\psi}\left(\boldsymbol{u}, \boldsymbol{h}, \mathcal{X}_{\Gamma_{h}}\right) & =-\frac{1}{2} \int_{\Omega} \operatorname{Tr}(\boldsymbol{\sigma}(\boldsymbol{u}) \nabla \boldsymbol{u}) d i v \boldsymbol{\psi} d x+\int_{\Omega} \operatorname{Tr}(\boldsymbol{\sigma}(\boldsymbol{u}) \nabla \boldsymbol{u} \nabla \boldsymbol{\psi}) d x \\
& =-\frac{1}{2} \int_{\Omega} \sigma_{i j} u_{j, i} \psi_{1,1} d x+\int_{\Omega} \sigma_{i j} u_{j, 1} \psi_{1, i} d x
\end{aligned}
$$

where $\boldsymbol{u}=\boldsymbol{u}\left(\boldsymbol{f}, \mathcal{X}_{\Gamma_{f}}, \boldsymbol{h}, \mathcal{X}_{\Gamma_{h}}\right)$ is the solution of the elasticity problem.

Remark $1 A$ simple choice for $\boldsymbol{\psi}=\left(\psi_{1}, 0\right)$ is given by the radial function

$$
\psi_{1}(\boldsymbol{x})=\zeta(\operatorname{dist}(\boldsymbol{x}, \boldsymbol{F})), \quad \forall \boldsymbol{x} \in \Omega
$$

where the function $\zeta \in C^{1}\left(\mathbb{R}^{+} ;[0,1]\right)$ is defined as follows:

$$
\zeta(r)=\left\{\begin{array}{c}
1 \\
\frac{\left(r \leq r_{1}\right.}{} \\
\frac{\left(r-r_{2}\right)^{2}\left(3 r_{1}-r_{2}-2 r\right)}{\left(r_{1}-r_{2}\right)^{3}} \quad r_{1} \leq r \leq r_{2} \\
0 \quad r \geq r_{2}
\end{array}\right.
$$

with $0<r_{1}<r_{2}<\operatorname{dist}(\partial \Omega \backslash \gamma, \boldsymbol{F})=\inf _{\boldsymbol{x} \in \partial \Omega \backslash \gamma} \operatorname{dist}(\boldsymbol{x}, \boldsymbol{F})$.

3. Well-posedness and relaxation of the problems

Optimal location problem $\left(P_{\Gamma_{h}}\right)$: ill-posed in general.
Proposition 1 Let $\boldsymbol{h} \neq 0$ be fixed in $\left(L^{2}(\Gamma)\right)^{2}$. If Γ_{h} is composed of a finite number of disjoint components, then problem $\left(P_{\Gamma_{h}}\right)$ admits at least a solution.

Relaxation of $\left(P_{\Gamma_{h}}\right)$:

$$
\left(R P_{\Gamma_{h}}\right): \quad \inf _{s \in S_{L}} g_{\boldsymbol{\psi}}(\boldsymbol{u}, \boldsymbol{h}, s) ; \quad S_{L}=\left\{s \in L^{\infty}(\Gamma,[0,1]),\|s\|_{L^{1}(\Gamma)}=L\left\|\mathcal{X}_{\Gamma}\right\|_{L^{1}(\Gamma)}\right\}
$$

where L (in $[0,1])$ is the real parameter which appears in the definition of $\left(P_{\Gamma_{h}}\right)$, and \boldsymbol{u} the solution of the elasticity problem where

$$
\boldsymbol{\sigma}(\boldsymbol{u}) \boldsymbol{\nu}=\boldsymbol{f} \mathcal{X}_{\Gamma_{f}}+s(\boldsymbol{x}) \boldsymbol{h} \mathcal{X}_{\Gamma_{h}} \quad \text { on } \quad \partial \Omega \backslash \Gamma_{0}, \quad\left(\text { instead of } \boldsymbol{\sigma}(\boldsymbol{u}) \boldsymbol{\nu}=\boldsymbol{f} \mathcal{X}_{\Gamma_{f}}+\boldsymbol{h} \mathcal{X}_{\Gamma_{h}}\right)
$$

Theorem 1

- The problem $\left(R P_{\Gamma_{h}}\right)$ is well-posed;
- The minimum of $\left(R P_{\Gamma_{h}}\right)$ equals the infimum of $\left(P_{\Gamma_{h}}\right)$.

Proposition 2 Let $\Gamma_{h} \neq \emptyset$ be fixed in Γ and $L \in[0,1]$. The problem $\left(P_{h}\right)$ admits at least a solution in $\left(L_{L}^{2}\left(\Gamma_{h}\right)\right)^{2}$.

4. Derivative of g_{ψ} with respect to s and h

For a fixed field $\boldsymbol{\psi}=\left(\psi_{1}, 0\right)$, find the expression of the derivatives of $g_{\boldsymbol{\psi}}$ with respect to the variation of $s \in L^{\infty}(\Gamma,[0,1])$ and $\boldsymbol{h} \in\left(L^{2}\left(\Gamma_{h}\right)\right)^{2}$. Penalization of the contact with a function denoted $g(!)$.
A weak solution $\boldsymbol{u} \in\left(H_{\Gamma_{0}}^{1}(\Omega)\right)^{2}$ is characterized by the following formulation

$$
\int_{\Omega} \operatorname{Tr}(\boldsymbol{\sigma}(\boldsymbol{u}) \nabla \boldsymbol{v}) d x+\epsilon^{-1} \int_{\gamma} \nabla g([\boldsymbol{u}]) \cdot[\boldsymbol{v}] d \sigma=\int_{\Gamma_{f}} \boldsymbol{f} \cdot \boldsymbol{v} d \sigma+\int_{\Gamma_{h}} \boldsymbol{h} \cdot \boldsymbol{v} d \sigma, \quad \forall \boldsymbol{v} \in\left(H_{\Gamma_{0}}^{1}(\Omega)\right)^{2}
$$

Perturbation of $s: s^{\eta}=s+\eta s_{1} \in L^{\infty}(\Gamma,[0,1])$.

$$
\frac{\partial g_{\boldsymbol{\psi}}(\boldsymbol{u}(s), \boldsymbol{h}, s)}{\partial s} \cdot s_{1}=\lim _{\eta \rightarrow 0} \frac{g_{\boldsymbol{\psi}}\left(\boldsymbol{u}\left(s^{\eta}\right), \boldsymbol{h}, s^{\eta}\right)-g_{\boldsymbol{\psi}}(\boldsymbol{u}(s), \boldsymbol{h}, s)}{\eta} .
$$

ThEOREM 2 The first variation of g_{ψ} with respect to s in the direction $s_{1} \in L^{\infty}(\Gamma,[0,1])$ is

$$
\frac{\partial g_{\boldsymbol{\psi}}(\boldsymbol{u}, \boldsymbol{h}, s)}{\partial s} \cdot s_{1}=-\int_{\Gamma} s_{1}(\boldsymbol{x}) \boldsymbol{h} \cdot \boldsymbol{p} d \sigma, \quad \forall s_{1} \in L^{\infty}(\Gamma,[0,1])
$$

where $\boldsymbol{p} \in\left(H_{\Gamma_{0}}^{1}(\Omega)\right)^{2}$ is solution of the following (weak) adjoint problem:

$$
\begin{aligned}
\int_{\Omega} \operatorname{Tr}(\boldsymbol{\sigma}(\boldsymbol{p}) \nabla \boldsymbol{\phi}) d x & -\int_{\Omega} \operatorname{Tr}(\boldsymbol{\sigma}(\boldsymbol{u}) \nabla \boldsymbol{\phi}) d i v \boldsymbol{\psi} d x+\int_{\Omega} \operatorname{Tr}(\boldsymbol{\sigma}(\boldsymbol{\phi}) \nabla \boldsymbol{u} \nabla \boldsymbol{\psi}) d x \\
& +\int_{\Omega} \operatorname{Tr}(\boldsymbol{\sigma}(\boldsymbol{u}) \nabla \boldsymbol{\phi} \nabla \boldsymbol{\psi}) d x+\epsilon^{-1} \int_{\gamma} \nabla(\nabla g([\boldsymbol{u}]) \cdot[\boldsymbol{\phi}]) \cdot[\boldsymbol{p}] d \sigma=0
\end{aligned}
$$

for all $\boldsymbol{\phi} \in\left(H_{\Gamma_{0}}^{1}(\Omega)\right)^{2}$.

Remark 2 If the crack is oriented along the axis $\left(O, \boldsymbol{e}_{1}\right)$ and if λ, μ are the Lamé coefficients, then $\boldsymbol{p}=\left(p_{1}, p_{2}\right)$ is formally solution of the following equations:

$$
\left\{\begin{array}{l}
\quad-\sigma_{i j, i}(\boldsymbol{p})+\left(\sigma_{i j}(\boldsymbol{u}) \psi_{1,1}\right)_{, i}-\left(\sigma_{i j}(\boldsymbol{u}) \psi_{1, i}\right)_{, 1} \\
\quad-\lambda\left(u_{i, 1} \psi_{1, i}\right)_{, j}-\mu\left(\left(u_{i, 1} \psi_{1, j}\right)_{, i}+\left(u_{j, 1} \psi_{1, i}\right)_{, i}\right)=0 \quad \text { in } \quad \Omega, \\
\boldsymbol{p}=0 \quad \text { on } \quad \Gamma_{0}, \\
\sigma_{12}(\boldsymbol{p})=\mu u_{1,2} \psi_{1,1}+\epsilon^{-1}\left(g_{, 11}([\boldsymbol{u}])\left[p_{1}\right]+g_{, 12}([\boldsymbol{u}])\left[p_{2}\right]\right) \quad \text { on } \quad \gamma, \\
\sigma_{22}(\boldsymbol{p})=(\lambda+2 \mu) u_{2,2} \psi_{1,1}+\epsilon^{-1}\left(g_{, 12}([\boldsymbol{u}])\left[p_{1}\right]+g_{, 22}([\boldsymbol{u}])\left[p_{2}\right]\right) \quad \text { on } \quad \gamma, \\
\boldsymbol{\sigma}(\boldsymbol{p}) \boldsymbol{\nu}=0 \quad \text { on } \quad \partial \Omega \backslash\left(\Gamma_{0} \cup \gamma\right) .
\end{array}\right.
$$

Similarly, assuming Γ_{h} fixed in Γ, we obtain the first derivative of g_{ψ} with respect to \boldsymbol{h} :
Theorem 3 The first derivative of g_{ψ} with respect to \boldsymbol{h} in the direction \boldsymbol{h}_{1} is given by

$$
\frac{\partial g_{\psi}\left(\boldsymbol{u}, \boldsymbol{h}, \mathcal{X}_{\Gamma_{h}}\right)}{\partial \boldsymbol{h}} \cdot \boldsymbol{h}_{1}=-\int_{\Gamma_{h}} \boldsymbol{h}_{1} \cdot \boldsymbol{p} d \sigma, \quad \forall \boldsymbol{h}_{1} \in\left(L^{2}\left(\Gamma_{h}\right)\right)^{2}
$$

where \boldsymbol{p} is the solution of the adjoint problem.

5. Descent algorithms

Descent algorithm for $\left(R P_{\Gamma_{h}}\right)$

Descent direction: $s_{1}=\boldsymbol{h} \cdot \boldsymbol{p}$
Size restriction on $s:\|s\|_{L^{1}(\Gamma)}=L|\Gamma|$: we introduce a Lagrange multiplier λ and a new cost function:

$$
g_{\psi, \lambda}(\boldsymbol{u}, \boldsymbol{h}, s)=g_{\psi}(\boldsymbol{u}, \boldsymbol{h}, s)+\lambda\left(\|s\|_{L^{1}(\Gamma)}-L|\Gamma|\right), \quad \forall s \in L^{\infty}(\Gamma,[0,1])
$$

leading to

$$
\frac{\partial g_{\boldsymbol{\psi}, \lambda}(\boldsymbol{u}, \boldsymbol{h}, s)}{\partial s} \cdot s_{1}=-\int_{\Gamma} s_{1}(\boldsymbol{x}) \boldsymbol{h} \cdot \boldsymbol{p} d \sigma+\lambda \int_{\Gamma} s_{1}(\boldsymbol{x}) d \sigma
$$

and to the descent direction

$$
s_{1}=\boldsymbol{h} \cdot \boldsymbol{p}-\lambda \quad \text { on } \quad \Gamma .
$$

Consequently, for any function $\eta_{s} \in L^{\infty}\left(\Gamma, \mathbb{R}^{+}\right)$with $\left\|\eta_{s}\right\|_{L^{1}(\Gamma)}$ small enough, we have $g_{\boldsymbol{\psi}, \lambda}(\boldsymbol{u}, \boldsymbol{h}, s+$ $\left.\eta_{s} s_{1}\right) \leq g_{\psi, \lambda}(\boldsymbol{u}, \boldsymbol{h}, s)$. The multiplier λ is then determined so that, for any function $\eta_{s} \in L^{\infty}\left(\Gamma, \mathbb{R}^{+}\right)$, $\left\|s+\eta_{s} s_{1}\right\|_{L^{1}(\Gamma)}=L|\Gamma|$, leading to

$$
\lambda=\frac{\left(\int_{\Gamma} s(\boldsymbol{x}) d \sigma-L|\Gamma|\right)+\int_{\Gamma} \eta_{s}(\boldsymbol{x}) \boldsymbol{h} \cdot \boldsymbol{p} d \sigma}{\int_{\Gamma} \eta_{s}(\boldsymbol{x}) d \sigma}
$$

At last, the function η_{s} is chosen so that $s+\eta_{s} s_{1} \in[0,1]$, for all $\boldsymbol{x} \in \Gamma$. A simple and efficient choice consists in taking $\eta_{s}(\boldsymbol{x})=\varepsilon s(\boldsymbol{x})(1-s(\boldsymbol{x}))$ for all $\boldsymbol{x} \in \Gamma$ where ε is a small positive parameter.

Consequently, the descent algorithm to solve numerically the relaxed problem $\left(R P_{\Gamma_{h}}\right)$ may be structured as follows. Let $\Omega \subset \mathbb{R}^{2}, \Gamma_{0}, \Gamma_{f}$ in $\partial \Omega, \boldsymbol{f} \in\left(L^{2}\left(\Gamma_{f}\right)\right)^{2}, \boldsymbol{h} \in\left(L^{2}\left(\Gamma_{h}\right)\right)^{2}, L \in(0,1)$ and $\varepsilon<1, \varepsilon_{1} \ll 1$ be given ;

- Initialization of the density $s^{(0)} \in L^{\infty}(\Gamma ;(0,1))$;
- For $k \geq 0$, iterate until convergence (i.e. $\left.\left|g_{\psi, \lambda}\left(\boldsymbol{u}, \boldsymbol{h}, s^{(k+1)}\right)-g_{\psi, \lambda}\left(\boldsymbol{u}, \boldsymbol{h}, s^{(k)}\right)\right| \leq \varepsilon_{1}\left|g_{\psi, \lambda}\left(\boldsymbol{u}, \boldsymbol{h}, s^{(0)}\right)\right|\right)$ as follows:
- Computation of the solution $\boldsymbol{u}\left(s^{(k)}\right)$ of the elasticity problem and then the solution $\boldsymbol{p}\left(s^{(k)}\right)$ of the adjoint problem, both corresponding to $s=s^{(k)}$.
- Computation of the descent direction $s_{1}^{(k)}=\boldsymbol{h} \cdot \boldsymbol{p}\left(s^{(k)}\right)-\lambda^{(k)}$.
- Update the density $s^{(k)}$ in Γ :

$$
\begin{equation*}
s^{(k+1)}=s^{(k)}+\varepsilon s^{(k)}\left(1-s^{(k)}\right) s_{1}^{(k)}, \tag{3}
\end{equation*}
$$

with $\varepsilon \in \mathbb{R}^{+}$small enough in order to ensure the decrease of the cost function and $s^{(k+1)} \in$ $L^{\infty}(\Gamma,[0,1])$.

Descent algorithm for $\left(P_{h}\right)$

Problem $\left(P_{h}\right)$ is solved in a similar way. In order to ensure $\boldsymbol{h} \in\left(L_{L}^{2}\left(\Gamma_{h}\right)\right)^{2}$, we introduce the new cost function:

$$
g_{\psi, \lambda}\left(\boldsymbol{u}, \boldsymbol{h}, \mathcal{X}_{\Gamma_{h}}\right)=g_{\psi}\left(\boldsymbol{u}, \boldsymbol{h}, \mathcal{X}_{\Gamma_{h}}\right)+\lambda\left(\|\boldsymbol{h}\|_{\left(L^{2}\left(\Gamma_{h}\right)\right)^{2}}^{2}-L^{2}\|\boldsymbol{f}\|_{\left(L^{2}\left(\Gamma_{f}\right)\right)^{2}}^{2}\right) .
$$

So

$$
\frac{\partial g_{\psi, \lambda}\left(\boldsymbol{u}, \boldsymbol{h}, \mathcal{X}_{\Gamma_{h}}\right)}{\partial \boldsymbol{h}} \cdot \boldsymbol{h}_{1}=\int_{\Gamma_{h}} \boldsymbol{h}_{1} \cdot(-\boldsymbol{p}+2 \lambda \boldsymbol{h}) d \sigma, \quad \forall \boldsymbol{h}_{1} \in\left(L^{2}\left(\Gamma_{h}\right)\right)^{2}
$$

leading to the descent direction $\boldsymbol{h}_{1}=(\boldsymbol{p}-2 \lambda \boldsymbol{h})$ so that for any $\varepsilon>0$ small enough, $g_{\psi, \lambda}(\boldsymbol{u}, \boldsymbol{h}+$ $\left.\varepsilon(\boldsymbol{p}-2 \lambda \boldsymbol{h}), \mathcal{X}_{\Gamma_{h}}\right) \leq g_{\psi, \lambda}\left(\boldsymbol{u}, \boldsymbol{h}, \mathcal{X}_{\Gamma_{h}}\right)$. At last, the multiplier λ is determined so that $\boldsymbol{h}+\varepsilon(\boldsymbol{p}-2 \lambda \boldsymbol{h}) \in$ $\left(L_{L}^{2}\left(\Gamma_{h}\right)\right)^{2} ; \lambda$ is then solution of the polynomial equation of order two:

$$
\begin{align*}
& 4 \varepsilon\|\boldsymbol{h}\|_{\left(L^{2}\left(\Gamma_{h}\right)\right)^{2}}^{2} \lambda^{2}-4\left(\int_{\Gamma_{h}} \boldsymbol{p} \cdot \boldsymbol{h} d \sigma+\|\boldsymbol{h}\|_{\left(L^{2}\left(\Gamma_{h}\right)\right)^{2}}^{2}\right) \lambda \tag{4}\\
& \quad-\varepsilon^{-1}\left(L^{2}\|\boldsymbol{f}\|_{\left(L^{2}\left(\Gamma_{f}\right)\right)^{2}}^{2}-\|\boldsymbol{h}\|_{\left(L^{2}\left(\Gamma_{h}\right)\right)^{2}}^{2}\right)+2 \int_{\Gamma_{h}} \boldsymbol{h} \cdot \boldsymbol{p} d \sigma+\varepsilon\|\boldsymbol{p}\|_{\left(L^{2}\left(\Gamma_{h}\right)\right)^{2}}^{2}=0 .
\end{align*}
$$

Observe that the two roots are real if $\varepsilon>0$ is small enough. The algorithm is then similar to the algorithm of the previous section, (3) being replaced by

$$
\boldsymbol{h}^{(k+1)}=\boldsymbol{h}^{(k)}+\varepsilon\left(\boldsymbol{p}\left(\boldsymbol{h}^{(k)}\right)-2 \lambda^{(k)} \boldsymbol{h}^{(k)}\right)
$$

where $\lambda^{(k)}$ solves (4).

6. Numerical experiments

$\Omega=(0,1)^{2}$, fixed on $\Gamma_{0}=\{1\} \times[0,1]$ with a crack $\gamma=[0,0.5] \times\{a\},(a \in(0,1))$, and submitted to the load $\boldsymbol{f}=\left(f_{1}, f_{2}\right)=\left(0,10^{6} \mathrm{~N} / \mathrm{m}\right)$ on $\Gamma_{f}=[0.3,0.6] \times\{1\}$.

Lower part of Ω (i.e. $[0,1] \times[0, a]$) with a Young modulus E_{1} and a Poisson ratio ν_{1} Upper part of Ω (i.e. $[0,1] \times[a, 1]$) with a Young modulus E_{2} and a Poisson ratio ν_{2}. Standard P_{1} finite elements, $h=1 / 100$, amplification of 2×10^{4} (deformation).

Setting of the problem

Young modulus of $2 \times 10^{11} \mathrm{~Pa}$, Poisson ratio of 0.3 and a centered crack $(a=0.5)$.

Initial and deformed configurations of Ω without additional extra force (i.e., $\mathcal{X}_{\Gamma_{h}}=0$) and $a=0.5$: $g_{\psi}(\boldsymbol{u}, \boldsymbol{h}, 0) \approx 1.147 N / m\left(r_{1}=0.1\right.$ and $\left.r_{2}=0.4\right)$.

6.1 Problem $\left(R P_{\Gamma_{h}}\right)$

$\Gamma=[0,1] \times\{0\}$ (i.e., the lower edge of the structure), $\boldsymbol{h}=\left(0, h_{2}\right)$ with $h_{2}=10^{6} \mathrm{~N} / \mathrm{m}$ and $L=0.3$ so that $\int_{\Gamma} s(\boldsymbol{x}) h_{2} d \sigma=\int_{\Gamma_{f}} f_{2} d \sigma$. Initialization with the constant density function $s^{(0)} \equiv L$ in Γ.

$$
\frac{E_{1}=E_{2}=2 \times 10^{11} P a, \nu_{1}=\nu_{2}=0.3 \text { and } a=0.5}{g_{\psi}\left(\boldsymbol{u}, \boldsymbol{h}, s^{(0)}\right) \approx 0.7836 \mathrm{~N} / \mathrm{m}}
$$

Symmetric density $s=\mathcal{X}_{[0.3,0.6]} \in S_{L}: g_{\psi}(\boldsymbol{u}, \boldsymbol{h}, s) \approx 0.6203 N / m$.
Optimal density $s^{o p t}$ for which $g_{\boldsymbol{\psi}}\left(\boldsymbol{u}, \boldsymbol{h}, s^{o p t}\right) \approx 0.4641 N / m ; s^{o p t} \approx \mathcal{X}_{[0.42,0.72]}$.

Resolution of $\left(R P_{\Gamma_{h}}\right)$ - Optimal density $s^{\text {opt }}$ (Left) and corresponding deformation (Right)$g_{\boldsymbol{\psi}}\left(\boldsymbol{u}, \boldsymbol{h}, s^{o p t}\right) \approx 0.4641 N / m$.

Evolution of $g_{\boldsymbol{\psi}}\left(\boldsymbol{u}, \boldsymbol{h}, s^{(k)}\right)$ vs. $k \in[1,100]$ obtained with $\varepsilon=0.3$.
$E_{1}=E_{2}=2 \times 10^{11} \mathrm{~Pa}, \nu_{1}=\nu_{2}=0.3$ and $a=1 / 3$.
Without additional force: $g_{\psi}(\boldsymbol{u}, \boldsymbol{h}, 0) \approx 0.3872 \mathrm{~N} / \mathrm{m}$ (obtained with $r_{1}=0.1$ and $r_{2}=0.25$).
Initial constant additional force $s^{(0)}=L=0.3$ on Γ : the rate decreases from $0.5876 \mathrm{~N} / \mathrm{m}$ to $0.1050 \mathrm{~N} / \mathrm{m} ; s^{\text {opt }} \approx \mathcal{X}_{[0.52,0.7] \cup[0.88,1]}$

Resolution of $\left(R P_{\Gamma_{h}}\right)$ - Optimal density $s^{\text {opt }}$ (Left) and corresponding deformation (Right)$g_{\psi}\left(\boldsymbol{u}, \boldsymbol{h}, s^{o p t}\right) \approx 0.1050 \mathrm{~N} / \mathrm{m}$.
$E_{1}=2 \times 10^{11} P a, E_{2}=10^{12} P a, \nu_{1}=\nu_{2}=0.3$ and $a=1 / 2$.
Without additional force, rate $=0.2139 \mathrm{~N} / \mathrm{m}$.
Choosing $s^{(0)}=L=0.3$, the rate decreases from $0.2481 N / m$ to $0.0281 N / m ; s^{\text {opt }} \approx \mathcal{X}_{[0.52,0.82]}$.

Resolution of $\left(R P_{\Gamma_{h}}\right)$ - Optimal density $s^{\text {opt }}$ (Left) and corresponding deformation (Right)$g_{\boldsymbol{\psi}}\left(\boldsymbol{u}, \boldsymbol{h}, s^{o p t}\right) \approx 0.0281 N / m$.

6.2 Problem $\left(P_{h}\right)$

$\Gamma_{h}=[0,1] \times\{0\}$ and \boldsymbol{h} is normal: $\boldsymbol{h}=\left(0, h_{2}\right)$.
We impose that the L^{2}-norm of the additional load \boldsymbol{h} equals the L^{2}-norm of $\boldsymbol{f}(L=1)$. The initial computations are achieved with a constant normal load on Γ_{h}, i.e.

$$
h_{2}^{(0)}=\left|\Gamma_{f}\right|^{1 / 2} f_{2} /\left|\Gamma_{h}\right|^{1 / 2}=\sqrt{0.3} f_{2} \text { for which } \boldsymbol{h}^{(0)}=\left(0, h_{2}^{(0)}\right) \in\left(L_{L=1}^{2}\left(\Gamma_{h}\right)\right)^{2}
$$

$\frac{E_{1}=E_{2}=2 \times 10^{11} P a, \nu_{1}=\nu_{2}=0.3 \text { and } a=1 / 2 .}{\text { Initial computation } g_{\boldsymbol{\psi}}\left(\boldsymbol{u}, \boldsymbol{h}^{(0)}, \mathcal{X}_{\Gamma_{h}}\right) \approx 1.5927 \mathrm{~N} / \mathrm{m}}$.

Resolution of $\left(P_{h}\right)$ - Optimal density $h_{2}^{\text {opt }}$ (Left) and corresponding deformation (Right) $g_{\boldsymbol{\psi}}\left(\boldsymbol{u}, \boldsymbol{h}^{o p t}, \mathcal{X}_{\Gamma_{h}}\right) \approx 0.4328 \mathrm{~N} / \mathrm{m}$.
$E_{1}=E_{2}=2 \times 10^{11} \mathrm{~Pa}, \nu_{1}=\nu_{2}=0.3$ and $a=1 / 3$.
The rate decreases from $1.1948 \mathrm{~N} / \mathrm{m}$ to $0.0353 \mathrm{~N} / \mathrm{m}$. (rate without additional force is $0.3872 \mathrm{~N} / \mathrm{m}$)

Resolution of $\left(P_{h}\right)$ - Optimal density $h_{2}^{\text {opt }}(\mathbf{L e f t})$ and corresponding deformation (Right) $g_{\boldsymbol{\psi}}\left(\boldsymbol{u}, \boldsymbol{h}^{o p t}, \mathcal{X}_{\Gamma_{h}}\right) \approx 0.0353 \mathrm{~N} / \mathrm{m}$.
$E_{1}=2 \times 10^{11} P a, E_{2}=10^{12} P a, \nu_{1}=\nu_{2}=0.3$ and $a=1 / 2$.
The rate decreases from $0.4799 \mathrm{~N} / \mathrm{m}$ to $0.00679 \mathrm{~N} / \mathrm{m}$.
Initial rate is $0.2139 \mathrm{~N} / \mathrm{m}$.

Resolution of $\left(P_{h}\right)$ - Optimal density $h_{2}^{\text {opt }}$ (Left) and corresponding deformation (Right) $g_{\psi}\left(\boldsymbol{u}, \boldsymbol{h}^{o p t}, \mathcal{X}_{\Gamma_{h}}\right) \approx 0.00679 \mathrm{~N} / \mathrm{m}$.
$E_{1}=E_{2}=2 \times 10^{11} P a, \nu_{1}=\nu_{2}=0.3$ and $a=1 / 2$, without constraint on \boldsymbol{h}.
We obtain the value $g_{\boldsymbol{\psi}}\left(\boldsymbol{u}, \boldsymbol{h}^{\text {opt }}, \mathcal{X}_{\Gamma_{h}}\right) \approx 0.0383 N / m$ (corresponding to a reduction of order 30).
x 1E6

Resolution of $\left(P_{h}\right)$ without constraint on \boldsymbol{h} - Optimal density $h_{2}^{\text {opt }}$ (Left) and corresponding deformation (Right) $-g_{\psi}\left(\boldsymbol{u}, \boldsymbol{h}^{o p t}, \mathcal{X}_{\Gamma_{h}}\right) \approx 0.0383 \mathrm{~N} / \mathrm{m}$.

6.3 The case of two cracks

Resolution of $\left(R P_{\Gamma_{h}}\right)$ - Limit densities (top left) and deformation for $\left(a_{1}, a_{2}\right)=(1 / 4,1 / 2)$ (top right), $\left(a_{1}, a_{2}\right)=(1 / 2,1 / 2)($ bottom left $)$ and $\left(a_{1}, a_{2}\right)=(1 / 2,1 / 4)($ bottom right $)$.

$$
\begin{aligned}
& \left(a_{1}, a_{2}\right)=(1 / 4,1 / 2): g_{\boldsymbol{\psi}}(\boldsymbol{u}, \boldsymbol{h}, 0)=1.151, g_{\boldsymbol{\psi}}\left(\boldsymbol{u}, \boldsymbol{h}, s^{(0)}\right)=0.861, g_{\boldsymbol{\psi}}\left(\boldsymbol{u}, \boldsymbol{h}, s^{l i m}\right)=0.582 \\
& \left(a_{1}, a_{2}\right)=(1 / 2,1 / 2): g_{\boldsymbol{\psi}}(\boldsymbol{u}, \boldsymbol{h}, 0)=1.152, g_{\boldsymbol{\psi}}\left(\boldsymbol{u}, \boldsymbol{h}, s^{(0)}\right)=1.49, g_{\boldsymbol{\psi}}\left(\boldsymbol{u}, \boldsymbol{h}, s^{l i m}\right)=0.668 \\
& \left(a_{1}, a_{2}\right)=(1 / 2,1 / 4): g_{\boldsymbol{\psi}}(\boldsymbol{u}, \boldsymbol{h}, 0)=0.232, g_{\boldsymbol{\psi}}\left(\boldsymbol{u}, \boldsymbol{h}, s^{(0)}\right)=0.461, g_{\boldsymbol{\psi}}\left(\boldsymbol{u}, \boldsymbol{h}, s^{l i m}\right)=0.102
\end{aligned}
$$

Numerical values of the energy release rate (in N / m)

Penalization of the limit density $s^{l i m}$ in the case $\left(a_{1}, a_{2}\right)=(1 / 2,1 / 2)$ by a characteristic function $\mathcal{X}_{\Gamma_{h}}^{(10)}$.

$1.91 \mathrm{E}+0$

1. $34 \mathrm{E}+05$
2. $49 \mathrm{E}+05$
3. $64 \mathrm{E}+05$
$4.79 \mathrm{E}+05$
4. $94 \mathrm{E}+05$
7.09E+05
.24E+05
. $39 \mathrm{E}+05$
. $05 \mathrm{E}+06$
$1.17 \mathrm{E}+06$
. $28 \mathrm{E}+06$
. $40 \mathrm{E}+06$
$.41 \mathrm{E}+06$
$.51 \mathrm{E}+06$
$1.63 \mathrm{E}+06$
$.74 \mathrm{E}+06$
$.86 \mathrm{E}+06$
1.86E+06
. $97 \mathrm{E}+06$
$2.09 \mathrm{E}+06$
5. $20 \mathrm{E}+06$
6. $32 \mathrm{E}+06$
$2.43 \mathrm{E}+0$

Iso-values of the Von Mises stresses on $\Omega-\mathbf{a}$) without extra-force $g_{\psi}(\boldsymbol{u}, \boldsymbol{h}, 0) \approx 0.232 N / m$ (Top left $)$ - b) from $\left(R P_{\Gamma_{h}}\right) g_{\boldsymbol{\psi}}\left(\boldsymbol{u}, \boldsymbol{h}, s^{o p t}\right) \approx 0.102 N / m($ Top right $)$ and $\left.\mathbf{c}\right)$ from $\left(P_{h}\right) g_{\boldsymbol{\psi}}\left(\boldsymbol{u}, \boldsymbol{h}^{o p t}, \mathcal{X}_{\Gamma_{h}}\right) \approx$ $0.0556 \mathrm{~N} / \mathrm{m}$ (Bottom).

