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1. Introduction - Problem statement
Ω ⊂ R

2 : elastic structure, fixed on Γ0 ⊂ ∂Ω, submitted to a normal load such that

fXΓf
+ hXΓh

∈ (L2(∂Ω\Γ0))
2

where

f ∈ (L2(Γf))
2, h ∈ (L2(Γh))

2, Γf ,Γh ⊂ ∂Ω\Γ0, Γf ∩ Γh = ∅.
The domain Ω contains a crack γ of extremity F , unloaded and free. The corresponding displace-

ment field u = (u1, u2) lies in the convex set

K = {v ∈ (H1
Γ0

(Ω))2, [v · ν] ≤ 0 on γ} where H1
Γ0

(Ω) = {v ∈ H1(Ω), v = 0 on Γ0},

and minimizes at equilibrium the energy J(., γ) on K:

J(v, γ) =
1

2

∫

Ω

Tr(σ(v)∇v)dx−
∫

Γf

f · v dσ −
∫

Γh

h · v dσ. (1)

The field u solving (1) satisfies (2):














− div σ(u) = 0, σ(u) ≡ A ε(u), ε(u) ≡ (∇u + (∇u)T )/2 in Ω,

u = 0 on Γ0 ⊂ ∂Ω, σ(u)ν = fXΓf
+ hXΓh

on ∂Ω\Γ0,

[uν] ≡ [u · ν] ≤ 0, σν ≡ (σ(u)ν) · ν ≤ 0, [uν]σν = 0, σ(u)ν − σνν = 0 on γ.

(2)



Notation:

Γ = ∂Ω\(Γ0 ∪ Γf ∪ γ).

In order to reduce the energy release rate g (see hereafter), one may act on the boundary load hXΓh
.

1. In this respect, assuming fixed the main load f and its support Γf , we consider, for any L (in

[0, 1]), the following nonlinear problem:

(PΓh
) : inf

XΓh
∈XL

g(u,h,XΓh
); XL = {X ∈ L∞(Γ, {0, 1}), ‖X‖L1(Γ) = L‖XΓ‖L1(Γ)}.

For any fixed h in (L2(Γh))
2, (PΓh

) is an optimal design problem which consists in finding the

optimal distribution of the support Γh ⊂ Γ of the additional load h. Remark that the support Γh

may a priori be composed of several disjoint components.

2. On the other hand, the support Γh ⊂ Γ of the additional force being fixed, one may also

consider the following problem: for any L (in [0, 1])

(Ph) : inf
h∈(L2

L(Γh))2
g(u,h,XΓh

); (L2
L(Γh))

2 = {h ∈ (L2(Γh))
2, ‖h‖(L2(Γh))2 = L‖f‖(L2(Γf ))2},

which consists in optimizing the amplitude of h in order to reduce g and therefore preventing the

crack growth.



Γh : σ(u) ν = h

Γf : σ(u) ν = f

F
γ

Ω

ν
Γ0 : u = 0

Illustration of the problem (PΓh
): Optimization of the location of Γh, the support of the extra

load h in order to minimize the energy release rate.



2. The energy release rate
Crack γ: rectilinear in the neighborhood of F and oriented along e1.

Field: ψ = (ψ1(x1, x2), 0) ∈ W ≡ {ψ ∈ (W 1,∞(Ω,R))2,ψ = 0 on ∂Ω\γ}.

Definition 1 (Energy release rate) The derivative of the functional −J(u, γ) with re-

spect to a variation of γ in the direction ψ is defined as the derivative at 0 of the function

η → −J(u, (Id + ηψ)(γ)), i.e.

J(u, (Id + ηψ)(γ)) = J(u, γ) + η
∂J(u, γ)

∂γ
.ψ + o(η2).

In the sequel, we denote by gψ(u,h,XΓh
) this derivative. �

Lemma 1 The first derivative of −J with respect to γ in the direction ψ = (ψ1, 0) ∈ W is

given by

gψ(u,h,XΓh
) = −1

2

∫

Ω

Tr(σ(u)∇u)div ψdx +

∫

Ω

Tr(σ(u)∇u∇ψ)dx

= −1

2

∫

Ω

σijuj,iψ1,1dx +

∫

Ω

σijuj,1ψ1,idx

where u = u(f ,XΓf
,h,XΓh

) is the solution of the elasticity problem. �



Remark 1 A simple choice for ψ = (ψ1, 0) is given by the radial function

ψ1(x) = ζ(dist(x,F )), ∀x ∈ Ω,

where the function ζ ∈ C1(R+; [0, 1]) is defined as follows:

ζ(r) =



















1 r ≤ r1

(r − r2)
2(3r1 − r2 − 2r)

(r1 − r2)3
r1 ≤ r ≤ r2

0 r ≥ r2

with 0 < r1 < r2 < dist(∂Ω\γ,F ) = infx∈∂Ω\γ dist(x,F ).



3. Well-posedness and relaxation of the problems
Optimal location problem (PΓh

) : ill-posed in general.

Proposition 1 Let h 6= 0 be fixed in (L2(Γ))2. If Γh is composed of a finite number of disjoint

components, then problem (PΓh
) admits at least a solution. �

Relaxation of (PΓh
) :

(RPΓh
) : inf

s∈SL

gψ(u,h, s); SL = {s ∈ L∞(Γ, [0, 1]), ‖s‖L1(Γ) = L‖XΓ‖L1(Γ)}

where L (in [0, 1]) is the real parameter which appears in the definition of (PΓh
), and u the solution

of the elasticity problem where

σ(u)ν = fXΓf
+ s(x)hXΓh

on ∂Ω\Γ0, ( instead of σ(u)ν = fXΓf
+ hXΓh

),

Theorem 1

• The problem (RPΓh
) is well-posed;

• The minimum of (RPΓh
) equals the infimum of (PΓh

).

Proposition 2 Let Γh 6= ∅ be fixed in Γ and L ∈ [0, 1]. The problem (Ph) admits at least a

solution in (L2
L(Γh))

2. �



4. Derivative of gψ with respect to s and h
For a fixed field ψ = (ψ1, 0), find the expression of the derivatives of gψ with respect to the

variation of s ∈ L∞(Γ, [0, 1]) and h ∈ (L2(Γh))
2. Penalization of the contact with a function

denoted g (!).

A weak solution u ∈ (H1
Γ0

(Ω))2 is characterized by the following formulation
∫

Ω

Tr(σ(u)∇v)dx + ǫ−1

∫

γ

∇g([u]) · [v]dσ =

∫

Γf

f · v dσ +

∫

Γh

h · v dσ, ∀v ∈ (H1
Γ0

(Ω))2.

Perturbation of s: sη = s + ηs1 ∈ L∞(Γ, [0, 1]).

∂gψ(u(s),h, s)

∂s
· s1 = lim

η→0

gψ(u(sη),h, sη) − gψ(u(s),h, s)

η
.

Theorem 2 The first variation of gψ with respect to s in the direction s1 ∈ L∞(Γ, [0, 1]) is

∂gψ(u,h, s)

∂s
· s1 = −

∫

Γ

s1(x)h · p dσ, ∀s1 ∈ L∞(Γ, [0, 1])

where p ∈ (H1
Γ0

(Ω))2 is solution of the following (weak) adjoint problem:
∫

Ω

Tr(σ(p)∇φ)dx−
∫

Ω

Tr(σ(u)∇φ)div ψdx +

∫

Ω

Tr(σ(φ)∇u∇ψ)dx

+

∫

Ω

Tr(σ(u)∇φ∇ψ)dx + ǫ−1

∫

γ

∇(∇g([u]) · [φ]) · [p] dσ = 0

for all φ ∈ (H1
Γ0

(Ω))2. �



Remark 2 If the crack is oriented along the axis (O, e1) and if λ, µ are the Lamé coefficients,

then p = (p1, p2) is formally solution of the following equations:


















































−σij,i(p) + (σij(u)ψ1,1),i − (σij(u)ψ1,i),1

−λ(ui,1ψ1,i),j − µ((ui,1ψ1,j),i + (uj,1ψ1,i),i) = 0 in Ω,

p = 0 on Γ0,

σ12(p) = µu1,2ψ1,1 + ǫ−1(g,11([u])[p1] + g,12([u])[p2]) on γ,

σ22(p) = (λ + 2µ)u2,2ψ1,1 + ǫ−1(g,12([u])[p1] + g,22([u])[p2]) on γ,

σ(p)ν = 0 on ∂Ω\(Γ0 ∪ γ).

Similarly, assuming Γh fixed in Γ, we obtain the first derivative of gψ with respect to h:

Theorem 3 The first derivative of gψ with respect to h in the direction h1 is given by

∂gψ(u,h,XΓh
)

∂h
· h1 = −

∫

Γh

h1 · p dσ, ∀h1 ∈ (L2(Γh))
2

where p is the solution of the adjoint problem. �



5. Descent algorithms
Descent algorithm for (RPΓh

)

Descent direction: s1 = h · p
Size restriction on s: ‖s‖L1(Γ) = L|Γ|: we introduce a Lagrange multiplier λ and a new cost

function:

gψ,λ(u,h, s) = gψ(u,h, s) + λ(‖s‖L1(Γ) − L|Γ|), ∀s ∈ L∞(Γ, [0, 1])

leading to
∂gψ,λ(u,h, s)

∂s
· s1 = −

∫

Γ

s1(x)h · p dσ + λ

∫

Γ

s1(x)dσ

and to the descent direction

s1 = h · p− λ on Γ.

Consequently, for any function ηs ∈ L∞(Γ,R+) with ‖ηs‖L1(Γ) small enough, we have gψ,λ(u,h, s+

ηss1) ≤ gψ,λ(u,h, s). The multiplier λ is then determined so that, for any function ηs ∈ L∞(Γ,R+),

‖s + ηss1‖L1(Γ) = L|Γ|, leading to

λ =
(
∫

Γ s(x)dσ − L|Γ|) +
∫

Γ ηs(x)h · p dσ
∫

Γ ηs(x)dσ
.

At last, the function ηs is chosen so that s+ηss1 ∈ [0, 1], for all x ∈ Γ. A simple and efficient choice

consists in taking ηs(x) = εs(x)(1 − s(x)) for all x ∈ Γ where ε is a small positive parameter.



Consequently, the descent algorithm to solve numerically the relaxed problem (RPΓh
) may be

structured as follows. Let Ω ⊂ R
2, Γ0,Γf in ∂Ω, f ∈ (L2(Γf))

2, h ∈ (L2(Γh))
2, L ∈ (0, 1) and

ε < 1, ε1 << 1 be given ;

• Initialization of the density s(0) ∈ L∞(Γ; (0, 1));

• For k ≥ 0, iterate until convergence (i.e. |gψ,λ(u,h, s(k+1))−gψ,λ(u,h, s(k))| ≤ ε1|gψ,λ(u,h, s(0))|)
as follows:

– Computation of the solution u(s(k)) of the elasticity problem and then the solution p(s(k))

of the adjoint problem, both corresponding to s = s(k).

– Computation of the descent direction s
(k)
1 = h · p(s(k)) − λ(k).

– Update the density s(k) in Γ:

s(k+1) = s(k) + εs(k)(1 − s(k))s
(k)
1 , (3)

with ε ∈ R
+ small enough in order to ensure the decrease of the cost function and s(k+1) ∈

L∞(Γ, [0, 1]).



Descent algorithm for (Ph)

Problem (Ph) is solved in a similar way. In order to ensure h ∈ (L2
L(Γh))

2, we introduce the new

cost function:

gψ,λ(u,h,XΓh
) = gψ(u,h,XΓh

) + λ(‖h‖2
(L2(Γh))2 − L2‖f‖2

(L2(Γf ))2).

So
∂gψ,λ(u,h,XΓh

)

∂h
· h1 =

∫

Γh

h1 · (−p + 2λh) dσ, ∀h1 ∈ (L2(Γh))
2

leading to the descent direction h1 = (p − 2λh) so that for any ε > 0 small enough, gψ,λ(u,h +

ε(p−2λh),XΓh
) ≤ gψ,λ(u,h,XΓh

). At last, the multiplier λ is determined so that h+ε(p−2λh) ∈
(L2

L(Γh))
2; λ is then solution of the polynomial equation of order two:

4ε‖h‖2
(L2(Γh))2λ

2 − 4

(
∫

Γh

p · hdσ + ‖h‖2
(L2(Γh))2

)

λ

− ε−1(L2‖f‖2
(L2(Γf ))2 − ‖h‖2

(L2(Γh))2) + 2

∫

Γh

h · pdσ + ε‖p‖2
(L2(Γh))2 = 0.

(4)

Observe that the two roots are real if ε > 0 is small enough. The algorithm is then similar to the

algorithm of the previous section, (3) being replaced by

h(k+1) = h(k) + ε(p(h(k)) − 2λ(k)h(k))

where λ(k) solves (4).



6. Numerical experiments
Ω = (0, 1)2, fixed on Γ0 = {1}× [0, 1] with a crack γ = [0, 0.5]×{a}, (a ∈ (0, 1)), and submitted

to the load f = (f1, f2) = (0, 106N/m) on Γf = [0.3, 0.6] × {1}.
Lower part of Ω (i.e. [0, 1] × [0, a]) with a Young modulus E1 and a Poisson ratio ν1

Upper part of Ω (i.e. [0, 1] × [a, 1]) with a Young modulus E2 and a Poisson ratio ν2.

Standard P1 finite elements, h = 1/100, amplification of 2 × 104 (deformation).

-

6

Ω

Fγ

O

a

1

11/2 e1

e2

Γ0

Γf

E2, ν2

E1, ν1

6 6 6 6

Setting of the problem



Young modulus of 2 × 1011Pa, Poisson ratio of 0.3 and a centered crack (a = 0.5).

Initial and deformed configurations of Ω without additional extra force (i.e., XΓh
= 0) and a = 0.5:

gψ(u,h, 0) ≈ 1.147N/m (r1 = 0.1 and r2 = 0.4).



6.1 Problem (RPΓh
)

Γ = [0, 1]×{0} (i.e., the lower edge of the structure), h = (0, h2) with h2 = 106N/m and L = 0.3

so that
∫

Γ s(x)h2dσ =
∫

Γf
f2dσ. Initialization with the constant density function s(0) ≡ L in Γ.

E1 = E2 = 2 × 1011Pa, ν1 = ν2 = 0.3 and a = 0.5.

gψ(u,h, s(0)) ≈ 0.7836N/m.

Symmetric density s = X[0.3,0.6] ∈ SL: gψ(u,h, s) ≈ 0.6203N/m.

Optimal density sopt for which gψ(u,h, sopt) ≈ 0.4641N/m; sopt ≈ X[0.42,0.72].
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Resolution of (RPΓh
) - Optimal density sopt (Left) and corresponding deformation (Right)-

gψ(u,h, sopt) ≈ 0.4641N/m.
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E1 = E2 = 2 × 1011Pa, ν1 = ν2 = 0.3 and a = 1/3.

Without additional force: gψ(u,h, 0) ≈ 0.3872N/m (obtained with r1 = 0.1 and r2 = 0.25).

Initial constant additional force s(0) = L = 0.3 on Γ: the rate decreases from 0.5876N/m to

0.1050N/m; sopt ≈ X[0.52,0.7]∪[0.88,1]
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Resolution of (RPΓh
) - Optimal density sopt (Left) and corresponding deformation (Right)-

gψ(u,h, sopt) ≈ 0.1050N/m.



E1 = 2 × 1011Pa, E2 = 1012Pa, ν1 = ν2 = 0.3 and a = 1/2.

Without additional force, rate = 0.2139N/m.

Choosing s(0) = L = 0.3, the rate decreases from 0.2481N/m to 0.0281N/m; sopt ≈ X[0.52,0.82].
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Resolution of (RPΓh
) - Optimal density sopt (Left) and corresponding deformation (Right)-

gψ(u,h, sopt) ≈ 0.0281N/m.



6.2 Problem (Ph)

Γh = [0, 1] × {0} and h is normal: h = (0, h2).

We impose that the L2-norm of the additional load h equals the L2-norm of f (L = 1).

The initial computations are achieved with a constant normal load on Γh, i.e.

h
(0)
2 = |Γf |1/2f2/|Γh|1/2 =

√
0.3f2 for which h(0) = (0, h

(0)
2 ) ∈ (L2

L=1(Γh))
2

E1 = E2 = 2 × 1011Pa, ν1 = ν2 = 0.3 and a = 1/2.

Initial computation gψ(u,h(0),XΓh
) ≈ 1.5927N/m.
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Resolution of (Ph) - Optimal density hopt2 (Left) and corresponding deformation (Right)

gψ(u,hopt,XΓh
) ≈ 0.4328N/m.



E1 = E2 = 2 × 1011Pa, ν1 = ν2 = 0.3 and a = 1/3.

The rate decreases from 1.1948N/m to 0.0353N/m. (rate without additional force is 0.3872N/m)
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Resolution of (Ph) - Optimal density hopt2 (Left) and corresponding deformation (Right)

gψ(u,hopt,XΓh
) ≈ 0.0353N/m.



E1 = 2 × 1011Pa, E2 = 1012Pa, ν1 = ν2 = 0.3 and a = 1/2.

The rate decreases from 0.4799N/m to 0.00679N/m.

Initial rate is 0.2139N/m.
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Resolution of (Ph) - Optimal density hopt2 (Left) and corresponding deformation (Right)

gψ(u,hopt,XΓh
) ≈ 0.00679N/m.



E1 = E2 = 2 × 1011Pa, ν1 = ν2 = 0.3 and a = 1/2, without constraint on h.

We obtain the value gψ(u,hopt,XΓh
) ≈ 0.0383N/m (corresponding to a reduction of order 30).
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Resolution of (Ph) without constraint on h- Optimal density hopt2 (Left) and corresponding

deformation (Right) - gψ(u,hopt,XΓh
) ≈ 0.0383N/m.



6.3 The case of two cracks
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(a1,a2)=(1/4,1/2)
(a1,a2)=(1/2,1/2)
(a1,a2)=(1/2,1/4)

Resolution of (RPΓh
) - Limit densities (top left) and deformation for (a1, a2) = (1/4, 1/2) (top

right), (a1, a2) = (1/2, 1/2) (bottom left) and (a1, a2) = (1/2, 1/4) (bottom right).



(a1, a2) = (1/4, 1/2) : gψ(u,h, 0) = 1.151, gψ(u,h, s(0)) = 0.861, gψ(u,h, slim) = 0.582

(a1, a2) = (1/2, 1/2) : gψ(u,h, 0) = 1.152, gψ(u,h, s(0)) = 1.49, gψ(u,h, slim) = 0.668

(a1, a2) = (1/2, 1/4) : gψ(u,h, 0) = 0.232, gψ(u,h, s(0)) = 0.461, gψ(u,h, slim) = 0.102

Numerical values of the energy release rate (in N/m)
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Penalization of the limit density slim in the case (a1, a2) = (1/2, 1/2) by a characteristic function

X (10)
Γh

.
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Iso-values of the Von Mises stresses on Ω - a) without extra-force gψ(u,h, 0) ≈ 0.232N/m (Top

left) - b) from (RPΓh
) gψ(u,h, sopt) ≈ 0.102N/m (Top right) and c) from (Ph) gψ(u,hopt,XΓh

) ≈
0.0556N/m (Bottom).


