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1. Introduction - Problem statement
Q) C R? : elastic structure, fixed on 'y C 092, submitted to a normal load such that

X, + h&r, € (L (00\I))*
where
f e (LX) he (LA Ty)? Ty Thcoo\ly, TpnTy,=0.

The domain €2 contains a crack v of extremity F', unloaded and free. The corresponding displace-
ment field w = (ug, uz) lies in the convex set

K ={v e (H; () [v-v]<0ony} where Hp(Q)={veH(Q),v=00nTy},

and minimizes at equilibrium the energy J(.,7) on K:
1
J(,7) = = / Tr(o(v) Vo)dz — / fovdo— / h-vdo )
2 Ja r, Iy
The field w solving (1) satisfies (2):

2

—div o(u) =0, ou)=Ae(u), eu)=Vut+(Vu))/2 in Q,
Cu=0 on I'yCoQ, o(u)v = prJthph on OO\, (2)

\ u)=uw-v]| <0, o,=(cur) v<0, [ulo,=0 oluv—ocr=0 on 7.




Notation:
=0\ (TyUT'yUy).

In order to reduce the energy release rate g (see hereafter), one may act on the boundary load h A, .

1. In this respect, assuming fixed the main load f and its support I'y, we consider, for any L (in

0, 1]), the following nonlinear problem:

(Pr,) o inf glu b, &), Xp = {&X € L0 A0, 1), [|X][ ey = LI/l -
ot r) (r)

For any fixed h in (L*(I'y))?, (Pr,) is an optimal design problem which consists in finding the
optimal distribution of the support I';, C I' of the additional load h. Remark that the support I'y,
may a priort be composed of several disjoint components.

2. On the other hand, the support I', C I' of the additional force being fixed, one may also
consider the following problem: for any L (in [0, 1])

(Pu): inf glu b, &) (LL(TW)* = {h € (LA(T0)*, Il 2,2 = LIl a2}
he(L7(Tp))?

which consists in optimizing the amplitude of h in order to reduce g and therefore preventing the

crack growth.



[':o(u) v=~h

[ustration of the problem (Fr,): Optimization of the location of I';, the support of the extra

load h in order to minimize the energy release rate.



2. The energy release rate
Crack ~: rectilinear in the neighborhood of F' and oriented along ey.

Field: 4 = (¢ (21, 22),0) € W = {8 € (W(,R))%, 4 = 0 on 9Q\7}.

DEFINITION 1 (ENERGY RELEASE RATE) The derivative of the functional —J(w,~y) with re-

spect to a variation of v n the direction v is defined as the derivative at O of the function

n — —J(u, (Id+ n)(7)), i.e.

J(u, (Id+np)(v) = J(u,7) + UM

oy
In the sequel, we denote by gy(u, h, At,) this derivative. |

P+ o(n?).

LEMMA 1 The first derivative of —J with respect to v in the direction ¥ = (1¥1,0) € W s
given by

gy(u, h, Xr,) = —%/Q Tr(o(uw) Vu)div ¢daz+/Q Tr(o(uw) Vu Vip)dx
1

= —5/Uijuj,i%,ldCUJr/Uz‘juj,l%,z'd?@
Q 0

where u = u(f, Ar,, h, Xr,) is the solution of the elasticity problem. |



Remark 1 A simple choice for 1 = (¢1,0) is given by the radial function
i) = ((dist(z, F)), Va €,
where the function ¢ € CY(R™;[0,1]) is defined as follows:

( 1 r<mr
—79)?(3ry — rg — 2
¢(r) = r TQ)(T( Tlr)? ") r <7<y
1= 72
\ 0 > T

with 0 < 1y < 1y < dist(OQ\y, F) = infzepn\, dist(x, F).



3. Well-posedness and relaxation of the problems

Optimal location problem (P, ) : ill-posed in general.

PROPOSITION 1 Let h # 0 be fized in (L*(I'))%. If T}, is composed of a finite number of disjoint
components, then problem (Pr,) admits at least a solution. |

Relaxation of (Pr,) :

(RPr,):  inf gy(u, h,s); Sp=1s € LI [0,1)), [|sll ) = L[ 1) b

seST,
where L (in [0, 1]) is the real parameter which appears in the definition of (P, ), and w the solution

of the elasticity problem where
o(u)v = fAr, +s(x)hXr, on O\, ( instead of o(w)v = fAr, + hAT,),
THEOREM 1
o The problem (RPr,) is well-posed;
o The minimum of (RFr,) equals the infimum of (Fr,).

PROPOSITION 2 Let 'y, # 0 be fized in I' and L € [0,1]. The problem (P,) admits at least a
solution in (L3 (T'},))%. O



4. Derivative of g,, with respect to s and h

For a fixed field @ = (11,0), find the expression of the derivatives of g, with respect to the

variation of s € L(T,[0,1]) and h € (L*(T';))?. Penalization of the contact with a function
denoted g (!).

A weak solution u € (H%O(Q))2 is characterized by the following formulation
/Tr(a'(u) Vo)dz + ¢! /Vg([u]) |wlde = | f-vdo +/ h-vdo, Yve (HIlﬂO(Q))2
Q Y Ff Fh,

Perturbation of s: s7 = s+ ns; € L>(I', [0, 1]).
ag¢(u(5)vh7 S) g¢(u(s77),h,577) — g’l/)(u(s)?h?s)

- 51 = lim :
ds R n
THEOREM 2 The first variation of gy with respect to s in the direction s; € L>(I',|0,1]) s
0gy(u, b, s)

£8 = — / si(@)h -pdo, Vs € L>(T,|0,1])
0s T

where p € (H%O(Q))2 is solution of the following (weak) adjoint problem:

/T?“(a'(p) V(/ﬁ)daj—/Tr(a(u) Vo)div gbd:v—l—/Tr(O'(qb) VuV)dx
0 0

Q

+ /QT’I‘<0'(’U»> Vo Vp)dr + ¢! /V(Vg([u]) [¢p]) - [p]do =0

y
for all ¢ € (H%O(Q))2 ]



Remark 2 If the crack is oriented along the axis (O, ey) and if A, i are the Lamé coefficients,
then p = (p1, p2) is formally solution of the following equations:

(

—0iji(p) + (oi(w)r1); — (0ij(w)h1i) 1

—ANwiitni); — pl(wiir )i + (wjai) ) =0 in €,
p=0 on Ty,
012(p) = purohry + € g ([u])[pi] + gio([u])p]) on 7,

022(p) = (A4 2p)ug 011 + € (g o([u])[p1] + g2o([u])[p2]) on 7,
opv=0 on IQ\(THU~).

Similarly, assuming I'j, fixed in I', we obtain the first derivative of g, with respect to h:

THEOREM 3 The first deriwative of gy with respect to h in the direction hy is given by

89@0(“’7 h’7 th)
oh

where p is the solution of the adjoint problem. |

chy = —/ hi-pdo, Yhy € (L*(T)))?
Fh



5. Descent algorithms

Descent algorithm for (RFr,)
Descent direction: s; =h - p
Size restriction on s: |[|s|[ i) = L|I'[: we introduce a Lagrange multiplier A and a new cost

function:
gpA(u, b, s) = gy(u, h,s) + A(||s|[ ) — LIT]), Vs e L™(T, 0, 1])

gy r(u, h, s) L8y = _/Sl(m)h-p do + )\/Sl(m)dg
r

leading to

0s r
and to the descent direction
=h-p—X on I.
Consequently, for any function n, € L*(I', R™) with [[n]| ;1) small enough, we have gy \(u, b, s+
ns$1) < gya(w, b, s). The multiplier A is then determined so that, for any function ny € L>(I', R™),
|s + nss1l L1y = LT, leading to

(Jps(x)do — L|T|) +fp773 Jh - pda

fr ns(x

At last, the function 7 is chosen so that s+mnys1 € |0, 1}, for all x € I'. A simple and efficient choice

A=

consists in taking ny(x) = es(x)(1 — s(x)) for all @ € [ where € is a small positive parameter.



Consequently, the descent algorithm to solve numerically the relaxed problem (RPFr,) may be
structured as follows. Let Q C R? [, Ty in 9Q, f € (L*(Ty))* h € (L*(T}))% L € (0,1) and
e <1, e << 1 be given ;
e Initialization of the density s € L>(T"; (0, 1));
e For k > 0, iterate until convergence (i.e. |gypa(w, b, s D)) =gy \(u, b, s < 1] gy (u, b, s)|)
as follows:
— Computation of the solution u(s*)) of the elasticity problem and then the solution p(s*))
of the adjoint problem, both corresponding to s = s*).
— Computation of the descent direction Sgk) = h - p(sF)) — \®),
— Update the density s in I':

sPHD = 5B) L egh)(1 — S(k))sgk), (3)

with e € Rt small enough in order to ensure the decrease of the cost function and s+ e
L>(T,[0,1]).



Descent algorithm for (F})
Problem (B,) is solved in a similar way. In order to ensure h € (L% (T;))?, we introduce the new

cost function:

gp(u, b, X)) = gy(u, b, X, ) + )‘(HhH?LQ(Fh))Q - LQH‘fH%LQ(Pf))Q)'

agi,b,)\(ua h’a th)
oh

leading to the descent direction h; = (p — 2Ah) so that for any € > 0 small enough, g\ (uw, h +
e(p—2X\h), &1, ) < gya(u, b, X, ). At last, the multiplier A is determined so that h+e(p—2A\h) €
(L%(T,))? A is then solution of the polynomial equation of order two:

h

= (LN Iz = RNz, ) +2 /ph he- pdo + e [[pllizzr ) = 0.

hy = / hi-(—p+2\h) do, Yhy € (L*(T}))?
Fh

(4)

Observe that the two roots are real if € > 0 is small enough. The algorithm is then similar to the

algorithm of the previous section, (3) being replaced by
hEHD) — k) o o (p(RBF)) — 2\PIRK)

where M%) solves (4).



6. Numerical experiments

Q= (0,1)?, fixed on Iy = {1} x [0, 1] with a crack v = [0,0.5] x {a}, (a € (0,1)), and submitted
to the load f = (f1, f2) = (0,10°N/m) on I'; = [0.3,0.6] x {1}.

Lower part of ) (i.e. [0,1] x |0, a]) with a Young modulus E; and a Poisson ratio 14

Upper part of Q (i.e. [0,1] X [a, 1]) with a Young modulus F5 and a Poisson ratio vs.
Standard P; finite elements, A = 1/100, amplification of 2 x 10* (deformation).
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Setting of the problem



Young modulus of 2 x 10" Pa, Poisson ratio of 0.3 and a centered crack (a = 0.5).

—

Initial and deformed configurations of €2 without additional extra force (i.e., Ay, = 0) and a = 0.5:
gu(w, h,0) = 1.147TN/m (r; = 0.1 and ry = 0.4).



6.1 Problem (RFr,)

['=1[0,1] x {0} (i.e., the lower edge of the structure), b = (0, hy) with ho = 105N /m and L = 0.3
so that fr x)hydo = fr fodo. Initialization with the constant density function s¥) = L in T

E, = E2—2><1011Pa v =15 =0.3and a = 0.5.

gy (u, b, s") = 0.7836 N /m.

Symmetric density s = Xjg 306 € Sr: gy(u, h,s) = 0. 6203N/m

Optimal density s?" for which gy (u, b, s") ~ 0.4641N/m; s ~ Xjg 49,0.79)-

.
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Resolution of (RP,) - Optimal density s”' (Left) and corresponding deformation (Right)-
gy (u, b, ") &~ 0.4641N/m.
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Evolution of g,(u, h, s*)) vs. k € [1,100] obtained with ¢ = 0.3.



Ei=FEy,=2x10"Pa, vy =15 =03 and a = 1/3,
Without additional force: gy(w, b, 0) ~ 0.3872N/m (obtained with r; = 0.1 and ry = 0.25).
Initial constant additional force s(®) = L = 0.3 on I': the rate decreases from 0.5876N/m to

0.1050N /m; s = Xjg 52,0.7U[0.88.1]
) — f
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Resolution of (RPr,) - Optimal density s”' (Left) and corresponding deformation (Right)-
gy(u, h, s") ~ 0.1050N/m.

—




E; =2 x 10" Pa, By = 10"%*Pa, vy = vy = 0.3 and a = 1/2.
Without additional force, rate = 0.2139N/m.
Choosing s = L = 0.3, the rate decreases from 0.2481N/m to 0.0281N/m; s Xo.52,0.89]-
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Resolution of (RPr,) - Optimal density s?' (Left) and corresponding deformation (Right)-
gy (u, b, sP) =~ 0.0281N/m.




6.2 Problem (F,)

[, =10,1] x {0} and h is normal: h = (0, hs).

We impose that the L2norm of the additional load h equals the L?>-norm of f (L = 1).
The initial computations are achieved with a constant normal load on I'y, i.e.

WY = |0 |Y2 £/ |04 Y2 = V0.3 5 for which R = (0, h{") € (L2_(T',))?

Ei=FEy,=2x10"Pa, vy =1y =03 and a = 1/2.
Initial computation gy (w, R, Ar, ) &~ 1.5927N/m.
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Resolution of (P,) - Optimal density hY”" (Left) and corresponding deformation (Right)
gy (u, R, Xy, ) = 0.4328N/m.



Ei=FEy,=2x10"Pa, vy =15 =03 and a = 1/3,
The rate decreases from 1.1948 N /m to 0.0353N/m. (rate without additional force is 0.3872N/m)
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Resolution of (Py,) - Optimal density hg” ! (Left) and corresponding deformation (Right)
gy (u, K" Xp,) &~ 0.0353N/m.




E; =2 x 10" Pa, By = 10"%*Pa, vy = vy = 0.3 and a = 1/2.
The rate decreases from 0.4799N/m to 0.00679N/m.
Initial rate is 0.2139N/m.
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Resolution of (Py,) - Optimal density hg” t (Left) and corresponding deformation (Right)
g, RPY A, ) & 0.006T9N /m.




By = Ey =2 x 10" Pa, v = 15 = 0.3 and a = 1/2, without constraint on k.
We obtain the value gy (u, R, Xr, ) ~ 0.0383N/m (corresponding to a reduction of order 30).
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Resolution of (P},) without constraint on h- Optimal density h3"

deformation (Right) - g, (w, R, Xr, ) ~ 0.0383N/m.

(Left) and corresponding



6.3 The case of two cracks

0.9

— (al,a2)=(1/4,112)
o8- --(al,a2)=(1/2,1/2)
N (avr,a2)=(1/2,1/4)

Resolution of (RPr, ) - Limit densities (top left) and deformation for (a1, az) = (1/4,1/2) (top
right), (a1,a2) = (1/2,1/2) (bottom left) and (a1, as) = (1/2,1/4) (bottom right).



(a1, a9) = (1/4,1/2) : gy(u, h,0) = 1.151, gy(u, h,s") = 0.861, gy(u,h,s'"™) = 0.582
(a1,a2) = (1/2,1/2) : gy(u, h,0) = 1.152, gy(u, h,s0) =1.49, gu(u, h,s'"™) = 0.668
(a1, a9) = (1/2,1/4) : gy(u, h,0) = 0.232, gy(u, h,s") = 0.461, gy(u, h,s'"™) = 0.102

Numerical values of the energy release rate (in N/m)
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Penalization of the limit density s in the case (a1, as) = (1/2,1/2) by a characteristic function
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[so-values of the Von Mises stresses on §2 - a) without extra-force gy (u, h,0) =~ 0.232N/m (Top
left) - b) from (RPr,) gy(w, b, s") ~ 0.102N/m (Top right) and ¢) from (P,) gy (u, A, Xr,) =

0.0556N/m (Bottom).



