

Fictitious domain methods for numerical realization of unilateral problems

J.H.

(jointly with T. Kozubek and R. Kučera)

Lyon 23-24.6. 2008

- p. 1/2

Fictitious domain methods - main idea

- Application FDM to unilateral problems
- Semismooth Newton method
- Numerical examples

Requirement: $u(\Omega)|_{\omega} = u(\omega).$

FDM for elliptic equations (Dirichlet, Neumann b.v.p.)

- distributed Lagrange multipliers (Glowinski, Maitre, J.H., ...),
- boundary Lagrange multipliers (Glowinski, Girault, T. Kozubek, J.H., ...).

FDM advantages and disadvantages

Advantages: easy realization of $(\mathcal{P}(\Omega))$ (uniform partitions, efficient fast solvers, . . .).

Disadvantages: more unknowns, problems with local refinements and lower regularity of $u(\Omega)$ ($u(\Omega) \in H^{3/2-\varepsilon}(\Omega), \varepsilon > 0$), typical convergence rate in $H^1(\Omega)$ for non-fitted meshes: $\mathcal{O}(h^{1/2}), h \to 0+.$

- p. 4/2

Smooth version of FDM (T. Kozubek, R. Kučera, G. Peichl, J.H.)

Fictitious domain formulation of unilateral problems

 $(\mathbf{r} (\mathbf{r}))$

Find
$$u \in K$$
 such that
 $(u, v - u)_{1,\omega} \ge (f, v - u)_{0,\omega} \quad \forall v \in K,$

$$K = \{ v \in H^1(\omega) | v \ge g \text{ a.e. on } \gamma \}.$$

Equivalent formulation of
$$(\mathcal{P}(\omega))$$

$$\begin{array}{l} \mbox{Find } u \in H^1(\omega) \mbox{ such that} \\ (u,v)_{1,\omega} = (f,v)_{0,\omega} + \langle \frac{\partial u}{\partial n_{\gamma}}, v \rangle_{\gamma} \ \ \forall v \in H^1(\omega), \\ \\ \frac{\partial u}{\partial n_{\gamma}} \in H^{-1/2}_+(\gamma), \\ \langle \mu - \frac{\partial u}{\partial n_{\gamma}}, u - g \rangle_{\gamma} \geq 0 \ \ \forall \mu \in H^{-1/2}_+(\gamma). \end{array}$$

Assumption:
$$\frac{\partial u}{\partial n_{\gamma}} \in L^2_+(\gamma)$$
. Then

$$(\mu - \frac{\partial u}{\partial n_{\gamma}}, u - g)_{\gamma} \ge 0 \ \forall \mu \in L^2_+(\gamma) \Leftrightarrow \frac{\partial u}{\partial n_{\gamma}} = P(\frac{\partial u}{\partial n_{\gamma}} - \rho(u - g)), \ \rho > 0.$$

 $P: L^2(\gamma) \to L^2_+(\gamma) \dots$ projection mapping

Problem $(\hat{\mathcal{P}}(\Gamma))$

 $\begin{array}{l} \textit{Find} \ (\hat{u}, \lambda) \in H_0^1(\Omega) \times H^{-1/2}(\Gamma) \textit{ such that} \\ (\hat{u}, v)_{1,\Omega} = (f, v)_{0,\Omega} + \langle \lambda, v \rangle_{\Gamma} \quad \forall v \in H_0^1(\Omega), \\ \frac{\partial}{\partial n_{\gamma}} \hat{u}(\omega) = P(\frac{\partial}{\partial n_{\gamma}} \hat{u}(\omega) - \rho(\hat{u}(\omega) - g)), \quad \rho > 0 \end{array}$

where $\hat{u}(\omega):=\hat{u}_{|_\omega}$ and $\Gamma\subset\Omega$ is a closed curve surrounding ω

(*i*) $\gamma = \Gamma$; (*ii*) dist $(\gamma, \Gamma) > 0$.

Lemma 1 Let (\hat{u}, λ) be a solution of $(\hat{\mathcal{P}}(\Gamma))$. Then $\hat{u}(\omega)$ solves $(\mathcal{P}(\omega))$.

Optimal control formulation of $(\hat{\mathcal{P}}(\Gamma))$

State problem

$$(\hat{u}(\mu), v)_{1,\Omega} = (f, v)_{0,\Omega} + \langle \mu, v \rangle_{\Gamma} \quad \forall v \in H^1_0(\Omega)$$

 $\mu \in H^{-1/2}(\Gamma) \ldots$ control variable

Cost functional

$$\Psi(\mu) = \frac{1}{2} \left\| \frac{\partial}{\partial n_{\gamma}} (\hat{u}(\mu)_{|_{\omega}}) - P(\frac{\partial}{\partial n_{\gamma}} (\hat{u}(\mu)_{|_{\omega}}) - \rho(\hat{u}(\mu)_{|_{\omega}} - g)) \right\|_{0,\gamma}^{2}$$

$$(\hat{u}, \lambda)$$
 solves $(\hat{\mathcal{P}}(\Gamma)) \Leftrightarrow \Psi(\lambda) = 0.$

(*i*)
$$\gamma = \Gamma$$

Lemma 2 Problem $(\hat{\mathcal{P}}(\gamma))$ has a unique solution.

(*ii*) dist $(\gamma, \Gamma) > 0$: approximate controlability property $\lambda \in H^{-1/2}(\Gamma)$ given;

Problem $(\mathcal{P}(\lambda))$

Find $u(\lambda) \in H^1(\Xi)$ such that $(u(\lambda), v)_{1,\Xi} = (f, v)_{0,\Xi} + \langle \lambda, v \rangle_{\Gamma} \quad \forall v \in H^1_0(\Xi),$ $u(\lambda) = 0 \quad \text{on } \partial\Omega,$ $u(\lambda) = u \quad \text{on } \gamma,$

where $u \in K$ solves $(\mathcal{P}(\omega))$.

 $\Xi = \Omega \setminus \overline{\omega}$

$$\Phi: H^{-1/2}(\Gamma) \mapsto H^{-1/2}(\gamma); \quad \Phi(\lambda) = \frac{\partial u(\lambda)}{\partial n_{\gamma}} \in H^{-1/2}(\gamma)$$

Lemma 3 The image $\Phi(H^{-1/2}(\Gamma))$ is dense in $H^{-1/2}(\gamma)$.

Theorem 1 For every $\epsilon > 0$ there exist: $\lambda_{\epsilon} \in H^{-1/2}(\Gamma)$, $\hat{u}_{\epsilon} \in H_0^1(\Omega)$ and $\delta_{\epsilon} \in H^{-1/2}(\gamma)$ satisfying

$$\begin{split} (\hat{u}_{\epsilon}, v)_{1,\Omega} &= (f, v)_{0,\Omega} + \langle \lambda_{\epsilon}, v \rangle_{\Gamma} + \langle \delta_{\epsilon}, v \rangle_{\gamma} \quad \forall v \in H_0^1(\Omega), \\ \frac{\partial \hat{u}_{\epsilon}(\omega)}{\partial n_{\gamma}} &= P(\frac{\partial \hat{u}_{\epsilon}(\omega)}{\partial n_{\gamma}} - \rho(\hat{u}_{\epsilon}(\omega) - g)) \text{ on } \gamma, \ \rho > 0, \\ \|\delta_{\epsilon}\|_{-1/2,\gamma} &\leq \epsilon \end{split}$$

where
$$\hat{u}_{\epsilon}(\omega) := \hat{u}_{\epsilon|_{\omega}}$$
.

Optimal control formulation

$$\gamma = \Gamma \Rightarrow \min_{L^2(\Gamma)} \Psi(\mu) = 0$$
 $\operatorname{dist}(\gamma, \Gamma) > 0 \Rightarrow \inf_{L^2(\Gamma)} \Psi(\mu) = 0$

$$H_0^1(\Omega) \sim V_h, \ L^2(\gamma) \sim \Lambda_H(\gamma), \ L^2(\Gamma) \sim \Lambda_H(\Gamma)$$

 $\dim V_h = n, \ \dim \Lambda_H(\gamma) = \dim \Lambda_H(\Gamma) = m$

Problem $(\hat{\mathcal{P}}(\Gamma))_h^H$

Find
$$(\hat{u}_h, \lambda_H) \in V_h \times \Lambda_H(\Gamma)$$
 such that
 $(\hat{u}_h, v_h)_{1,\Omega} = (f, v_h)_{0,\Omega} + (\lambda_H, v_h)_{0,\Gamma} \quad \forall v_h \in V_h,$
 $\delta_H \hat{u}_h = P(\delta_H \hat{u}_h - \rho(\tau_H \hat{u}_h - g_H)), \quad \rho > 0$

$$\frac{\partial \hat{u}_{h|_{\omega}}}{\partial n_{\gamma}} \sim \delta_H \hat{u}_h, \ \hat{u}_{h|_{\gamma}} \sim \tau_H \hat{u}_h, \ g \sim g_H$$

$$V_h = \{\varphi_j\}_{j=1}^n, \ \Lambda_H(\gamma) = \{\psi_i\}_{i=1}^m, \ \Lambda_H(\Gamma) = \{\widetilde{\psi}_i\}_{i=1}^m$$

(A1) $\{\psi_i\}_{i=1}^m$ is orthonormal in $L^2(\gamma)$; (A2) $\sigma = P\mu, \ \mu = \sum_{i=1}^m \mu_i \psi_i \Leftrightarrow \sigma_i = \max\{0, \mu_i\}, \ \sigma = \sum_{i=1}^m \sigma_i \psi_i$

$$g_{H} := \sum_{i=1}^{m} g_{i}\psi_{i}, \quad g_{i} = (\psi_{i}, g)_{0,\gamma},$$

$$\tau_{H}\hat{u}_{h} := \sum_{i=1}^{m} \mu_{i}\psi_{i}, \quad \mu_{i} = (\psi_{i}, \hat{u}_{h})_{0,\gamma},$$

$$\nabla \hat{u}_h \sim \widetilde{\nabla} \hat{u}_h \in V_h, \quad \widetilde{\nabla} \hat{u}_h := \sum_{j=1}^n (\widetilde{\nabla} \hat{u}_h)_j \varphi_j,$$
$$(\widetilde{\nabla} \hat{u}_h)_j = \sum_{k \in \mathcal{K}} \alpha^{(k)} u_{j+k}, \ \alpha^{(k)} \in \mathbb{R}^2$$
$$\delta_H \hat{u}_h := \sum_{i=1}^m \sigma_i \psi_i, \text{ where } \sigma_i = (\psi_i, \widetilde{\nabla} \hat{u}_h \cdot n_\gamma)_{0,\gamma}.$$

Find
$$(\mathbf{u}, \boldsymbol{\lambda}) \in \mathbb{R}^n \times \mathbb{R}^m$$
 such that
 $A\mathbf{u} = \mathbf{f} + B_{\Gamma}^{\top} \boldsymbol{\lambda},$
 $C_{\gamma} \mathbf{u} = \max\{0, C_{\gamma} \mathbf{u} - \rho(B_{\gamma} \mathbf{u} - \mathbf{g})\}.$

 $A \in \mathbb{R}^{n \times n} \dots$ stiffness matrix,

$$B_{\Gamma}, B_{\gamma} \in \mathbb{R}^{m \times n} \dots B_{\gamma} = (b_{\gamma,ij}), \ b_{\gamma,ij} = (\psi_i, \varphi_j)_{0,\gamma},$$
$$i = 1, \dots, m, \ j = 1, \dots, n,$$

$$C_{\gamma} \in \mathbb{R}^{m \times n} \dots C_{\gamma} = (c_{\gamma,ij}), \ c_{\gamma,ij} = (\psi_i, \widetilde{\nabla} \varphi_j \cdot n_{\gamma})_{0,\gamma},$$

 $i = 1, \dots, m, \ j = 1, \dots, n.$

$$F: \mathbb{R}^{n+m} \mapsto \mathbb{R}^{n+m}$$

$$F(\mathbf{y}) := \begin{pmatrix} A\mathbf{u} - B_{\Gamma}^{\top}\boldsymbol{\lambda} - \mathbf{f} \\ G(\mathbf{u}) \end{pmatrix}, \quad \mathbf{y} := \begin{pmatrix} \mathbf{u} \\ \boldsymbol{\lambda} \end{pmatrix},$$

$$G(\mathbf{u}) := C_{\gamma}\mathbf{u} - \max\{0, C_{\gamma}\mathbf{u} - \rho(B_{\gamma}\mathbf{u} - \mathbf{g})\}.$$

$$F(\mathbf{y}) = 0$$

$$\mathbf{y}^{0} \in \mathbb{R}^{n+m} \text{ given}, \quad k = 0;$$

Find $\mathbf{d}^{k} \in \mathbb{R}^{n+m} : F(\mathbf{y}^{k}) + F^{0}(\mathbf{y}^{k})\mathbf{d}^{k} = 0;$
set $\mathbf{y}^{k+1} = \mathbf{y}^{k} + \mathbf{d}^{k}, \ k := k + 1,$
until stopping criterion.

$$F^{o}(\mathbf{y}) = \begin{pmatrix} A & -B_{\Gamma}^{\top} \\ G^{o}(\mathbf{u}) & 0 \end{pmatrix},$$

$$G_i^o(\mathbf{u}) = C_{\gamma,i} - s(C_{\gamma,i}\mathbf{u} - \rho(B_{\gamma,i}\mathbf{u} - g_i)) (C_{\gamma,i} - \rho B_{\gamma,i}),$$
$$i = 1, \dots, m$$

 $s: \mathbb{R} \mapsto \mathbb{R}, \quad s(x) = \begin{cases} 1, & x > 0, \\ 0, & x \le 0. \end{cases}$

$$\mathcal{I}(\mathbf{u}) := \{ i \in \mathcal{M} : C_{\gamma,i}\mathbf{u} - \rho(B_{\gamma,i}\mathbf{u} - g_i) \le 0 \}, \\ \mathcal{A}(\mathbf{u}) := \{ 1, 2, \dots, m \} \setminus \mathcal{I}(\mathbf{u}).$$

$$G_i^o(\mathbf{u}) = \begin{cases} C_{\gamma,i}, & i \in \mathcal{I}(\mathbf{u}), \\ \rho B_{\gamma,i}, & i \in \mathcal{A}(\mathbf{u}). \end{cases}$$

Each iterative step leads to a non-symmetric saddle-point system

$$\left[\begin{array}{ccc} A & B_1^\top \\ B_2 & 0 \end{array}\right) \left(\begin{array}{c} \mathbf{u} \\ \mathbf{\lambda} \end{array}\right) = \left(\begin{array}{c} \mathbf{f} \\ \mathbf{h} \end{array}\right)$$

Projected Schur complement method (J.H., Kozubek, Kučera, Peichl, 2007).

 $H_0^1(\Omega) \sim H_{per}^1(\Omega);$ $V_h \dots Q_1\text{-elements}$ $\Lambda_H(\gamma), \Lambda_H(\Gamma) \dots P_0\text{-elements on polygonal}$ approximations of γ and Γ , $H/h = |\log_2(h)|$ $\omega = \{(x, y) \in \mathbb{R}^2 | (x - 0.5)^2 / 0.4^2 + (y - 0.5)^2 / 0.2^2 < 1\}$ $\Omega = (0, 1) \times (0, 1)$

 $u_{ex}(x,y) = ((x-0.5)^+)^3 + 0.5((y-0.5)^+)^3, (x,y) \in \mathbb{R}^2$

Step h	$n/m_{\mathcal{A}}/m_{\mathcal{I}}$	out./ \sum inn. its.	C.time[s]	$\operatorname{Err}_{L^2(\omega)}$	$\operatorname{Err}_{H^1(\omega)}$	$\operatorname{Err}_{L^2(\gamma)}$
1/128	16641/24/10	5/24	0.31	4.1007e-2	3.3325e+0	1.7029e-2
1/256	66049/41/21	6/45	1.81	2.0074e-2	2.3310e+0	8.5208e-3
1/512	263169/77/33	7/69	13.07	9.7866e-3	1.6275e+0	4.2527e-3
1/1024	1050625/140/58	7/93	74.65	4.8435e-3	1.1449e+0	2.0830e-3
1/2048	4198401/261/99	7/115	432.6	2.2777e-3	7.8540e-1	1.0952e-3
1/4096	16785409/484/178	8/131	2328	1.1353e-3	5.5449e-1	7.2174e-4
Non-smooth variant		nt Converger	Convergence rates:		0.5186	0.9346

Step h	$n/m_{\mathcal{A}}/m_{\mathcal{I}}$	out./ \sum inn. its.	C.time[s]	$\operatorname{Err}_{L^2(\omega)}$	$\operatorname{Err}_{H^1(\omega)}$	$\operatorname{Err}_{L^2(\gamma)}$
1/128	16641/26/8	5/48	0.47	3.2409e-4	2.9532e-1	5.0704e-4
1/256	66049/46/16	5/69	2.56	6.3196e-5	1.3041e-1	9.1074e-5
1/512	263169/81/29	5/112	20.89	1.5917e-5	6.5444e-2	2.6525e-5
1/1024	1050625/147/51	7/162	150.6	4.3527e-6	3.4223e-2	1.1771e-5
1/2048	4198401/270/90	6/190	674.1	1.3812e-6	1.9278e-2	5.1861e-6
1/4096	16785409/494/168	9/296	5000	8.0760e-7	1.4741e-2	2.2854e-6
Smooth variant		Convergence	rates:	1.7617	0.8809	1.5012

Dependance on
$$\delta := \text{dist}(\gamma, \Gamma), h = 1/256.$$

Param. δ	$n/m_{\mathcal{A}}/m_{\mathcal{I}}$	Out./∑inn. its.	C.time[s]	$\operatorname{Err}_{L^2(\omega)}$	$\operatorname{Err}_{H^1(\omega)}$	$\operatorname{Err}_{L^2(\gamma)}$
0h	66049/41/21	6/45	1.81	2.0074e-2	2.3310e+0	8.5208e-3
2h	66049/44/18	5/42	1.68	1.6031e-3	6.5682e-1	1.4522e-3
4h	66049/46/16	5/56	2.06	8.8714e-5	1.5451e-1	1.6632e-4
6h	66049/46/16	5/69	2.56	6.3196e-5	1.3041e-1	9.1074e-5
8h	66049/46/16	5/101	3.62	6.0014e-5	1.2708e-1	5.1199e-5

Example 2 (without the absolute term)

 $g(x,y) = 5\sin(2\varphi)(r^2 + r(\cos\varphi + \sin\varphi) + 0.5)^{1/2} - 1.5 \text{ on } \gamma,$ where (φ, r) is the polar coordinate of the point (x - 0.5, y - 0.5);

Reference solution u_{ref} .

Example 2 (without the absolute term)

Step h	$n/m_{\mathcal{A}}/m_{\mathcal{I}}$	Out./∑inn. its.	C.time[s]	$\operatorname{Err}_{L^2(\omega)}$	$\operatorname{Err}_{H^1(\omega)}$	$\operatorname{Err}_{L^2(\gamma)}$
1/128	16641/7/29	6/31	0.39	1.3521e-2	9.1807e-2	2.2136e-2
1/256	66049/13/49	6/54	2.3	7.0716e-3	6.0371e-2	6.9435e-3
1/512	263169/23/87	7/69	13.71	4.5768e-3	3.6564e-2	3.1013e-3
1/1024	1050625/41/157	9/127	106.3	2.7119e-3	3.8892e-2	1.6530e-3
1/2048	4198401/74/286	10/166	639.6	9.9011e-4	3.0425e-2	8.3333e-4
1/4096	16785409/136/526	11/241	4205	8.0521e-4	2.2513e-2	1.0264e-3
Non-smooth variant Convergence ra			ice rates:	0.8461	0.3719	0.9211

Step h	$n/m_{\mathcal{A}}/m_{\mathcal{J}}$	Out./∑inn. its.	C.time[s]	$\operatorname{Err}_{L^2(\omega)}$	$\operatorname{Err}_{H^1(\omega)}$	$\operatorname{Err}_{L^2(\gamma)}$
1/128	16641/7/29	4/44	0.48	3.3419e-2	1.6955e-1	3.4271e-2
1/256	66049/14/48	5/86	3.58	6.5415e-3	8.8017e-2	7.9521e-3
1/512	263169/23/87	6/119	23.35	2.6697e-3	4.0197e-2	2.8341e-3
1/1024	1050625/41/157	7/221	174.9	3.2798e-4	8.3563e-3	4.7836e-4
1/2048	4198401/74/286	7/276	976.6	1.5904e-4	4.5718e-3	2.1104e-4
1/4096	16785409/136/526	9/442	7544	2.0672e-5	1.7129e-3	4.8686e-5
Smooth variant		Convergence r	Convergence rates:		1.3775	1.8734

Difference $\hat{u}_h - u_{ref}$ in ω .

Difference $\hat{u}_h - u_{ref}$ on γ .

Thank you for your attention.