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0 Outline

Outline

1. Formulation of continuous problem

• Strong and weak form
• Projection operators

2. Discretization and numerical solution

• Nonlinear complementarity functions
• Semismooth Newton method
• Primal-dual active set strategy

3. Numerical results

4. Extension: Overlapping domain decomposition

5. Summary and conclusions
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1 Continuous problem

Problem setting

J2-plasticity for small deformations
with linear hardening

u : Ω× [0, T ]→ Rd Displacement field

σ : Ω× [0, T ]→ Rd×d Stress field

εp : Ω× [0, T ]→ Rd×d Plastic strain

α : Ω× [0, T ]→ R Hard. variable

µpl : Ω× [0, T ]→ R Plastic multiplier

λ : Γc × [0, T ]→ Rd Contact stress

div(σ) = f , Ω× [0, T ] , plus BC Mechanical equilibrium

σ = Cel(ε− εp), Constitutive law

ε̇p = µpl∂σφpl(σ, α),

µpl ≥ 0, Plasticity constraints

φpl ≤ 0,

µplφpl = 0,
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1 Continuous problem

Problem setting

J2-plasticity for small deformations
with linear hardening

u : Ω× [0, T ]→ Rd Displacement field

σ : Ω× [0, T ]→ Rd×d Stress field

εp : Ω× [0, T ]→ Rd×d Plastic strain

α : Ω× [0, T ]→ R Hard. variable

µpl : Ω× [0, T ]→ R Plastic multiplier

λ : Γc × [0, T ]→ Rd Contact stress

div(σ) = f , Ω× [0, T ] , plus BC Mechanical equilibrium

σ = Cel(ε− εp), Constitutive law

ε̇p = µpl∂σφpl(σ, α),

µpl ≥ 0, Plasticity constraints

φpl ≤ 0,

µplφpl = 0,

u · ν − g ≤ 0, Γc × [0, T ] Non-penetration constraints

λν ≥ 0,

λν(u · ν − g) = 0,

‖λτ‖ − F|λν| ≤ 0, Coulomb friction

u̇τ + µcoλτ = 0,

µco(‖λτ‖ − F|λν|) = 0

λτvτ = 0

λν

λν

λτ

vτ = −β2λτ
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1 Continuous problem

Plasticity vs. contact, strong form
J2-plasticity for small deformations
with linear isotropic/kinematic hardening

u : Primal variable
εp, α : Inner variables

Contact problem for small deformations
with Coulomb or Tresca friction

u : Primal variable
λ = λνν + λτ : Dual variables

div(σ) = f , in Ω div(σ) = f , in Ω

σ := Cel(ε(u)− εp), in Ω σ := Celε(u), in Ω

η := dev(σ)− 2
3Kεp, in Ω λ := −σν, on Γc
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1 Continuous problem

Plasticity vs. contact, strong form
J2-plasticity for small deformations
with linear isotropic/kinematic hardening

u : Primal variable
εp, α : Inner variables

Contact problem for small deformations
with Coulomb or Tresca friction

u : Primal variable
λ = λνν + λτ : Dual variables

div(σ) = f , in Ω div(σ) = f , in Ω

σ := Cel(ε(u)− εp), in Ω σ := Celε(u), in Ω

η := dev(σ)− 2
3Kεp, in Ω λ := −σν, on Γc

Y (α) := σ0 + Hα, in Ω Y (λν) := gt + Fλν, on Γc

φpl(η, α) := ‖η‖ − Y (α), in Ω φco(λτ , λν) := ‖λτ‖ − Y (λν), on Γc

ε̇p = µpl∂ηφpl(η, α), in Ω u̇τ = µco∂λτ
φco(λτ , λν), on Γc
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1 Continuous problem

Plasticity vs. contact, strong form
J2-plasticity for small deformations
with linear isotropic/kinematic hardening

u : Primal variable
εp, α : Inner variables

Contact problem for small deformations
with Coulomb or Tresca friction

u : Primal variable
λ = λνν + λτ : Dual variables

div(σ) = f , in Ω div(σ) = f , in Ω

σ := Cel(ε(u)− εp), in Ω σ := Celε(u), in Ω

η := dev(σ)− 2
3Kεp, in Ω λ := −σν, on Γc

Y (α) := σ0 + Hα, in Ω Y (λν) := gt + Fλν, on Γc

φpl(η, α) := ‖η‖ − Y (α), in Ω φco(λτ , λν) := ‖λτ‖ − Y (λν), on Γc

ε̇p = µpl∂ηφpl(η, α), in Ω u̇τ = µco∂λτ
φco(λτ , λν), on Γc

µpl ≥ 0, in Ω µco ≥ 0, on Γc

φpl ≤ 0, in Ω φco ≤ 0, on Γc

µplφpl = 0, in Ω µcoφco = 0, on Γc
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1 Continuous problem

Plasticity vs. contact, strong form
J2-plasticity for small deformations
with linear isotropic/kinematic hardening

u : Primal variable
εp, α : Inner variables

Contact problem for small deformations
with Coulomb or Tresca friction

u : Primal variable
λ = λνν + λτ : Dual variables

div(σ) = f , in Ω div(σ) = f , in Ω

σ := Cel(ε(u)− εp), in Ω σ := Celε(u), in Ω

η := dev(σ)− 2
3Kεp, in Ω λ := −σν, on Γc

Y (α) := σ0 + Hα, in Ω Y (λν) := gt + Fλν, on Γc

φpl(η, α) := ‖η‖ − Y (α), in Ω φco(λτ , λν) := ‖λτ‖ − Y (λν), on Γc

ε̇p = µpl∂ηφpl(η, α), in Ω u̇τ = µco∂λτ
φco(λτ , λν), on Γc

µpl ≥ 0, in Ω µco ≥ 0, on Γc

φpl ≤ 0, in Ω φco ≤ 0, on Γc

µplφpl = 0, in Ω µcoφco = 0, on Γc

α̇ = µpl, in Ω λν ≥ 0, on Γc

u · ν − g ≤ 0, on Γc

λν(u · ν − g) = 0, on Γc
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1 Continuous problem

Plasticity vs. contact, projections

Elastic region for relative deviatoric
stress η:

E := {(τ , β) : φpl(τ , β) ≤ 0},

Admissible stresses:

M(λν) := {(µτ , µν) : φco(µτ , λν) ≤ 0,

µν ≥ 0},
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1 Continuous problem

Plasticity vs. contact, projections

Elastic region for relative deviatoric
stress η:

E := {(τ , β) : φpl(τ , β) ≤ 0},

Admissible stresses:

M(λν) := {(µτ , µν) : φco(µτ , λν) ≤ 0,

µν ≥ 0},

Projection:

Pp,α(η) := min
(

1,
Y (α)
‖η‖

)
η,

Projections:

Pτ,λν(λτ) := min
(

1,
Y (λν)
‖λτ‖

)
λτ ,

Pν(λν) := max(λν, 0),
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1 Continuous problem

Plasticity vs. contact, projections

Elastic region for relative deviatoric
stress η:

E := {(τ , β) : φpl(τ , β) ≤ 0},

Admissible stresses:

M(λν) := {(µτ , µν) : φco(µτ , λν) ≤ 0,

µν ≥ 0},

Projection:

Pp,α(η) := min
(

1,
Y (α)
‖η‖

)
η,

Projections:

Pτ,λν(λτ) := min
(

1,
Y (λν)
‖λτ‖

)
λτ ,

Pν(λν) := max(λν, 0),
Trial values (cp > 0):

ηtr := η + cp (εp − εp
old) ,

Special choice cp = (2µ+ 2
3K):

ηtr = 2µdev(ε(u))− cpε
p
old,

Trial values (cτ , cν > 0):

λtr
τ := λτ + cτ (uτ − uτ,old) ,

λtr
ν := λν + cν(uν − g).
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1 Continuous problem

Plasticity vs. contact, projections

Elastic region for relative deviatoric
stress η:

E := {(τ , β) : φpl(τ , β) ≤ 0},

Admissible stresses:

M(λν) := {(µτ , µν) : φco(µτ , λν) ≤ 0,

µν ≥ 0},

Projection:

Pp,α(η) := min
(

1,
Y (α)
‖η‖

)
η,

Projections:

Pτ,λν(λτ) := min
(

1,
Y (λν)
‖λτ‖

)
λτ ,

Pν(λν) := max(λν, 0),
Trial values (cp > 0):

ηtr := η + cp (εp − εp
old) ,

Special choice cp = (2µ+ 2
3K):

ηtr = 2µdev(ε(u))− cpε
p
old,

Trial values (cτ , cν > 0):

λtr
τ := λτ + cτ (uτ − uτ,old) ,

λtr
ν := λν + cν(uν − g).

KKT conditions are equivalent to

η = Pp,α(ηtr), cp > 0
KKT conditions are equivalent to

λτ = Pτ,λν(λ
tr
τ ), cτ > 0

λν = Pν(λtr
ν ), cν > 0
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1 Continuous problem

Quasi-variational inequality

Find u ∈ H1
ΓD

(Ω), (η, α) ∈ E, λ ∈ M(λν)

equilibrium a(u,v) + bpl(ε(v), εp) + bco(v,λ)− 〈f ,v〉Ω = 0, v ∈ H1
ΓD

(Ω)
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1 Continuous problem

Quasi-variational inequality

Find u ∈ H1
ΓD

(Ω), (η, α) ∈ E, λ ∈ M(λν)

equilibrium a(u,v) + bpl(ε(v), εp) + bco(v,λ)− 〈f ,v〉Ω = 0, v ∈ H1
ΓD

(Ω)
plasticity − bpl(ε̇p, (Cel)−1(τ − η))− bhr(α̇, β − α) ≤ 0, (τ , β) ∈ E
friction bco(u̇τ ,µ− λ) ≤ 0, µ ∈ M(λν)
non-penetration bco(uνν,µ− λ)− 〈gν,µ− λ〉Γc ≤ 0, µ ∈ M(λν)

with
M(λν) := {(µτ , µν) : φco(µτ , λν) ≤ 0, µν ≥ 0},

E := {(τ , β) : φpl(τ , β) ≤ 0},
a(u,v) :=

∫
Ω
Celε(u) : ε(v),

bpl(ε, τ ) := −
∫
Ω
Celε : τ ,

bhr(α, β) :=
∫
Ω
Hαβ,

bco(v,µ) :=
∫
ΓC

v · µ
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2 Discretization

From inequality to equality

Algebraic inequality formulation in finite element basis

Equilibrium Ahuh −Bpl
h εp

h +Bco
h λh = fh,

Plasticity discrete KKT
Contact & friction discrete KKT
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2 Discretization

From inequality to equality

Algebraic inequality formulation in finite element basis

Equilibrium Ahuh −Bpl
h εp

h +Bco
h λh = fh,

Plasticity discrete KKT
Contact & friction discrete KKT

Inequality constraints are equivalent to Ch := (Cpl, Cco) = 0 with

Cpl(uh, (ε
p
h, αh)) :=

(
ηh − Pp,α(ηtr

h )
)

Cco(uh,λh) :=

 (λh)ν − Pν((λh)tr
ν )(

(λh)τ − Pτ,λtr
ν
((λh)tr

τ )
)


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2 Discretization

From inequality to equality

Algebraic inequality formulation in finite element basis

Equilibrium Ahuh −Bpl
h εp

h +Bco
h λh = fh,

Plasticity discrete KKT
Contact & friction discrete KKT

Inequality constraints are equivalent to Ch := (Cpl, Cco) = 0 with

Cpl(uh, (ε
p
h, αh)) :=

(
ηh − Pp,α(ηtr

h )
)

Cco(uh,λh) :=

 (λh)ν − Pν((λh)tr
ν )(

(λh)τ − Pτ,λtr
ν
((λh)tr

τ )
)


Equivalent nonlinear system: Ahuh −Bpl

h εp
h +Bco

h λh = fh,

Ch(uh, (ε
p
h, αh),λh) = 0.
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2 Discretization

From inequality to equality

Algebraic inequality formulation in finite element basis

Equilibrium Ahuh −Bpl
h εp

h +Bco
h λh = fh,

Plasticity discrete KKT
Contact & friction discrete KKT

Inequality constraints are equivalent to Ch := (Cpl, Cco) = 0 with

Cpl(uh, (ε
p
h, αh)) := max{‖ηtr

h ‖, Y (α)}
(
ηh − Pp,α(ηtr

h )
)

Cco(uh,λh) :=

 (λh)ν − Pν((λh)tr
ν )

max{‖(λh)tr
τ ‖, Y ((λh)tr

ν )}
(
(λh)τ − Pτ,λtr

ν
((λh)tr

τ )
)


Equivalent nonlinear system: Ahuh −Bpl

h εp
h +Bco

h λh = fh,

Ch(uh, (ε
p
h, αh),λh) = 0.

Additional factor leads to different Newton scheme

→ better stability properties ?
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2 Discretization

Semismooth Newton method
Alart/Curnier [88,91], Hintermüller et al [02], Christensen/Pang [98], Christensen [02]

Ahδu
(k)
h −Bpl

h δε
p,(k)
h +Bco

h δλ
(k)
h = fh −Ahu

(k)
h +Bpl

h ε
p,(k)
h −Bco

h λ
(k)
h ,

∂uC
pl,(k)
h δu

(k)
h + ∂(εp

h
,αh)C

pl,(k)
h δ(εp,(k)

h , α
(k)
h ) = −Cpl

h (u(k)
h , (εp,(k)

h , α
(k)
h )),

∂uC
co,(k)
h δu

(k)
h + ∂λC

co,(k)
h δλ

(k)
h = −Cco

h (u(k)
h ,λ(k)).
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2 Discretization

Semismooth Newton method
Alart/Curnier [88,91], Hintermüller et al [02], Christensen/Pang [98], Christensen [02]

Ahδu
(k)
h −Bpl

h δε
p,(k)
h +Bco

h δλ
(k)
h = fh −Ahu

(k)
h +Bpl

h ε
p,(k)
h −Bco

h λ
(k)
h ,

∂uC
pl,(k)
h δu

(k)
h + ∂(εp

h
,αh)C

pl,(k)
h δ(εp,(k)

h , α
(k)
h ) = −Cpl

h (u(k)
h , (εp,(k)

h , α
(k)
h )),

∂uC
co,(k)
h δu

(k)
h + ∂λC

co,(k)
h δλ

(k)
h = −Cco

h (u(k)
h ,λ(k)).

Introduction of active sets: (index ·(k) omitted)
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2 Discretization

Semismooth Newton method
Alart/Curnier [88,91], Hintermüller et al [02], Christensen/Pang [98], Christensen [02]

Ahδu
(k)
h −Bpl

h δε
p,(k)
h +Bco

h δλ
(k)
h = fh −Ahu

(k)
h +Bpl

h ε
p,(k)
h −Bco

h λ
(k)
h ,

∂uC
pl,(k)
h δu

(k)
h + ∂(εp

h
,αh)C

pl,(k)
h δ(εp,(k)

h , α
(k)
h ) = −Cpl

h (u(k)
h , (εp,(k)

h , α
(k)
h )),

∂uC
co,(k)
h δu

(k)
h + ∂λC

co,(k)
h δλ

(k)
h = −Cco

h (u(k)
h ,λ(k)).

Introduction of active sets: (index ·(k) omitted)

plasticity: elementwise (Eh)

Aα := {j ∈ Eh : ∆αj := αj − αj,old > 0} ,
Iα := {j ∈ Eh : ∆αj ≤ 0} ,
Ap :=

{
j ∈ Eh : φpl(ηtr

j , αj) > 0
}
,

Ip :=
{
j ∈ Eh : φpl(ηtr

j , αj) ≤ 0
}
.

Ip

Ap
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2 Discretization

Semismooth Newton method
Alart/Curnier [88,91], Hintermüller et al [02], Christensen/Pang [98], Christensen [02]

Ahδu
(k)
h −Bpl

h δε
p,(k)
h +Bco

h δλ
(k)
h = fh −Ahu

(k)
h +Bpl

h ε
p,(k)
h −Bco

h λ
(k)
h ,

∂uC
pl,(k)
h δu

(k)
h + ∂(εp

h
,αh)C

pl,(k)
h δ(εp,(k)

h , α
(k)
h ) = −Cpl

h (u(k)
h , (εp,(k)

h , α
(k)
h )),

∂uC
co,(k)
h δu

(k)
h + ∂λC

co,(k)
h δλ

(k)
h = −Cco

h (u(k)
h ,λ(k)).

Introduction of active sets: (index ·(k) omitted)

plasticity: elementwise (Eh)

Aα := {j ∈ Eh : ∆αj := αj − αj,old > 0} ,
Iα := {j ∈ Eh : ∆αj ≤ 0} ,
Ap :=

{
j ∈ Eh : φpl(ηtr

j , αj) > 0
}
,

Ip :=
{
j ∈ Eh : φpl(ηtr

j , αj) ≤ 0
}
.

Ip

Ap

contact: nodewise (Nh)

An :=
{
j ∈ Nh : λtr

j,n > 0
}
,

In :=
{
j ∈ Nh : λtr

j,n ≤ 0
}
,

At :=
{
j ∈ Nh : φco(λtr

j,t, λ
tr
j,n) > 0

}
,

It :=
{
j ∈ Nh : φco(λtr

j,t, λ
tr
j,n) ≤ 0

}
.

In

An
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2 Discretization

Primal-dual active set strategy: Plasticity
Local static condensation of plastic dof is possible:

„
δαj

δεp
j

«
=

8>>>>>>>><>>>>>>>>:

−
„

∆αj

∆εp
j

«
j ∈ Ip ∩ Iα,

−
 

∆αj“
1 +

H∆αj
σy+Hαj

”
∆εp

j

!
j ∈ Ip ∩ Aα,„

Gj

Mj

«
2µ dev ε(δu) +

„
gj

mj

«
j ∈ Ap,
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2 Discretization

Primal-dual active set strategy: Plasticity
Local static condensation of plastic dof is possible:

„
δαj

δεp
j

«
=

8>>>>>>>><>>>>>>>>:

−
„

∆αj

∆εp
j

«
j ∈ Ip ∩ Iα,

−
 

∆αj“
1 +

H∆αj
σy+Hαj

”
∆εp

j

!
j ∈ Ip ∩ Aα,„

Gj

Mj

«
2µ dev ε(δu) +

„
gj

mj

«
j ∈ Ap,

Mj =

8>><>>:
1

ω
j

„“
1− θj

”
Id +

cpθj

c‖ηtr
j
‖2

ηtr
j ⊗ ηtr

j
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2 Discretization

Primal-dual active set strategy: Plasticity
Local static condensation of plastic dof is possible:
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Features: → Matrix Mj is symmetric, Mj is not.
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Features: → Matrix Mj is symmetric, Mj is not.

→ Safety factor aj := min
(
1,

Yp(αj)

‖ηj‖

)
enhances stability.
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2 Discretization

Primal-dual active set strategy: Plasticity
Local static condensation of plastic dof is possible:
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0
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Features: → Matrix Mj is symmetric, Mj is not.

→ Safety factor aj := min
(
1,

Yp(αj)

‖ηj‖

)
enhances stability.

→ System to be solved does not contain additional plastic dof.
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2 Discretization

Structure of NCP function Cco
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η
ξc

ψp, dual LM ϕq, standard bilinear nodal
shape function

Biorthogonality: D[p, q] =
∫

ψpϕq I3 = δpq

∫
ϕq I3 ⇒ D diagonal

Complementary condition Cco decouples into nodewise conditions Cco
j (uj,λj).

FE discretization:

Hexahedrals

Interface:

Quadrilaterals
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2 Discretization

Primal-dual active set strategy: Contact
Static condensation of contact LM is not always possible.

JJ J I II 0 1 2 3 4 5 Universität Stuttgart

��·��· ��· ��· ��· ��· ��· ��· ��·
��·
��·��·
��·
��·��·
��·
��·
��·��·��·�

�·��·��·
��·

��·��· ��·��· ��·��· ��·
��· ��·��· ��·
��· ��·��· ��·
��·

��·
��·

��·
��·

��·
��·

��·��·��·�
�·��·��·

��·
��·��·��· ��·��· ��·��·
��·��· ��·��·
��·��· ��·��·
��·

��·
��·

��·
��·

��·
��·

��·��·��·��·��·��·��·
��·��·��· ��·��· ��·

��·
��·��· ��·

��·
��·��·

��·
��·

��·
��·

��·
��·

��·
��·

��·

��·��·��·��·��·��·��·
��·��· ��·��· ��·��·
��·

��· ��·��·
��·

��· ��·
��·
��·

��·
��·

��·
��·

��·
��·

��·



2 Discretization

Primal-dual active set strategy: Contact
Static condensation of contact LM is not always possible.
But: Either primal or dual variable can be eliminated locally.

δλj,n = −λj,n j ∈ In,

δuj,n = gj,n − uj,n j ∈ An,

δuj,t = −∆uj,t j ∈ It ∩ In,

δuj,t = −
Fct∆uj,t

gt+Fλtr
j,n

(δλj,n + cnδuj,n)−∆uj,t j ∈ It ∩ An,

δλj,t = Njct(δuj,t) + nj j ∈ At ∩ In,

δλj,t = Njct(δuj,t) + lj (δλj,n + cnδuj,n) + nj j ∈ At ∩ An,
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2 Discretization

Primal-dual active set strategy: Contact
Static condensation of contact LM is not always possible.
But: Either primal or dual variable can be eliminated locally.

δλj,n = −λj,n j ∈ In,

δuj,n = gj,n − uj,n j ∈ An,

δuj,t = −∆uj,t j ∈ It ∩ In,

δuj,t = −
Fct∆uj,t

gt+Fλtr
j,n

(δλj,n + cnδuj,n)−∆uj,t j ∈ It ∩ An,

δλj,t = Njct(δuj,t) + nj j ∈ At ∩ In,

δλj,t = Njct(δuj,t) + lj (δλj,n + cnδuj,n) + nj j ∈ At ∩ An,

Nj =
ϑj

1−ϑ
j

„
Id− 1

‖λtr
j,t‖2

λtr
j,t ⊗ λtr

j,t

«
,

Nj =
ϑj

1−ϑ
j

 
Id−

aj

ϑ
j
ξ
j
‖λtr

j,t‖2
λj,t ⊗ λtr

j,t

!
.
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2 Discretization

Primal-dual active set strategy: Contact
Static condensation of contact LM is not always possible.
But: Either primal or dual variable can be eliminated locally.

δλj,n = −λj,n j ∈ In,

δuj,n = gj,n − uj,n j ∈ An,

δuj,t = −∆uj,t j ∈ It ∩ In,

δuj,t = −
Fct∆uj,t

gt+Fλtr
j,n

(δλj,n + cnδuj,n)−∆uj,t j ∈ It ∩ An,

δλj,t = Njct(δuj,t) + nj j ∈ At ∩ In,

δλj,t = Njct(δuj,t) + lj (δλj,n + cnδuj,n) + nj j ∈ At ∩ An,

Nj =
ϑj

1−ϑ
j

„
Id− 1

‖λtr
j,t‖2

λtr
j,t ⊗ λtr

j,t

«
,

Nj =
ϑj

1−ϑ
j

 
Id−

aj

ϑ
j
ξ
j
‖λtr

j,t‖2
λj,t ⊗ λtr

j,t

!
.

Features: → Matrix Nj is symmetric, Nj is not.
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2 Discretization

Primal-dual active set strategy: Contact
Static condensation of contact LM is not always possible.
But: Either primal or dual variable can be eliminated locally.

δλj,n = −λj,n j ∈ In,

δuj,n = gj,n − uj,n j ∈ An,

δuj,t = −∆uj,t j ∈ It ∩ In,

δuj,t = −
Fct∆uj,t

gt+Fλtr
j,n

(δλj,n + cnδuj,n)−∆uj,t j ∈ It ∩ An,

δλj,t = Njct(δuj,t) + nj j ∈ At ∩ In,

δλj,t = Njct(δuj,t) + lj (δλj,n + cnδuj,n) + nj j ∈ At ∩ An,

Nj =
ϑj

1−ϑ
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„
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j,t

«
,

Nj =
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ϑ
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j
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j,t

!
.

Features: → Matrix Nj is symmetric, Nj is not.

→ Safety factor aj := min
(
1,Yc(λ

tr
j,n)

‖λj,t‖

)
enhances stability.
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2 Discretization

Primal-dual active set strategy: Contact
Static condensation of contact LM is not always possible.
But: Either primal or dual variable can be eliminated locally.

δλj,n = −λj,n j ∈ In,
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δuj,t = −∆uj,t j ∈ It ∩ In,

δuj,t = −
Fct∆uj,t

gt+Fλtr
j,n

(δλj,n + cnδuj,n)−∆uj,t j ∈ It ∩ An,

δλj,t = Njct(δuj,t) + nj j ∈ At ∩ In,

δλj,t = Njct(δuj,t) + lj (δλj,n + cnδuj,n) + nj j ∈ At ∩ An,

Nj =
ϑj

1−ϑ
j

„
Id− 1

‖λtr
j,t‖2

λtr
j,t ⊗ λtr

j,t

«
,

Nj =
ϑj

1−ϑ
j

 
Id−

aj

ϑ
j
ξ
j
‖λtr

j,t‖2
λj,t ⊗ λtr

j,t

!
.

Features: → Matrix Nj is symmetric, Nj is not.

→ Safety factor aj := min
(
1,Yc(λ

tr
j,n)

‖λj,t‖

)
enhances stability.

→ System to be solved has size of displacement dof.

JJ J I II 0 1 2 3 4 5 Universität Stuttgart

��·��· ��· ��· ��· ��· ��· ��· ��·
��·
��·��·
��·
��·��·
��·
��·
��·��·��·�

�·��·��·
��·

��·��· ��·��· ��·��· ��·
��· ��·��· ��·
��· ��·��· ��·
��·

��·
��·

��·
��·

��·
��·

��·��·��·�
�·��·��·

��·
��·��·��· ��·��· ��·��·
��·��· ��·��·
��·��· ��·��·
��·

��·
��·

��·
��·

��·
��·

��·��·��·��·��·��·��·
��·��·��· ��·��· ��·

��·
��·��· ��·

��·
��·��·

��·
��·

��·
��·

��·
��·

��·
��·

��·

��·��·��·��·��·��·��·
��·��· ��·��· ��·��·
��·

��· ��·��·
��·

��· ��·
��·
��·

��·
��·

��·
��·

��·
��·

��·



2 Discretization

Primal-dual active set strategy: Contact
Static condensation of contact LM is not always possible.
But: Either primal or dual variable can be eliminated locally.

δλj,n = −λj,n j ∈ In,

δuj,n = gj,n − uj,n j ∈ An,

δuj,t = −∆uj,t j ∈ It ∩ In,

δuj,t = −
Fct∆uj,t

gt+Fλtr
j,n

(δλj,n + cnδuj,n)−∆uj,t j ∈ It ∩ An,

δλj,t = Njct(δuj,t) + nj j ∈ At ∩ In,

δλj,t = Njct(δuj,t) + lj (δλj,n + cnδuj,n) + nj j ∈ At ∩ An,

Nj =
ϑj

1−ϑ
j

„
Id− 1

‖λtr
j,t‖2

λtr
j,t ⊗ λtr

j,t

«
,

Nj =
ϑj

1−ϑ
j

 
Id−

aj

ϑ
j
ξ
j
‖λtr

j,t‖2
λj,t ⊗ λtr

j,t

!
.

Features: → Matrix Nj is symmetric, Nj is not.

→ Safety factor aj := min
(
1,Yc(λ

tr
j,n)

‖λj,t‖

)
enhances stability.

→ System to be solved has size of displacement dof.

→ Lagrange multiplier can be computed in a post-process.
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3 Numerical results

Plastic example: Plate with hole
• Plate of length 2.0, circular

hole of radius 0.2.

• On upper boundary, plate is
pulled with force ft · |0.5−t|
upwards for t ∈ [0, 1] and
ft = 1100.

• Quasistatic computation
with ∆t = 1

16.

• Material parameters
ν 0.33
E 6.9 · 104

σy 7.07 · 102

H, K 0

• Active sets are updated in
each Newton iteration,
cp = 2µ+ a−2

0 K.

Equiv. plastic strain α Effective stress σeff
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3 Numerical results

Plate with hole: Convergence
time step t8, different forces ft:

time step t9, different forces ft:
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3 Numerical results

Contact example with Coulomb friction

→ Stabilized Newton shows local superlinear and good global convergence
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3 Numerical results

Combined example: Tube between plates
• Circular tube of length 4; fixed at one end, free

otherwise.

• On upper and lower plate fixed displacement with
fz(t) = 0.02 · min(t, 21 − t) at t-th load step,
t ∈ {0, . . . , 21}.

• All active sets updated in each Newton iteration.

tube plates

ν 0.3 0.3

E 7 · 103 7 · 105

σy 2 · 102 103

H 2 · 103 2 · 103

K 103 103

gt 0 0

F 0.1 0.1
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4 Overlapping DD

Tube between plates: Convergence
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4 Overlapping DD

Extension: Overlapping domain decomposition

   
 ANTRAG  
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Zusammenarbeit mit der Arbeitsgruppe von Prof. Wohlmuth ein Konzept er-

stellt, das in der laufenden Antragsphase zusammen mit der Implementierung 

der Mortar-Methoden umgesetzt werden soll.  Die Frage nach der Größe und 

Vernetzung der Umformzone wurde in der laufenden Antragsphase unter Be-

trachtung der in der FEM berechneten Gradienten untersucht. Ferner wurden 

adaptive Finite Elemente Rechungen durchgeführt. Ein Beispiel hierzu ist in 

Bild 4 dargestellt. Es wird nur eine Umformbahn betrachtet, die zur Blechmitte 

hin 1 mm in das Blech eintaucht und zum Rand hin das Blech wieder entlas-

tet. Die erforderliche räumliche Diskretisierung wurde mit Fehlerindikatoren 

nach Zienkiewicz /1/  bestimmt. Die Arbeiten belegen, dass örtlich große Gra-

dienten der Zielgrößen eine adaptive Vernetzung erfordern. Bei den Arbeiten 

in der laufenden Antragsphase wurde als Anhaltspunkt für die notwendige 

Vernetzung der Umformzone festgestellt, dass das Verhältnis von Umform-

kopfradius zu Elementkantenlänge ca. 50 betragen sollte, während die Ver-

netzung außerhalb der Umformzone um einen Faktor 10 gröber sein kann. In 

der noch laufenden Antragsphase wird in der eigenen Arbeitsgruppe eine 

Look-up table erstellt, die a-priori Vorgaben über die erforderliche Netzdichte 

in Anhängigkeit von Prozessparametern enthält.   

 

BILD 4: ADAPTIV VERNETZTES BLECH FÜR EINE BAHN DES UMFORMSTIFTS 

Fig.: IBF

Tool

Ωc
Ωf

• Adaptive FEM: Frequent remeshing (Contact zone permanently moving)
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der noch laufenden Antragsphase wird in der eigenen Arbeitsgruppe eine 

Look-up table erstellt, die a-priori Vorgaben über die erforderliche Netzdichte 
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BILD 4: ADAPTIV VERNETZTES BLECH FÜR EINE BAHN DES UMFORMSTIFTS 

Fig.: IBF

Tool

Ωc
Ωf

• Adaptive FEM: Frequent remeshing (Contact zone permanently moving)

• Idea 1: Fine grid Ωf moving with forming zone

→ Less coarse remeshings necessary

→ dof saved, no “toward refining“

JJ J I II 0 1 2 3 4 5 Universität Stuttgart

��·��· ��· ��· ��· ��· ��· ��· ��·
��·
��·��·
��·
��·��·
��·
��·
��·��·��·�

�·��·��·
��·

��·��· ��·��· ��·��· ��·
��· ��·��· ��·
��· ��·��· ��·
��·

��·
��·

��·
��·

��·
��·

��·��·��·�
�·��·��·

��·
��·��·��· ��·��· ��·��·
��·��· ��·��·
��·��· ��·��·
��·

��·
��·

��·
��·

��·
��·

��·��·��·��·��·��·��·
��·��·��· ��·��· ��·

��·
��·��· ��·

��·
��·��·

��·
��·

��·
��·

��·
��·

��·
��·

��·

��·��·��·��·��·��·��·
��·��· ��·��· ��·��·
��·

��· ��·��·
��·

��· ��·
��·
��·

��·
��·

��·
��·

��·
��·

��·



4 Overlapping DD

Extension: Overlapping domain decomposition

   
 ANTRAG  
 

I N S T I T U T  F Ü R  B I L D S A M E  F O R M G E B U N G  10/43  

 

Zusammenarbeit mit der Arbeitsgruppe von Prof. Wohlmuth ein Konzept er-

stellt, das in der laufenden Antragsphase zusammen mit der Implementierung 

der Mortar-Methoden umgesetzt werden soll.  Die Frage nach der Größe und 

Vernetzung der Umformzone wurde in der laufenden Antragsphase unter Be-

trachtung der in der FEM berechneten Gradienten untersucht. Ferner wurden 

adaptive Finite Elemente Rechungen durchgeführt. Ein Beispiel hierzu ist in 

Bild 4 dargestellt. Es wird nur eine Umformbahn betrachtet, die zur Blechmitte 

hin 1 mm in das Blech eintaucht und zum Rand hin das Blech wieder entlas-

tet. Die erforderliche räumliche Diskretisierung wurde mit Fehlerindikatoren 

nach Zienkiewicz /1/  bestimmt. Die Arbeiten belegen, dass örtlich große Gra-

dienten der Zielgrößen eine adaptive Vernetzung erfordern. Bei den Arbeiten 

in der laufenden Antragsphase wurde als Anhaltspunkt für die notwendige 

Vernetzung der Umformzone festgestellt, dass das Verhältnis von Umform-

kopfradius zu Elementkantenlänge ca. 50 betragen sollte, während die Ver-
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Look-up table erstellt, die a-priori Vorgaben über die erforderliche Netzdichte 

in Anhängigkeit von Prozessparametern enthält.   

 

BILD 4: ADAPTIV VERNETZTES BLECH FÜR EINE BAHN DES UMFORMSTIFTS 

Fig.: IBF

Tool

Ωc
Ωf

• Adaptive FEM: Frequent remeshing (Contact zone permanently moving)

• Idea 1: Fine grid Ωf moving with forming zone

→ Less coarse remeshings necessary

→ dof saved, no “toward refining“

• Idea 2: Computation on Ωc elastic only

→ Only assemblation of coarse elastic stiffness
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BILD 4: ADAPTIV VERNETZTES BLECH FÜR EINE BAHN DES UMFORMSTIFTS 

Fig.: IBF

Tool

Ωc
Ωf

• Adaptive FEM: Frequent remeshing (Contact zone permanently moving)

• Idea 1: Fine grid Ωf moving with forming zone

→ Less coarse remeshings necessary

→ dof saved, no “toward refining“

• Idea 2: Computation on Ωc elastic only

→ Only assemblation of coarse elastic stiffness

• Idea 3: Transfer of fine contact forces onto Ωc

→ No contact iteration on Ωc necessary
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4 Overlapping DD

ODDM algorithm

Main idea: Additive decomposition of displacement

P

PGP

Ωf
Ωc
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4 Overlapping DD

ODDM algorithm

Main idea: Additive decomposition of displacement

P

PGP

Ωf
Ωc

Time loop

Displace fine grid

Coarse-fine iteration

Assemble F pl
H(PH[εp

h])

Linear solve AHUH = −F pl
H + B>

HΛh

with AH elastic stiffness

Nonlinear solve BhΛh − F int
h (Ph[UH] + Uh) = 0

plus constraints

Compute and store εp
h

END coarse-fine iteration

END time loop
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4 Overlapping DD

ODDM example with contact

displ. exaggerated 200 ×
200 time steps

• 181 • 185

tool path

time steps
181

185

5
10

15
20

25

5

10

15

20

25
−0.01

−0.008

−0.006

−0.004

−0.002

0
185
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4 Overlapping DD

ODDM example with contact

displ. exaggerated 150 ×
zoom

time step 30

displ. exaggerated 300 ×
α plotted

plastic deformation
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4 Overlapping DD

ODDM example – a different path

time step 40

time step 67

α plotted on

storage grid
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5 Summary

Summary

• Plasticity and frictional complementary conditions have related structure.
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5 Summary

Summary

• Plasticity and frictional complementary conditions have related structure.

• Reformulation as nonlinear complementarity function
allows application of semismooth Newton method.
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5 Summary

Summary

• Plasticity and frictional complementary conditions have related structure.

• Reformulation as nonlinear complementarity function
allows application of semismooth Newton method.

• Primal-dual active set strategy yields efficient solution algorithm.
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5 Summary

Summary

• Plasticity and frictional complementary conditions have related structure.

• Reformulation as nonlinear complementarity function
allows application of semismooth Newton method.

• Primal-dual active set strategy yields efficient solution algorithm.

• Stability of the scheme depends on complementarity function.
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5 Summary

Summary

• Plasticity and frictional complementary conditions have related structure.

• Reformulation as nonlinear complementarity function
allows application of semismooth Newton method.

• Primal-dual active set strategy yields efficient solution algorithm.

• Stability of the scheme depends on complementarity function.

• For small moving contact zone overlapping DD approach reduces cost.
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5 Summary

Summary

• Plasticity and frictional complementary conditions have related structure.

• Reformulation as nonlinear complementarity function
allows application of semismooth Newton method.

• Primal-dual active set strategy yields efficient solution algorithm.

• Stability of the scheme depends on complementarity function.

• For small moving contact zone overlapping DD approach reduces cost.

Thank you for your attention!
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