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WNMH :
@ 1 Continuous problem

Problem setting

u: QxJ[0,T]— R Displacement field

o: Qx[0,T]— R™ Stress field
J2-plasticity for small deformations e’ : Qx[0,T] — R™? Plastic strain
with linear hardening a: Qx[0,T]—R Hard. variable

uPt s Q@ x [0, T]— R Plastic multiplier

A: T'.x[0,T]— R? Contact stress

div(e) = f, Q x[0,T],plus BC Mechanical equilibrium
o = C% e — &?), Constitutive law
el = Mpl80¢pl(aa Oé),

uPt > 0, Plasticity constraints
¢ <0,
prer =0,

«<w<4aAP»» (012345 Universitat Stuttgart e



NMH _
@ 1 Continuous problem

Problem setting

u: QxJ[0,T]— R Displacement field
o: Qx[0,T]— R™ Stress field
J2-plasticity for small deformations e’ : Qx[0,T] — R™? Plastic strain
with linear hardening o Qx[0,T]—R Hard. variable
uPt s Q@ x [0, T]— R Plastic multiplier
]

A: T'.x[0,T]— R? Contact stress

div(e) = f, Q x[0,T],plus BC Mechanical equilibrium
o = C% e — &?), Constitutive law
el = pP'og ¢t (o, a),

uPt > 0, Plasticity constraints
¢ <0,
prer =0,

u-v—g<0, T'.x]|[0,T] Non-penetration constraints
Ay 2 0,
)\,/('u,-l/—g):O,
IA-]] — S| <0, Coulomb friction
u, + ,U'COAT = 0,
LU = FIA]) =0
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1 Continuous problem

Plasticity vs. contact, strong form

J2-plasticity for small deformations
with linear isotropic/kinematic hardening

Contact problem for small deformations
with Coulomb or Tresca friction

u : Primal variable u : Primal variable
eP,a : Inner variables A=A\, v+ A;: Dual variables
div(e) = f, in div(e) = f, in Q
o :=C e(u) —ef), inQ o = C%%(u), in 2
n :=dev(o) — 2Kef, inQ A= —ov, on I,
<« <4 > > 0123415
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1 Continuous problem

Plasticity vs. contact, strong form

J2-plasticity for small deformations

with linear isotropic/kinematic hardening

u : Primal variable

eP,a : Inner variables
div(e) = f, in Q2
o :=C e(u) —ef), inQ
n :=dev(o) — 2Kef, inQ
Y (o) := 00+ Ha, in
¢ (n, ) := In|l — Y (), in Q
& = pone(n,a),  inQ

<« <4 > > 012345

Contact problem for small deformations
with Coulomb or Tresca friction

u Primal variable
A=A v+ A-: Dual variables

div(e) = f, in Q2

o = Cels(u), in
A= —ovV, on I,
Y(\) =gt + 3N, on I,
¢co(}\7_, )\y) = HAT” — Y()\V), on FC

U, = MC‘)@)\TgbCO()\T,)\V), on I,
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J2-plasticity for small deformations
with linear isotropic/kinematic hardening

1 Continuous problem

Plasticity vs. contact, strong form

u : Primal variable

eP,a : Inner variables
div(e) = f, in Q2
o :=C e(u) —ef), inQ
n :=dev(o) — 2Kef, inQ
Y (o) := 00+ Ha, in
¢ (n, ) := In|l — Y (), in Q
& = pone(n,a),  inQ
uPt >0, in Q
¢ <0, in Q2
uPlpPt = 0, in

«<«PP» (12345

Contact problem for small deformations
with Coulomb or Tresca friction

u Primal variable
A=A v+ A-: Dual variables

div(e) = f, in Q2
o = C%%(u), in Q
A= —ov, on I,
Y(\) =gt + 3N, on I,
¢co(}\7_, )\y) = HAT” — Y()\V), on FC
U, = MC‘)@)\TgbCO()\T, Av), onT,
ILLCO 2 07 On Fc
»” < 0, onI'.
'u/co¢co — O, on Fc
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@ 1 Continuous problem
Plasticity vs. contact, strong form
J2-plasticity for small deformations Contact problem for small deformations
with linear isotropic/kinematic hardening with Coulomb or Tresca friction
U : Primal variable U : Primal variable
eP,a : Inner variables A=A\, v+ A;: Dual variables
div(e) = f, in div(e) = f, in Q
o :=C e(u) —ef), inQ o = C%%(u), in 2
n :=dev(o) — 2Kef, inQ A= —ov, on I,
Y (o) := 00+ Ha, in 2 Y(A\) =gt + 5N, on I,
¢''(m, a) = |0l - Y (a), in £ ¢ (Ar, ) = |IAr]] = Y (), on I’
e? = pone” (n, ), in Q U, = p®dy ¢“°(Ar, A), on T
uPt >0, in Q u > 0, on I,
HPt < 0, in Q »° < 0, on T,
uPlpPt = 0, in uCPp = 0, on I',
& = uP, in 2 A, > 0, on I,
u-v—g <0, on I,
M(u-v—g) =0, on I,
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@ 1 Continuous problem

Plasticity vs. contact, projections

Elastic region for relative deviatoric Admissible stresses:
stress 7: M()\V) — {(I'LT7/’LI/) : ¢CO(“77 )\V) < O,
E = {(,8): ¢"(r,5) < 0}, > 0},
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@ 1 Continuous problem

Plasticity vs. contact, projections

Elastic region for relative deviatoric Admissible stresses:
stress M(A) = {7 ) = 9% (7, M) <0,
— . AP
E:= {(Taﬁ) Qb (Taﬁ) SO}) MVZO},
Projection: v Projections: -
Prn) o= min (1,550 ) Pro () = min (1,75 ) o,
n T

P,()\,) := max(\,,0),

«W<4APP»w» (012345 Universitat Stuttgart
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@ 1 Continuous problem

Plasticity vs. contact, projections

Elastic region for relative deviatoric Admissible stresses:
stress M(A) = {7 ) = 9% (7, M) <0,
o . pl
E:= {(Taﬁ) '¢p (Taﬁ) SO}) MVZO},
Projection: v Projections: -
Prn) o= min (1,550 ) Pro () = min (1,75 ) o,
n T

P,(\,) := max()\,,0),
Trial values (¢, > 0):
tr

" i=n+ep (e’ —eny),
Special choice ¢, = (2 + 2K):

Trial values (¢, c, > 0):
Af-r = Ar + ¢, (UT — u'r,old) )

tr .__ .
N = 2pdev(e(w)) — el A=At a(u, —g).
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Elastic region for relative deviatoric
stress n:

E:={(T,0) : ¢"(,5) < 0},

Plasticity vs.

Projection:

Pt - (1.1)

Trial values (¢, > 0):

N =t (e’ —egy)

Special choice ¢, = (2 + 2K):
n'" = 2udev(e(u)) — cpel
KKT conditions are equivalent to
n = Pp,a(ntr)a cp >0

<« <4 > > 012345

1 Continuous problem

contact, projections

Admissible stresses:

M(A) == {7 pv) © 97 (1 A) <0,
Hy = O}a

Projections:

Y (A
PT,AV(AT) = mln (17 H(A ||)) AT?

P,()\,) := max(\,,0),

Trial values (¢, c, > 0):
Af-r = Ar + ¢, (UT — u'r,old) )

AT =\, +c(u, —g).

KKT conditions are equivalent to
Ar = 7_7>\I/(A$'T)7 cr >0
N, =P,(\7), ¢, >0

Universitat Stuttgart
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@ 1 Continuous problem

Quasi-variational inequality

Find w € Hy _(Q), (n,a) € E, A € M(),)

equilibrium a(w,v) + WP (e(v),eP) + b°(v,A) — (f,v)q = 0, (ONS H%D(Q)

«W4APP»w» (012345 Universitat Stuttgart
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@ 1 Continuous problem

Quasi-variational inequality

Find w € Hy _(Q), (n,a) € E, A € M(),)

equilibrium a(uw,v) + bP(e(v),eP) + b°(v,X) — (f,v)q = 0, v € H%D(Q)

plasticity =P, (C)H T —m)) = b"(4,8 —a) <0, (T,8)€E

friction b (Ury o — ) <0, pe M)

non-penetration b (uyv, pp — X)) — (g, — A)p, < 0, p € M(A,)
with

M(Ay) == {(pr, p) 2 (s Av) < 0, py, > 0},
E:={(r,5) : ¢"'(7,8) < 0},

a(u,v) = [,C%%(u) : e(v),
bPl(e, T) = — /4 Cee : T,
bhr(aaﬁ) = fQ Hap,
bco(,v’ N) e chv 2

ooooooooo

N ® o
.06
OO N

««<4P>P» (12345 Universitit Stuttgart — *5ees”



WMH

Algebraic inequality formulation in finite element basis

2 Discretization

From inequality to equality

Equilibrium
Plasticity
Contact & friction

Apuy, — leég + B;CzoAh — fha

discrete KKT
discrete KKT

<« <4 > >
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@ 2 Discretization

From inequality to equality

Algebraic inequality formulation in finite element basis
Equilibrium Apuy, — BZZ&:Z + Bi°An = £,

Plasticity discrete KKT
Contact & friction discrete KKT

Inequality constraints are equivalent to Cj, := (CP',C°°) =0 with
Cpl(uha (51}17 Ckh)) = (nh _ Pp,oz(frﬁbr))
O‘h>v - PV(()‘h)zt/T)

Cco U 7)\ e
(un, An) ((An)r = Prxgr((An)7))

«W<4APP»w» (012345 Universitat Stuttgart
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@ 2 Discretization

From inequality to equality

Algebraic inequality formulation in finite element basis
Equilibrium Apuy, — BZZ&:Z + Bi°An = £,

Plasticity discrete KKT
Contact & friction discrete KKT

Inequality constraints are equivalent to Cj, := (CP',C°°) =0 with
Cpl(uha (Eip;n Ckh)) = (nh _ Pp,oz(frﬁbr))
(Ah>v - PV(()‘h)zt/T)

Cco U 7)\ e
(un, An) ((An)r = Prxgr((An)7))

Equivalent nonlinear system: Apuy, — BY'e? + Bi°X, = f,
Ch(uha (81}17 ah)a Ah) = 0.

«W<4APP»w» (012345 Universitat Stuttgart
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@ 2 Discretization

From inequality to equality

Algebraic inequality formulation in finite element basis
Equilibrium Apuy, — BZZ&:Z + Bi°An = £,

Plasticity discrete KKT
Contact & friction discrete KKT

Inequality constraints are equivalent to Cj, := (CP',C°°) =0 with

C (un, (€, an) = manc{ ], Y (@)} (= Pp.a(mi)
() = Po((A0))

Cco(u 7)\ );:
VT mal | )T Y (D)} (n)r = Pragr(A)))

Equivalent nonlinear system: Apuy, — BY'e? + Bi°X, = f,
Ch(Uh, (81}17 ah)a Ah) = 0.

Additional factor leads to different Newton scheme

—  better stability properties ?

«W<4APP»w» (012345 Universitat Stuttgart
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@ 2 Discretization
Semismooth Newton method
Alart/Curnier [88,91], Hintermiiller et al [02], Christensen/Pang [98], Christensen [02]
Ahéué) Bpl5€p (k) + BCO5)\(k) _ fh . Ah'u,( )_|_ Bpl p (k) B}(;O)\gﬂ)’
3uC£l’(k)5 (k)_l_a(e )C’pl (k)5( p»(k) (k)) Cpl(ugk) (&J;; (k) gf)))
a CCO (k)5 (k) T 8 CCO (k)(g)\(k) CCO( )’ )\(k)).

«W4APP»w» (012345 Universitat Stuttgart



WMH

@ 2 Discretization
Semismooth Newton method
Alart/Curnier [88,91], Hintermiiller et al [02], Christensen/Pang [98], Christensen [02]
Ahé‘ugf) . Bpl5€h p,(k) + BCOé‘A(k) fh Ahué ) + Bpl p (k) B}(;O)\gﬂ)’
3UCZZ’(k)5 (k)_l_a(e )C’pl (k)5( (’f) (k)) Cpl(ugk) (&.h (k), glk))),
a CCO (k)(s (k) —|—8 CCO (k)(g)\(k) Cco(u(k)’)\(k)).

Introduction of active sets: (index -(*) omitted)

«W4APP»w» (012345 Universitat Stuttgart
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@ 2 Discretization
Semismooth Newton method
Alart/Curnier [88,91], Hintermiiller et al [02], Christensen/Pang [98], Christensen [02]

Ahéugﬁ) _sz(seh p, (k) +BCO5A(’“) £ — Ahug ) JrBzol p,(k) Bﬁ()}\gﬂ)’

(k) ¢ (K 1 (k k) (k k k) (k
OuC? (F) 54, )—|—8<€ aCP g )5( p,(k) )) Cpl(ug),(ez( ) 2))),
a CCO (k)5 (k)_|_a CCO (k)(g)\(k) CCO( (k) )\(k)).
Introduction of active sets: (index -(*) omitted)
plasticity: elementwise (&)

A, = {j EthAOéj = Oéj_aj,old>0}7
7 ::{jGSh:A&jSO},

Ay = {j c&y: ¢pl(n§7“,ozj) > O} :
I, = {j cé&y: qﬁpl(ngr,aj) < O} :

Ly
Ap

«W4APP»w» (012345 Universitat Stuttgart
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@ 2 Discretization
Semismooth Newton method
Alart/Curnier [88,91], Hintermiiller et al [02], Christensen/Pang [98], Christensen [02]

Ah(su(k) B sz(sgz,(k) +BCO5>\(k) —f, - Ahu( )_|_Bpl p,(k) Bﬁ()}\gﬂ)’
l,(k k l,(k k k k k k
O Cp()é ()Jra([‘3 a)Cp ()5( () ()) Cpl(uy,(gh() 2>)),
a CCO (k)5 (k)_|_a CCO (k)(g)\(k) CCO( (k) )\(k)).

Introduction of active sets: (index -(*) omitted)

plasticity: elementwise (&) contact: nodewise (N},)
Ao =1 €& Aaj = aj — a;o1qa > 0}, A, = {j c Ny : )\tr > O}
To:={j €& :Aa; <0}, L, :={j € N : )\“" <0},
Ap :={j €& :¢""(n, ;) >0}, Ap:={j €N, : quO(A;Tt,AtT >0},
I, :={j €& : P (N, a;) <0}. Ty = {j € Nn: ¢°(A], A7) <0}

Ly
Ap

. \. I . _:_nhs.ave /

o
A e
mn
master
ooooooooooooo
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2 Discretization

Local static condensation of plastic dof is possible:

<50é]g
5sj

)

N\

G;

(

M;

( AOﬁj
B Ae”

-((

J€L,N1,,

)

AOéj >
HAa«; P
1+ m> Ae;
gj :
) 2 dev e(du) + (m3> j €A,

JjE€L,N A,

<« <4 > >
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Primal-dual active set strategy: Plasticity
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2 Discretization

Primal-dual active set strategy: Plasticity

Local static condensation of plastic dof is possible:

5sj

i
|

N\

7~ N
=S

=
= ((

tr
i L =9 ) ld+= |mt’“||2< i~ ﬁpawﬂ ) @m, ) ’

Ao :
As]g> j € ZI,N Ty,
j

?A(z > jeZ,NA,,
(1 + W)AE

J) 2 dev e(du) + (gi) j €A,
j

1—9, ) 1d + |m“‘||2"79 @' ) jET,,

2y

((
<(1 9; ) Id+ﬁpﬂ{|7n?’9||2 ;' ®m> 7€ A

1=9 ) Id+< ||?7“’||2 <aj"j> = ?7?) ’

<« <4 > >
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jeA,.
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2 Discretization

Primal-dual active set strategy: Plasticity

Local static condensation of plastic dof is possible:
(

Ao :

_ (Asg> J€L,N1,,
J

50éj> AO( .

= HAa ] € Z,N Aa;
<5€§ ((1 + o) A > '
G

7} 2 dev e(Su —I—(gj> J € Ay,

N\

,
L((1-0)1a+ ol @nl)  jeL,
Y clmfry2™s =
e (1- @>Id+ﬁp~7a02ﬂn ®@n; ) jEA
R, slimiriz 7 *’
,
L 1. br
Y ((1 %)) e mre |m”’||2<amﬂ> ©om, ) !
J 1 tr
[ @ ((1 — 9 ) e |mt’“||2< i~ ﬁpawﬂ ) e ) ’

Features: — Matrix M, is symmetric, I/, is not.

<« <4 > > 012345
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2 Discretization

Primal-dual active set strategy: Plasticity

Local static condensation of plastic dof is possible:
(
Ao :
_ (Asé) J€L,N1,,
50éj> AO( .
= HAa ] € Z,N Aa;
<5€§ ((1 + o) A > '
G : :
(J\/—é> 2u dev e(du) + (gij) j e A,
\

“%j ((1 0. ) Id + ||,r’tr||2"7] ® "7] ) jeZ,,
= ((

N\

b . J ;T )

ij <(1 9; ) Id+< ||?7“’||2 <amf'> “ n§r> ’ 7€ Lo
1

- —_— ) t'r .
- ((1 0. ) Id+— “,7””2( M5~ G2 ) ®n' ) L G EA.
IS

Features: — Matrix M, is symmetric, I/, is not.

‘= min (1 Yple;)
>l

\

— Safety factor a;

enhances stability.
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2 Discretization

Primal-dual active set strategy: Plasticity

Local static condensation of plastic dof is possible:
(
Ao :
_ (Asé) J€L,N1,,
50éj> AO( .
= HAa ] € Z,N Aa;
<5€§ ((1 + o) A > '
G : :
(J\/—é> 2u dev e(du) + (gij) j e A,
\

“%j ((1 0. ) Id + ||,r’tr||2"7] ® "7] ) jeZ,,
= ((

N\

e 1-0.)1d B e P
L @5 o j) + 6”nt7’|l2 77] ®77] ] € o)
)
M. = ¢ % <(1 ‘; ) Id+< |m“’||2 (“J’"a’) ® ’7?") ) jET,
b ; tr .
§<(1—9)1d+w< i — 5pa2"j>®nj>, jeA,.

\

Features: — Matrix M, is symmetric, I/, is not.

s Yp(
— Safety factor a, := min (1, 1

— System to be solved does not contain additional plastic dof.

)) enhances stability.

«W4APP»w» (012345 Universitat Stuttgart



2 Discretization

Structure of NCP function C°

FE discretization: Interface:

Hexahedrals Quadrilaterals

Wy, dual LM

@4, standard bilinear nodal
shape function

Biorthogonality: Di(p,q] = | — ¥ppq Is = 0pg |~ ¢q Is = D diagonal

Complementary condition C'“” decouples into nodewise conditions C{°(u;, A;).

“«Ww4APP» (012345 Universitat Stuttgart — *seeees



@ 2 Discretization

Primal-dual active set strategy: Contact
Static condensation of contact LM is not always possible.

“«Ww4AP P> (012345 Universitat Stuttgart — *seeees
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@ 2 Discretization

Primal-dual active set strategy: Contact

Static condensation of contact LM is not always possible.
But: Either primal or dual variable can be eliminated locally.

6A.77n — _Aj,n ] E In?
5uj;n = Gjn — Uy J € An’
5uj,t == —A’U,j,t ] - It M In’
SCtAuj,t .
5uj,t _= —W (5)\%” —|— Cn(S’uj’n) — Auj',t ¥ -~ It M An,
Jm
6Xjt = N;ci(0u,,) +n; jeEANTL,,

oXji = Niei(du, ) + 1, (0Ajn + cndujn) +m,; jEANA,

«<w4aAP>» (12345 Universitat Stuttgart e
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@ 2 Discretization

Primal-dual active set strategy: Contact

Static condensation of contact LM is not always possible.
But: Either primal or dual variable can be eliminated locally.

6A.77n — _Aj,n ] E In?
5uj;n = Gjn — Uy J € An’
5uj,t == —A’U,j,t ] - It M In’
SCtAuj,t .
5uj,t _= —W (5)\%” —|— Cn(S’uj’n) — Auj',t ¥ -~ It M An,
Jm
6Xjt = N;ci(0u,,) +n; jeEANTL,,

oXji = Niei(du, ) + 1, (0Ajn + cndujn) +m,; jEANA,

9.
N, = 1 (Id—+>\t~r ® X*“) ,
7o IAG27 0t T

No=— ([de—Y9 X @Al
S 9INPT T

«<w4aAP>» (12345 Universitat Stuttgart e
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@ 2 Discretization

Primal-dual active set strategy: Contact

Static condensation of contact LM is not always possible.
But: Either primal or dual variable can be eliminated locally.

6Aj7n — _Aj,n ] E In?
5uj;n = Gjn — Uy J € An’
5uj,t == —A’U,j,t ] - It M In’
SCtAuj,t .
5'u,j’t _= —W (5)\j,n —|— Cnéuj"n) — Auj',t ¥ -~ It M An,
Jm
6Xjt = N;ci(0u,,) +n; jeEANTL,,

oXji = Niei(du, ) + 1, (0Ajn + cndujn) +m,; jEANA,

9.
N, = 1 (Id—+>\t~r ® X*“) ,
7o IAG27 0t T

No=— ([de—Y9 X @Al
S 9INPT T

Features: — Matrix IV, is symmetric, IV, is not.
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@ 2 Discretization

Primal-dual active set strategy: Contact

Static condensation of contact LM is not always possible.
But: Either primal or dual variable can be eliminated locally.

SAjm = — A, jET

J,n n’
5uj;n = Gjn — Uy J € An’
5uj,t = —A’U,j,t ] - It M In’

SCtAuj t .
J,m
6Xjt = N;ci(0u,,) +n; jeEANTL,,

oXji = Niei(du, ) + 1, (0Ajn + cndujn) +m,; jEANA,

9 .
N, = 1 (Id—+>\t~r ® X*“) ,
7o IAG27 0t T

No=d (d——Y 5 @an).
J ﬁjfjHAj,t”2 ’ ’
Features: — Matrix IV, is symmetric, IV, is not.

t
Ye(Ajin)

9
1A ¢l

— Safety factor a . := min(l

; ) enhances stability.
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@ 2 Discretization

Primal-dual active set strategy: Contact

Static condensation of contact LM is not always possible.
But: Either primal or dual variable can be eliminated locally.

6Aj7n — _Aj,n ] E In?
5uj;n = Gjn — Uy J € An’
5uj,t == —A’U,j,t ] - It M In’
SCtAuj,t .
Jm
6Xjt = N;ci(0u,,) +n; jeEANTL,,

oXji = Niei(du, ) + 1, (0Ajn + cndujn) +m,; jEANA,

9.
— J 1 tr tr

,t

Y a -
N =—[Id- I—X, A7 ).
! 1%’( 0 € ING2 " ”)

Features: — Matrix IV, is symmetric, IV, is not.

: Ye(AET )
— Safety factor a; := mm(l, g,
1A 4l

— System to be solved has size of displacement dof.

) enhances stability.
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@ 2 Discretization

Primal-dual active set strategy: Contact

Static condensation of contact LM is not always possible.
But: Either primal or dual variable can be eliminated locally.

6A.77n — _Aj,n ] E In?
5’11,3',“ = Gjn — Uy J € An’
5uj,t == —A’U,j,t ] - It M In’
SCtAuj,t .
Jm
6Xjt = N;ci(0u,,) +n; jeEANTL,,

oXji = Niei(du, ) + 1, (0Ajn + cndujn) +m,; jEANA,

9.
— J 1 tr tr
N =, (Id AT, P & Aj’t) ’

,t

No=— ([de—Y9 X @Al
S 9INPT T

Features: Matrix N, is symmetric, IV, is not.
tr .
Safety factor a; := min(l,YC;j%T)) enhances stability.
7,t

H
H
— System to be solved has size of displacement dof.
H

Lagrange multiplier can be computed in a post-process.
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@ 3 Numerical results

Plastic example: Plate with hole

e Plate of length 2.0, circular
hole of radius 0.2.

e On upper boundary, plate is
pulled with force f;-|0.5—t|
upwards for t € [0, 1] and
, = 1100.

e Quasistatic  computation
with At = %.

e Material parameters _ _ _ |
2 0.33 Equiv. plastic strain « Effective stress o

E 6.9 - 10
o 7.07 - 102
H, K 0
e Active sets are updated in

each Newton iteration,
Cp = 20+ aO_2K.
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Plate with hole: Convergence

3 Numerical results
time step tg, different forces f;:
Time 8: force: 1010 . Time 8: force: 1020 5 Time 8: force: 1030
10 . ‘ 10 , w , w 10 : w w ,
— "\e\ g
1075 1075 \\ 1075
S S S
@ @ o
107°} 107} : 1077}
-e-without S -o-without S -e-without S
107 —~—with S ; ‘ ‘ 10" —~—with S ‘ ‘ ‘ ‘ 10" —~—with S ‘ ‘ ‘
1 2 3 4 5 6 1 2 3 4 5 6 7 1 2 3 4 5 6
no of iter no of iter no of iter
time step tg, different forces f;:
" Time 9: force: 1010 i Time 9: force: 1020 15 Time 9: force: 1030
10 v— ! ‘ 10 ! ‘ 10
L oT T @i iy 6em s s
“
10°
| 10° Fosaggugs s aasssee 10° e T
51 5 5
o 4 ) )
107 ] 107
107° p
-o-without S -o-without S -o-without S
102 ——with S ‘ ‘ 102 —=withS | ‘ ‘ 102 —=—with S _ |
0 2 4 6 8 0 5 10 15 20 0 5 10 15 20
no of iter no of iter no of iter
<« <4 > » 01 2 3 45
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Numerical results

Contact example with Coulomb friction

D AN A VYAV
S
S 3

o L
A'Avev‘
‘vé:#ﬁﬁ:g

AL

SRRy, . SFATAT,

-‘-I%%ﬁ;uvm::g\&ws

P SIS
o

Friction coefficient F=0.7
1 ‘ ‘ ‘ . .

.........-.ﬂ// \....--......

R R R R LR

-2 . . . ! L .
2 25 3 35 4 4.5
angle

-1.1

TATAVAYLS
STEATATARY,

VaYa®
FitTa%
i

)
iy

‘f}v

L

4.1

4.2

angle

4.3

4.4

error

10

10

|

T T P v"'()' 1
AANAN

Convergence rate

==fixpoint iteration | |
== full Newton

10

15 20 25

iteration steps

— Stabilized Newton shows local superlinear and good global convergence
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@ 3 Numerical results

Combined example: Tube between plates

e Circular tube of length 4; fixed at one end, free

~p otherwise.

e On upper and lower plate fixed displacement with
f.(t) = 0.02 - min(¢,21 — t) at t-th load step,
t€40,...,21}.

e All active sets updated in each Newton iteration.

4 size of active sets
05X 10 . .
—e—plastifying el
tube plates —=—200*(contact nd)
2 -o-200*(slippy nd) |

0.3 0.3
7-10% | 7-10° 15
o, | 2-10° | 10°

O <

H |2-10° | 2-10° / i

K 103 103 05 {0

gt 0 0 YN\
S O 1 01 0 5 ti:’r?e 15 20
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10

10

10

10

10

10

Tube between plates:

time 3

—error
o plast AS found
¢ cont AS found

2 4

6

no of iter

time 12

10

—error
o plast AS found
¢ cont AS found

2 4 6

8

no of iter

10

12 14

10

10

-10

10

10

10

-10

10

4 Qverlapping DD

time 6

Conver

—error
o plast AS found
¢ cont AS found

10

2 4

no of iter

time 15

6

10

10

gence

time 9

—error
o plast AS found

10l @ cont AS found

2 4

no of iter

6

time 18

10

—error —error
o plast AS found 107 o plast AS found
2 3 5 1 2 3 5
no of iter no of iter
ot ff»oooo .
©

<<

<4 > >

0

1

2 3 45
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@ 4 Qverlapping DD

Extension: Overlapping domain decomposition

e Adaptive FEM: Frequent remeshing (Contact zone permanently moving)
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Extension: Overlapping domain decomposition

4 Qverlapping DD

e Adaptive FEM: Frequent remeshing (Contact zone permanently moving)

e Idea 1: Fine grid {2+ moving with forming zone

— Less coarse remeshings necessary

— dof saved, no “toward refining”
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4 Qverlapping DD

Extension: Overlapping domain decomposition

e Adaptive FEM: Frequent remeshing (Contact zone permanently moving)

e Idea 1: Fine grid {2+ moving with forming zone

— Less coarse remeshings necessary

— dof saved, no “toward refining”
e Idea 2: Computation on (2. elastic only

— Only assemblation of coarse elastic stiffness
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4 Qverlapping DD

Extension: Overlapping domain decomposition

e Adaptive FEM: Frequent remeshing (Contact zone permanently moving)

e Idea 1: Fine grid {2+ moving with forming zone

— Less coarse remeshings necessary

— dof saved, no “toward refining”
e Idea 2: Computation on (2. elastic only

— Only assemblation of coarse elastic stiffness
e Idea 3: Transfer of fine contact forces onto 2.

— No contact iteration on (). necessary
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4 Qverlapping DD

Universitat Stuttgart

ODDM algorithm

Main idea: Additive decomposition of displacement
0123415
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@ 4 Qverlapping DD

ODDM algorithm

Main idea: Additive decomposition of displacement

Time loop

Displace fine grid

Coarse-fine iteration
Assemble F2/(P y[e"])
Linear solve AyU gy = —F% + BEAh
with A g elastic stiffness
Nonlinear solve B,A;, — FI (P, [Uy] +U},) =0

plus constraints

Compute and store €}
END coarse-fine iteration

END time loop
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4 Qverlapping DD

ODDM example with contact

displ. exaggerated 200 x

200 time steps

= -.

EEE=

ol ]
NS =
NeS=———c
SSSE==21
N\ —
N —— =
N —— )
N ——— —
=] =
N =
NN =
N —— =
= =
\SSE==22
N 1
NS=—

NS

-0.002

-0.004

—-0.006

—-0.008

-0.01
25

o 185

time steps

tool path
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4 Qverlapping DD

vamnloa wnth cantact
I\alllIJlC VVILIEITI LU iliiLdu L

time step 30

storage grid, time step 30

displ. exaggerated 300 x

a plotted

plastic deformation
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4 Qverlapping DD

ODDM example — a different path

time step 67 _3

4.5
4
F13.5
time step 40 773
2.5
2
« plotted on |
storage grid 1
0.5
0
OO
RIS
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5 Summary

Summary

e Plasticity and frictional complementary conditions have related structure.
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e Plasticity and frictional complementary conditions have related structure.

e Reformulation as nonlinear complementarity function
allows application of semismooth Newton method.
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5 Summary

Summary

e Plasticity and frictional complementary conditions have related structure.

e Reformulation as nonlinear complementarity function
allows application of semismooth Newton method.

e Primal-dual active set strategy vyields efficient solution algorithm.
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e Plasticity and frictional complementary conditions have related structure.

5 Summary

Summary

e Reformulation as nonlinear complementarity function

allows application of semismooth Newton method.

e Primal-dual active set strategy vyields efficient solution algorithm.

e Stability of the scheme depends on complementarity function.
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5 Summary

Summary

e Plasticity and frictional complementary conditions have related structure.

e Reformulation as nonlinear complementarity function

allows application of semismooth Newton method.

e Primal-dual active set strategy vyields efficient solution algorithm.

e Stability of the scheme depends on complementarity function.

e For small moving contact zone overlapping DD approach reduces cost.
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5 Summary

Summary

e Plasticity and frictional complementary conditions have related structure.

e Reformulation as nonlinear complementarity function
allows application of semismooth Newton method.

e Primal-dual active set strategy vyields efficient solution algorithm.
e Stability of the scheme depends on complementarity function.

e For small moving contact zone overlapping DD approach reduces cost.

Thank you for your attention!
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