A velocity-based time-stepping scheme

for vibro-impact problems

L. Paoli
LaMUSE, Université de Saint-Etienne

Workshop “Méthodes numériques innovantes, application a la mécanique”

INSA de Lyon, 23 et 24 juin 2008



I - Description of the dynamics

We consider a mechanical system with a finite number of degrees of freedom.
The unconstrained dynamics is given by

M(q)q= f(t,q,9).
We assume that the system is submitted to perfect unilateral constraints described by

gt) € K={q€R% gu(q) >0Va e {l,...,v}}, v>1.

Adding the reaction force due to the constraints, we obtain

with

{Z AV 9a(q), Ao <0if go(q) <0, Ay =0 othorwise}.



The transmission of the velocity at impacts is modelled by Newton's law
(2) G (t) = —eq(t) + (1 + e)projy (Tx(q(t)), ¢~ (1))
where e € |0, 1] is a restitution coefficient and

Ti(q) =V(q) = {w € R" Vga(q) - w = 0if go(q) < 0}.

Following J.J. Moreau's approach, (1)-(2) can be replaced by a Measure Differential Inclusion

q" + eq‘>

(MDI) fwwW%MMEMm<1+€

Reference: J.J. Moreau, “Unilateral contact and dry friction in finite freedom dynamics”,
1988.



More precisely we consider the following Cauchy problem:

Problem (P) Let (qg,uo) € K x V(qy) be admissible initial data.
Find 7 > 0 and u € BV ([0, 7]; IRd> such that u and the function ¢ defined by

q(t) = qo +/0 u(s) ds vt € [0, 7]

satisfy:
+ J—
o Cut(t) Feu (1)
u'(0) =wug, wult) = e vVt € (0,7),
and
f(t,q,u)dt — M(q)du € Ny(y(u)
with

{yEIRd; y-(r—u) <0VzeV(g}ifueV(g)
() otherwise.

Ny (g)(u) = {



II - Description of the scheme

For a given time-step h > 0, we define the approximate positions and velocities by
dh0 — qo, Up0 — UQ
and for all 2 > 0

Qhi+1 = Qni + hup

Upit1 — Uphy Up i1 T €UL,
f(th./zlJrla C]h,72+1auh,z'+1> — M(gn,i+1) < ) = NV(Q}L,i—H) ( '

h 1+e

Using the definition of Ny(,)(-), we can rewrite it as

h
l+e

Upiv1 = —eupi+(14+e)proj, V(qniv1), wni+ M_1<Qh,z'+1>f(th,i+1a Qhi+1, Uh,z'+1> :
4h,i+1

Reference: J.J. Moreau, “Dynamique de systemes a liaisons unilatérales avec frottement
sec éventuel, essais numériques”, 1986.



Properties

o If ¢;,+1 € Int(K'), we obtain simply

Qhi+2 — 2Qni+1 + Qn
72

~1
= M (Qil,i+1>f(tiz,i+17 dhi+1, uh,H—l)

which is a discretization of the unconstrained dynamics.

e The constraint is satisfied at the velocity level at each time step in the following sense

Upjr1 T €Up;
l+e

< V(Qh,iﬂ) .

e The ponderation between uy ;1 and uy; leads to a correct reflection of the velocity at
Impacts.

Example (bouncing ball): d=1, K =1R", M(q)=1, f=0, qo =1, ug = —1.
The solution of problem (P) is

{q(t)—l—t if t € [0,1],
qt) =e(t—1) ift > 1.



We obtain ¢;, 0 = 1, u;0 = —1 and for all ¢ > 0
Qi1 = Qi+ hung,  upin = —eun; + (1+e)proj,  (VIgni+1), uns)

with

oo, (Vi uns) = i H 20
Assume that h € (0,1). There exists p > 1 such that

p:max{k >0; qn; > 0Vie {O,...,k}}.
Then
qhiv1=1—(G+1h, wup;=-1 Vie{0,...,p}

and ¢j, -1 < 0. Thus w1 = —eup, + (1 + e) max(uy,, 0) = e and

ghi=1—@+Dh+ei—p—1h, up,,=e Vi>p+1.



IIT - Convergence results

References:

e single constraint case (v = 1), trivial mass matrix and e = 0: M. Monteiro Marques,
“Differential inclusions in nonsmooth mechanical problems”, 1993

e single constraint case, trivial mass matrix and e € [0, 1]: M. Mabrouk, “A unified variational
model for the dynamics of perfect unilateral contraints”, 1998
New results:

e single constraint case, non trivial mass matrix and e¢ € |0, 1] (joint work with R. Dzonou
and M. Monteiro Marques)

e multi-constraint case, non trivial mass matrix, e € [0, 1]



In the single constraint case we prove the convergence of the approximate positions and
velocities under the following assumptions:

(H1) f € C°([0,T] x R? x IR%;IR?) (T > 0), s.t. f is locally Lispchitz continuous in its
last two arguments,

(Hz) M e Cl (Rd; Md*d,sdp<[R)),
(H3) g € Cl’l/z(le; IR) s.t. Vg does not vanish in a neighbourhood of {¢ € IR%; ¢(¢q) = 0}.

loc

Under assumptions (H1) and (H2) we can not expect a global existence result on |0,7] for
problem (P) but we have

Proposition (energy estimate): Let R > ||ug||,,. Then there exists 7(R) > 0 s.t., for
any solution (g, u) of problem (P) defined on [0, 7| (with 7 € (0,T7]), we have

Hu(t)”q@ <R Vte |0,min(r,7(R))].

Reference: L.P. and M. Schatzman, “A numerical scheme for impact problems”, 2002.



We define the sequence of approximate solutions (qy, up)p=o by

up(t) = up; it € [ty thi) N0, T,
t

an(t) = qo +/ up(s)ds Yt € 0,T].
0

So we prove

Theorem: Let R > ||uyl|q- Then there exists a subsequence of (gp, up)n>0, still denoted
(qn, un)n=0, s.t.

g, — ¢ In CO([O, min(T, T(R))} ; ]Rd)
up, — v pointwise in [0, min(7, 7(R))]

and (¢, u) is a solution of problem (P) on [0, min (7, 7(R))]|, with

u(t) = “+<t)11€€”(t) Vi € (0, min(T, 7(R))).




Sketch of the proof
First step: local convergence result

e We establish uniform estimates for the discrete velocities on a time interval [0, 7], 7 € (0, 7],
by using Brouwer's fixed point theorem.

Then we prove that (u,),~0 is bounded in BV (0, 7; IRY).

e \We pass to the limit by using Ascoli’'s and Helly's theorems: there exists a subsequence, still
denoted (qp, up)p>0 S-t.

up — v pointwise in |0, 7,

and
qn — ¢ uniformly in [0, 7],
with t
q(t) = qo +/ u(s)ds YVt e |0, ],
0
and

vVt € (0,7).



e We study the properties of the limit (¢, u): we prove that

q(t) € K Vtel0,T].

Then we establish that the MDI is satisfied on J = {t € [0, 7]; u(¢) = u~(¢)} and that the
velocity is correctly reversed on [0, 7] \ J.

Second step: Convergence on [0, min(7,7(R))|, R > |luol4-

We establish that, if (g5, up)n=0 converges to a solution (g, u) of problem (P) on [0, 7%], with

7 € (0,T], we have

*

lim supy,_. sup{Huh,inm; 0 < tp; <min(7, 7(R)) }
< ess sup{ ||u(t)|lyu; 0 <t <min(7*,7(R))} <R

and we argue by contradiction.



In the multi-constraint case we replace assumption (H3) by

(H’3) foralla € {1,...,v}, go € C'(IR%IR) s.t. Vg, is locally Lispchitz continuous and
does not vanish in a neighbourhood of {q € IR%: g¢.(q) = 0},

(H’4) (Vga(q))aej(q), with J(q) = {a; ga(q) = 0}, is linearly independent for all ¢ € K.
Moreover a new difficulty occurs: the motion is not continuous with respect to initial data.

Nevertheless continuity on data holds if

(H’5) for all ¢ € K, for all (o, 3) € J(q)* s.t. o # 3

(Vgalq), M(q)"'Vgs(q)) <0 ife=0,
(Vgala); M(q)"'Vgs(q)) =0 if e € (0,1].

Reference: L.P., “Continuous dependence on data for vibro-impact problems”, 2005.



Under these assumptions we prove once again the convergence of a subsequence of (g, un)n=0
to a solution of problem (P).

The sketch of the proof is similar but now the main difficulty is the study of the reflection of
the velocity at impacts.

Idea: If u™(t) # u™(t) we prove first that
M (q(t)) (u™(t) — u(t)) € =Nk (q(t))

i.e. there exists (ltq)1<a<y S-t.

fo = 0 if gq <Q<t)) =0,
Lo = 0 otherwise.

- - ~1 .
ut () —u () =) paM(q(t))” Vga(q(t)) Wu;h{
a=1
Then we observe that the impact law is satisfied iff
Vaa(qt)) - (u™(t)+eu(t)) =0 forallae {1,...,v} st py >0

which is proved by performing a precise study of the discrete velocities in a neighbourhood
of t.
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