Chapitre 1

Anneaux et Idéaux

Sommaire

1 Définitions . . . . . . . o i e e e e e e e e e e e e e e e e e e e e e e e 2
1.1 Defet Exples . . . . . . . . o e 2

1.2 Premiers constructeurs . . . . . . ... Lo 2

1.3 Lanneau Z/nZ . . . . . . . ..o 3

1.4 Anneaux des polyndmes . . . . . . . .. ... e 4

1.5 Anneau des entiers de Gauss . . . . . . .. ... 5

1.6 Petits anneaux . . . . . . ... e 5

2 Inversibilité et divisibilité . . . . ... . ... ... 0 00 oo, 6
2.1 Inversibilité . . . . . . . . . e 6

2.2 Divisibilité . . . . . . e 6

3 Anneaux intégres . . . . . . . Lo i e e e e e e e e 7
4 70 o 1 7
5 Morphismes, idéaux et anneaux quotients . . ... ... ... ........ 8
5.1 Morphismes . . . . . . .. 8

5.2 Idéal . . . . . o 9

5.3 Anneau quotient . . . . ... Lo 10

5.4 Propriétés des idéaux . . . . . . .. Lo 11

6 Anneaux euclidiens . . . . . . . . . L L e e e e e e e e e e e e e e 12
6.1 Définition et Idéaux . . . . . . . .. oL 12

6.2 Pgedetppem . . . . . L 13

6.3 Calcul des Pged et ppem . . . . . o oL oL 14

6.4 Factorisation . . . . . . . . . . L 14

7 Anneau K[X] . . . o oo i e e 15
7.1 Racines et Dérivation . . . . . . . . . .. 15

7.2 Irréductibilité . . . . . . . . L 18

A Petitsdegrés . . . ... 18

B Nombres complexes . . . . .. ... ... oL 18

C Nombresréels . . . .. .. . . .. .. ... 18

D Nombres entiers et rationnels . . . . . .. . ... ... ... ...... 19

8 Théoréme Chinois et Applications . . .. ... ... ... ........... 21




1 Définitions

1.1 Def et Exples

Soit A un ensemble muni de deux lois internes + et x : (A4, +,*) est un anneau si (A4,+) est un
groupe abélien (neutre noté 0), * est commutative, associative, distributive par rapport a + et
posséde un neutre (noté 1).

Remarque. Dans certains ouvrages, on ne demande pas que * soit commutative. Dans ce cas, ce que nous
appelons anneau s’appelle anneau commutatif.
Exemples 1. Les ensembles suivants sont des annneaux.
(i) L’ensemble (Z,+, x) des entiers relatifs.
Ceci est 'exemple principal qu’il faut toujours garder en téte.
(ii) Les ensembles (Q, +, x), (R, +, x), (C,+, x).
Ces exemples ont une propriété supplémenntaires : tous les éléments de A sauf 0 ont un inverse
pour X.

(iii) L’espace des polynomes R[X].
Ceci est le deuxieme exemple 4 garder en téte.

(iv) Plus compliqué : R[X, Y] 'anneau des polynomes a 2 variables et coefficients réels.
Les ensembles suivants ne sont pas des annneaux. Trouver un argument expliquant que ces esembles ne
sont pas annneaur.
Exemples 2. (i) L’ensemble N des entiers naturels.

(ii) L’ensemble 27 des entiers pairs.

(iii) L’espace des polynomes R, [X] de degré inférieur a n.

(iv) L’ensemble M, (R) des matrices.
A chaque fois, les opérations + et X sont les classiques.

1.2 Premiers constructeurs

Comme pour les groupes, on a une notion de sous-anneau :

Soit (A, +,*) un anneau, B € P(A) : B est un sous-anneau de A si 0 € B, 1 € B et B est stable
pour les lois +, a — —a et *.

Exemples 3. (i) Z est un sous-anneau de Q.
(ii) R est un sous-anneau de R[X].
(iii) {4% : p € Zn € N} est un sous-anneau de Q.
(iv) L’ensemble Z[i] := {z + iy : z,y € Z} est un sous-anneau de C. Il est appelé anneau des entiers
de Gauss.

Comme pour les groupes, on a une notion de produit :

Soit (A, +,*) et (B, +,*) deux anneaux. On munit A x B des lois et éléments suivants :

0:=(0,0) et 1:=(1,1).




(a,b) + (a/,b') = (a+a',b+ V) pour tout a,a’ € A et b, € B.

(a,b) % (a/,b') = (axd',b*l) pour tout a,a’ € A et b,b’ € B. On obtient ainsi un anneau
(A x B, +,x%).

1.3 L’anneau Z/nZ

Fixons un entier naturel n > 2. On définit une relation d’équivalence sur Z (la congruence modulo n) :
a=b <= nla-b
La classe d’équivalence de a € Z est la partie suivante
a+nZ:={a+kn : keZ}.
Ces classes forment une partition de Z en n parties deux a deux distinctes :
Z=nZUQ+nZ)JU---U(n—1+nZ).

Par définition Z/nZ est Pensemble de ces n parties de Z. Attention, un élément de Z/nZ est une partie
de Z. En particulier le cardinal de Z/nZ est n.
On définit deux opérations + et x sur Z/nZ par les formules suivantes :

(a+nZ)+ (b+nZ):=(a+b)+nZ e Z/nZ
(a+nZ) x (b+nZ) = (ab) + nZ € Z/nZ

pour tout a,b € Z.

Ces définitions posent une question. En effet, les membres de droite ne doit dépendre que (a + nZ) et
(b+nZ). Or a priori, les membres de droite dépendent de a et b, utiles pour calculer a+b et ab. Montrons
que ceci n’est qu’apparence pour + :

Soit a' et b dans Z tels que a +nZ = a' +nZ et b+nZ =V +nZ. Alors il existe k et | dans Z tels que
a =a+nk ettt =b+nl. Mais alors,

a+b+nZ=a+nk+b+nl+nZ=a+b+nk+1+2)=(a+b)+nZ
Théoréme 1.4. Anneau Z/nZ

L’ensemble Z/nZ muni de ces deux lois + et X est un anneau.

Démonstration. Chaque identité est une simple vérification laissée en exercice. O

Exemple n = 3.
0 1

| | | | | | | | | | | | | | | | | |
I T T I T T I T T I T T I T T I T T

Les traits de la graduation représentent les entiers relaturels. Les rouges sont ceux de 3Z, les bleus ceux
de 1+ 3Z et les verts ceux de 2 + 3Z. Le fait que chaque trait est une couleur et une seule dit que ces
parties forment une partition des entiers.

Les opérations + et x sont définie sur ces parties. Si on représente une partie par sa couleur, on obtient

oteoe—e ote—o ot+oe—e
oteoe—e oeto—o oto—e

De méme pour le produit, on obtient :

e X eoe—eo [ - =¥ } exXoeo—=—e
exXeoe—eo exXo0o—e eX o—o



Revenons & Z/nZ. L'élément k + nZ € Z/nZ est noté k. En particulier le n est sous-entendu bien que
trés important.
Les tables d’addition et de multiplication de Z/3Z s’écrivent alors :

+[0 1 2 x [0 1 2
00 1 2 0(0 0 O
111 20 110 1 2
212 0 1 210 2 1
Exercice 1. Dresser de méme, les tables d’addition et de multiplication de Z/27 et Z/4Z.

1.4 Anneaux des polynémes

Soit A un anneau et X un symbole. On pose
AX]={> anX" :a, €A et3IN Vn> Na, =0}.
n=0

La condition sur les coefficients a,, dit que tous sauf un nombre fini sont nuls. Lorsq’on écrit un polynéme,
on oublie les termes de la forme 0X", si bien que la somme devient finie. Il est aussi important de
comprendre que la somme est formelle. Ce qui signifie que par définition Y 7 ja, X" = > 07 (b, X" si
et seulement si a,, = b,, pour tout n.

On définit les deux opérations + et x sur A[X] par les formules suivantes :

Pour - -
P=>a,X" Q=Y b X",
n=0 n=0
on a -
P+Q=2 (an+b)X"
n=0
et -
PQ = chX” ol ¢, = Z arb;.
n=0 k+l=n

La formule qui définit ¢, a bien un sens car seulement un nombre fini de termes apparaissent. Combien ?
Par ailleurs, PQ est bien un polynéme car les ¢, sont presque tous nuls.

Proposition I.5: Anneau des polynomes

L’ensemble (A[X],+, x) est un anneau.

La preuve qui est une simple vérification est laissée en exercice.

Convention. On fait le choix d’omettre 0X*, X° et de noter 1X* par X*. Ainsi 1+ X? +2X% € R[X].
En effet

1 sin=0o0u3l
a, = 2 sin==6
0 sinon

Fonction associée. Soit P € A[X]. Alors, on obtient une fonction
P:A— A,

dont la valeur P(a) s’obtient & substituer a & X dans P.
Si A = R, on obtient les fonctions polynémiales que vous connaissez bien. Pour d’autres anneaux, les
choses peuvent étre plus subtiles.

Exemple 4. Prenons A = Z/27 dont on note les éléments 0 et 1. Alors P =1+ X, Q = 1 + X3 sont
deux éléments distincts de A[X] car ils n’ont pas les mémes coefficients. 5 5

On calcule P(0) =1, P(1) =14+41=10,Q(0) =1 et Q(1) =1+ 1 = 0. Donc les fonctions P et () sont
égales.



1.5 Anneau des entiers de Gauss

L’ensemble Z[i] := {x + iy : x,y € Z} est un sous-anncau de C. Il est appelé 'annecau des entiers de
Gauss.

1.6 Petits anneaux

Dans cette section, on étudie les anneaux de petits cardinaux 2,3 et 4.

Proposition 1.6

Dans un anneau (A, +, x,0,1), on a, pour tout a € A :
Oxa=0 —1xa=—a.

Ici, —a signifie 'unique élément tel que a + (—a) = 0 (cad linverse de a pour la loi +).

Démonstration. En effet, 0 x a = (0+0) X a =0 x a + 0 X a. Donc 0 X a est ’élément neutre pour +,
c’est-a-~dire 0.

Onaaussi—1xa+a=-1xa+1xa=(-14+1)xa=0xa=0.Donc —1 x a est bienl'inverse de a
pour +. L]

Exercice 2. Justifier chacune des égalités de la preuve ci-dessus a l'aide de la définition d’un anneau.

Cardinal 2. Soit A un anneau a deux éléments. Alors A = {0,1}. Ses tables d’addition et de multipli-
cation s’écrivent alors :

Les valeurs noires s’obtiennent par définition des éléments neutres ou la proposition ci-dessus. La valeur
rouge s’obtient en remarquant que 0 doit apparaitre sur la ligne de 1 car 1 a un inverse pour +.
Ainsi Z /27 est le seul anneau & 2 éléments.

X
0
1

=l

0
0
1

o |
o o|lo

1
0
1

Cardinal 3. Soit A un anneau a trois éléments. Alors A = {0,1,a}. Ses tables d’addition et de multi-
plication s’écrivent alors :

ISERS]

+
0
1
a

Q = OO

=] =
L = O X
o O OO
Q — Ol
—Q Ol

Les valeurs noires s’obtiennent par définition des éléments neutres ou la proposition ci-dessus. La valeur
rouge s’obtient par élimination : 1 + 1 = 1 est impossible car 1 # 0. Les valeurs vertes s’obtiennent par
symétrie (4 est commutatif) et bijection de lapplication y — = + y est bijective. La valeur verte se
justifie ainsi: a=1+4+1;doncaxa=(1+1)xa=a+a=1.

Ainsi Z/3Z est le seul anneau & 3 éléments.

Cardinal 4. A partlr de 4 les choses se compliquent. Il y a 4 possibilités, mais cela est un peu long. Si
cela vous amuse vous pouvez essayer de continuer le raisonnement ci-dessous, bien que cela puisse étre
long.

Réciproquement, les pages précédentes de ce chapitre permettent de voir que Z/2 x Z/27Z et Z/4Z. Mais
il y a d’autres exemples. ..

Soit A un anneau & quatre éléments. Alors A = {0,1,a,b}. Ses tables d’addition et de multiplication
s’écrivent alors :



+]0 1 a b x|0 1 a b
00 1 a b 010 0 0 O
111 27 10 1 a b
a|a a0 a
b|b b0 b

La lettre  ne peut étre 1 (chaque ligne est une permutation des éléments de A). Donc, = 0, a ou b.
Quitte a changer les notations (entre a et b) on peut éliminer le dernier cas.

2 Inversibilité et divisibilité

2.1 Inversibilité

Un point important des anneaux est que —2 existe toujours alors que ! par forcément. D’ot1 la définition
suivante :

Soit (A, +, x,0,1) un anneau. Un élément a € A est dit inversible s’il existe b € A tel que ab=1:

JbeA ab=1.

On note A* 'ensemble des éléments inversibles.

Exemples 5. Voici quelques exemples.
(i) On a Z* = {£1} et R[X]* =R* =R — {0}.
(ii) Plus difficile Z[i]* = {£1, £i}.
Pour le montrer, on part de zz' = 1 et on s’intéresse au module |z| de z.
(iii) (z/472)* = {1,3}
On peut le montrer en dressant la table de multiplication de Z/4Z.

On peut vérifier que (A*, X, 1) est un groupe abélien.

2.2 Divisibilité

Bien que b~! n’est pas de sens dans un anneau, il se peut que % en ait un. Penser a g dans Z.
D’ou la définition suivante :

Soit (A, +, %,0,1) un anneau et a,b € A avec b # 0. On dit que b divise a 8'il existe ¢ € A tel que
a = bc et on écrit b|a.

Dans Z on retrouve bien la divisibilité a laquelle nous sommes habitués. Voici un anneau dans lequel les
choses sont plus compliquées.

Exemple 6. Posons A = Z[iv/5] = {a + bi/5|a,b € Z}. On peut vérifier que A est un sous-anneau de
C. Comme Z C A,on a6 =2 x 3 et 2 et 3 divisent 6. Mais on a aussi

6 = (14 iv5)(1 —iV5)

et 1+ i+/5 divisent aussi 6.
En revanche, on peut montrer que 1 + iv/5 et 2 n’ont pas de diviseur commun. De méme, 1 + iv/5 et 3
n’ont pas de diviseur commun.

On pourra remarquer que si b € Ax alors b divise a pour tout a. Ce sont les relations de divisibilité
triviales. Un élément de A est dit irréductible si ces seuls diviseurs viennent de relations de divisibilité
triviales. Plus précisément :



Soit p € A. L’élément p est dit irréductible, si p n’est pas inversible et

p=ab = aoubest inversible.

Dans Z, les éléments irréductibles sont les nombres premiers et leurs opposés. De maniére plus générale,
dans ces questions de divisibilité un élément ou son produit avec un inversible jouent les méme role.

3 Anneaux intégres

Vous avez appris il y a longtemps que pour qu’un produit soit nul, il faut qu'un des terme le soit. Ceci

est vrai pour les nombres rééls, mais pas pour les matrices (qui ne forment pas un anneau). Dans les
anneaux, ¢a dépend. D’ou la définition :

L’anneau A est dit integre si

Va,be A (ab=0 = a=0o0ub=0).

Exemples 7. (i) Z, R, C[X], Z[i] et Z[v/5] sont intégres.
(ii) Z/3Z est intégre (comment cela se lit-il sur sa table de multiplication ?).
(ili) Z/4AZ n’est pas intégre car 2.2 = 4.
(iv) Z x Z n’est pas intégre car (1,0)(0,1) = 0.

Soit p € A supposé intégre. L’élément p est dit premier, si p n’est ni nul ni inversible et si

p divise ab = p divise a ou b.

Proposition 1.12: Premier vs Irréductible

Soit A un anneau intégre. Alors tout élément premier est irréductible.

Exemple 8. Trouver, dans les pages qui précédent, un exemple montrant que la réciproque est fausse.

4 Corps

Un corps (K, +, X) est un anneau dont tout élément non nul est inversible :

Va € A* decA ab=1.

Exemples 9. (i) Les corps que vous connaissiez en sont bien : Q, R, C.
(if) L’ensemble R(X) des fractions rationelles est un corps.
(iii) Z/2Z et Z/37Z sont des corps.



(iv) Le sous-anneau Q + iQ de C est un corps.
(V) Z/6Z n’est pas un corps. Trouver un élément non nul et non inversible.
(vi) Z, R[X], Z[i] ne sont pas des corps.

Trouver un élément non nul et non inversible pour chacun de ces anneaut.

5 Morphismes, idéaux et anneaux quotients
5.1 Morphismes

Soit A et B deux anneaux. Un morphisme f de A vers B est une application f : A — B telle
que

0)=0cet f(1)=1,;

a+a)= f(a)+ f(a’) pour tout a,a’ € A;
) = —f(a) pour tout a € A,

aa’) = f(a)f(a’) pour tout a,a’ € A.

Remarque. On pourra remarquer que f est en particulier un morphisme de groupes pour la loi +. En
particulier, la définition ci-dessus est redondante car f(a + a') = f(a) + f(a’) implique f(0) = 0 et
f(=a) = —f(a).

Il est immédiat de vérifier que la composé de deux morphismes est un morphisme.

De méme, la réciproque d’un morphisme bijectif f est un morphisme. On dit alors que f est un isomor-
phisme.

Voici quelques exemples de morphismes.
Exemples 10. (i) Pour n > 2 € N, I'application
7 — Z/nZ

k — k=k+nZ

est un morphisme.
(ii) Soit a € R. Alors, l'application
eve : R[X] — R
P +— P(a)
est un morphisme.
(iii) Soit A et B deux anneaux. Alors, 'application
AxB — A
(a,b) +— a
est un morphisme.

(iv) Soit A et B deux anneaux. Alors, I'application
A — AXxB
a +— (a,0)
n’est pas un morphisme. Pourquoi ?

(v) L’application
RxR — C
(z,y) — x+iy

n’est pas un morphisme. Pourquoi ?



(vi) Posons
A= {(Z ‘ab) € Ms(R)|a,b € R}.

Alors (A,0,I,+,.) ot . est le produit matriciel, I la matrice identité est un anneau. De plus

I’application
C — A

a+ib — (Z _ab>
est un isomorphisme d’anneaux.
Le noyau de f : A — B est son noyau lorsque f est pensé comme un morphisme de groupes :
Kerf={a€ A : f(a) =0}.
D’autres exemples de morphismes :

Proposition 1.15: Propriété universelle de ’anneau des polynoémes

Soit A et B deux anneaux, b un élément de B et ¢ : A — B un morphisme. Alors, il existe un
unique morphisme d’anneaux 0 : A[X] — B tel que

(i) pour tout a € A, 6(a) = (a);
(ii) 6(X) =b.

5.2 Idéal

Soit A un anneau commutatif, I C A. Alors, I est un idéal ssi (I, +) est un sous-groupe de (4, +)
et pour tout a € A, pour tout z € I, ax € I.

Proposition 1.17: Intersection d’idéaux

Toute intersection d’idéaux est un idéal.

La preuve est une simple vérification.

Soit P C A non vide. L’intersection de tous les idéaux de A contenant P est le plus petit idéal
contenant P. On I'appelle idéal engendré par P, noté (P).

Théoréme 1.19. Idéal engendré

L’idéal engendré par P est {d;_, wa; /7 € N,a; € P,u; € A}.
Remarque : Soit a € A : L’idéal engendré par a est aA. On le note (a). Plus généralement, si
P={ay,...,as} on note (ay,...,as) =a1A+---+asA.

Démonstration. L’ensemble est bien stable par +, — et multiplication par n’importe quel élément de A.
C’est donc un idéal.

Soit I est un idéal contenant P. Comme il est stable par + et multiplication par tout a € A il contient
I’ensemble. O



Exemples 11. (i) L’idéal (2) engendré par 2 dans Z est 'ensemble des nombres pairs.

(i) L’idéal (6,9) engendré par 6 et 9 est ’ensemble des multiples de 3.
La preuve de ce fait est laissée en exercice.

(iii) L’idéal (X)) engendré par le polyndme X dans R[X] est 'ensemble des polyndmes qui s’annulent
en 0.

(iv) L’idéal (2, X) engendré par les polynomes 2 et X dans Z[X] est 'ensemble des polynémes dont
le coefficient constant est pair.
La preuve de ce fait est laissée en exercice.

(v) L’idéal engendré par deux idéaux I et J est 'ensemble

I+J={a+b:acl beJ}

Théoréme I.20. Noyau et Idéal

Le noyau d’un morphisme d’anneaux est un idéal.

Démonstration. Soit f un tel morphisme. Comme c’est un morphisme de groupe pour +, son noyau est
un sous-groupe. De plus, le calcul

f(ab) = f(a)f(b) = f(a)0 =0

montre que si b € Kerf alors ab € Kerf. O

5.3 Anneau quotient

Nous allons faire une construction qui montre la réciproque du théoréme précédent : tout idéal est le
noyau d’un morphisme.
Un idéal I de A est dit strict si I # A. Ceci équivaut a 1 ¢ A.

Théoréme 1.21. Anneau quotient

Soit I un idéal strict de A. On pose
A/l ={a+1:a€ A}

inclus dans lensemble des parties de A. Il existe une unique structure d’anneau sur A/I telle que
I’application
m: A — A/I
a — a+1

soit un morphisme d’anneaux.

Les lois sont données par les formules, pour tout a,b € A :

(@+D)+b+I) = (a+b)+1
(a+D)(b+1) (ab) + 1

La preuve est directe et nous I'avons faite dans le cas suivant : A = Z et I = nZ = (n). Nous avions
obtenu 'anneau Z/nZ. Le cas général ne posant aucune difficulté supplémentaire est omise ici.

Souvent on note a + I =: a, lorsque la référence a I est claire.

Application : Construction des nombres complexes.

La relation clé dans le corps des nombres complexes est bien entendu 72 = —1. L’idée est donc de partir
de R[X] est d’imposer X? = —1 c’est-a-dire X2 + 1 = 0 par quotient. On obtient 'application

t: C — RX]/(X?2+1)
atib — a+bX +(X2+1)R[X]=a+bX

qui est isomorphisme d’anneaux.

Le théoréme de factorisation permet d’obtenir des isomorphismes comme ¢.

10



Théoréme 1.22. Factorisation des morphismes

Soit f : A — B un morphisme d’anneaux et I un idéal strict de A. B
Si I C Kerf alors il existe un unique morphisme f : A/I — B tel que form = f.

A%B

2

A/l
De plus, f est injectif si et seulement si I = Kerf. Enfin, f est surjectif si et seulement si f lest.

Application. Soit I = (P) l'idéal de R[X] engendré par un polynéme P. La remarque est que si
P(z) =0, alors Q(z) = 0 pour tout @ € (P). Ainsi pour P = X? — 1 on obtient un morphisme

f: RX] — RxR
P — (P(-1),P(1))

tel que I C Kerf. On obtient donc f : R[X]/(X? —1) — R x R qui est en fait un isomorphisme.

Exercice 3. Montrer que R[X]/(X? — 4X) est isomorphe ¢ R x R.
Plus difficile, montrer que R[X]/(X? —2X + 1) est isomorphe @ R x R muni d’une loi a définir.
Montrer que R[X]/(X? —4X) et R[X]/(X? —2X + 1) ne sont pas isomorphes.

Correction du cas X% —2X + 1 = (X — 1)2. Les multiples de ce polynémes sont ceuz qui vérifient
P(1) = P'(1) = 0. Donc lapplication

6 : R[X]/(X2-2X+1) — RxR
p — (P(1), P'(1))

est une bijection linéaire. En revanche 68 n’est pas un morphisme d’anneau. En revanche, elle l’est pour
la loi
(a,b) x (a',b") := (ad’,ab’ + a'b).

5.4 Propriétés des idéaux

Un idéal I d’un anneau A est dit premier si

Va,be A (abel =a€cloubel).

Cette propriété s’interpréte facilement en terme de quotients.

Proposition 1.24: Quotient par idéal premier

Soit I un idéal strict de A. Alors I est premier si et seulement si A/ est intégre.

Démonstration. Considérons m : A — A/I.

Supposons A/I est intégre. Soit a et b dans A. Alors ab € I si et seulement si w(ab) = 0 si et seulement
si w(a)w(b) = 0. Alors, cette derniére égalité implique que 7(a) = 0 ou w(b) = 0. C’est-a-dire a € I ou
b e I. Donc I est premier.

Supposons maintenant I premier. Soit deux éléments de A/T dont le produit fait zéro. On écrit ces deux
éléments m(a) et w(b) avec a et b dans A. Alors 0 = 7(a)w(b) = w(ab). Donc ab € I. Comme I est premier
cela implique que a € I ou b € I. Donc 7(a) = 0 ou 7(b) = 0. O

11



Un idéal I d’'un anneau A est dit maximal si I C J C A implique J =1 ou J = A.
Les seuls idéaux contenant I sont I et A.

Cette propriété s’interpréte facilement en terme de quotients.

Proposition 1.26: Quotient par idéal maximal

Soit I un idéal strict de A. Alors I est maximal si et seulement si A/I est un corps.

Démonstration. Considérons m : A — A/I.

Supposons A/I est un corps. Soit J un idéal contenant strictement I. Soit b € J tel que b ¢ I. Alors
m(b) # 0. Donc il existe ¢ € A tel que w(c)m(b) = 1 = 7(be). Ceci se réécrit 1 —be € I C J. Donc
1= (1-bc)+bce€ J. Mais alors J = A.

Supposons maintenant I maximal. Soit a € A tel que m(a) # 0. Cela signifie que a ¢ A. Considérons
I'idéal J = I + aA engendré par I et a. Comme I est maximal, J = A et 1 € J. Donc il existe b € A et
i € I tels que 1 =i+ ab. Mais alors 1 = m(ab) = m(a)w(b). Donc 7(a) est inversible.

On a bien montré que A/l est un corps. O

Ces derniers résultats montrent que I maximal implique I premier.

Exemples 12. (i) L’idéal (6) C Z n ’est ni premier ni maximal. En revanche, (5) est maximal (donc
premier).
(ii) (X% +1) C R[X] est maximal.
(iii) (X2 —1) C R[X] n’est pas premier.
(iv) (X) C Z|X] est premier, non maximal.
(v) (X2+Y?) C C[X,Y] est premier, non maximal.
(vi) (3,X) C Z[X] est maximal.

6 Anneaux euclidiens

6.1 Deéfinition et Idéaux

Soit A un anneau intégre. On dit que A est euclidien s’il existe une fonction N : A — {0} — N
telle que :

(i) N(ab) = N(b), Va,be A — {0}
(ii) Ya,be A, b#0,Iq,r) € Atq. a=bg+r (r=0o0uN(r) < N(b)

La fonction N est appelée norme euclidienne.

Exemples 13. (i) Z est euclidien, avec N(z) = |z|. Ceci est la division euclidienne que 1'on connait

depuis ’école primaire.

(ii) Si K est un corps, K[z] est euclidien, avec N(P) = deg(P). Ceci est la division euclidienne des
polyndémes.

(iii) Z[i] := {m +in, (m,n) € Z*} est euclidien, avec N(z = z + iy) = 22 + y>.
Esquisse de démonstration. Soit a,b € A, b # 0. On cherche ¢ et » comme dans la définition.
L’idée de base est que ¢ est une approximation du quotient a/b que 'on connait dans C. Posons
donc z = a/b € C. Les points de Z[i] forme un réseau donc il existe ¢ € Z[i] tel que |z —q| < v/2/2.
Alors ¢ convient.
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Encore un peu de vocabulaire afin de décrire les idéaux des anneaux euclidiens. Un idéal I d’un anneau
A est dit principal s’il est engendré par un élément. Un anneau est dit principal si tous ses idéaux le sont.

Théoréme 1.28. Euclidien et Principal
Tout anneau euclidien est principal.

Démonstration. Soit I un idéal de A. On regarde N (I). Comme partie non vide de N elle a un minimum.
Soit b € I tel que N(b) soit égal & ce minimum. Montrons que

I=()

11 est clair que (b) C 1.
Soit a € I. Ecrivons a = bg + r avec r = 0 ou N(r) < N(b). Puisque r = a — bq il appartient & I. Par
minimalité de N(b), on en déduit que r = 0. Mais alors, a € (b). O

On peut aussi comprendre les éléments inversibles. Regardons Z un élément non nul a est inversible ssi
la| = 1. Regardons K[X] : un élément non nul P est inversible ssi deg(P) = 0. En général, on a :

Proposition 1.29: Eléments inversibles

Soit A un anneau euclidien dont on note N la norme. Soit a € A non nul. Alors a est inversible si
et seulement si N(a) = N(1).

Démonstration. Si ab = 1 alors N(a) < N(1). Or a = a x 1 implique que N(1) < N(a). Donc si a est
inversible alors N(a) = N(1).

Réciproquement supposons que N(a) = N(1). On fait la division euclidienne : 1 = ag + r avec N(r) <
N(r). Ce qui est impossible. Donc r = 0 et a est inversible. O

6.2 Pgcd et ppcm

Les pged et ppem sont ceux que vous connaissez déja sur Z et K[X]. Cependant les concepts d’anneau
euclidien et d’idéal permettent des définitions et démonstrations a la fois homogénes et élégantes. Soit
donc A un anneau euclidien.

Une petite remarque préparatoire sous forme d’exercice.

Exercice 4. Soit a et b non nuls dans A. Alors (a) = (b) si et seulement s’il existe ¢ € A inversible tel
que a = cb.

Soit ay,...,as des éléments non tous nuls de A. Un élément § € A tel que (ay,...,as) = (4) est
appelé pged des éléments a, ..., as.

On note § = ay A---Aas. On peut remarquer que § n’est défini qu’a un inversible prés. Sur Z (resp.
K[X]), on fixe généralement cette indétermination en demandant que le pged soit positif (resp.
unitaire).

Le nom pged est justifié par ’exercice suivant.
Exercice 5. Soit ¢ dans A non nul. Alors q divise tous les a; si et seulement si q divise 0.
Le lemme de Bezout est également facile & démontrer.

Exercice 6. Lemme de Bezout version 1.
Soit a et b dans A non nuls. Alors, il existe u et v dans A tels que au+bv =a A'b.
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Soit a1, ..., as des éléments non nuls de A. On dit qu’ils sont premiers entre eux si a; A---Aas =1
c’est-a-~dire si (aq,...,as) = A.

Le lemme de Bezout est également facile & démontrer.

Exercice 7. Lemme de Bezout version 2.
Soit a et b dans A non nuls. Alors, a et b sont premiers entre eux si et seulement s’il existe u et v dans
A tels que au + bv = 1.

Soit ay,...,as des éléments non nuls de A. Un élément ¢ € A tel que (a1) N---N(as) = (¢) est
appelé ppcm des éléments a1, ..., as.
Onnotec=ai V- -V as.

6.3 Calcul des Pgcd et ppcm

On se donne a et b non nuls dans A. On veut calculer a A b et a V b. Un premier résultat nous dit que la
connaissance de I'un détermine ’autre.

Proposition 1.33: Lien ppcm et pgcd

Il existe u inversible tel que
(a Ab)(aV b) = uab.

Démonstration. On pose a’ =a/(aAb) et b/ =b/(aAb). Comme ' A =1etad VI = (aVb)/(anb)il
suffit de montrer que
(@' vV') = (a'd),
sachant que a’ AV = 1.
Autrement dit on peut supposer que a A b = 1. Alors il existe u et v dans A tels que au + bv = 1.
11 est clair que (ab) C (a). Donc (ab) C (a) N (b) = (a V b).
Réciproquement montrons que a V b € (ab). Comme a divise a V b, il existe ¢ tel que a V b = ac. Or

¢ = acu + bev.

Puisque b divise bev et acu = u.(a V b) il divise ¢. Donc ¢ = be’. Ainsi a V b = ac = abc’. CQFD. O

Algorithme d’Euclide. Il s’agit d’un algorithme permettant de calculer a A b. Il est basé sur la formule
suivante. On suppose b non nul et soit a = bg + r la division euclidienne alors

aANb=1ADb
OAb=0D

Pour obtenir algorithme, on réitére le procédé en divisant b par r pour ré-exprimer r A b.

6.4 Factorisation

Comme nous commencons & le voir, le cadre des anneaux euclidiens (en fait principal suffit souvent) est
un bon cadre ou étendre les propriétés des entiers. Une propriété arithmétique fondamentale des entiers
est la décomposition en produit de nombres premiers. Cela s’étend a notre cadre du jour : on dit qu’un
anneau principal est factoriel.
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Théoréme 1.34. Factoriel

Soit A un anneau euclidien et a un élément non nul de A. Alors, il existe des éléments irréductibles
P1,---,Ps dans A, des entiers naturels non nuls nq,...,ns et un élément inversible u tel que

a=upyt...pye.

De plus cette écriture est unique a ’ordre prés et & multiplication des p; et de u par des inversibles.

Un ingrédient clé pour montrer cela est le

Lemme 1.35 (Lemme de Gauss). Soit a,b et ¢ non nuls dans A. Si a divise be et aANb =1 alors a divise
c.

Démonstration. On utilise encore Bezout : au + bv = 1. Alors acu + bev = ¢. Donc a divise c. O

Preuve du théoréeme de Factorialité. Pour l'existence on fait une récurrence sur N(a). Si a est irréduc-
tible, il n’y a rien & montrer. Sinon a = be avec b et ¢ non inversibles. Alors N(b) < N(a) et N(c) < N(a).
Par récurrence, on déduit que b et ¢ admettent des décompositions. Donc a aussi.

Pour I'unicité supposons que

Hpi:quj, (6.1)

- avec p; et q; irréductibles et u inversible. Ici on remplace les exposant par des répétitions.

Il est clair que ¢; divisent le membre de droite. Donc il divise celui de gauche. Supposons que ¢ n’est
pas conjugué a p;. Comme ils sont irréductibles, il suit que g1 A p; = 1. Mais alors le lemme de Gauss
implique que ¢ divise Hi>2 pi- On recommence. On aura nécessairement & un moment ¢; divise p;. On
divise ’expression (6.1) par ¢; et on recommence (cad on fait une récurrence sur le nombre de ¢;). O

Pour ceux qui auraient I'impression de ne rien avoir montré, il est intéressant de faire I’exercice suivant.

Exercice 8. Posons A = {a+bi\/5 : a,b e Z}.
(i) Montrer que A est un sous-anneau de C.
(i) Montrer que 2 et 3 sont irréductibles dans A.
(i) Montrer que 1+ i\/5 sont irréductibles dans A.
(iv) En remarquant que 2 x 3 = (1 +iv/5)(1 —iv/5), montrer que A n’est pas euclidien.

7 Anneau K[X]

Fixons un corps K. Vous pouvez penser & R, C, Q ou Z/pZ. Nous verrons d’autres exemples plus tard.
Nous avons déja vu que K[X] était un anneau euclidien : il vérifie donc Bezout, Gauss et il y a une unique
décomposition en produit de polynémes irréductibles. Nous allons maintenant voir quelques techniques
spécifiques a cet anneau.
7.1 Racines et Dérivation
Substitution. C’est 'opération la plus compliquée & comprendre. Soit
P:ao—i—alX—i—---—i—adXd
et ) deux polynoémes. On pose alors
(PoQ)(X) =ao+a1Q(X) + -+ asQ(X)".
Faisons un exemple : P=1+X3et Q =2+ X?:
(Po@)(X) =1+ (2+X?%)3
=9+3X?+3X*+ X6,
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L’application P — P o @ est linéaire mais PAS Q — P o Q.
Dérivation. L’ensemble (1, X, X2 ...) est une base de K[X]. On peut donc définir un endomorphisme
D de K[X] on donnant I'image de ces monémes.

D: K[X] — K[X]

Xk o EXF1 sk
1 — 0

On a définit ainsi ce que l'on appelle la dérivation. Dans le cas ou le corps est celui des réels cette
dérivation coincide avec la dérivation usuelle. On note souvent P’ pour D(P).
On a les régles de calculs usuelles de la dérivation :

Proposition 1.36: Propriétés de la dérivation

Soit P et @ dans K[X]. On a
D(PQ)=D(P)Q+PD(Q)  (PQ)=PQ+QF

et
D(PoQ)=D(Q).D(P)oQ (PoQ)=Q xPoQ.

Démonstration. Fixons Q). Les applications P — D(PQ) et P — D(P)Q + PD(Q) sont linéaires. Du
coup il suffit de montrer 1’égalité pour P = X*.
Fixons maintenant P = X*. Les applications Q — D(PQ) et Q — D(P)Q + PD(Q) sont linéaires. Du
coup il suffit de montrer I’égalité pour Q = X*.
Dans ce cas, on a
D(PQ) = D(X*) = (k + 1) x*H—1

et

D(P)Q + PD(Q) = D(X") X! + X*D(X") = kXFH=1 p I xkH=1 — (p 4 ) x P+

Montrons maintenant la seconde égalité. Les applications P — D(Po Q) et P — D(Q) x D(P) o @ sont
linéaires. Du coup il suffit de montrer 1’égalité pour P = X*.
Dans ce cas, on a

D(PoQ) = D(Q") = kD(Q)Q*"
et

D(Q)-D(P) o Q = D(Q)k.Q*".

Evaluation — Racines.
Soit a € K. Alors on a une application évaluation

evy, : K[X] — K
P +— P(a).

On vérifie sans peine que ev, est un morphisme d’anneaux. Son noyau est {P : P(a) = 0}. C’est un
idéal maximal de K[X] car le quotient est isomorphe a K. L’isomorphisme est donné par ev,.

Proposition 1.37: Racine et division

Soit P € K[X] et a € K. Alors a est une racine de P si et seulement si X — a divise P.

Démonstration. Si P = (X — a)Q, il est clair que P(a) = 0. Réciproquement supposons que P(a) = 0.
On écrit la division euclidienne P = Q(X — a) + R avec R nul ou de degré strictement inférieur a 1.
Donc R est en fait un polynome constant. Par ailleurs, 0 = P(a) = R(a). Donc R est nul et X — a divise
P. O
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Soit P € K[X] non nul, a € K et @ € N. On dit que a est racine d’odre au moins a si (X — a)®
divise P.

On dit que a est racine d’odre exactement « si elle est racine d’ordre au moins « mais n’est pas
d’odre au moins « + 1.

Proposition 1.39: Ordre racine et dérivées

Soit P € K[X] non nul, a € K et a € N. Alors

(1) Si a est racine d’odre au moins « alors
P(a) = Pl(a) == P(a_l)(a) =0.
(ii) Si de plus K est de caractéristique nulle, la réciproque de la premiére assertion est vrai.

Démonstration. Supposons d’abord que (X —a)® divise P. Il existe alors Q € C[X] tel que P = (X —a)“Q.
On rappelle la formule le Leibnitz :

k
(Fo) ™ =3 (k) FOg*.
=0

La preuve de cette formule se fait par récurrence sur k en utilisant la formule de dérivation d’un produit.
On obtient pour Pet k <a—1:

k
) =3 (1) (e -y, ()
1=0
On remarque alors que
(X —a)® = (a(a—1)...(a—i+1))(X —a)*" sii<a,

et ‘
(X —a)®)®D =0 sii>a

En particulier, pour tout : < k < o, on a
(x =299 @ =0

En injectant dans la formule (7.1), on déduit que P*)(a) = 0.

Réciproquement, supposons que P(a) = --- = P(®~1)(g) = 0. Ecrivons la division euclidienne de P par
(X —a)>:
P=(X-a)*Q+R,

avec deg(R) < a. L’assertion déja démontrée implique que
R(a) =--- =R Y(a) = 0.
Considérons le polynéme auxiliaire
S(X)=R(z+X) R(X)=5(X—a).
La formule de dérivation d’un polynéme composé implique que

§®(X) = R (z + X),
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donc
5(0)=---= 8@ D) =0.

Ecrivons S = ag + a1 X + -+ + aq_1 X" !. Par une récurrence immédiate, on montre que
S®0) = klap VE=0,...,a—1.

On en déduit que S = 0, puis que R = 0. Ainsi (X — a)® divise P. O

7.2 Irréductibilité
A Petits degrés
En petit degré, il y a un critére simple d’irréductibilité.
Proposition 1.40: Irréductibilité et racines
On a
(i) Tout polynéme de degré 1 est irréductible.

(ii) Tout polynome irréductible de degré supérieur a 2 n’a pas de racine.

(iii) Tout polynoéme de degré 2 ou 3 qui n’a pas de racine est irréductible.

Démonstration. Soit P un polynome. Il est irréductible, si pour tout A, B dans K[X] tels que P = AB,
on a deg(A) ou deg(B) nul :

VA, B € K[X] (P=AB = (deg(A) =0 ou deg(B) =0)).

Les trois énoncés de la proposition découlent facilement des deux assertions suivantes :
(i) deg(P) = deg(A) + deg(B);
(ii) P est divisible par un polynome de degré un si et seulement si il a une racine.
O

En appliquant la proposition, on voit que X2+ X +1 € Z/2Z[X] est irréductible. Attention, il est possible
qu'un polynéme sans racine ne soit pas irréductible. (X2 + 1)? donne un exemple dans R[X].

B Nombres complexes

Théoréme 1.41. D’Alembert-Gauss
Les polynomes irréductibles de C[X] sont les polynomes de degré un.

Ceci est bien une version du théoréme de d’Alembert-Gauss qui dit que tout polynéme non constant sur
C a une racine et donc est divisible par un polynéme de degré un.

C Nombres réels

Encore une fagon de formuler le théoréme de d’Alembert-Gauss.

Théoréme 1.42. D’Alembert-Gauss

Les polynomes irréductibles de R[X] sont les polynémes de degré un et les polyndomes de degré 2
et de discriminant négatif.
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D Nombres entiers et rationnels

On sort un peu du contexte en regardant les polynomes & coefficients entiers. Ce n’est pas un anneau
euclidien.

Pour P € Z[X] non nul on note ¢(P) le pged des coefficients de P. Ce nombre est appelé le contenu de
P.

Théoréme 1.43. Gauss

Soit P et @ dans Z[X] non nuls. Alors

c(PQ) = c(P)e(Q).

Cette formule est trés simple et trés utile. C’est la marque des grands. . .théorémes.

Démonstration. Posons P = P/c(P) et Q = Q/c(Q). Ceux sont des polynomes & coefficients entiers et
de contenu égal & 1. Il suffit de montrer que

¢(PQ) = 1.

Soit p un nombre premier. Soit P (resp. @) le polynome de Z/pZ[X] obtenu en considérant la classe

dans Z/pZ de chaque coefficient de P (resp. Q). Comme ¢(P) =1, P est non nul. Comme Z/pZ[X] est
intégre, on en déduit que PQ # 0. Donc p ne divise pas ¢(PQ). Vu l'arbitraire de p, on en déduit que
(PQ) = 1. O

Corollaire 1.44: Irred dans Z et Q

Soit P € Z[X] tel que ¢(P) = 1. Alors se valent
(i) P est irréductible dans Q[X];
(ii) P est irréductible dans Z[X].

Démonstration. Un sens est évident. Réciproquement supposons que P est irréductible dans Z[X]. Soit
P = AB dans Q[X]. En chassant les dénominateurs de A et B, on obtient d € N, A, B € Z[X] tels que

dP = AB. (7.2)

En prenant le contenu, sachant que ¢(P) = 1, on obtient d = ¢(A)c(B). Mais alors, en divisant I'équa-
tion (7.2) par d, on obtient

A B

P=—-—. (7.3)

c(A) c(4)
Cette équation vit dans Z[X]. Donc lirréductibilité de P dans Z[X] montre que deg(A) ou deg(B) est
nul. CQFD. O

Ce corollaire est trés puissant pour montrer qu’un polynéme de Q[X] est irréductible. Faisons un exemple.

Exemple 14. Soit P = X* + X + 1. Montrons que P est irréductible dans Q[X]. Comme P € Z[X] et
¢(P) =1, il suffit de monter qu’il est irréductible dans Z[X]. Ecrivons donc P = AB avec A et B dans
Z[X]. Il s’agit de montrer que A ou B est constant. Quitte & permuter A et B, on peut supposer que
deg(A) < deg(B). Comme deg(A) + deg(B) = deg(P) =4, il y deux cas & considérer :

(i) deg(A) =1 et deg(B) = 3.
Alors A = aX + b avec a,b € Z. En regardant le coefficient dominant de AB, on déduit que a est
inversible dans Z. Donc a = £1. On peut supposer que a = —1. Mais alors b € Z est une racine

de P. Avec des inégalité, on se convainc que cela est impossible.
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(ii) deg(A) =2 et deg(B) = 2.

Alors on a
X4 X +1=(aX?+bX +c)(d X2+ VX + )

dans Z. En particulier aa’ = 1. Donc on a a = @’ = +1. On peut supposer (quitte & multiplier les
deux facteurs par —1) que a = a’ = 1.

De plus, ¢¢ = 1. Donc ¢/ = c¢= +1. Or
(X2 40X +0)(X2H VX +¢) =X+ (0 +0) X3 + (2c + b0 ) X2 +c(b+ V)X + 1.

On obtient donc ¥ = —b en regardant le coefficient en X3. Donc le coefficient en X est nul.
Contradiction.

Réduction modulo p. Nous venons de voir que la question de l'irréductibilité d’un polynéme de Q[X]
se raméne & la méme question dans Z[X]. L’exemple précédent montre que cela est parfois un progrés.
En revanche, nous perdons le fait ’anneau des coefficients est un corps. D’oul la construction suivante.
Soit p un nombre premier. On note a — a, Z — Z/pZ la réduction modulo p. C’est un morphisme
d’anneaux, appelé réduction modulo p. Celle-ci s’étend en un morphisme d’anneaux

Z[X] —  (Z/pZ)[X]

P:ZiaiXi — Pzzlale

Comme c’est un morphisme d’anneaux, une écriture P = AB dans Z[X] induit une telle relation P = AB
dans (Z/pZ)[X]. Si de plus, le coeflicient dominant de P n’est pas divisible par p, les degrés de P, A et
B sont préservés. Cela peut permettre de démontrer des irréductibilités dans Z[X] comme sur I’exemple
suivant ou encore dans la démonstration du théoréme de Gauss ci-dessus.

Exemple 15. TODO

Un exemple d’illustration de ce principe est la proposition suivante.

Proposition 1.45: Critére d’Eisenstein

Soit P = a,X™+ -+ a1 X + ap un polyndéme de Z[X] de degré n. Soit p un nombre premier. On
suppose que

(i) p divise ag, ..., an—1;
(ii) p ne divise pas a, ;
(iii) p? ne divise pas ao.
Alors P € Q[X] est irréductible.

Preuve

Quitte a factoriser par le pged des coefficients, on peut supposer que les coefficients de P sont
globalement premiers entre eux. Cela n’affecte pas les hypothéses. En vertu du théoréme de Gauss,
il ’agit alors de montrer que P est irréductible dans Z[X]. Supposons par ’absurde, que P = AB
dans Z[X] avec A et B non inversibles. Vu la nouvelle hypothése sur les coefficients, les degrés de
A et B sont non nuls.

Considérons le morphisme 0 : Z[X] — (Z/pZ)[X]. On a 6(P) = 6(A)0(B).

Exemple 16. Justifier que le polynome 3X* + 15X2 + 10 est irréductible dans Z[X].

Polynémes cyclotomiques.
Les polynomes cyclotomiques sont les facteurs irréductibles des X™ — 1 dans Q[X]. Dans un premier
temps, on pose, pour tout n € N*

o, = [ x-¢

¢€U,, primitif
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Comme chaque ¢ € U, est primitif dans un unique U, pour d divisant n (d est I'ordre de ¢ dans U,,), on

a .
X" —1= H D,.

d divisant n

En particulier, ®,, est le quotient de X™ — 1 par

H D,.

d divisant n

d#n
Une récurrence montre alors que ®,, est unitaire et appartient a Z[X].

Théoréme 1.46. Irréductibilité des polyndémes cyclotomique
Pour tout n > 1, le polyndéme @, est irréductible dans Z[X] et Q[X].

La preuve de ce théoréme sera faite plus tard, lorsque nous aurons étudié les corps finis.

8 Théoréme Chinois et Applications

TODO
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1 Corps, Sous-corps, Extension

1.1 Deéfinition et exemples

Un corps (K, +, X) est un anneau tel que tout élément non nul est inversible pour Xx.

Les premiers exemples sont les corps que vous manipulez depuis longtemps : R, C et Q. Autre exemple

Q@) = Q+ Qi.
L’anneau 7Z n’est pas un corps car 2 n’est ni nul ni inversible.

L’anneau Z/nZ est un corps si et seulement si n est premier. En effet, d’aprés le théoréme de Bezout,
k € Z/nZ est inversible si et seulement si k est premier avec n.

L’ensemble des fractions rationelles K(X) est un corps.

On montre facilement que K* = K — {0} est un groupe abélien. En particulier I'inverse dex € K* pour
X est unique : on le note z~ ! ou %

Comme nous 'avons déja vu des corps peuvent étre inclus les uns dans les autres.

Soit (L, +, x) un corps. Une partie K C LL est un sous-corps si c¢’est un sous-anneau tel que

Ve e K z ek

On dit aussi que L est une extension de K.

Une remarque trés importante est que si K C L est une extension de corps alors L est un K-espace
vectoriel. La dimension de cet espace vectoriel est appelée le degré de l’extension. On la note [L : K].
Par exemple [C: R] =2, [Q(i) : Q] =2 et [C: Q] = 0.

1.2 Caractéristique d’un corps

Soit A un anneau. Soit n un entier naturel. On peut bien stir le penser comme 1+ 1+ --- + 1 n fois.
Mais alors il prend un sens dans A. De plus, si n est négatif, n = —(—n). On obtient ainsi un morphisme
d’anneaux

L7 — A

Autrement dit, ¢(1) =1, ¢(2) = 1+ 141, ¢(3) = 1+ 141 etc. Et o(—1) = —u(1), o(=2) = —u(2),
1(—3) = —1(3) etc. Le noyau de ¢ est un idéal de A. Il ’écrit donc (n) pour un entier naturel n. L’entier
n est appelé la caractéristique de A. On la note car(A).

Lemme 11.49. La caractéristique d’un corps est nulle ou un nombre premier p.

Démonstration. Comme Z/nZ s’injecte dans le corps il est intégre. Mais alors n est nul ou premier. [
Soit K un corps. En fait, si car(K) = 0 alors K contient Q. Si car(K) = p alors K contient Z/pZ.
Lemme I11.50. Le cardinal d’un corps fini est une puissance d’un nombre premier.

Démonstration. Le morphisme ¢ ne peut étre injectif car Z est infini. Il suit que le corps contient Z/pZ
avec p-premier. En particulier il est isomorphe a (Z/pZ)™ comme espace vectoriel (pour un certain n).
Donc son cardinal est p™. O

Nous verrons dans ce chapitre que réciproquement pour tout n, il existe un unique (& iso prés) corps a
p" éléments.
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1.3 Double extension

Soit K; C Ky C L. Combien voyez-vous d’extension ? Deux ? Et non, c’est trois.

Théoréme I1.51. Base télescopique

Soit K; € Ky C L. On suppose que K; C IL est une extension finie. Alors

[]L . Kl] = []L . Kg] . [KQ . Kl]

Démonstration. La démonstration de ce théoréme explique son nom. Soit (eq,...,eq) une base de Ky
comme K;j-espace vectoriel. Soit (f1, ..., for) une base de IL comme Ks-espace vectoriel.
Chaque élément y de L s’écrit
y= Z zifi
i

pour z; € Ks. Or chaque x; s’écrit
xXr; = Z mij 6]',
J
pour m;; € K;. Mais alors,
y=y_ mie;fi)
4,J
. Donc la famille (e; f;) engendre L comme K;-espace vectoriel.
Supposons maintenant que
> mijle;fi) =0,
,J
avec m;; € K;. Alors

Z(Z mijej) fi = 0.

i

Comme (f1,..., fa) est libre sur Ky, on en déduit que
Vi Zmijej =0.
J

Comme (e1,...,eq) est libre sur K;, on en déduit que

Ainsi la famille (e; f;) est libre.

Finalement la famille (e;f;) est une base de L comme K;-espace vectoriel. La formule du théoréme en
découle facilement. O
2 Corps des Fractions

Une premiére fagon de construire des corps est de faire ce que 'on a fait pour construire Q. Nous par-

tions de Z et considérions les fractions 7 comme un objet formel. En fait cela marche dés que 'anneau

de départ est intégre. Mais au fait, vous aviez déja vu un autre exemple : le corps des fractions rationnelles.
Soit A un anneau intégre. On considére ’ensemble quotient suivant
a
Frac(A) := {E ca€Abe A—{0}}/ ~
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ou la relation d’équivalence ~ est définie par

chl < ad—be=0.

Sl S

On définit ensuite sur A les deux opérations :

a c ac a c ad + be
_ — et —+—:

N d T db b T d db

On vérifie que ces opérations sont bien définies (c’est-a-dire passent au quotient par ~) et dont de Frac(A)
un corps. C’est un peu long mais sans difficulté.

L’anneau de départ A s’injecte dans K par 'application

t: A — Frac(A), a — %.

Le corps Frac(A) vérifie la propriété universelle suivante. Tout morphisme d’anneau injectif de A dans
un corps se prolonge de maniére unique a Frac(A). C’est une maniére de dire que Frac(A) est le plus
petit corps contenant A.

3 Elément algébrique — Corps de décomposition

3.1 Polyndéme minimal

Soit K C IL une extension de corps. Pensez ici & Q C C. Soit v € L et

0o KX] — L
P — Pa).

Un élément o € L est dit algébriqgue sur K s’il existe un polyndéme non nul P € K[X] tel que
P(a) = 0. Sinon il est dit transcendant.

Dit autrement, « est transcendant si ¢ est injectif et algébrique sinon. Dans ce dernier cas, le
générateur unitaire de Kerp est appelé le polynéome minimal de . On le note piq.

Proposition I1.53: Corps engendré

Soit a € L algébrique sur K. Alors le polynéme minimal de « est irréductible. De plus, 'image de
©q est un corps, noté K[a] et isomorphe a K[X]/(pq)-

Démonstration. L’anneau quotient K[X]/(po) s'injecte dans L, donc il est intégre. Ce qui implique que
e, est irréductible.
Mais alors, (pq) est un idéal maximal donc K[X]/(uq) est un corps. O

Par exemple, v/2 est algébrique sur Q et son polynéme minimal est X2 — 2.

Théoréme I1.54. Corps des nombres algébriques

L’ensemble des nombres de I qui sont algébriques sur K est un sous-corps de I et une extension
de K.
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Démonstration. La remarque essentielle de cette démonstration est la suivante : , n’est pas injective si
et seulement si son image est de dimension finie si et seulement si « est algébrique.

Soit maintenant o et 3 dans L. qui sont algébriques sur K. On a déja vu que a~! € K[a].

Considérons Ko, 8] := (K[a])[5]. Comme 8 est algébrique sur K il I'est sur K[a]. Donc la dimension de
K]e, 5] sur K[a] est finie et K[, 8] est un corps. D’aprés le théoréme de la base télescopique, la dimension
de K]a, 8] sur K est finie.

Or a + @ appartient a K[o, 8] qui est un corps. Donc I'image de ¢.+3 est incluse dans K[e, 5] et donc
de dimension finie. Donc a 4 3 est algébrique sur K. On montre de méme af est algébrique sur K. O

Le théoréme précédent implique par exemple que le nombre complexe

V5 +i
2+iv3
est algébrique sur Q. Il n’est pas facile du tout d’en trouver le polynéme minimal. On peut tout de méme
en mimant la preuve trouver une borne supérieure sur son degré.

3.2 Corps de décomposition

Soit P € K[X] un polynome irréductible. L’anneau quotient K[X]/(P) est un corps car 'idéal (P) est

maximal. Notons X la classe de X dans K[X]/(P). Alors, par définition P(X) = 0, si bien que K[X]/(P)
est un corps, une extension de K et contenant une racine P. De plus, K[X]/(P) est engendré par X et
K comme anneau et

[K[X]/(P) : K] = deg(P).

Le corps K[X]/(P) est appelé corps de rupture de P. C’est I'unique (& isomorphisme prés) extension de
K contenant une racine de P et engendré par celle-ci.
Nous admettrons le résultat suivant.

Théoréme I1.55. Corps de décomposition

Soit P un polyndéme non nul de K[X]. Alors il existe une extension IL de K telle que P est scindé
sur L et L est engendré par les racines de P et K comme anneau.

De plus, L est I'unique extension de K vérifiant ces propriétés. I est appelé le corps de décomposition
de P.

4 Corps finis
Le but de cette section est de classifier tous les corps finis. L’énoncé est le suivant :

Théoréme I1.56. Corps finis

(i) Soit K un corps fini. Alors il existe un nombre premier p et un entier naturel non nul n tel
que K = p”.

(ii) Réciproquement, soit p un nombre premier et n un entier naturel non nul. Alors, il existe
un corps a p™ éléments.

(iii) De plus, deux corps finis de méme cardinal sont isomorphes.
On note F, I'unique corps a ¢ = p™ éléments.

4.1 Premiéres propriétés et exemple

Soit K un corps fini. Sa caractéristique est non nulle (car il ne peut contenir Z), notons la p. Alors K
contient Z/pZ. Posons n = [K : Z/pZ) la dimension de K comme Z/pZ-espace vectoriel. Alors K = p™.
La premiére assertion du théoréme I1.56 est démontrée.
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Sin =1, a la fois I'existence et I'unicité du théoréme II1.56 sont claires. On pose donc F), = Z/pZ pensé
comme un corps. Regardons le plus petit cas qui suit p = 2 et n = 2. Soit K un corps de cardinal 4. On
note 0 et 1 les éléments de Z/2Z qui est inclus dans K. Soit « dans K — {0, 1}.

On peut voit que 1+ # 1 (car ¢ # 0), 1 + 2 # 0 (car x # 1), 1 +x # x (car 1 # 0). Donc
K =1{0,1,z,1 + z}. On peut dresser la table d’addition de K :

0 1 T 1+
0 0 1 T 1+=x
1 1 0 1+ =z T
T T 1+ 0 1
l1+z |14+ x 1 0

On s’intéresse a présent & x2. On voit que 22 # 0 (car z # 0), 22 # 1 (car 2 — 1 = (z — 1)?), 2% #
(car 22 — z = z(z — 1)). Donc 22 = 1 + x. On peut dresser la table de multiplication de K :

0 1 T 1+«
0 0 0 0 0
1 0 1 T 1+
T 0 T 1+=x 1
1+2z |0 1+=z 1 T

4.2 Préliminaires

Avant de se lancer dans la preuve du théoréme I1.56, on va montrer un lemme dans C[X], Z[X] et Z.

Lemme I1.57 (Des divisibilités). Soit m et n deux entiers naturels non nuls.

(i) Dans C[X], X™ — 1 divise X™ — 1 si et seulement si n divise m.
(ii) De plus, X™ — 1 divise X™ — 1 dans C[X] si et seulement si il le divise dans Z[X].

(iti) Soit a > 2 un entier naturel. Alors a™ — 1 divise a™ — 1 si et seulement si n divise m.

Démonstration. Dans C, on écrit

xr—1= [ x-¢

¢eUn

N P . N sz 2ikm sos .
ou U, désigne I'ensemble des racines n-iéme de l'unité (les e™n ). Alors X™ — 1 divise X™ — 1 si et
seulement si U,, est inclus dans U,,, si et seulement si n divise m.

Il est clair que si X™ —1 divise X™ —1 dans Z[X] alors il le divise dans C[X]. Réciproquement, supposons
que X™ — 1 divise X™ — 1 dans C[X]. Effectuons la division euclidienne de X™ — 1 par X™ — 1 dans
Q[X]. Comme X™ — 1 est unitaire, on ne divise jamais et le quotient @ et le reste R sont a coefficients
entiers. Donc

X"—-1=X"-1)Q+R Q, R € Z[X].
Effectuons la division euclidienne de X™ —1 par X™ — 1 dans C[X]. On fait les méme calculs que lorsque
nous pensions les coefficients des polynémes dans Q. Donc les quotients et restes sont les mémes. Mais

alors comme X™ — 1 divise X™ — 1 dans C[X], R = 0. cdfd.

Si n divise m, alors X™ — 1 divise X™ — 1 dans Z[X]. Donc en substituant a & X, a™ — 1 divise a™ — 1.

Réciproquement supposons que a™ — 1 divise ™ — 1. On écrit m = ng + r avec 0 < r < n. Comme
a"—1=(a—1)(a" P +a" 2+ +1),
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lentier ("~ +a" 2+ ...+ 1) divise

1+ +a™2+am = 1+ +a )
+(1+.'.+an71)an
+(1+-+a" e

+(1 + e + anfl)a(qfl)n
+(14---+a""Ham.

Lentier N := (a1 +a""2+.--+1) est de la forme 1+ ab (un plus un multiple de a. Il est donc premier
avec a (par Bezout si vous voulez). Par ailleurs, il divise la somme ci-dessus ainsi que tous ses premiers
termes. Donc N divise le dernier terme de la somme, c’est-a-dire (1+---+a"~1)a?". Mais alors, le lemme
de Gauss implique que N divise (1 + --- +a""!). Le seul moyen (inégalités) est d’avoir r = 0. Donc n
divise m. O

4.3 Factorisation d’un polynéme dans F,[X]

Soit d un entier naturel non nul. On note Z(d, p) 'ensemble des polynémes de F,[X] unitaires irréductibles
et de degré d.

Lemme I1.58. Si Z(d,p) est non vide, alors il existe un corps a p? éléments.
Démonstration. En effet, F,[X]/(P) convient pour P € Z(d,p). O

On veut donc montrer que Z(d,p) est non vide.

Proposition I1.59: Factorisation de X?" — X

Soit n un entier non nul. Dans F,[X], on a

XP"-X:H H P.

d|n PeZ(d,p)

Démonstration. L’équation de la proposition est la décomposition de X?” — X en produit de polynomes

irréductibles. Il suffit donc de montrer les deux assertions suivantes, pour tout polynéme irréductible
unitaire P de F,[X] :

(i) P? ne divise pas X?" — X ;
(ii) P divise X?" — X si et seulement si deg(P) divise n.

Pour la premiére assertion, supposons par I'absurde que X?" — X = P2Q. Alors en dérivant on obtient
—-1=P2P'Q+ PQ").
Donc P divise —1. Contradiction.

Supposons maintenant que d = deg(P) divise n. Soit L = F,[X]/(P) et @ € L la classe de X. Alors
P(a) =0.

Sia=0, P =X etiln’y a rien a montré. Supposons donc « # 0. Alors « est un élément du groupe
multiplicatif L — {0} de cardinal p? — 1. Le théoréme de Lagrange montre donc que Pl =1. D’apres
le lemme I1.57, on a aussi o?" ~' =1 (car p? — 1 divise p” — 1). Mais alors a est racine de X?" — X.
Comme P et X?" — X ont une racine commune dans L leur pged n’est pas 1. Or, grace a I’algorithme
d’Euclide, le pged ne dépend pas du corps contenant les coefficients des polynémes. Donc, dans F,[X],
le pged de P et XP" — X n’est pas 1. Mais alors, comme P est irréductible, P divise X?" — X.

Supposons enfin que P divise X?" — X. Notons encore d = deg(P), L = F,[X]/(P) et a € L la classe de
X. On peut encore supposer « # 0. On fait la division euclidienne : n = ds + r avec 0 < r < d.
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« s n n__ n
Comme P divise XP" — X, o ~1 =1et o? = a. Donc
pn pds pr pr
ol =(a? P =af =a.

On en déduit que si 3 est une puissance de « alors

(s

pr =5

Si par ’absurde r # 0, on a
(J:—l—y)pr:xpr—i—ypr Ve,y €L

et

P =z Vx € Fp.

On en déduit que
=z vV € L.

En particulier le polynéme X?" — X de degré p” a au moins f. = p® racines. Contradiction.
Exemple 17. Dans F5[X], on obtient

XX =XX-DX*+ X+ )X+ X2+1).
Dans F5[X], on obtient

XP-X=XX-DX+DX*+DX*+ X - 1)(X' - X -1).

4.4 Existence

L’égalité des degré dans la proposition 11.59 donne

p* =Y _4I(d,p)d.

d|n

Théoréme 11.60. Existence polynéme irréductible

(4.2)

Dans F,,[X] il existe des polynomes irréductibles de tout degré. En particulier, pour tout n il existe

un corps a p” éléments.

Démonstration. 1l s’agit de montrer que Z(d, p) est non vide. Or, d’aprés (4.2), on a

p" =tI(n,p)n+ Y HI(d,p)d
d|n d<n

et
4Z(n,p)n < p".
Mais alors

s

D
p—1

n—1
pr<{Z(npn+ > p<tZ(n,p)n+ Y p* <HI(n,p)n+
dln d<n k=0

Donc #Z(n, p) est non nul.
Le lemme du début et I’existence de polynémes irréductibles impliquent ’existence de corps.
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4.5 Unicité

On peut montrer que
£7(50,2) = 22517997 465 744.

Cela fait de nombreuses maniéres de construire Foso. Mais I'on obtient toujours la méme chose!!

Démonstration. Soit L un corps & p™ éléments et P un polynémes irréductible unitaire de degré n dans
F,[X]. Posons K =TF,[X]/(P).

Tous les éléments non nuls de L vérifient, o?” ~! = 1, en vertu du théoréme de Lagrange appliqué dans
le groupe multiplicatif I — {0}. Mais alors, pour tout a € L on a a?” = a. On en déduit que

X" -x=]][X-a.
a€cell

Dans F,[X], on sait que P divise XP" — X. Donc il existe ag € L tel que P(ap) = 0. Comme P est
irréductible sur F,,, P est le polynome minimal de ag sur F,,. Ainsi, le morphisme

Fp[X] — L, Q — Q(ao)

induit un morphisme injectif
F,[X]/(P) — L.

Par égalité des cardinaux ce morphisme injectif est en fait un isomorphisme. O

4.6 Application : Irréduchilité des polynomes cyclotomiques sur Q

Dans ce paragraphe, on démontre le théoréme 1.46. Rappelons que ®,, est le polyndéme unitaire dont les
racines sont les racines n-iémes primitive de I'unité. On a déja vu que c’est un polynome a coefficients
entiers, de degré ¢(d).

Affirmation 1 : Tout diviseur de X™ — 1 dans Q[X] est & coefficients entiers et de contenu 1.

On écrit dans Q[X], X™ — 1 = PQ. Soit p et ¢ les ppcm les dénominateurs (mis sous forme irréductibles)
des coefficients de P et @ respectivment. On réécrit la relation dans Z[X] :

pq(X" = 1) = (pP)(¢qQ).

On prend le contenu
c(pg(X" — 1)) = pq = c(pP)c(q@Q) = 1.
Donc p=¢g=1et P et @ sont dans Z[X].

Soit ¢ une racine primitive n-iémes de 1'unité et P son polyndéme minimal dans Q[X]. Comme P; et ®,,
ont une racine en commun, ils ne sont pas premiers entre eux. Comme P est irréductible, il divise ®,,.
Par laffirmation 1, P, € Z[X]. On écrit X™ — 1 = P.H avec H € Z[X] (comme P¢ est unitaire).

Soit p un nombre premier qui ne divise pas n et £ une racine de FP.

Affirmation 2 : P () = 0.

Supposons par I'absurde que P¢(£P) # 0. Comme &P est une racine n-iéme de 'unité, H(£P) = 0.

Par ailleurs, P est irréductible et s’annule en § : c’est le polynéme minimal de &.

Donc P; divise le polynoéme H(X?) : H(X?) = P;Q dans Z[X] (comme ci-dessus).

On réduit maintenant cette égalité dans F,[X] :

H(X?) = (H(X))" = PQ.
Soit # un facteur irréductible de Pr. Alors, 6 divise HP, donc il divise H. Donc 6 divise P: et H. Donc

6? divise X" — 1 dans F,[X]
Ceci est une contradiction car X™ — 1 est premier avec son dérivé dans F,[X].

Par une récurrence immédiate, I’affirmation 2 implique que P(¢¥) = 0, pour tout ¥ € N premier avec n.
Mais alors, toutes les racines primitives de n sont racines de P;. Mais alors P = ®,, qui est irréductible.
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5 Corps des nombres constructibles a la régle et au compas

Dans cette derniére section nous allons voir deux sous-corps de R et C inspirés par les mathématiques
de la Grece antique. On va développer des outils permettant d’étudier des problémes comme celui de la
trisection de I'angle, la quadrature du cercle ou la construction des polyédres réguliers.

Nous identifions le corps C au plan euclidien R2. Pour z; # 25 dans C, on note (z;23) la droite passant
par z1 et zo, et € (21, 22) le cercle de centre z; et passant par zs.

Soit S une partie de C. On dit qu’un nombre complexe est élémentairement constructible a partir de S
s'il existe z1 # z9 € S et z3 # z4 € S tels que 'une des affirmations suivantes est vrai :

(i) les droites (z122) et (z324) sont distinctes et sécantes en z.
(ii) les cercles 6(z1, 22) et 6(z3, z4) sont distincts et sécants en z.

(iii) la droite (z122) et le cercle “€(zs, z4) s’intersectent en z.

On dit qu’un nombre complexe z est constructible s’il existe une suite 0, 1,4, 21,..., 2, = z telles que,
pour tout 1 < i < n, 2 est élémentairement constructible a partir de {0,1,4,...,2,_1, pour tout
ke {1,...,n}. On note K 'ensemble des nombres complexes constructibles. Enfin, un nombre réel x est

constructible s’il est constructible en tant que nombre complexe.

Théoréme I1.61. Corps des nombres constructibles

On a
(i) Les ensembles K et A NR sont des corps.

(ii) Un élément z € C appartient & K si et seulement si ses parties réelle et imaginaire appar-
tiennent a X N R.

Démonstration. La deuxiéme assertion dit juste que 'on peut construire un point complexes ses coor-
données étant connues. Et que réciproquement, ses coordonnées sont constructibles a partir de z.
Comme on peut construire les paralellogrammes & est stable par addition. Comme on peut construire
les symétries centrales A est stable par opposé.

On peut aussi construire la paralelle 4 une droite passant par un point. Mais alors en utilisant le théoréme
de Thalés on voit facilement que A NR est stable par produit et inverse. Voir les dessins ci-dessous.

1\ 1\

X x - x! x/x’ X

O

La théorie des corps, via le théoréme suivant permet de démonter que plusieurs problémes grecs n’ont
pas de solution.

Théoréme I1.62. Obstruction a la constructibilité
Soit z € K. Alors z est algébrique sur Q et le degré [Q[z] : Q] de 'extension est une puissance de 2.

Démonstration. Soit A = x1 + iys et B = x2 + iya des nombres complexes. Alors la droite (AB) a une
équation de la forme :
ar+py+v=0 (5.1)
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avec a, 3 et v dans Q(«, ). Et le cercle ‘6(AB) a une équation de la forme :
2?4+ +ar+Py+y=0 (5.2)

avec «, 8 et v dans Q(«, §).

Soit I un sous-corps de R. Montrons que si z = = + iy est élémentairement constructible a partir IL 4 L
alors [L(z) : L] et [L(y) : L] valent 1 ou 2.

Si z est l'intersection de deux droites passant par des points dont les coordonnées sont dans L, ses
coordonnées s’obtiennent en résolvant un systéme linéaire a coefficient dans I donc sont dans L. Ainsi
L(z) =L(y) = L.

Si z est dans U'intersection d’une droite passant par des points dont les coordonnées sont dans L. et d’un
cercle construit & partir de tels points, ses coordonnées vérifient

ar+pPy+~v=0
x2+y2+a’m+ﬁ’y+'y’=0

avec a, o, 3,3, et 7/ dans L.

Supposons 8 # 0. Alors y s’exprime en fonction de x et L. C L(y) C L(x). On tire alors y de la premiére
équation et I'injecte dans la seconde. Le nombre x vérifie une équation de degré 2 & coeflicients dans L.
Donc [L(z) : L] =1 ou 2.

Supposons S = 0. Alors = appartient & L. Mais alors, la deuxiéme équation montre que y vérifie une
équation de degré 2 a coefficients dans L. Donc [L(y) : L] = 1 ou 2.

Si z est dans l'intersection de deux cercles, ses coordonnées vérifient

> +y +ar+By+v=0
x2+y2+a’x+ﬁ’y+7’20

avec a,a’, 3,8 ,v et v/ dans L. En remplacant la premiére équation par la différence des deux, on se
rameéne au cas précédent. O

Le probléme de duplication du cube est le suivant. Etant donné un cube de c6té volume V' peut-on en
construire un de volume 2V. Il s’agit donc de construire /2. Si cela était possible le théoréme dirait que
[Q[v/2] : Q] serait une puissance de deux.

Or /2 annule X? — 2. Ce polynome est de degré 3 et n’a pas de racine dans Q : il est donc irréductible
dans Q[X]. C’est donc le polynéme minimal de /2 et [Q[v/2] : Q] = 3. Contradiction.

On peut méme améliorer le théoréme 77 pour caractériser les éléments constructibles.

Théoréme I1.63. Wantzel(1837)

Le nombre réel a est constructible a la régle et au compas si et seulement si, il existe une suite de
corps Lo, ..., Ls tels que

(i) Lo =Q;
(ii) L;+1 est une extension quadratique de L;, pour tout 0 < i < s;
(iii) a € Ls.
Démonstration. TODO : en fait c’est la preuve ci-dessus. O
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