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1 Définitions

1.1 Def et Exples

Définition I.1: Anneau

Soit A un ensemble muni de deux lois internes + et ∗ : (A,+, ∗) est un anneau si (A,+) est un
groupe abélien (neutre noté 0), ∗ est commutative, associative, distributive par rapport à + et
possède un neutre (noté 1).

Remarque. Dans certains ouvrages, on ne demande pas que ∗ soit commutative. Dans ce cas, ce que nous
appelons anneau s’appelle anneau commutatif.

Exemples 1. Les ensembles suivants sont des annneaux.
(i) L’ensemble (Z,+,×) des entiers relatifs.

Ceci est l’exemple principal qu’il faut toujours garder en tête.
(ii) Les ensembles (Q,+,×), (R,+,×), (C,+,×).

Ces exemples ont une propriété supplémenntaires : tous les éléments de A sauf 0 ont un inverse
pour ×.

(iii) L’espace des polynômes R[X].
Ceci est le deuxième exemple à garder en tête.

(iv) Plus compliqué : R[X,Y ] l’anneau des polynômes à 2 variables et coefficients réels.

Les ensembles suivants ne sont pas des annneaux. Trouver un argument expliquant que ces esembles ne
sont pas annneaux.

Exemples 2. (i) L’ensemble N des entiers naturels.
(ii) L’ensemble 2Z des entiers pairs.
(iii) L’espace des polynômes Rn[X] de degré inférieur à n.
(iv) L’ensemble Mn(R) des matrices.

A chaque fois, les opérations + et × sont les classiques.

1.2 Premiers constructeurs
Comme pour les groupes, on a une notion de sous-anneau :

Définition I.2: Sous-Anneau

Soit (A,+, ∗) un anneau, B ∈ P(A) : B est un sous-anneau de A si 0 ∈ B, 1 ∈ B et B est stable
pour les lois +, a 7→ −a et ∗.

Exemples 3. (i) Z est un sous-anneau de Q.
(ii) R est un sous-anneau de R[X].
(iii) { p

2n : p ∈ Z n ∈ N} est un sous-anneau de Q.
(iv) L’ensemble Z[i] := {x+ iy : x, y ∈ Z} est un sous-anneau de C. Il est appelé l’anneau des entiers

de Gauss.

Comme pour les groupes, on a une notion de produit :

Définition I.3: Produit d’Anneaux

Soit (A,+, ∗) et (B,+, ∗) deux anneaux. On munit A×B des lois et éléments suivants :

0 := (0, 0) et 1 := (1, 1).
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(a, b) + (a′, b′) = (a+ a′, b+ b′) pour tout a, a′ ∈ A et b, b′ ∈ B.

(a, b) ∗ (a′, b′) = (a ∗ a′, b ∗ b′) pour tout a, a′ ∈ A et b, b′ ∈ B. On obtient ainsi un anneau
(A×B,+, ∗).

1.3 L’anneau Z/nZ
Fixons un entier naturel n ⩾ 2. On définit une relation d’équivalence sur Z (la congruence modulo n) :

a ≡ b ⇐⇒ n | a− b.

La classe d’équivalence de a ∈ Z est la partie suivante

a+ nZ := {a+ kn : k ∈ Z}.

Ces classes forment une partition de Z en n parties deux à deux distinctes :

Z = nZ ∪ (1 + nZ) ∪ · · · ∪ (n− 1 + nZ).

Par définition Z/nZ est l’ensemble de ces n parties de Z. Attention, un élément de Z/nZ est une partie
de Z. En particulier le cardinal de Z/nZ est n.
On définit deux opérations + et × sur Z/nZ par les formules suivantes :

(a+ nZ) + (b+ nZ) := (a+ b) + nZ ∈ Z/nZ
(a+ nZ)× (b+ nZ) := (ab) + nZ ∈ Z/nZ

pour tout a, b ∈ Z.
Ces définitions posent une question. En effet, les membres de droite ne doit dépendre que (a + nZ) et
(b+nZ). Or à priori, les membres de droite dépendent de a et b, utiles pour calculer a+b et ab. Montrons
que ceci n’est qu’apparence pour + :
Soit a′ et b′ dans Z tels que a+ nZ = a′ + nZ et b+ nZ = b′ + nZ. Alors il existe k et l dans Z tels que
a′ = a+ nk et b′ = b+ nl. Mais alors,

a′ + b′ + nZ = a+ nk + b+ nl + nZ = a+ b+ n(k + l + Z) = (a+ b) + nZ.

Théorème I.4. Anneau Z/nZ

L’ensemble Z/nZ muni de ces deux lois + et × est un anneau.

Démonstration. Chaque identité est une simple vérification laissée en exercice.

Exemple n = 3.
0 1

Les traits de la graduation représentent les entiers relaturels. Les rouges sont ceux de 3Z, les bleus ceux
de 1 + 3Z et les verts ceux de 2 + 3Z. Le fait que chaque trait est une couleur et une seule dit que ces
parties forment une partition des entiers.
Les opérations + et × sont définie sur ces parties. Si on représente une partie par sa couleur, on obtient

•+ •= • •+ •= • •+ •= •
•+ •= • •+ •= • •+ •= •

De même pour le produit, on obtient :

•×•= • •×•= • •×•= •
•×•= • •×•= • •×•= •
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Revenons à Z/nZ. L’élément k + nZ ∈ Z/nZ est noté k̄. En particulier le n est sous-entendu bien que
très important.
Les tables d’addition et de multiplication de Z/3Z s’écrivent alors :

+ 0̄ 1̄ 2̄
0̄ 0̄ 1̄ 2̄
1̄ 1̄ 2̄ 0̄
2̄ 2̄ 0̄ 1̄

× 0̄ 1̄ 2̄
0̄ 0̄ 0̄ 0̄
1̄ 0̄ 1̄ 2̄
2̄ 0̄ 2̄ 1̄

Exercice 1. Dresser de même, les tables d’addition et de multiplication de Z/2Z et Z/4Z.

1.4 Anneaux des polynômes
Soit A un anneau et X un symbole. On pose

A[X] := {
∞∑

n=0

anX
n : an ∈ A et ∃N ∀n ⩾ Nan = 0}.

La condition sur les coefficients an dit que tous sauf un nombre fini sont nuls. Lorsq’on écrit un polynôme,
on oublie les termes de la forme 0Xn, si bien que la somme devient finie. Il est aussi important de
comprendre que la somme est formelle. Ce qui signifie que par définition

∑∞
n=0 anX

n =
∑∞

n=0 bnX
n si

et seulement si an = bn pour tout n.
On définit les deux opérations + et × sur A[X] par les formules suivantes :
Pour

P =

∞∑
n=0

anX
n Q =

∞∑
n=0

bnX
n,

on a

P +Q =

∞∑
n=0

(an + bn)X
n

et

PQ =

∞∑
n=0

cnX
n où cn =

∑
k+l=n

akbl.

La formule qui définit cn a bien un sens car seulement un nombre fini de termes apparaissent. Combien ?
Par ailleurs, PQ est bien un polynôme car les cn sont presque tous nuls.

Proposition I.5: Anneau des polynômes

L’ensemble (A[X],+,×) est un anneau.

La preuve qui est une simple vérification est laissée en exercice.

Convention. On fait le choix d’omettre 0Xk, X0 et de noter 1Xk par Xk. Ainsi 1+X3 +2X6 ∈ R[X].
En effet

an =

 1 si n = 0 ou 3
2 si n = 6
0 sinon

Fonction associée. Soit P ∈ A[X]. Alors, on obtient une fonction

P̃ : A −→ A,

dont la valeur P (a) s’obtient à substituer a à X dans P .
Si A = R, on obtient les fonctions polynômiales que vous connaissez bien. Pour d’autres anneaux, les
choses peuvent être plus subtiles.

Exemple 4. Prenons A = Z/2Z dont on note les éléments 0 et 1. Alors P = 1 +X, Q = 1 +X3 sont
deux éléments distincts de A[X] car ils n’ont pas les mêmes coefficients.
On calcule P̃ (0) = 1, P̃ (1) = 1 + 1 = 0, Q̃(0) = 1 et Q̃(1) = 1 + 1 = 0. Donc les fonctions P̃ et Q̃ sont
égales.
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1.5 Anneau des entiers de Gauss

L’ensemble Z[i] := {x + iy : x, y ∈ Z} est un sous-anneau de C. Il est appelé l’anneau des entiers de
Gauss.

1.6 Petits anneaux

Dans cette section, on étudie les anneaux de petits cardinaux 2,3 et 4.

Proposition I.6

Dans un anneau (A,+,×, 0, 1), on a, pour tout a ∈ A :

0× a = 0 − 1× a = −a.

Ici, −a signifie l’unique élément tel que a+ (−a) = 0 (cad l’inverse de a pour la loi +).

Démonstration. En effet, 0 × a = (0 + 0) × a = 0 × a + 0 × a. Donc 0 × a est l’élément neutre pour +,
c’est-à-dire 0.
On a aussi −1× a+ a = −1× a+ 1× a = (−1 + 1)× a = 0× a = 0. Donc −1× a est bienl’inverse de a
pour +.

Exercice 2. Justifier chacune des égalités de la preuve ci-dessus à l’aide de la définition d’un anneau.

Cardinal 2. Soit A un anneau à deux éléments. Alors A = {0, 1}. Ses tables d’addition et de multipli-
cation s’écrivent alors :

+ 0 1
0 0 1
1 1 0

× 0 1
0 0 0
1 0 1

Les valeurs noires s’obtiennent par définition des éléments neutres ou la proposition ci-dessus. La valeur
rouge s’obtient en remarquant que 0 doit apparaître sur la ligne de 1 car 1 a un inverse pour +.
Ainsi Z/2Z est le seul anneau à 2 éléments.

Cardinal 3. Soit A un anneau à trois éléments. Alors A = {0, 1, a}. Ses tables d’addition et de multi-
plication s’écrivent alors :

+ 0 1 a
0 0 1 a
1 1 a 0
a a 0 1

× 0 1 a
0 0 0 0
1 0 1 a
a 0 a 1

Les valeurs noires s’obtiennent par définition des éléments neutres ou la proposition ci-dessus. La valeur
rouge s’obtient par élimination : 1 + 1 = 1 est impossible car 1 ̸= 0. Les valeurs vertes s’obtiennent par
symétrie (+ est commutatif) et bijection de l’application y 7→ x + y est bijective. La valeur verte se
justifie ainsi : a = 1 + 1 ; donc a× a = (1 + 1)× a = a+ a = 1.
Ainsi Z/3Z est le seul anneau à 3 éléments.

Cardinal 4. A partIr de 4 les choses se compliquent. Il y a 4 possibilités, mais cela est un peu long. Si
cela vous amuse vous pouvez essayer de continuer le raisonnement ci-dessous, bien que cela puisse être
long.
Réciproquement, les pages précédentes de ce chapitre permettent de voir que Z/2×Z/2Z et Z/4Z. Mais
il y a d’autres exemples. . .

Soit A un anneau à quatre éléments. Alors A = {0, 1, a, b}. Ses tables d’addition et de multiplication
s’écrivent alors :
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+ 0 1 a b
0 0 1 a b
1 1 x?
a a
b b

× 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a
b 0 b

La lettre x ne peut être 1 (chaque ligne est une permutation des éléments de A). Donc, x = 0, a ou b.
Quitte à changer les notations (entre a et b) on peut éliminer le dernier cas.

2 Inversibilité et divisibilité

2.1 Inversibilité
Un point important des anneaux est que −x existe toujours alors que x−1 par forcément. D’où la définition
suivante :

Définition I.7: Elément inversible

Soit (A,+,×, 0, 1) un anneau. Un élément a ∈ A est dit inversible s’il existe b ∈ A tel que ab = 1 :

∃b ∈ A ab = 1.

On note A∗ l’ensemble des éléments inversibles.

Exemples 5. Voici quelques exemples.
(i) On a Z∗ = {±1} et R[X]∗ = R∗ = R− {0}.
(ii) Plus difficile Z[i]∗ = {±1,±i}.

Pour le montrer, on part de zz′ = 1 et on s’intéresse au module |z| de z.
(iii) (Z/4Z)∗ = {1̄, 3̄}

On peut le montrer en dressant la table de multiplication de Z/4Z.

On peut vérifier que (A∗,×, 1) est un groupe abélien.

2.2 Divisibilité
Bien que b−1 n’est pas de sens dans un anneau, il se peut que a

b en ait un. Penser à 6
2 dans Z.

D’où la définition suivante :

Définition I.8: Elément inversible

Soit (A,+,×, 0, 1) un anneau et a, b ∈ A avec b ̸= 0. On dit que b divise a s’il existe c ∈ A tel que
a = bc et on écrit b | a.

Dans Z on retrouve bien la divisibilité à laquelle nous sommes habitués. Voici un anneau dans lequel les
choses sont plus compliquées.

Exemple 6. Posons A = Z[i
√
5] = {a+ bi

√
5 | a, b ∈ Z}. On peut vérifier que A est un sous-anneau de

C. Comme Z ⊂ A, on a 6 = 2× 3 et 2 et 3 divisent 6. Mais on a aussi

6 = (1 + i
√
5)(1− i

√
5)

et 1± i
√
5 divisent aussi 6.

En revanche, on peut montrer que 1 + i
√
5 et 2 n’ont pas de diviseur commun. De même, 1 + i

√
5 et 3

n’ont pas de diviseur commun.

On pourra remarquer que si b ∈ A∗ alors b divise a pour tout a. Ce sont les relations de divisibilité
triviales. Un élément de A est dit irréductible si ces seuls diviseurs viennent de relations de divisibilité
triviales. Plus précisément :
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Définition I.9: Elément irréductible

Soit p ∈ A. L’élément p est dit irréductible, si p n’est pas inversible et

p = ab ⇒ a ou b est inversible.

Dans Z, les éléments irréductibles sont les nombres premiers et leurs opposés. De manière plus générale,
dans ces questions de divisibilité un élément ou son produit avec un inversible jouent les même rôle.

3 Anneaux intègres
Vous avez appris il y a longtemps que pour qu’un produit soit nul, il faut qu’un des terme le soit. Ceci
est vrai pour les nombres rééls, mais pas pour les matrices (qui ne forment pas un anneau). Dans les
anneaux, ça dépend. D’où la définition :

Définition I.10: Anneau intègre

L’anneau A est dit intègre si

∀a, b ∈ A (ab = 0 ⇒ a = 0 ou b = 0).

Exemples 7. (i) Z, R, C[X], Z[i] et Z[
√
5] sont intègres.

(ii) Z/3Z est intègre (comment cela se lit-il sur sa table de multiplication ?).
(iii) Z/4Z n’est pas intègre car 2̄.2̄ = 4̄.
(iv) Z× Z n’est pas intègre car (1, 0)(0, 1) = 0.

Définition I.11: Elément premier

Soit p ∈ A supposé intègre. L’élément p est dit premier, si p n’est ni nul ni inversible et si

p divise ab ⇒ p divise a ou b.

Proposition I.12: Premier vs Irréductible

Soit A un anneau intègre. Alors tout élément premier est irréductible.

Exemple 8. Trouver, dans les pages qui précèdent, un exemple montrant que la réciproque est fausse.

4 Corps

Définition I.13: Corps

Un corps (K,+,×) est un anneau dont tout élément non nul est inversible :

∀a ∈ A∗ ∃b ∈ A ab = 1.

Exemples 9. (i) Les corps que vous connaissiez en sont bien : Q, R, C.
(ii) L’ensemble R(X) des fractions rationelles est un corps.
(iii) Z/2Z et Z/3Z sont des corps.
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(iv) Le sous-anneau Q+ iQ de C est un corps.
(v) Z/6Z n’est pas un corps. Trouver un élément non nul et non inversible.
(vi) Z, R[X], Z[i] ne sont pas des corps.

Trouver un élément non nul et non inversible pour chacun de ces anneaux.

5 Morphismes, idéaux et anneaux quotients

5.1 Morphismes

Définition I.14: Morphisme

Soit A et B deux anneaux. Un morphisme f de A vers B est une application f : A −→ B telle
que

(i) f(0) = 0 et f(1) = 1 ;
(ii) f(a+ a′) = f(a) + f(a′) pour tout a, a′ ∈ A ;
(iii) f(−a) = −f(a) pour tout a ∈ A,
(iv) f(aa′) = f(a)f(a′) pour tout a, a′ ∈ A.

Remarque. On pourra remarquer que f est en particulier un morphisme de groupes pour la loi +. En
particulier, la définition ci-dessus est redondante car f(a + a′) = f(a) + f(a′) implique f(0) = 0 et
f(−a) = −f(a).
Il est immédiat de vérifier que la composé de deux morphismes est un morphisme.
De même, la réciproque d’un morphisme bijectif f est un morphisme. On dit alors que f est un isomor-
phisme.

Voici quelques exemples de morphismes.

Exemples 10. (i) Pour n ⩾ 2 ∈ N, l’application

Z −→ Z/nZ
k 7−→ k̄ = k + nZ

est un morphisme.
(ii) Soit a ∈ R. Alors, l’application

eva : R[X] −→ R
P 7−→ P (a)

est un morphisme.
(iii) Soit A et B deux anneaux. Alors, l’application

A×B −→ A
(a, b) 7−→ a

est un morphisme.
(iv) Soit A et B deux anneaux. Alors, l’application

A −→ A×B
a 7−→ (a, 0)

n’est pas un morphisme. Pourquoi ?
(v) L’application

R× R −→ C
(x, y) 7−→ x+ iy

n’est pas un morphisme. Pourquoi ?
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(vi) Posons

A = {
(
a −b
b a

)
∈ M2(R) | a, b ∈ R}.

Alors (A, 0, I2,+, .) où . est le produit matriciel, I2 la matrice identité est un anneau. De plus
l’application

C −→ A

a+ ib 7−→
(
a −b
b a

)
est un isomorphisme d’anneaux.

Le noyau de f : A −→ B est son noyau lorsque f est pensé comme un morphisme de groupes :

Kerf = {a ∈ A : f(a) = 0}.
D’autres exemples de morphismes :

Proposition I.15: Propriété universelle de l’anneau des polynômes

Soit A et B deux anneaux, b un élément de B et θ : A −→ B un morphisme. Alors, il existe un
unique morphisme d’anneaux θ̃ : A[X] −→ B tel que

(i) pour tout a ∈ A, θ̃(a) = θ(a) ;
(ii) θ̃(X) = b.

5.2 Idéal

Définition I.16: Idéal

Soit A un anneau commutatif, I ⊂ A. Alors, I est un idéal ssi (I,+) est un sous-groupe de (A,+)
et pour tout a ∈ A, pour tout x ∈ I, ax ∈ I.

Proposition I.17: Intersection d’idéaux

Toute intersection d’idéaux est un idéal.

La preuve est une simple vérification.

Définition I.18: Idéal Engendré par une Partie

Soit P ⊂ A non vide. L’intersection de tous les idéaux de A contenant P est le plus petit idéal
contenant P . On l’appelle idéal engendré par P , noté (P ).

Théorème I.19. Idéal engendré

L’idéal engendré par P est {∑r
i=1 uiai / r ∈ N, ai ∈ P, ui ∈ A}.

Remarque : Soit a ∈ A : L’idéal engendré par a est aA. On le note (a). Plus généralement, si
P = {a1, . . . , as} on note (a1, . . . , as) = a1A+ · · ·+ asA.

Démonstration. L’ensemble est bien stable par +, − et multiplication par n’importe quel élément de A.
C’est donc un idéal.
Soit I est un idéal contenant P . Comme il est stable par + et multiplication par tout a ∈ A il contient
l’ensemble.
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Exemples 11. (i) L’idéal (2) engendré par 2 dans Z est l’ensemble des nombres pairs.
(ii) L’idéal (6, 9) engendré par 6 et 9 est l’ensemble des multiples de 3.

La preuve de ce fait est laissée en exercice.
(iii) L’idéal (X) engendré par le polynôme X dans R[X] est l’ensemble des polynômes qui s’annulent

en 0.
(iv) L’idéal (2, X) engendré par les polynômes 2 et X dans Z[X] est l’ensemble des polynômes dont

le coefficient constant est pair.
La preuve de ce fait est laissée en exercice.

(v) L’idéal engendré par deux idéaux I et J est l’ensemble

I + J = {a+ b : a ∈ I, b ∈ J}.

Théorème I.20. Noyau et Idéal

Le noyau d’un morphisme d’anneaux est un idéal.

Démonstration. Soit f un tel morphisme. Comme c’est un morphisme de groupe pour +, son noyau est
un sous-groupe. De plus, le calcul

f(ab) = f(a)f(b) = f(a)0 = 0

montre que si b ∈ Kerf alors ab ∈ Kerf .

5.3 Anneau quotient
Nous allons faire une construction qui montre la réciproque du théorème précédent : tout idéal est le
noyau d’un morphisme.
Un idéal I de A est dit strict si I ̸= A. Ceci équivaut à 1 ̸∈ A.

Théorème I.21. Anneau quotient

Soit I un idéal strict de A. On pose

A/I = {a+ I : a ∈ A}

inclus dans l’ensemble des parties de A. Il existe une unique structure d’anneau sur A/I telle que
l’application

π : A −→ A/I
a 7−→ a+ I

soit un morphisme d’anneaux.

Les lois sont données par les formules, pour tout a, b ∈ A :

(a+ I) + (b+ I) = (a+ b) + I
(a+ I)(b+ I) = (ab) + I

La preuve est directe et nous l’avons faite dans le cas suivant : A = Z et I = nZ = (n). Nous avions
obtenu l’anneau Z/nZ. Le cas général ne posant aucune difficulté supplémentaire est omise ici.
Souvent on note a+ I =: ā, lorsque la référence à I est claire.
Application : Construction des nombres complexes.
La relation clé dans le corps des nombres complexes est bien entendu i2 = −1. L’idée est donc de partir
de R[X] est d’imposer X2 = −1 c’est-à-dire X2 + 1 = 0 par quotient. On obtient l’application

ι : C −→ R[X]/(X2 + 1)

a+ ib 7−→ a+ bX + (X2 + 1)R[X] = a+ bX

qui est isomorphisme d’anneaux.

Le théorème de factorisation permet d’obtenir des isomorphismes comme ι.
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Théorème I.22. Factorisation des morphismes

Soit f : A −→ B un morphisme d’anneaux et I un idéal strict de A.
Si I ⊂ Kerf alors il existe un unique morphisme f̄ : A/I −→ B tel que f̄ ◦ π = f .

A B

A/I

f

π
f̄

De plus, f̄ est injectif si et seulement si I = Kerf . Enfin, f̄ est surjectif si et seulement si f l’est.

Application. Soit I = (P ) l’idéal de R[X] engendré par un polynôme P . La remarque est que si
P (x) = 0, alors Q(x) = 0 pour tout Q ∈ (P ). Ainsi pour P = X2 − 1 on obtient un morphisme

f : R[X] −→ R× R
P 7−→ (P (−1), P (1))

tel que I ⊂ Kerf . On obtient donc f̄ : R[X]/(X2 − 1) −→ R× R qui est en fait un isomorphisme.

Exercice 3. Montrer que R[X]/(X2 − 4X) est isomorphe à R× R.
Plus difficile, montrer que R[X]/(X2 − 2X + 1) est isomorphe à R× R muni d’une loi à définir.
Montrer que R[X]/(X2 − 4X) et R[X]/(X2 − 2X + 1) ne sont pas isomorphes.

Correction du cas X2 − 2X + 1 = (X − 1)2. Les multiples de ce polynômes sont ceux qui vérifient
P (1) = P ′(1) = 0. Donc l’application

θ : R[X]/(X2 − 2X + 1) −→ R× R
P 7−→ (P (1), P ′(1))

est une bijection linéaire. En revanche θ n’est pas un morphisme d’anneau. En revanche, elle l’est pour
la loi

(a, b) ⋆ (a′, b′) := (aa′, ab′ + a′b).

5.4 Propriétés des idéaux

Définition I.23: Idéal Premier

Un idéal I d’un anneau A est dit premier si

∀a, b ∈ A (ab ∈ I ⇒ a ∈ I ou b ∈ I).

Cette propriété s’interprète facilement en terme de quotients.

Proposition I.24: Quotient par idéal premier

Soit I un idéal strict de A. Alors I est premier si et seulement si A/I est intègre.

Démonstration. Considérons π : A −→ A/I.
Supposons A/I est intègre. Soit a et b dans A. Alors ab ∈ I si et seulement si π(ab) = 0 si et seulement
si π(a)π(b) = 0. Alors, cette dernière égalité implique que π(a) = 0 ou π(b) = 0. C’est-à-dire a ∈ I ou
b ∈ I. Donc I est premier.
Supposons maintenant I premier. Soit deux éléments de A/I dont le produit fait zéro. On écrit ces deux
éléments π(a) et π(b) avec a et b dans A. Alors 0 = π(a)π(b) = π(ab). Donc ab ∈ I. Comme I est premier
cela implique que a ∈ I ou b ∈ I. Donc π(a) = 0 ou π(b) = 0.
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Définition I.25: Idéal Maximal

Un idéal I d’un anneau A est dit maximal si I ⊂ J ⊂ A implique J = I ou J = A.
Les seuls idéaux contenant I sont I et A.

Cette propriété s’interprète facilement en terme de quotients.

Proposition I.26: Quotient par idéal maximal

Soit I un idéal strict de A. Alors I est maximal si et seulement si A/I est un corps.

Démonstration. Considérons π : A −→ A/I.
Supposons A/I est un corps. Soit J un idéal contenant strictement I. Soit b ∈ J tel que b ̸∈ I. Alors
π(b) ̸= 0. Donc il existe c ∈ A tel que π(c)π(b) = 1 = π(bc). Ceci se réécrit 1 − bc ∈ I ⊂ J . Donc
1 = (1− bc) + bc ∈ J . Mais alors J = A.
Supposons maintenant I maximal. Soit a ∈ A tel que π(a) ̸= 0. Cela signifie que a ̸∈ A. Considérons
l’idéal J = I + aA engendré par I et a. Comme I est maximal, J = A et 1 ∈ J . Donc il existe b ∈ A et
i ∈ I tels que 1 = i+ ab. Mais alors 1 = π(ab) = π(a)π(b). Donc π(a) est inversible.
On a bien montré que A/I est un corps.

Ces derniers résultats montrent que I maximal implique I premier.

Exemples 12. (i) L’idéal (6) ⊂ Z n ’est ni premier ni maximal. En revanche, (5) est maximal (donc
premier).

(ii) (X2 + 1) ⊂ R[X] est maximal.
(iii) (X2 − 1) ⊂ R[X] n’est pas premier.
(iv) (X) ⊂ Z[X] est premier, non maximal.
(v) (X2 + Y 3) ⊂ C[X,Y ] est premier, non maximal.
(vi) (3, X) ⊂ Z[X] est maximal.

6 Anneaux euclidiens

6.1 Définition et Idéaux

Définition I.27: Anneau euclidien

Soit A un anneau intègre. On dit que A est euclidien s’il existe une fonction N : A − {0} −→ N
telle que :

(i) N(ab) ⩾ N(b), ∀a, b ∈ A− {0}
(ii) ∀a, b ∈ A, b ̸= 0, ∃(q, r) ∈ A tq. a = bq + r (r = 0 ou N(r) < N(b)

La fonction N est appelée norme euclidienne.

Exemples 13. (i) Z est euclidien, avec N(x) = |x|. Ceci est la division euclidienne que l’on connait
depuis l’école primaire.

(ii) Si K est un corps, K[x] est euclidien, avec N(P ) = deg(P ). Ceci est la division euclidienne des
polynômes.

(iii) Z[i] := {m+ in, (m,n) ∈ Z2} est euclidien, avec N(z = x+ iy) = x2 + y2.
Esquisse de démonstration. Soit a, b ∈ A, b ̸= 0. On cherche q et r comme dans la définition.
L’idée de base est que q est une approximation du quotient a/b que l’on connait dans C. Posons
donc z = a/b ∈ C. Les points de Z[i] forme un réseau donc il existe q ∈ Z[i] tel que |z−q| ⩽

√
2/2.

Alors q convient.
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Encore un peu de vocabulaire afin de décrire les idéaux des anneaux euclidiens. Un idéal I d’un anneau
A est dit principal s’il est engendré par un élément. Un anneau est dit principal si tous ses idéaux le sont.

Théorème I.28. Euclidien et Principal

Tout anneau euclidien est principal.

Démonstration. Soit I un idéal de A. On regarde N(I). Comme partie non vide de N elle a un minimum.
Soit b ∈ I tel que N(b) soit égal à ce minimum. Montrons que

I = (b).

Il est clair que (b) ⊂ I.
Soit a ∈ I. Ecrivons a = bq + r avec r = 0 ou N(r) < N(b). Puisque r = a − bq il appartient à I. Par
minimalité de N(b), on en déduit que r = 0. Mais alors, a ∈ (b).

On peut aussi comprendre les éléments inversibles. Regardons Z un élément non nul a est inversible ssi
|a| = 1. Regardons K[X] : un élément non nul P est inversible ssi deg(P ) = 0. En général, on a :

Proposition I.29: Eléments inversibles

Soit A un anneau euclidien dont on note N la norme. Soit a ∈ A non nul. Alors a est inversible si
et seulement si N(a) = N(1).

Démonstration. Si ab = 1 alors N(a) ⩽ N(1). Or a = a × 1 implique que N(1) ⩽ N(a). Donc si a est
inversible alors N(a) = N(1).
Réciproquement supposons que N(a) = N(1). On fait la division euclidienne : 1 = aq + r avec N(r) <
N(r). Ce qui est impossible. Donc r = 0 et a est inversible.

6.2 Pgcd et ppcm
Les pgcd et ppcm sont ceux que vous connaissez déjà sur Z et K[X]. Cependant les concepts d’anneau
euclidien et d’idéal permettent des définitions et démonstrations à la fois homogènes et élégantes. Soit
donc A un anneau euclidien.
Une petite remarque préparatoire sous forme d’exercice.

Exercice 4. Soit a et b non nuls dans A. Alors (a) = (b) si et seulement s’il existe c ∈ A inversible tel
que a = cb.

Définition I.30: pgcd

Soit a1, . . . , as des éléments non tous nuls de A. Un élément δ ∈ A tel que (a1, . . . , as) = (δ) est
appelé pgcd des éléments a1, . . . , as.
On note δ = a1∧· · ·∧as. On peut remarquer que δ n’est défini qu’à un inversible près. Sur Z (resp.
K[X]), on fixe généralement cette indétermination en demandant que le pgcd soit positif (resp.
unitaire).

Le nom pgcd est justifié par l’exercice suivant.

Exercice 5. Soit q dans A non nul. Alors q divise tous les ai si et seulement si q divise δ.

Le lemme de Bezout est également facile à démontrer.

Exercice 6. Lemme de Bezout version 1.
Soit a et b dans A non nuls. Alors, il existe u et v dans A tels que au+ bv = a ∧ b.
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Définition I.31: éléments premiers entre eux

Soit a1, . . . , as des éléments non nuls de A. On dit qu’ils sont premiers entre eux si a1 ∧ · · · ∧as = 1
c’est-à-dire si (a1, . . . , as) = A.

Le lemme de Bezout est également facile à démontrer.

Exercice 7. Lemme de Bezout version 2.
Soit a et b dans A non nuls. Alors, a et b sont premiers entre eux si et seulement s’il existe u et v dans
A tels que au+ bv = 1.

Définition I.32: ppcm

Soit a1, . . . , as des éléments non nuls de A. Un élément c ∈ A tel que (a1) ∩ · · · ∩ (as) = (c) est
appelé ppcm des éléments a1, . . . , as.
On note c = a1 ∨ · · · ∨ as.

6.3 Calcul des Pgcd et ppcm
On se donne a et b non nuls dans A. On veut calculer a ∧ b et a ∨ b. Un premier résultat nous dit que la
connaissance de l’un détermine l’autre.

Proposition I.33: Lien ppcm et pgcd

Il existe u inversible tel que
(a ∧ b)(a ∨ b) = uab.

Démonstration. On pose a′ = a/(a∧ b) et b′ = b/(a∧ b). Comme a′ ∧ b′ = 1 et a′ ∨ b′ = (a∨ b)/(a∧ b) il
suffit de montrer que

(a′ ∨ b′) = (a′b′),

sachant que a′ ∧ b′ = 1.
Autrement dit on peut supposer que a ∧ b = 1. Alors il existe u et v dans A tels que au+ bv = 1.
Il est clair que (ab) ⊂ (a). Donc (ab) ⊂ (a) ∩ (b) = (a ∨ b).
Réciproquement montrons que a ∨ b ∈ (ab). Comme a divise a ∨ b, il existe c tel que a ∨ b = ac. Or

c = acu+ bcv.

Puisque b divise bcv et acu = u.(a ∨ b) il divise c. Donc c = bc′. Ainsi a ∨ b = ac = abc′. CQFD.

Algorithme d’Euclide. Il s’agit d’un algorithme permettant de calculer a∧ b. Il est basé sur la formule
suivante. On suppose b non nul et soit a = bq + r la division euclidienne alors{

a ∧ b = r ∧ b
0 ∧ b = b

Pour obtenir l’algorithme, on réitère le procédé en divisant b par r pour ré-exprimer r ∧ b.

6.4 Factorisation
Comme nous commençons à le voir, le cadre des anneaux euclidiens (en fait principal suffit souvent) est
un bon cadre où étendre les propriétés des entiers. Une propriété arithmétique fondamentale des entiers
est la décomposition en produit de nombres premiers. Cela s’étend à notre cadre du jour : on dit qu’un
anneau principal est factoriel.
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Théorème I.34. Factoriel

Soit A un anneau euclidien et a un élément non nul de A. Alors, il existe des éléments irréductibles
p1, . . . , ps dans A, des entiers naturels non nuls n1, . . . , ns et un élément inversible u tel que

a = upn1
1 . . . pns

s .

De plus cette écriture est unique à l’ordre près et à multiplication des pi et de u par des inversibles.

Un ingrédient clé pour montrer cela est le

Lemme I.35 (Lemme de Gauss). Soit a, b et c non nuls dans A. Si a divise bc et a∧ b = 1 alors a divise
c.

Démonstration. On utilise encore Bezout : au+ bv = 1. Alors acu+ bcv = c. Donc a divise c.

Preuve du théorème de Factorialité. Pour l’existence on fait une récurrence sur N(a). Si a est irréduc-
tible, il n’y a rien à montrer. Sinon a = bc avec b et c non inversibles. Alors N(b) < N(a) et N(c) < N(a).
Par récurrence, on déduit que b et c admettent des décompositions. Donc a aussi.

Pour l’unicité supposons que ∏
i

pi = u
∏
j

qj , (6.1)

- avec pi et qi irréductibles et u inversible. Ici on remplace les exposant par des répétitions.
Il est clair que q1 divisent le membre de droite. Donc il divise celui de gauche. Supposons que q1 n’est
pas conjugué à p1. Comme ils sont irréductibles, il suit que q1 ∧ p1 = 1. Mais alors le lemme de Gauss
implique que q1 divise

∏
i⩾2 pi. On recommence. On aura nécessairement à un moment q1 divise pi. On

divise l’expression (6.1) par q1 et on recommence (cad on fait une récurrence sur le nombre de qi).

Pour ceux qui auraient l’impression de ne rien avoir montré, il est intéressant de faire l’exercice suivant.

Exercice 8. Posons A = {a+ bi
√
5 : a, b ∈ Z}.

(i) Montrer que A est un sous-anneau de C.
(ii) Montrer que 2 et 3 sont irréductibles dans A.
(iii) Montrer que 1± i

√
5 sont irréductibles dans A.

(iv) En remarquant que 2× 3 = (1 + i
√
5)(1− i

√
5), montrer que A n’est pas euclidien.

7 Anneau K[X]

Fixons un corps K. Vous pouvez penser à R, C, Q ou Z/pZ. Nous verrons d’autres exemples plus tard.
Nous avons déjà vu que K[X] était un anneau euclidien : il vérifie donc Bezout, Gauss et il y a une unique
décomposition en produit de polynômes irréductibles. Nous allons maintenant voir quelques techniques
spécifiques à cet anneau.

7.1 Racines et Dérivation
Substitution. C’est l’opération la plus compliquée à comprendre. Soit

P = a0 + a1X + · · ·+ adX
d

et Q deux polynômes. On pose alors

(P ◦Q)(X) = a0 + a1Q(X) + · · ·+ adQ(X)d.

Faisons un exemple : P = 1 +X3 et Q = 2 +X2 :

(P ◦Q)(X) = 1 + (2 +X2)3

= 9 + 3X2 + 3X4 +X6.
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L’application P 7→ P ◦Q est linéaire mais PAS Q 7→ P ◦Q.
Dérivation. L’ensemble (1, X,X2, . . . ) est une base de K[X]. On peut donc définir un endomorphisme
D de K[X] on donnant l’image de ces monômes.

D : K[X] −→ K[X]
Xk 7−→ kXk−1 si k ⩾ 1
1 7−→ 0

On a définit ainsi ce que l’on appelle la dérivation. Dans le cas où le corps est celui des réels cette
dérivation coïncide avec la dérivation usuelle. On note souvent P ′ pour D(P ).
On a les règles de calculs usuelles de la dérivation :

Proposition I.36: Propriétés de la dérivation

Soit P et Q dans K[X]. On a

D(PQ) = D(P )Q+ PD(Q) (PQ)′ = P ′Q+QP ′

et
D(P ◦Q) = D(Q).D(P ) ◦Q (P ◦Q)′ = Q′ × P ′ ◦Q.

Démonstration. Fixons Q. Les applications P 7→ D(PQ) et P 7→ D(P )Q + PD(Q) sont linéaires. Du
coup il suffit de montrer l’égalité pour P = Xk.
Fixons maintenant P = Xk. Les applications Q 7→ D(PQ) et Q 7→ D(P )Q+ PD(Q) sont linéaires. Du
coup il suffit de montrer l’égalité pour Q = X l.
Dans ce cas, on a

D(PQ) = D(Xk+l) = (k + l)Xk+l−1

et
D(P )Q+ PD(Q) = D(Xk)X l +XkD(X l) = kXk+l−1 + lXk+l−1 = (k + l)Xk+l−1.

Montrons maintenant la seconde égalité. Les applications P 7→ D(P ◦Q) et P 7→ D(Q)×D(P ) ◦Q sont
linéaires. Du coup il suffit de montrer l’égalité pour P = Xk.
Dans ce cas, on a

D(P ◦Q) = D(Qk) = kD(Q)Qk−1

et
D(Q).D(P ) ◦Q = D(Q).k.Qk−1.

Evaluation – Racines.
Soit a ∈ K. Alors on a une application évaluation

eva : K[X] −→ K
P 7−→ P (a).

On vérifie sans peine que eva est un morphisme d’anneaux. Son noyau est {P : P (a) = 0}. C’est un
idéal maximal de K[X] car le quotient est isomorphe à K. L’isomorphisme est donné par eva.

Proposition I.37: Racine et division

Soit P ∈ K[X] et a ∈ K. Alors a est une racine de P si et seulement si X − a divise P .

Démonstration. Si P = (X − a)Q, il est clair que P (a) = 0. Réciproquement supposons que P (a) = 0.
On écrit la division euclidienne P = Q(X − a) + R avec R nul ou de degré strictement inférieur à 1.
Donc R est en fait un polynôme constant. Par ailleurs, 0 = P (a) = R(a). Donc R est nul et X − a divise
P .
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Définition I.38: Ordre d’une racine

Soit P ∈ K[X] non nul, a ∈ K et α ∈ N. On dit que a est racine d’odre au moins α si (X − a)α

divise P .
On dit que a est racine d’odre exactement α si elle est racine d’ordre au moins α mais n’est pas
d’odre au moins α+ 1.

Proposition I.39: Ordre racine et dérivées

Soit P ∈ K[X] non nul, a ∈ K et α ∈ N. Alors
(i) Si a est racine d’odre au moins α alors

P (a) = P ′(a) = · · · = P (α−1)(a) = 0.

(ii) Si de plus K est de caractéristique nulle, la réciproque de la première assertion est vrai.

Démonstration. Supposons d’abord que (X−a)α divise P . Il existe alors Q ∈ C[X] tel que P = (X−a)αQ.
On rappelle la formule le Leibnitz :

(fg)(k) =

k∑
i=0

(
k
i

)
f (i)g(k−i).

La preuve de cette formule se fait par récurrence sur k en utilisant la formule de dérivation d’un produit.
On obtient pour P et k ⩽ α− 1 :

(P )(k) =

k∑
i=0

(
k
i

)
((X − a)α)(i)Q(k−i). (7.1)

On remarque alors que

((X − a)α)(i) = (α.(α− 1) . . . (α− i+ 1))(X − a)α−i si i ⩽ α,

et
((X − a)α)(i) = 0 si i > α.

En particulier, pour tout i ⩽ k < α, on a(
((X − z)α)(i)

)
(a) = 0.

En injectant dans la formule (7.1), on déduit que P (k)(a) = 0.

Réciproquement, supposons que P (a) = · · · = P (α−1)(a) = 0. Ecrivons la division euclidienne de P par
(X − a)α :

P = (X − a)αQ+R,

avec deg(R) < α. L’assertion déjà démontrée implique que

R(a) = · · · = R(α−1)(a) = 0.

Considérons le polynôme auxiliaire

S(X) = R(z +X) R(X) = S(X − a).

La formule de dérivation d’un polynôme composé implique que

S(k)(X) = R(k)(z +X),
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donc
S(0) = · · · = S(α−1)(0) = 0.

Ecrivons S = a0 + a1X + · · ·+ aα−1X
α−1. Par une récurrence immédiate, on montre que

S(k)(0) = k!ak ∀k = 0, . . . , α− 1.

On en déduit que S = 0, puis que R = 0. Ainsi (X − a)α divise P .

7.2 Irréductibilité

A Petits degrés

En petit degré, il y a un critère simple d’irréductibilité.

Proposition I.40: Irréductibilité et racines

On a
(i) Tout polynôme de degré 1 est irréductible.
(ii) Tout polynôme irréductible de degré supérieur à 2 n’a pas de racine.
(iii) Tout polynôme de degré 2 ou 3 qui n’a pas de racine est irréductible.

Démonstration. Soit P un polynôme. Il est irréductible, si pour tout A,B dans K[X] tels que P = AB,
on a deg(A) ou deg(B) nul :

∀A,B ∈ K[X] (P = AB ⇒ (deg(A) = 0 ou deg(B) = 0)).

Les trois énoncés de la proposition découlent facilement des deux assertions suivantes :

(i) deg(P ) = deg(A) + deg(B) ;

(ii) P est divisible par un polynôme de degré un si et seulement si il a une racine.

En appliquant la proposition, on voit que X2+X+1 ∈ Z/2Z[X] est irréductible. Attention, il est possible
qu’un polynôme sans racine ne soit pas irréductible. (X2 + 1)2 donne un exemple dans R[X].

B Nombres complexes

Théorème I.41. D’Alembert-Gauss

Les polynômes irréductibles de C[X] sont les polynômes de degré un.

Ceci est bien une version du théorème de d’Alembert-Gauss qui dit que tout polynôme non constant sur
C a une racine et donc est divisible par un polynôme de degré un.

C Nombres réels

Encore une façon de formuler le théorème de d’Alembert-Gauss.

Théorème I.42. D’Alembert-Gauss

Les polynômes irréductibles de R[X] sont les polynômes de degré un et les polynômes de degré 2
et de discriminant négatif.
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D Nombres entiers et rationnels

On sort un peu du contexte en regardant les polynômes à coefficients entiers. Ce n’est pas un anneau
euclidien.
Pour P ∈ Z[X] non nul on note c(P ) le pgcd des coefficients de P . Ce nombre est appelé le contenu de
P .

Théorème I.43. Gauss

Soit P et Q dans Z[X] non nuls. Alors

c(PQ) = c(P )c(Q).

Cette formule est très simple et très utile. C’est la marque des grands. . .théorèmes.

Démonstration. Posons P̃ = P/c(P ) et Q̃ = Q/c(Q). Ceux sont des polynômes à coefficients entiers et
de contenu égal à 1. Il suffit de montrer que

c(P̃ Q̃) = 1.

Soit p un nombre premier. Soit P̄ (resp. Q̄) le polynôme de Z/pZ[X] obtenu en considérant la classe
dans Z/pZ de chaque coefficient de P̃ (resp. Q̃). Comme c(P̃ ) = 1, P̄ est non nul. Comme Z/pZ[X] est
intègre, on en déduit que P̄ Q̄ ̸= 0. Donc p ne divise pas c(P̃ Q̃). Vu l’arbitraire de p, on en déduit que
c(P̃ Q̃) = 1.

Corollaire I.44: Irred dans Z et Q

Soit P ∈ Z[X] tel que c(P ) = 1. Alors se valent
(i) P est irréductible dans Q[X] ;
(ii) P est irréductible dans Z[X].

Démonstration. Un sens est évident. Réciproquement supposons que P est irréductible dans Z[X]. Soit
P = AB dans Q[X]. En chassant les dénominateurs de A et B, on obtient d ∈ N, Ã, B̃ ∈ Z[X] tels que

dP = ÃB̃. (7.2)

En prenant le contenu, sachant que c(P ) = 1, on obtient d = c(Ã)c(B̃). Mais alors, en divisant l’équa-
tion (7.2) par d, on obtient

P =
Ã

c(Ã)

B̃

c(Ã)
. (7.3)

Cette équation vit dans Z[X]. Donc l’irréductibilité de P dans Z[X] montre que deg(A) ou deg(B) est
nul. CQFD.

Ce corollaire est très puissant pour montrer qu’un polynôme de Q[X] est irréductible. Faisons un exemple.

Exemple 14. Soit P = X4 +X + 1. Montrons que P est irréductible dans Q[X]. Comme P ∈ Z[X] et
c(P ) = 1, il suffit de monter qu’il est irréductible dans Z[X]. Ecrivons donc P = AB avec A et B dans
Z[X]. Il s’agit de montrer que A ou B est constant. Quitte à permuter A et B, on peut supposer que
deg(A) ⩽ deg(B). Comme deg(A) + deg(B) = deg(P ) = 4, il y deux cas à considérer :

(i) deg(A) = 1 et deg(B) = 3.

Alors A = aX + b avec a, b ∈ Z. En regardant le coefficient dominant de AB, on déduit que a est
inversible dans Z. Donc a = ±1. On peut supposer que a = −1. Mais alors b ∈ Z est une racine
de P . Avec des inégalité, on se convainc que cela est impossible.
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(ii) deg(A) = 2 et deg(B) = 2.

Alors on a
X4 +X + 1 = (aX2 + bX + c)(a′X2 + b′X + c′)

dans Z. En particulier aa′ = 1. Donc on a a = a′ = ±1. On peut supposer (quitte à multiplier les
deux facteurs par −1) que a = a′ = 1.
De plus, cc′ = 1. Donc c′ = c = ±1. Or

(X2 + bX + c)(X2 + b′X + c) = X4 + (b′ + b)X3 + (2c+ bb′)X2 + c(b+ b′)X + 1.

On obtient donc b′ = −b en regardant le coefficient en X3. Donc le coefficient en X est nul.
Contradiction.

Réduction modulo p. Nous venons de voir que la question de l’irréductibilité d’un polynôme de Q[X]
se ramène à la même question dans Z[X]. L’exemple précédent montre que cela est parfois un progrés.
En revanche, nous perdons le fait l’anneau des coefficients est un corps. D’où la construction suivante.
Soit p un nombre premier. On note a 7−→ ā, Z −→ Z/pZ la réduction modulo p. C’est un morphisme
d’anneaux, appelé réduction modulo p. Celle-ci s’étend en un morphisme d’anneaux

Z[X] −→ (Z/pZ)[X]
P =

∑
i aiX

i 7−→ P̄ =
∑

i āiX
i.

Comme c’est un morphisme d’anneaux, une écriture P = AB dans Z[X] induit une telle relation P̄ = ĀB̄
dans (Z/pZ)[X]. Si de plus, le coefficient dominant de P n’est pas divisible par p, les degrés de P , A et
B sont préservés. Cela peut permettre de démontrer des irréductibilités dans Z[X] comme sur l’exemple
suivant ou encore dans la démonstration du théorème de Gauss ci-dessus.

Exemple 15. TODO

Un exemple d’illustration de ce principe est la proposition suivante.

Proposition I.45: Critère d’Eisenstein

Soit P = anX
n + · · ·+ a1X + a0 un polynôme de Z[X] de degré n. Soit p un nombre premier. On

suppose que
(i) p divise a0, . . . , an−1 ;
(ii) p ne divise pas an ;
(iii) p2 ne divise pas a0.

Alors P ∈ Q[X] est irréductible.

Preuve

Quitte à factoriser par le pgcd des coefficients, on peut supposer que les coefficients de P sont
globalement premiers entre eux. Cela n’affecte pas les hypothèses. En vertu du théorème de Gauss,
il s’agit alors de montrer que P est irréductible dans Z[X]. Supposons par l’absurde, que P = AB
dans Z[X] avec A et B non inversibles. Vu la nouvelle hypothèse sur les coefficients, les degrés de
A et B sont non nuls.
Considérons le morphisme θ : Z[X] −→ (Z/pZ)[X]. On a θ(P ) = θ(A)θ(B).

Exemple 16. Justifier que le polynôme 3X4 + 15X2 + 10 est irréductible dans Z[X].

Polynômes cyclotomiques.
Les polynômes cyclotomiques sont les facteurs irréductibles des Xn − 1 dans Q[X]. Dans un premier
temps, on pose, pour tout n ∈ N∗

Φn =
∏

ζ∈Un primitif

X − ζ.
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Comme chaque ζ ∈ Un est primitif dans un unique Ud pour d divisant n (d est l’ordre de ζ dans Un), on
a :

Xn − 1 =
∏

d divisant n

Φd.

En particulier, Φn est le quotient de Xn − 1 par∏
d divisant n

d ̸= n

Φd.

Une récurrence montre alors que Φn est unitaire et appartient à Z[X].

Théorème I.46. Irréductibilité des polynômes cyclotomique

Pour tout n ⩾ 1, le polynôme Φn est irréductible dans Z[X] et Q[X].

La preuve de ce théorème sera faite plus tard, lorsque nous aurons étudié les corps finis.

8 Théorème Chinois et Applications
TODO
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1 Corps, Sous-corps, Extension

1.1 Définition et exemples

Définition II.47: Corps

Un corps (K,+,×) est un anneau tel que tout élément non nul est inversible pour ×.

Les premiers exemples sont les corps que vous manipulez depuis longtemps : R, C et Q. Autre exemple
Q(i) = Q+Qi.

L’anneau Z n’est pas un corps car 2 n’est ni nul ni inversible.

L’anneau Z/nZ est un corps si et seulement si n est premier. En effet, d’après le théorème de Bezout,
k̄ ∈ Z/nZ est inversible si et seulement si k est premier avec n.

L’ensemble des fractions rationelles K(X) est un corps.

On montre facilement que K∗ = K − {0} est un groupe abélien. En particulier l’inverse dex ∈ K∗ pour
× est unique : on le note x−1 ou 1

x .
Comme nous l’avons déjà vu des corps peuvent être inclus les uns dans les autres.

Définition II.48: Sous-Corps

Soit (L,+,×) un corps. Une partie K ⊂ L est un sous-corps si c’est un sous-anneau tel que

∀x ∈ K x−1 ∈ K.

On dit aussi que L est une extension de K.

Une remarque très importante est que si K ⊂ L est une extension de corps alors L est un K-espace
vectoriel. La dimension de cet espace vectoriel est appelée le degré de l’extension. On la note [L : K].
Par exemple [C : R] = 2, [Q(i) : Q] = 2 et [C : Q] = ∞.

1.2 Caractéristique d’un corps
Soit A un anneau. Soit n un entier naturel. On peut bien sûr le penser comme 1 + 1 + · · · + 1 n fois.
Mais alors il prend un sens dans A. De plus, si n est négatif, n = −(−n). On obtient ainsi un morphisme
d’anneaux

ι : Z −→ A.

Autrement dit, ι(1) = 1, ι(2) = 1 + 1 + 1, ι(3) = 1 + 1 + 1 etc. Et ι(−1) = −ι(1), ι(−2) = −ι(2),
ι(−3) = −ι(3) etc. Le noyau de ι est un idéal de A. Il s’écrit donc (n) pour un entier naturel n. L’entier
n est appelé la caractéristique de A. On la note car(A).

Lemme II.49. La caractéristique d’un corps est nulle ou un nombre premier p.

Démonstration. Comme Z/nZ s’injecte dans le corps il est intègre. Mais alors n est nul ou premier.

Soit K un corps. En fait, si car(K) = 0 alors K contient Q. Si car(K) = p alors K contient Z/pZ.

Lemme II.50. Le cardinal d’un corps fini est une puissance d’un nombre premier.

Démonstration. Le morphisme ι ne peut être injectif car Z est infini. Il suit que le corps contient Z/pZ
avec p-premier. En particulier il est isomorphe à (Z/pZ)n comme espace vectoriel (pour un certain n).
Donc son cardinal est pn.

Nous verrons dans ce chapitre que réciproquement pour tout n, il existe un unique (à iso près) corps à
pn éléments.
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1.3 Double extension

Soit K1 ⊂ K2 ⊂ L. Combien voyez-vous d’extension ? Deux ? Et non, c’est trois.

Théorème II.51. Base télescopique

Soit K1 ⊂ K2 ⊂ L. On suppose que K1 ⊂ L est une extension finie. Alors

[L : K1] = [L : K2] · [K2 : K1].

Démonstration. La démonstration de ce théorème explique son nom. Soit (e1, . . . , ed) une base de K2

comme K1-espace vectoriel. Soit (f1, . . . , fd′) une base de L comme K2-espace vectoriel.
Chaque élément y de L s’écrit

y =
∑
i

xifi

pour xi ∈ K2. Or chaque xi s’écrit
xi =

∑
j

mijej ,

pour mij ∈ K1. Mais alors,
y =

∑
i,j

mij(ejfi)

. Donc la famille (eifj) engendre L comme K1-espace vectoriel.

Supposons maintenant que ∑
i,j

mij(ejfi) = 0,

avec mij ∈ K1. Alors ∑
i

(
∑
j

mijej)fi = 0.

Comme (f1, . . . , fd′) est libre sur K2, on en déduit que

∀i
∑
j

mijej = 0.

Comme (e1, . . . , ed) est libre sur K1, on en déduit que

∀i, j mij = 0.

Ainsi la famille (eifj) est libre.

Finalement la famille (eifj) est une base de L comme K1-espace vectoriel. La formule du théorème en
découle facilement.

2 Corps des Fractions

Une première façon de construire des corps est de faire ce que l’on a fait pour construire Q. Nous par-
tions de Z et considérions les fractions a

b comme un objet formel. En fait cela marche dès que l’anneau
de départ est intègre. Mais au fait, vous aviez déjà vu un autre exemple : le corps des fractions rationnelles.

Soit A un anneau intègre. On considère l’ensemble quotient suivant

Frac(A) := {a
b

: a ∈ A, b ∈ A− {0}}/ ∼
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où la relation d’équivalence ∼ est définie par

a

b
∼ c

d
⇔ ad− bc = 0.

On définit ensuite sur A les deux opérations :

a

b
× c

d
=

ac

db
et

a

b
+

c

d
=

ad+ bc

db
.

On vérifie que ces opérations sont bien définies (c’est-à-dire passent au quotient par ∼) et dont de Frac(A)
un corps. C’est un peu long mais sans difficulté.

L’anneau de départ A s’injecte dans K par l’application

ι : A −→ Frac(A), a 7−→ a

1
.

Le corps Frac(A) vérifie la propriété universelle suivante. Tout morphisme d’anneau injectif de A dans
un corps se prolonge de manière unique à Frac(A). C’est une manière de dire que Frac(A) est le plus
petit corps contenant A.

3 Elément algébrique – Corps de décomposition

3.1 Polynôme minimal
Soit K ⊂ L une extension de corps. Pensez ici à Q ⊂ C. Soit α ∈ L et

φα : K[X] −→ L
P 7−→ P (α).

Définition II.52: Algébrique/Transcendant

Un élément α ∈ L est dit algébrique sur K s’il existe un polynôme non nul P ∈ K[X] tel que
P (α) = 0. Sinon il est dit transcendant.

Dit autrement, α est transcendant si φ est injectif et algébrique sinon. Dans ce dernier cas, le
générateur unitaire de Kerφ est appelé le polynôme minimal de α. On le note µα.

Proposition II.53: Corps engendré

Soit α ∈ L algébrique sur K. Alors le polynôme minimal de α est irréductible. De plus, l’image de
φα est un corps, noté K[α] et isomorphe à K[X]/(µα).

Démonstration. L’anneau quotient K[X]/(µα) s’injecte dans L, donc il est intègre. Ce qui implique que
µα est irréductible.
Mais alors, (µα) est un idéal maximal donc K[X]/(µα) est un corps.

Par exemple,
√
2 est algébrique sur Q et son polynôme minimal est X2 − 2.

Théorème II.54. Corps des nombres algébriques

L’ensemble des nombres de L qui sont algébriques sur K est un sous-corps de L et une extension
de K.
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Démonstration. La remarque essentielle de cette démonstration est la suivante : φα n’est pas injective si
et seulement si son image est de dimension finie si et seulement si α est algébrique.
Soit maintenant α et β dans L qui sont algébriques sur K. On a déjà vu que α−1 ∈ K[α].
Considérons K[α, β] := (K[α])[β]. Comme β est algébrique sur K il l’est sur K[α]. Donc la dimension de
K[α, β] sur K[α] est finie et K[α, β] est un corps. D’après le théorème de la base télescopique, la dimension
de K[α, β] sur K est finie.
Or α + β appartient à K[α, β] qui est un corps. Donc l’image de φα+β est incluse dans K[α, β] et donc
de dimension finie. Donc α+ β est algébrique sur K. On montre de même αβ est algébrique sur K.

Le théorème précédent implique par exemple que le nombre complexe
√
5 + i

3
√
2 + i 5

√
3

est algébrique sur Q. Il n’est pas facile du tout d’en trouver le polynôme minimal. On peut tout de même
en mimant la preuve trouver une borne supérieure sur son degré.

3.2 Corps de décomposition
Soit P ∈ K[X] un polynôme irréductible. L’anneau quotient K[X]/(P ) est un corps car l’idéal (P ) est
maximal. Notons X̄ la classe de X dans K[X]/(P ). Alors, par définition P (X̄) = 0, si bien que K[X]/(P )
est un corps, une extension de K et contenant une racine P . De plus, K[X]/(P ) est engendré par X̄ et
K comme anneau et

[K[X]/(P ) : K] = deg(P ).

Le corps K[X]/(P ) est appelé corps de rupture de P . C’est l’unique (à isomorphisme près) extension de
K contenant une racine de P et engendré par celle-ci.
Nous admettrons le résultat suivant.

Théorème II.55. Corps de décomposition

Soit P un polynôme non nul de K[X]. Alors il existe une extension L de K telle que P est scindé
sur L et L est engendré par les racines de P et K comme anneau.
De plus, L est l’unique extension de K vérifiant ces propriétés. L est appelé le corps de décomposition
de P .

4 Corps finis
Le but de cette section est de classifier tous les corps finis. L’énoncé est le suivant :

Théorème II.56. Corps finis

(i) Soit K un corps fini. Alors il existe un nombre premier p et un entier naturel non nul n tel
que ♯K = pn.

(ii) Réciproquement, soit p un nombre premier et n un entier naturel non nul. Alors, il existe
un corps à pn éléments.

(iii) De plus, deux corps finis de même cardinal sont isomorphes.

On note Fq l’unique corps à q = pn éléments.

4.1 Premières propriétés et exemple
Soit K un corps fini. Sa caractéristique est non nulle (car il ne peut contenir Z), notons là p. Alors K
contient Z/pZ. Posons n = [K : Z/pZ] la dimension de K comme Z/pZ-espace vectoriel. Alors ♯K = pn.
La première assertion du théorème II.56 est démontrée.
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Si n = 1, à la fois l’existence et l’unicité du théorème II.56 sont claires. On pose donc Fp = Z/pZ pensé
comme un corps. Regardons le plus petit cas qui suit p = 2 et n = 2. Soit K un corps de cardinal 4. On
note 0 et 1 les éléments de Z/2Z qui est inclus dans K. Soit x dans K− {0, 1}.
On peut voit que 1 + x ̸= 1 (car x ̸= 0), 1 + x ̸= 0 (car x ̸= 1), 1 + x ̸= x (car 1 ̸= 0). Donc
K = {0, 1, x, 1 + x}. On peut dresser la table d’addition de K :

0 1 x 1 + x

0 0 1 x 1 + x
1 1 0 1 + x x
x x 1 + x 0 1

1 + x 1 + x x 1 0

On s’intéresse à présent à x2. On voit que x2 ̸= 0 (car x ̸= 0), x2 ̸= 1 (car x2 − 1 = (x − 1)2), x2 ̸= x
(car x2 − x = x(x− 1)). Donc x2 = 1 + x. On peut dresser la table de multiplication de K :

0 1 x 1 + x

0 0 0 0 0
1 0 1 x 1 + x
x 0 x 1 + x 1

1 + x 0 1 + x 1 x

4.2 Préliminaires

Avant de se lancer dans la preuve du théorème II.56, on va montrer un lemme dans C[X], Z[X] et Z.

Lemme II.57 (Des divisibilités). Soit m et n deux entiers naturels non nuls.

(i) Dans C[X], Xn − 1 divise Xm − 1 si et seulement si n divise m.

(ii) De plus, Xn − 1 divise Xm − 1 dans C[X] si et seulement si il le divise dans Z[X].

(iii) Soit a ⩾ 2 un entier naturel. Alors an − 1 divise am − 1 si et seulement si n divise m.

Démonstration. Dans C, on écrit

Xn − 1 =
∏
ζ∈Un

X − ζ,

où Un désigne l’ensemble des racines n-ième de l’unité (les e
2ikπ
n ). Alors Xn − 1 divise Xm − 1 si et

seulement si Un est inclus dans Um si et seulement si n divise m.

Il est clair que si Xn−1 divise Xm−1 dans Z[X] alors il le divise dans C[X]. Réciproquement, supposons
que Xn − 1 divise Xm − 1 dans C[X]. Effectuons la division euclidienne de Xn − 1 par Xm − 1 dans
Q[X]. Comme Xm − 1 est unitaire, on ne divise jamais et le quotient Q et le reste R sont à coefficients
entiers. Donc

Xn − 1 = (Xm − 1)Q+R Q,R ∈ Z[X].

Effectuons la division euclidienne de Xn−1 par Xm−1 dans C[X]. On fait les même calculs que lorsque
nous pensions les coefficients des polynômes dans Q. Donc les quotients et restes sont les mêmes. Mais
alors comme Xn − 1 divise Xm − 1 dans C[X], R = 0. cdfd.

Si n divise m, alors Xn − 1 divise Xm − 1 dans Z[X]. Donc en substituant a à X, an − 1 divise am − 1.
Réciproquement supposons que an − 1 divise am − 1. On écrit m = nq + r avec 0 ⩽ r < n. Comme

an − 1 = (a− 1)(an−1 + an−2 + · · ·+ 1),
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l’entier (an−1 + an−2 + · · ·+ 1) divise

1 + · · ·+ am−2 + am−1 = (1 + · · ·+ an−1)
+(1 + · · ·+ an−1)an

+(1 + · · ·+ an−1)a2n

...
+(1 + · · ·+ an−1)a(q−1)n

+(1 + · · ·+ ar−1)aqn.

L’entier N := (an−1+an−2+ · · ·+1) est de la forme 1+ab (un plus un multiple de a. Il est donc premier
avec a (par Bezout si vous voulez). Par ailleurs, il divise la somme ci-dessus ainsi que tous ses premiers
termes. Donc N divise le dernier terme de la somme, c’est-à-dire (1+ · · ·+ar−1)aqn. Mais alors, le lemme
de Gauss implique que N divise (1 + · · · + ar−1). Le seul moyen (inégalités) est d’avoir r = 0. Donc n
divise m.

4.3 Factorisation d’un polynôme dans Fp[X]

Soit d un entier naturel non nul. On note I(d, p) l’ensemble des polynômes de Fp[X] unitaires irréductibles
et de degré d.

Lemme II.58. Si I(d, p) est non vide, alors il existe un corps à pd éléments.

Démonstration. En effet, Fp[X]/(P ) convient pour P ∈ I(d, p).

On veut donc montrer que I(d, p) est non vide.

Proposition II.59: Factorisation de Xpn −X

Soit n un entier non nul. Dans Fp[X], on a

Xpn −X =
∏
d |n

∏
P∈I(d,p)

P.

Démonstration. L’équation de la proposition est la décomposition de Xpn −X en produit de polynômes
irréductibles. Il suffit donc de montrer les deux assertions suivantes, pour tout polynôme irréductible
unitaire P de Fp[X] :

(i) P 2 ne divise pas Xpn −X ;

(ii) P divise Xpn −X si et seulement si deg(P ) divise n.

Pour la première assertion, supposons par l’absurde que Xpn −X = P 2Q. Alors en dérivant on obtient

−1 = P (2P ′Q+ PQ′).

Donc P divise −1. Contradiction.

Supposons maintenant que d = deg(P ) divise n. Soit L = Fp[X]/(P ) et α ∈ L la classe de X. Alors
P (α) = 0.
Si α = 0, P = X et il n’y a rien à montré. Supposons donc α ̸= 0. Alors α est un élément du groupe
multiplicatif L− {0} de cardinal pd − 1. Le théorème de Lagrange montre donc que αpd−1 = 1. D’après
le lemme II.57, on a aussi αpn−1 = 1 (car pd − 1 divise pn − 1). Mais alors α est racine de Xpn −X.
Comme P et Xpn −X ont une racine commune dans L leur pgcd n’est pas 1. Or, grâce à l’algorithme
d’Euclide, le pgcd ne dépend pas du corps contenant les coefficients des polynômes. Donc, dans Fp[X],
le pgcd de P et Xpn −X n’est pas 1. Mais alors, comme P est irréductible, P divise Xpn −X.

Supposons enfin que P divise Xpn −X. Notons encore d = deg(P ), L = Fp[X]/(P ) et α ∈ L la classe de
X. On peut encore supposer α ̸= 0. On fait la division euclidienne : n = ds+ r avec 0 ⩽ r < d.
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Comme P divise Xpn −X, αpn−1 = 1 et αpn

= α. Donc

αpn

= (αpds

)p
r

= αpr

= α.

On en déduit que si β est une puissance de α alors

βpr

= β.

Si par l’absurde r ̸= 0, on a
(x+ y)p

r

= xpr

+ yp
r ∀x, y ∈ L

et
xpr

= x ∀x ∈ Fp.

On en déduit que
xpr

= x ∀x ∈ L. (4.1)

En particulier le polynôme Xpr −X de degré pr a au moins ♯L = pd racines. Contradiction.

Exemple 17. Dans F2[X], on obtient

X8 −X = X(X − 1)(X3 +X + 1)(X3 +X2 + 1).

Dans F3[X], on obtient

X9 −X = X(X − 1)(X + 1)(X2 + 1)(X2 +X − 1)(X1 −X − 1).

4.4 Existence

L’égalité des degré dans la proposition II.59 donne

pn =
∑
d |n

♯I(d, p)d. (4.2)

Théorème II.60. Existence polynôme irréductible

Dans Fp[X] il existe des polynômes irréductibles de tout degré. En particulier, pour tout n il existe
un corps à pn éléments.

Démonstration. Il s’agit de montrer que I(d, p) est non vide. Or, d’après (4.2), on a

pn = ♯I(n, p)n+
∑

d |n d<n

♯I(d, p)d

et
♯I(n, p)n ⩽ pn.

Mais alors

pn ⩽ ♯I(n, p)n+
∑

d |n d<n

pd ⩽ ♯I(n, p)n+

n−1∑
k=0

pk ⩽ ♯I(n, p)n+
pn − 1

p− 1
< ♯I(n, p)n+ pn.

Donc ♯I(n, p) est non nul.

Le lemme du début et l’existence de polynômes irréductibles impliquent l’existence de corps.
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4.5 Unicité
On peut montrer que

♯I(50, 2) = 22 517 997 465 744.

Cela fait de nombreuses manières de construire F250 . Mais l’on obtient toujours la même chose ! !

Démonstration. Soit L un corps à pn éléments et P un polynômes irréductible unitaire de degré n dans
Fp[X]. Posons K = Fp[X]/(P ).
Tous les éléments non nuls de L vérifient, αpn−1 = 1, en vertu du théorème de Lagrange appliqué dans
le groupe multiplicatif L− {0}. Mais alors, pour tout α ∈ L on a αpn

= α. On en déduit que

Xpn −X =
∏
α∈L

(X − α).

Dans Fp[X], on sait que P divise Xpn − X. Donc il existe α0 ∈ L tel que P (α0) = 0. Comme P est
irréductible sur Fp, P est le polynôme minimal de α0 sur Fp. Ainsi, le morphisme

Fp[X] −→ L, Q 7−→ Q(α0)

induit un morphisme injectif
Fp[X]/(P ) −→ L.

Par égalité des cardinaux ce morphisme injectif est en fait un isomorphisme.

4.6 Application : Irréducbilité des polynômes cyclotomiques sur Q
Dans ce paragraphe, on démontre le théorème I.46. Rappelons que Φn est le polynôme unitaire dont les
racines sont les racines n-ièmes primitive de l’unité. On a déjà vu que c’est un polynôme à coefficients
entiers, de degré ϕ(d).
Affirmation 1 : Tout diviseur de Xn − 1 dans Q[X] est à coefficients entiers et de contenu 1.

On écrit dans Q[X], Xn−1 = PQ. Soit p et q les ppcm les dénominateurs (mis sous forme irréductibles)
des coefficients de P et Q respectivment. On réécrit la relation dans Z[X] :

pq(Xn − 1) = (pP )(qQ).

On prend le contenu
c(pq(Xn − 1)) = pq = c(pP )c(qQ) = 1.

Donc p = q = 1 et P et Q sont dans Z[X].

Soit ζ une racine primitive n-ièmes de l’unité et Pζ son polynôme minimal dans Q[X]. Comme Pζ et Φn

ont une racine en commun, ils ne sont pas premiers entre eux. Comme Pζ est irréductible, il divise Φn.
Par l’affirmation 1, Pζ ∈ Z[X]. On écrit Xn − 1 = PζH avec H ∈ Z[X] (comme Pζ est unitaire).
Soit p un nombre premier qui ne divise pas n et ξ une racine de Pζ .
Affirmation 2 : Pζ(ξ

p) = 0.
Supposons par l’absurde que Pζ(ξ

p) ̸= 0. Comme ξp est une racine n-ième de l’unité, H(ξp) = 0.
Par ailleurs, Pζ est irréductible et s’annule en ξ : c’est le polynôme minimal de ξ.
Donc Pζ divise le polynôme H(Xp) : H(Xp) = PζQ dans Z[X] (comme ci-dessus).
On réduit maintenant cette égalité dans Fp[X] :

H(Xp) = (H(X))p = P̄ζQ̄.

Soit θ un facteur irréductible de P̄ζ . Alors, θ divise H̄p, donc il divise H̄. Donc θ divise P̄ζ et H̄. Donc
θ2 divise Xn − 1 dans Fp[X]
Ceci est une contradiction car Xn − 1 est premier avec son dérivé dans Fp[X].

Par une récurrence immédiate, l’affirmation 2 implique que P (ζk) = 0, pour tout k ∈ N premier avec n.
Mais alors, toutes les racines primitives de n sont racines de Pζ . Mais alors Pζ = Φn qui est irréductible.
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5 Corps des nombres constructibles à la règle et au compas
Dans cette dernière section nous allons voir deux sous-corps de R et C inspirés par les mathématiques
de la Grece antique. On va développer des outils permettant d’étudier des problèmes comme celui de la
trisection de l’angle, la quadrature du cercle ou la construction des polyèdres réguliers.
Nous identifions le corps C au plan euclidien R2. Pour z1 ̸= z2 dans C, on note (z1z2) la droite passant
par z1 et z2, et C(z1, z2) le cercle de centre z1 et passant par z2.
Soit S une partie de C. On dit qu’un nombre complexe est élémentairement constructible à partir de S
s’il existe z1 ̸= z2 ∈ S et z3 ̸= z4 ∈ S tels que l’une des affirmations suivantes est vrai :

(i) les droites (z1z2) et (z3z4) sont distinctes et sécantes en z.
(ii) les cercles C(z1, z2) et C(z3, z4) sont distincts et sécants en z.
(iii) la droite (z1z2) et le cercle C(z3, z4) s’intersectent en z.

On dit qu’un nombre complexe z est constructible s’il existe une suite 0, 1, i, z1, . . . , zn = z telles que,
pour tout 1 ⩽ i ⩽ n, zk est élémentairement constructible à partir de {0, 1, i, . . . , zk−1, pour tout
k ∈ {1, . . . , n}. On note K l’ensemble des nombres complexes constructibles. Enfin, un nombre réel x est
constructible s’il est constructible en tant que nombre complexe.

Théorème II.61. Corps des nombres constructibles

On a
(i) Les ensembles K et K ∩ R sont des corps.
(ii) Un élément z ∈ C appartient à K si et seulement si ses parties réelle et imaginaire appar-

tiennent à K ∩ R.

Démonstration. La deuxième assertion dit juste que l’on peut construire un point complexes ses coor-
données étant connues. Et que réciproquement, ses coordonnées sont constructibles à partir de z.
Comme on peut construire les paralellogrammes K est stable par addition. Comme on peut construire
les symétries centrales K est stable par opposé.
On peut aussi construire la paralelle à une droite passant par un point. Mais alors en utilisant le théorème
de Thalès on voit facilement que K ∩ R est stable par produit et inverse. Voir les dessins ci-dessous.

est encore plus facile en utilisant le report du compas. Sinon construire d’abord le
milieu x+x 0

2 puis le symétrique de 0 par rapport à ce milieu : c’est x + x 0.

0

z

z 0

z + z 0

2. L’opposé de z s’obtient ainsi : tracez la droite passant par 0 et z ; tracez le cercle de
centre 0 passant par z ; ce cercle recoupe la droite en -z. (C’est aussi le symétrique
de z par rapport à 0.)

z

-z

3. Commençons par le produit de deux nombres réels x · x 0. On suppose construits les
points (x, 0) et (0, x 0). On trace la droite D passant par (x, 0) et (0, 1). On construit
ensuite –à la règle et au compas– la droite D 0 parallèle à D et passant par (0, x 0). Le
théorème de Thalès prouve que D 0 recoupe l’axe des abscisses en (x · x 0, 0).

1

x

x 0

x · x 0

1

x/x 0

x 0

x

4. Pour le quotient la méthode est similaire.

5. Il reste à s’occuper du produit et du quotient de deux nombres complexes. Tout
d’abord soit z = ⇢ei✓ un nombre complexe constructible alors ⇢ est constructible (con-
sidérer le cercle centré à l’origine qui passe par z, il recoupe l’axe des abscisses en
(⇢, 0)). Le nombre ei✓ est aussi constructible : c’est l’intersection de la droite passant
par l’origine et z avec le cercle unité.

6

La théorie des corps, via le théorème suivant permet de démonter que plusieurs problèmes grecs n’ont
pas de solution.

Théorème II.62. Obstruction à la constructibilité

Soit z ∈ K. Alors z est algébrique sur Q et le degré [Q[z] : Q] de l’extension est une puissance de 2.

Démonstration. Soit A = x1 + iy2 et B = x2 + iy2 des nombres complexes. Alors la droite (AB) a une
équation de la forme :

αx+ βy + γ = 0 (5.1)
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avec α, β et γ dans Q(α, β). Et le cercle C(AB) a une équation de la forme :

x2 + y2 + αx+ βy + γ = 0 (5.2)

avec α, β et γ dans Q(α, β).
Soit L un sous-corps de R. Montrons que si z = x+ iy est élémentairement constructible à partir L+ iL
alors [L(x) : L] et [L(y) : L] valent 1 ou 2.
Si z est l’intersection de deux droites passant par des points dont les coordonnées sont dans L, ses
coordonnées s’obtiennent en résolvant un système linéaire à coefficient dans L donc sont dans L. Ainsi
L(x) = L(y) = L.
Si z est dans l’intersection d’une droite passant par des points dont les coordonnées sont dans L et d’un
cercle construit à partir de tels points, ses coordonnées vérifient{

αx+ βy + γ = 0
x2 + y2 + α′x+ β′y + γ′ = 0

avec α, α′, β, β′, γ et γ′ dans L.
Supposons β ̸= 0. Alors y s’exprime en fonction de x et L ⊂ L(y) ⊂ L(x). On tire alors y de la première
équation et l’injecte dans la seconde. Le nombre x vérifie une équation de degré 2 à coefficients dans L.
Donc [L(x) : L] = 1 ou 2.
Supposons β = 0. Alors x appartient à L. Mais alors, la deuxième équation montre que y vérifie une
équation de degré 2 à coefficients dans L. Donc [L(y) : L] = 1 ou 2.

Si z est dans l’intersection de deux cercles, ses coordonnées vérifient{
x2 + y2 + αx+ βy + γ = 0
x2 + y2 + α′x+ β′y + γ′ = 0

avec α, α′, β, β′, γ et γ′ dans L. En remplaçant la première équation par la différence des deux, on se
ramène au cas précédent.

Le problème de duplication du cube est le suivant. Etant donné un cube de côté volume V peut-on en
construire un de volume 2V . Il s’agit donc de construire 3

√
2. Si cela était possible le théorème dirait que

[Q[ 3
√
2] : Q] serait une puissance de deux.

Or 3
√
2 annule X3 − 2. Ce polynôme est de degré 3 et n’a pas de racine dans Q : il est donc irréductible

dans Q[X]. C’est donc le polynôme minimal de 3
√
2 et [Q[ 3

√
2] : Q] = 3. Contradiction.

On peut même améliorer le théorème ?? pour caractériser les éléments constructibles.

Théorème II.63. Wantzel(1837)

Le nombre réel a est constructible à la règle et au compas si et seulement si, il existe une suite de
corps L0, . . . , Ls tels que

(i) L0 = Q ;
(ii) Li+1 est une extension quadratique de Li, pour tout 0 ⩽ i < s ;
(iii) a ∈ Ls.

Démonstration. TODO : en fait c’est la preuve ci-dessus.
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