Chapitre 1

Algebre Linéaire et Dualité
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1 Matrices et bases

Nous fixons ici une notation pour la matrice associée une application linéaire entre espaces vectoriels
munis de bases et illustrons sa pertinence sur les formules de changement de bases.

Soit E et F' deux espaces vectoriels de dimensions finies et f : £ — F une application linéaire. Soit
Bg et Br des bases de E et F' respectivement. On note

Ma‘tBF BE(f)’ (11)

yeme

la matrice de f. Le coefficient (i,5) (ligne ¢ et colonne j) est la i
j€™e vecteur de Bg.
On remarquera que la base de l’espace d’arrivée survient en premier dans la notation. Cela est en

cohérence avec la notation M;; on encore avec le fait que

Mats,. B (f) € MﬁBF tBe (k)’

coordonnées de 'image par f du

ol k est le corps de base.
Pour v € E, on note Matg,, (v) le vecteur colonne constitué des coordonnées de v dans la base Bg. Les
seules formules & connaitre sont

Matg, By (g o f) = Matg, B, (g)MatBF Bg (f) Matg, (f(’U)) = Matg,. B, (f)Ma‘tBE (’U), (12)

otvek, f: E—Fetg: F—G.
Pour retenir la position des bases dans les formules (1.2), on pourra remarquer 1’analogie avec la formule
de Chasles : GE = GF + ﬁ

Changement de base. Si B; est une seconde base de E, on considére les matrices de passage Matp; 5, (Idg)
et Matp, 7 (Idg). En appliquant les formules (1.2) & Idg oIdg = Idg et & f oldg = f on trouve

Matg,, B, (IdE)MatBjE s (IdE) = I, Matg,. 5, (f)Matg,, B, (Idg) = Matg,, B, (f),
otl n est la dimension de E. De maniére analoge, on obtient les formules de changement de base PM P!
et PMQ™'.
On a aussi )
By,
MatBE B’E(IdE) = ( ) BE

2 Deux sous-espaces et formule de Grassmann

Proposition I.1: Formule de Grassmann

Soit F' et G deux sous-espaces vectoriels de I'espace de dimension finie £. On a

dim(F) + dim(G) — dim(F N G) = dim(F + G).

Preuve

Considérons la somme directe abstraire F' & G (c’est-a-dire le produit) et Papplication linéaire

f: FeG — FE
(vr,vg) +—— v +ug.

On vérifie sans peine que f est linéaire. Par définition, I'image de f est le sous-espace F'+ G. Enfin

Kerf ={(v,—v) : ve FNG} ~ FNG.



En appliquant le théoréme du rang a f, on obtient donc
dim(F + G) + dim(F N G) = dim(F @ G) = dim F + dim G,

et la formule voulue.

Exercice 1. Montrer, en appliquant de maniére adéquate le théoréeme de la base incompléte plusieurs
fois, qu’il existe une base B de E telle que BNEF, BNG, BN (F+G) et BNF NG sont des bases de F,
G, F+ G et FNG respectivement. En déduire une autre démonstration du théoréme I.1.

3 Dualité

3.1 Formes linéaires et bases duales

Soit E' un espace vectoriel de dimension finie. Une forme linéaire sur FE est une application linéaire de
E dans k. On note E* V’espace vectoriel constitué des formes linéaires. Observer que (1) est une base de
k. Si B est une base de E et ¢ € E*, Mat(1)(p) est une matrice ligne dont les entrées sont les valeurs
de ¢ aux éléments de B.

Exemple 1. Toute forme linéaire sur R? est donnée par une formule

R? — R
x
( > —  ax + by
Y
pour des nombres réels fixés a et b.
Un exemple de forme linéaire sur R* est
x
Z — 20+ 4y — 2+ t.
t
Les formes linéaires coordonnées. Explicitons B = (ey,...,e,). L’application ef qui & un vecteur
associe sa i°""¢ coordonnée dans la base B est une fome linéaire. De plus, Mat(1)5(¢) = (A1,...,An) si

et seulement si
p=XAel+ -+ e

On en déduit que (e},...,ek) est une base, notée B* de E*. La base B* est appelée base duale de B.
En particulier dim(E*) = n. Remarquons aussi que Matp-(p) = "Mat(q)z(¢). Observons aussi que la
coordonnée \; de ¢ dans la base duale est

Ai = p(e;) car ej(e;) = o7 (3.1)
Réciproquement, étant donnée une base C de E*, on vérifie qu’il existe une unique base B de F telle que
B* = C. La base B est appelée base anteduale de C.

Remarque. Contrairement & ce que peut laisser croire la notation, ef dépend de la base B entiére et
pas seulement de e;. Pour se convaincre de cela, regardons I’exemple suivant B = (e1,e2) est la base
canonique de R? et C = (€1, €2) est donnée par €; = e et €3 = e1 + e3. Soit v = xe; + yea un vecteur.
Onav=(x—y)er +yler +e2) = (x — y)er + yea. Donc €5 (v) = x — y ou encore €f = e} — 5.
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3.2 Hyperplans

Le noyau Kery d’une forme linéaire linéaire non nulle est un sous-espace vectoriel de £ de dimension n—1
(par application directe du théoréme de rang). Réciproquement pour tout sous-espace F' de dimension
n—1de FE, il existe une forme linéaire linéaire non nulle telle que Keryp = F'. Un tel sous-espace vectoriel
de F' est appelé hyperplan.
Pour montrer la réciproque, on peut par exemple construire une base de E qui commence par une de F'
et considérer la base duale.

3.3 Bidualité
L’espace vectoriel E* a lui-méme un espace vectoriel dual E** appelé bidual de FE.

Théoréme I.2. Isomorphisme avec le bidual

L’application linéaire
ou

est bien définie et est un isomorphisme.

La démonstration est laissée en exercice. On pourra aussi montrer que si C est une base de E*, on a

<L_1C*> =C.

4 Orthogonalité

Pour F' un sous-espace de F, on appelle
Ft={pecE* :WweF ¢k)=0}
lorthogonal de F'. On vérifie que

(i) F* est un sous-espace vectoriel de E*;

(ii) si B = (e1,...,€k,€kt1,-..,6n) est une base de F telle que (eq,...,ex) est une base de F alors
(€f41>----€y) est une base de L,

(iii) dim F + dim F+ = dim E.
De maniére similaire, pour G un sous-espace de E*, on appelle

G°={veFE:VYoeG ¢)=0},

I’ante-orthogonal de G. On vérifie que
(i) G° est un sous-espace vectoriel de F;
(ii) si B = (e],..-,€5s€5415---,€r) est une base de E* telle que (e7,...,e;) est une base de G alors
(ék+1,---,€n) est une base de G°;

(iii) dimG +dimG° =dim E.
Quelques propriétés de ces constructions :

Proposition 1.3: Propriétés de orthogonal et de ’anteorthogonal

(i) Si F est un sous-espace vectoriel de E, on a (F+)° = F.
(ii) Si G est un sous-espace vectoriel de E*, on a (G°)* = G. De plus, +(G°) = G*.



(iii) Soit F} et Fy deux sous-espaces vectoriels de F. Alors
(F1 +F2)J' = FlJ' QFQJ',

et
(FiNFy)*t = Fi- + F5-.

(iv) Soit G et G2 deux sous-espaces vectoriels de E*. Alors
(G1+ G2)° =G NG,

et
(Gl N Gg)o = G(l) + Gg

Preuve

Les deux premiéres assertions découlent directement de la description des orthogonaux avec des
bases.

En utilisant la deuxiéme assertion, la troisiéme est une conséquence de la derniére.

Montrons la derniére. Comme G; C G1+G3, on a (G1+G2)° C GY puis que (G1+G2)° C GSNGS.
Réciproquement soit x € G$ N GS. Soit Y1 € Gy et 1y € Ga. Alors

(1 4+ 2) () = Y1 (z) +1h2(2) =0+0 =0

et x appartient a (Gy + Gz2)°. Finalement (G7 + G2)° = G} N G3.

Comme G1 NGy C G, on a (G1 N G3)° D GY. Comme (G1 N G3)° est un espace vectoriel, on en
déduit par symeétrie que (G1 N G2)° D GY + GS.
Par ailleurs, on a

dim(GS + G3) = dim(GY) + dim(G3) — dim(GS N G3) = dim(G3) + dim(G3) — dim((G1 + G2)°)
=n— dlm(Gl) — dlm(Gz) + dlm(Gl) + dlm(Gz) — dim(Gl N Gg)
= d1m((G1 N Gg)o)

Dans la premiére ligne, on a utilisé la formule de Grassmann puis 1’égalité (G + G2)° = G5 N GS.
A la deuxiéme on utilise encore la formule de Grassmann.

5 Transposition

5.1 Deéfinition et Matrices

Soit f : E — F une application linéaire. On appelle transposé de f 1'application linéaire suivante :

tf . F* — E*
p = g@of.

Le lien avec la transposition des matrices est le suivant :

Proposition I.4: Matrice de la transposé

Soit Bg et Br des bases de E et F' respectivement. Alors

Matg: g ('f) = ‘Matp, 5, (f)-



Preuve

Notons (e1,...,ep) la base de E et (e1,...,¢,) celle de F'. L’entrée m;; a la ligne 4 et la colonne j
de Matp: gx (*f) est la i™¢ coordonnées de 'f(e}). D’apres (3.1),

mi; = 6; o f(el)

est la coordonnée en €; de f(e;), c’est-a-dire entrée (j,7) de Matg, g, (f)-

Des formules faciles & démontrer
(f+Xrg)="f+XNg (fog)=Tg0f.
5.2 Noyaux et Images
Proposition I.5: Noyau et Image de la transposé
Soit f : E— Fetlf: F* — E*.Ona:
(i) Kerf = (Imf)™;

(i) Im'f = (Kerf)*.

Preuve

Soit ¢ € F*. On a ¢ € Ker!f si et seulement si @ o f = 0 si et seulement si ¢ o f(v) = 0 pour tout
v € E si et seulement si ¢(v) = 0 pour tout v € Im(f) si et seulement si ¢ € (Imf)*.

Soit ¢ € F* et donc 'f(¢) € Im(*f). Soit v € Kerf. On a

') (v) = ¢(f(v) = »(0) = 0.

Donc *f(p) € (Kerf)* et Im'f C (Kerf)*.
Par ailleurs, on a :

dim(Im'f) = dim(F*) — dim(Kerlf) = dim(F*) — dim((Imf)*)
= dim(F*) — dim(F) + dim(Imf) = dim(E) — dim(Kerf)
= dim((Kerf)%1).

Avec l'inclusion déja montrée cela permet de conclure que Im‘f = (Kerf)=.
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1 Formes bilinéaires et matrices

1.1 Définitions

Soit F un espace vectoriel de dimension finie. Une application

B: ExE — k
(v,w) +— B(v,w)
est une forme bilinéaire si et seulement si
(i) Yv1,ve,w € E and VA € k, we have B(v1 + vz, w) = B(vy,w) + AB(v2,w) ; et
(il) Yv,wy,wy € E and VA € k, we have B(v,w; + Awz) = B(v,w1) + AB(v, wq).

On note Bil(E) I’ensemble des formes bilinéaires sur E.

Exemple 2. Commencons par regarder R? puis R”.

(i) Iei E =R? et (e, f) est la base canonique. Soit v = <§1> et w= (52), deux vecteurs de E. Soit
1 2
B e Bil(E). On a
B(v,w) = B(xie+y1f,x2e+ya2f)

= z1B(e,x2e + Yo f) + y1 B(f, z2€ + ya.f)
= z112B(e,e) + wm1y2Ble, f) + y122B(f, e) + y1y2B(f, f)-

En particulier, B est déterminée par ses quatre valeurs B(e,e), B(e, f), B(f,e) et B(f, f). Réci-
proquement, étant donnés quatre réels a, b, c et d, en posant

B( <x1> ) <m2>) =r1T2a+ T1Y2 b+ Y12+ Y1y2 d
Y1 Y2

on définit bien un élément de Bil(EF). Autrement dit, ’application

Bil(E) — My(R)

Ble,e) Ble,f)
B (B(f,e) B(ﬁf))

est une bijection.

(ii) Iei E = R™ et (e1,...,e,) est la base canonique. De méme, on peut vérifier qu’en associant a
toute matrice A = (a;;) € M, (R) l'application B : E x E — k définie par

B(v,w) = Z aij % e;(v) x €j(w)
1<i,j<n

on obtient une bijection
M, (R) — Bil(R"™).

Revenons au cadre général avec B € Bil(E). Soit B = (ey,...,e,) une base de E. On définit le matrice
de B dans la base B par

Matg(B) = (B(ei, ej)>.

1.2 Avec la dualité

Soit B € Bil(E). On lui associe 'application suivante

B: E — FE*

N E — k
v v — B(v,w)
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Observer, tout d’abord que le premier axiome de la défintion 1.6 assure que v — B (v, w) est bien un
élément de E*. Le second axiome assure que B est linéaire. On obtient une identification

Bi(E) — L(E,E*)

B — B.

Proposition I1.7: Matrice comme matrice d’un application linéaire

Soit B = (eq,...,ey) une base de E. Alors

MatB(B) = Matg« B(B)

Preuve

Regardons le coefficient (i, ) noté a;; de la matrice Matp- 5(B). Regardons donc B(e;). Considé-
rons les coordonnées dans la base B* : B(e;) = Y, zrej. On a

Blej)(ei) = Y _wreple) = > axdy = x; = aij.
k k
Par ailleurs, B(e;)(e;) = B(ei,e;) est le coefficient (,) de Mats(B). D’oit la conclusion.

Evaluation. Soit B € Bil(E) et B = (eq,...,ey) une base de E. Soit v et w deux vecteurs de E. Posons
M = Matg(B) € M, (k) X =Matp(v) € M, 1(k) Y =Matp(w) € M, 1(k).

D’apreés la Proposition I1.7, MY est le vecteur colonne constitué des coordonnées de la forme linéaire
v+ B(v,w) dans la base duale B*. Donc B(v,w) = {MY)X = ¥'M X. Comme Y*M X est un scalaire
il est égal a sa transposé. On obtient :

B(v,w) = 'XMY. (1.1)

Changement de bases. Ce point de vue sur les formes bilinéaires permet de comprendre les change-
ments de bases. Soit C une seconde base de F.

Proposition I1.8: Changement de bases pour les formes bilinéaires

Soit B et C deux bases de E. Alors

Matc(B) = ‘"Matgc(Idg).Mats(B).Matgc(Idg).

Preuve

Comme B = Idg- o Boldg, les formules (1.2) montrent que

Mate(B) = Mate-¢(B)
= Matc« g+ (IdE*).MatB* B(B).Matgc(IdE)

car B = Idg« o Bo Idg. Or, comme Udg = Idg«, Proposition I.4 montre que Matcs g« (Idg+) =
‘Matgc(Idg). Ce qui permet de conclure.



Soit A et B deux matrices carrées symétriques de méme taille n. On dit que A et B sont congruentes

g’il existe P € GL,, (k) tel que

B =

PA'P.

Résumons les correspondances matrices vs vecteurs.

Nom vecteur | Endom. | Forme lin. | Evaluation Bil
Espace E L(E) E* k k
Symbole v f ® w(v) B(v,w)
Matrice | X (col.) | M (carr) | L (ligne) LX XMY

1.3 Noyau et rang

Soit B € Bil(E).
(i) Le rang de B est rg(B) = rg(B) = rg(Matg(B)).
(ii) Le noyau de B est

KerB:=KerB={wec F : Yv€ E B(v,w) = 0}.

On dit que B est non dégénérée si rg(B) = dim(E) c’est-a-dire si B est un isomorphisme c’est-a-dire
si KerB = {0}.

2 Formes bilinéaires symétriques et formes quadratiques

2.1 Symétrie

Proposition I1.11: Symétrie

Soit B € Bil(E) et B une base de E. Se valent :
(i) Yo,w e E B(v,w) = B(w,v);
(ii) Modulo ¢, 'B = B;
(iii) Matg(B) est une matrice symétrique.

On dit alors que la forme bilinéaire est symétrique.

On note SBil(E) l'espace vectoriel des formes bilinéaires symétriques sur E.

2.2 Formes quadratiques

On suppose ici que la caractéristique du corps de base k est différente de 2. Autrement dit, on se place
sur un corps pour lequel 2 # 0.
Soit B € SBil(F). On définit la forme quadratique gp associée & B par :

E — k
v +—  B(v,v).

gB :

Exemple 3. Regardons sur R? la forme bilinéaire symétrique

U1 w1
B(lwve |, | w2 ])=viws + 2(viws + vowy) + 7(viws + v3wy) + Tvgws.
V3 ws
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Alors
1

g(|z2]) = x% + dx1x0 + 2M1 73 + 7x§.
€3

Plus généralement, une forme quadratique est une fonction donnée par une formule du type

q= Z *x2 + Z *ITT . (2.1)

1<i<n 1<i<j<n
Le point important est que la connaissance de ¢ permet de retrouver B :

Proposition I1.12: Formules de polarisation

Soit B une forme bilinéaire symétrique. Pour tout v et w dans F on a

B(v,w) = ;<qB(U +w) —qp(v) — qB(w)>

! B(v,w) = i(q3<v+w> sl - w>).

Pour retenir ces formules on fera ’analogie avec les identités remarquables suivantes

ab = ;((a—l—b)Q—aQ—bQ) et ab= i((cH—b)Q—(a—b)Q).

Preuve

La preuve, laissée en exercice, est un calcul direct utilisant la bilinéarité et la symétrie de B. Ici
on partira du membre de droite de I’égalité & démontrer dans les deux cas.

3 Reéduction des formes quadratiques

Dans cette section, nous allons voir la réduction de Gauss sur un corps général, sur C et sur R. Il s’agit
d’un théoréme de réduction au sens de l'algébre linéaire. En effet, soit B € SBil(E). On cherche une base
B de E telle que la matrice Matg(B) soit simple, ¢’est-a-dire avec beaucoup de zéros.

3.1 Théoréme de Gauss

Théoréme II1.13. Réduction de Gauss

Soit ¢ une forme quadratique sur F. Alors il existe une écriture
_ 2 2
q=a1pi+ - +argy, (3.1)

o (p1,...,®,) est une famille libre de E* et ay,...,a, sont dans k*.

La démonstration est un algorithme basé sur les deux identités remarquables suivantes :

a a? 1
2’ +azy = (x+§y)2 - Z?JQ Ty = Z((x+y)2_ (z —y)?).

Commengons par faire un exemple afin d’illustrer les principes. Soit

q(z,y,z) = 222 + % + a2y — x2.
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La premiére étape consiste & écrire ¢ sous la forme ¢ = x( forme lin.)? 4 forme quadratique en y et z.
Pour trouver la forme linéaire, on regarde seulement les termes 22, xy et —r2z contenant des x :

11 7, 1, 1
q=2(x+7y— 72"+ 2v* — 22"+ Jyz

4 4 8 8 4
Regardons maintenant les termes contenant z :
1 1 7 1 1
—9 Lo L ! Z)2_ 2,2
q=2(z+ i 42) + 8(y+ 72) =7

Ce qui est bien de la forme voulue.

Sur cet exemple, chaque forme linéaire « consomme » une variable. Il y a un cas ot I’on ne peut pas faire
cela :

Si la forme quadratique ne contient pas de carré.

Regardons un exemple :

q (x,y,2,t) = 2y + 2yz + 3x2 — 2t + 52t.

On ne peut pas appliquer la méme méthode que ci-dessus. L’idée est alors :
Consommer deux variables avec un produit de deux formes linéaires.
Ici, on cherche donc une formule du type :
(x+...)(y+...) =xy+yz+zz+at+---

ol les deux variables = et y ont disparue des derniers pointillés.
Explicitement on trouve

(x+22)(y + 32 —t) = 2y + 2yz + 3wz — at — 62° + 32t
et

On a donc éliminé deux variables au prix de deux formes linéaires.

Corollaire I1.14: Réduction de Gauss version matricielle

Soit B une forme bilinéaire sur E. Alors il existe une base B de E et des scalaires non nuls a1, ..., a,
tels que
ay

MatB(B) =

De plus r est le rang de B.
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Preuve

onsidérons la forme quadratique ¢ associée & B et (p1,...,p,) dans E* et aq,...,a, dans k* comme
dans le théoréme I1.13. Complétons (@1, ..., ®,) en une base C de E*. Soit B la base anteduale de
C.

Un calcul direct montre que Matg(B) a la forme voulue.

Remarque. Une fagon amusante de reformuler ce théoréme est que pour tout matrice symétrique S de

taille n
JP € GL,(k)  PS'P est diagonale.

3.2 Le cas des nombres complexes

Dans cette sous-section F est un C-espace vectoriel de dimension finie n. On exploite ici que tout nombre
complexe est le carré d'un autre. En particulier, pour tout terme de la forme ag? (avec a € C* et p € E*),
on a

ap® =y,
avec 1) = by ol b?> = a. On déduit donc du théoréme de Gauss 1’énoncé suivant

Théoréme I1.15. Réduction de Gauss sur C

Soit ¢ une forme quadratique sur E et B la forme bilinéaire associée. Notons r le rang de B. Alors

(i) 11 existe (31, ...,1,) une famille libre de E* telle que
g=yPi+- YL

(ii) Il existe une base B de E telle que

Mats(B) = ({) 8) , (3.3)

ou I, est la matrice Identité de taille r.

3.3 Le cas des nombres réels

Dans cette sous-section F est un R-espace vectoriel de dimension finie n. On exploite ici que tout nombre
réel positif est le carré d’un autre. En particulier, pour tout terme de la forme a¢? (avec a € R* et p € E*),

on a
ap® = +¢?,

avec 1) = by ot b = |a|. On déduit donc du théoréme de Gauss Iénoncé suivant

Théoréme 11.16. Réduction de Gauss sur R

Soit ¢ une forme quadratique sur E et B la forme bilinéaire associée. Notons r le rang de B. Alors
(i) 1l existe (¢1,...,%,) une famille libre de E* telle que
q=Yi 4+ Y] =i~ = Y

(ii) Il existe une base B de E telle que

I, 0 0
Matg(B)= [0 —I, 0], (3.4)
0 0 0
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avec r =8+ t.

Preuve

Il suffit de réordonner les formes linéaire pour avoir d’abord des a; positif puis des négatifs. On
applique alors la transformation expliquée avant le théoréme.

On sait que s+t ne dépend pas de la base (ou de I’écriture comme some de carré) parceque c’est le rang
que nous avons caractérisé de maniére intrinséque. Nous allons voir qu’en fait s et ¢t ne dépendent pas
de la base, mais cela demande un peu dé préparation.

Pour comprendre la raison d’étre des/ la motivation pour les définitions qui suivent il convient de faire
I’exercice suivant.

Exercice 2. Soit (11,...,%,) une famille libre de E* et
N TR )

(i) Montrer que s =7 si et seulement si pour tout v € E, q(v) > 0.

(i) Montrer que s =r =n si et seulement si pour tout v € E non nul, g(v) = 0.

Ici le corps est R.

(i) Une forme quadratique g est positive si
Yoe E q(v) > 0.
(ii) Une forme quadratique q est définie positive si

Yo e E—{0} q(v)>0.

De maniére analogue, on définit négative et définie négative.

Pour ¢ une forme quadratique et F' un sous-espace vectoriel de E, on appelle restriction de ¢ & F' la

forme bilinéaire
qr : F — R

v — q(v).

Soit B la forme bilinéaire sur E associée a g et Bp la forme bilinéaire sur F' associée & gr. On a

Yo, w € F B(v,w) = Bp(v,w).

Soit ¢ une forme quadratique sur un R-espace vectoriel E. La signature de ¢ est la paire d’entiers
naturels (s,t) ou

s =max{dim(F) : F sev de E tel que ¢qp est définie positive}
t = max{dim(F) : F sev de E tel que — gp est définie positive}

14



Théoréme I1.19. Théoréme d’inertie de Sylvester

Soit ¢ une forme quadratique sur un R-espace vectoriel E et B la forme bilinéaire associée. La
signature de ¢ est (s,t) si et seulement si il existe une base B de E telle que

I, 0 0
Matg(B)= |0 —I, 0]. (3.5)
0 0 0

En particulier s 4t est le rang de B.

Preuve

Grace au théoréme I1.16, il suffit de montrer que la signature de go = 23+ -+ 22— (22, 1+ - -+22,
est (s,t). On travaille ici sur R™ muni de sa base canonique (eq,...,ep).
Soit W = Vect(eq,...,es). Alors qu = 22 + -+ + 22 est clairement définie positive. Donc

s = dim(W) < max{dim(F) : F sev de F tel que gr est définie positive}.

Soit F' un sous-espace tel que gp est définie positive. Il s’agit de montrer que dim(F') < s pour
obtenir I'inégalité réciproque. Supposons par absurde que dim(F') > s.

Considérons maintenant G = Vect(esy1,...,e,). Alors qg est négative. Alors la formule de Grass-
mann implique que dim(F N G) > 1. Soit v non nul dans F N G. Comme v est non nul dans F,
q(v) > 0. Mais comme v est dans G, ¢(v) < 0. Contradiction.

On traite de maniére analogue le cas de t.

3.4 Le cas des nombres rationnels

Sur C et R, il y a beaucoup de carrés. Nous avons exploité cette remarque pour améliorer fortement
de théoréme de Gauss sur ces deux corps. En particulier, le nombre de « matrices réduites » est fini.
Exprimons ce résultat en terme d’action de groupes.

Exercice 3. Soit S, (k) l'ensemple des matrices symétriques.

(i) Montrer que la formule
P.M:=PM'P VM € S,(k) and P € GL, (k)

définit une action de GL, (k) sur S, (k).
(i) Montrer que GL,,(C) a un nombre fini d’orbites dans S, (C). Les dénombrer.
(ii) Montrer que GL,(R) a un nombre fini d’orbites dans S,,(R). Les dénombrer.

On se place ici sur £ = Q™ muni da la base canonique B. Soit p un nombre premier. Regardons la forme
quadratique g, = z% + - + 22_, + pa? dont la matrice dans B est

Nous allons montrer que (voir définition I1.9)
pour p # q premiers, les matrice M, et M, ne sont pas congruentes.
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La démonstration est intéressante et révéle que le déterminant d’une forme quadratique n’est pas bien
défini (dépend de la base). Remarqons qu’en général

det(PA'P) = det(P)*det(A).

Supposons par I’absurde que M, et M, sont congruentes. Alors, la forule ci-dessus assure I'existence d'un

nombre rationnel non nul z tel que p = 22¢. Ecrivons = = % avec a et b deux entiers premiers entre eux

(et b > 0). On obtient
b’p = d’q.

Donc p divise a?q. Le théoémre de Gauss et 'hypothése p # ¢ implique que p divise a. Mais alors p?
divise b%p et p divise b? puis b. Donc a et b ne sont pas premiers entre eux. Contradiction.

4 Orthogonalité

Soit E un espace vectoriel quelconque sur un corps de caractéristique différente de 2. On fixe une forme
bilinéaire symétrique non dégénérée B.
Si F' est un sous-espace vectoriel de E, on définit son orthogonal pour B par

Fte.={vcE:YwecF B(v,w)=0} (4.1)

Le lien avec 'orthogonalité au sens de la dualité est le suivant. Par hypthése B : E — E* est un
isomorphisme. On a alors
Fte = B~Y(F1),

En particulier,
dim(F*#) = dim(E) — dim(F).
Exemple 4. Soit Q = 22 + y? — 22 la forme quadratique sur E = R? et B la forme bilinéaire associée.
Soit F le sous-espace d’équation = + y + z = 0 et F5 le sous-espace d’équation x + z = 0.
(i) Déterminer une base de FlLB et montrer que F; & FILB =FE.

ii) Déterminer une base de F3-% et montrer que F. L B
2 2

1
(iii) Soit F3 l'espace vectoriel engendré par | 0 |. Montrer que D12 O D.
1

5 Produits scalaires

Dans cette section le corps est R.

5.1 Définition

Soit E' un R-espace vectoriel de dimension finie n.

Une forme bilinéaire symétrique B sur E est appelée un produit scalaire si B est définie positive.
On notera souvent B(v,w) par (v,w).
L’espace vectoriel F muni d’'un praduit scalaire est appelé un espace euclidien.

Soit M la matrice dans une base donnée de la forme bilnéaire symétrique B. Alors B est un produit
scalaire si et seulement si
VX eM,1(R) X#0 = 'XNX >0.

C’est aussi équivalent & ce que gg = @7 + -+ - + 2 pour une base (¢1,...,p,) de E*.
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Soit (E,(, )) une espave euclidien. Une base B = (e1,...,e,) de E est dite orthonormée si

Vij o (eiej) =0

77

ou ¢ est le symbole de Kronecker.

La base B est orthonormeée si et seulement si Matg({ , )) = I,,. En particulier, le théoréme de réduction
montre qu’il existe toujours des bases orthonormées. Nous verrons plus tard algorithme de Gram-
Schmidt qui est une alternative & Gauss pour en calculer.

Exemple 5. (i) Sur R", la formule suivante définit un produit scalaire (appelé produit scalaire
canonique) :
T Y1
(D=2
T Yn i

Montrer que la base canonique est orthonormée.

(ii) Sur M, (R), la formule suivante définit un produit scalaire :
(A, B) = tr("AB).

Montrer que la base canonique est orthonormeée.

(iii) Soit E = R, [X]. La formule suivante définit un produit scalaire :
1
P.Q) = [ Pawat
0

5.2 Cauchy-Schwarz et Minkowski

Théoréme I1.22. Inégalité de Cauchy-Schwarz

Soit E un espace vectoriel réel de dimension finie muni d’un produit scalaire ( , ). Soit u et v dans

FE. Alors
(u, v)| <V (u, u)V/ (v, ).

De plus, on a égalité si et seulement si la famille (u,v) est liée.

Preuve

Considérons 'application
p: R — RF
t — (u+tv,u+to).

L’application est bien & valeur dans Rt car (, ) est un produit scalaire. De plus comme ¢(t) =
(v,0)t2 + 2(u, v)t + (u,u), @ est un polynéome de degré au plus deux. Son discriminant est négatif
ou nul :

A= (U,U)2 - (v,'v)(u, u) <0.

Comme \/~ est croissante, I’égalité cherchée en découle.

Quand a t-on égalité?
Siv =0, on a égalité et la famille (u, v) est lice. Supposons & présent v # 0. Alors, ¢ est de degré
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2. On a égalité dans l'inégalité du théoréme si et seulement si

A=0 < p(-L2)=0 ou a, b et ¢ sont les coeflicients de ¢
= (u— By,u— ) =0
= u-— Ezz;v =0

Ceci implique bien que (u,v) est liée. Réciproquement si la famille est liée alors u = Av (car v est
non nul) et on vérifie sans peine la relation.

On pose
el = v/t ). (5.1)

Il s’agit d’une norme en vertu du

Corollaire I1.23: Inégalité de Minkowski

Soit E un espace vectoriel réel de dimension finie muni d’un produit scalaire ( , ). Soit v et v dans
E. Alors

lu + ol < flull + [Jvfl-

De plus, on a égalité si et seulement si la famille (u,v) est positivement liée c’est-a-dire il existe A
et u dans R* non tous les deux nuls tels que

Au+ pv = 0.

Preuve

Regardons

(lull + l? = u+ ol = lul® + [Jo]* + 2flu] - oll = (u+v,u+v)
= 2|l - [Jol] = (u,v)) = 0.

L’inégalité & montrer en découle.

Si u = Av avec A € RT, un calcul direct montre qu’on a bien égalité.

Réciproquement supposons que l'on a égalité. D’aprés la suite d’inégalité ci-dessus, on a égalité
dans l'inégalité de Cauchy-Schwarz. Quitte & échanger u et v, on peut supposer qu’il existe A € R
tel que v = Au. Alors

l[w+ vl = |1+ Alf|u]|
et
[ull + [[vll = (1 + [ADull

. Donc A > 0 ou u = 0. La conclusion est satisfaite dans les deux cas.

L’exemple de R™ dans la section précédente révéle que nos plan et espace ambiants sont euclidiens. En
particulier la géométrie usuelle est euclidienne.
On dit que deux vecteurs u et v sont orthogonauz si (u,v) = 0.

Théoréme 11.24. Pythagore

Les vecteurs u et v sont orthogonaux si et seulement si
2 _ 2 2
[Ju+l]” = Jlull” + [lo]".
La preuve est directe. Illustrer cet énoncé par un dessin dans le plan qui explique son nom.
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5.3 Projection orthogonale
Commengons par un résultat sur I'orthogonal d’un sous-espace.

Proposition I1.25: L’Orthogonal est Supplémentaire

Soit E un espace vectoriel réel de dimension finie muni d’un produit scalaire (, ) et F' un sous-espace
vectoriel de F.
Alors

FeFto) =E.

Preuve

Comme ( , ) est une forme bilinéaire non dégénérée
dim(F+)) = dim(E) — dim(F).

Il suffit alors de montrer que F N F1() = {0}. Soit v un vecteur de cette intersection. Alors
0 = (v,v) = ||v||?. Donc v = 0.
La projection orthogonale sur F' est I’application linéaire

pr: E=F&Ft — F
T +y — X

On vérifie sans peine que pr est linéaire et, Ker(pp) = F-() et Im(pr) = F.

Le théoréme suivant donne une interprétation de pg(v). Il affirme que ce point est le point de F' le plus
proche de v. Cela est trés utilisé en optimisation et en statistique. On pose

d(v,F) = inf ||v —
(v, F) ;IGIF v -zl
la distance de v & F'.

Théoréme 11.26. Projection orthogonale

Soit E un espace vectoriel réel de dimension finie muni d’un produit scalaire ( , ). Soit F' un
sous-espace vectoriel de E et v un vecteur de E. Le point pr(v) est 'unique point de F tel que

v = pr (V)| = d(v, F). (5.2)

Preuve

Il s’agit de montrer que pour tout w € F, on a

lv=pr@)]* < flo —w|?.
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Ecrivons v —w = (v — pr(v)) + (pr(v) — w). Comme v — pr(v) est dans 'orthogonal de F, il est
orthogonal & pr(v) — w. Mais alors, le théoréme de Pythagore implique que

lv = w|* = llv = pr@)II* + IpF(v) — wl?.

L’inégalité recherché en découle.

5.4 Algorithme de Gram-Schmidt

Théoréme I1.27. Gram-Schmidt

Soit C = (e1,...,&,) une base de E. Il existe une unique base orthonormée (ey,...,e,) telle que
(i) Pour tout k € {1,...,n}, on a Vect(eq,...,er) = Vect(er,...,ex);
(ii) Pour tout k € {1,...,n}, on a (eg,ex) > 0.

Preuve

La preuve se fait par récurrence et est essentiellement un algorithme. Il convient d’étre capable de
calculer la base orthonormée sur de petits exemples.
L’hypothése de récurrence est : il existe une unique famille (eq, ..., ex) tels que

(i) VK < k Vect(eq,...,ex) = Vect(er,...,er);
(ii) VE' <k (ek/,{;‘k/) >0;
(iti) Vi,j <k  (ese;) =07,
L’initialisation est laissée en exercice.

Hérédité. Supposons ’hypothése de récurrence vrai au rang k — 1. Prenons un vecteur v de
Vect(eq,...,er). Comme Vect(eq,...,ex—1) = Vect(ey,...,ex—1), on a une expression

v = Beg + ag_1€x_1+ -+ ajeq.
A quelles conditions v = ey, convient 7 On veut que pour tout i < k,
0= (er, ;) = Blek, e) + a;. (5.3)
L’astuce consiste a considérer d’abord le cas ot § = 1. Alors on pose alors
a; = —(eg, €;) et €p =€ + Ap_1€p—_1+ -+ aeq.

On vérifie que ¢;, satisfait toutes les conditions sauf
(i) (ex,er) =1;
(ii) (ek,sk) > 0.
Alors e, = i‘;i—zu convient.
Une relecture attentive de cette preuve montre que nous n’avions aucun choix et donc I'unicité.

5.5 Isométries et Groupe Orthogonal

Soit E un espace euclidien.

Une isométrie u de E est un endomorphisme de E tel que

Vee B lu(z)] = ]
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Avec les formules de polarisation on montre facilement que

Ve,ye B (u(@),u(y)) = (2,9). (5-4)

On vérifie aussi que toute isométrie est inversible (son noyau étant réduit a {0}). De plus, 'ensemble des

isométries est stable par composition et par inverse. Ainsi, 'ensemble O(F) des isométries de E est un
sous-groupe de GL(E).

Proposition 11.29: Isométries et bases orthonormées

Soit B une base orthonormée de E. Alors u est une isométrie si et seulement si u(B) est une base
orthonormée.

Preuve

On peut supposer que u est inversible. On pense alors & v comme a un changement de base de B
a u(B). D’apres (5.4), u est une isométrie si et seulement si

Matg(( , )) = Matys) (( , ).

Or Mat,,g)((, )) est la matrice dont les coefficients vaut (u(e;),u(e;)).

La preuve de la proposition montre aussi que

uw€O(E) <+= 'Matg(u)Mats(u) = I,.

On définit donce
0,(R) ={A e M,(R) : TAA = I.}.

Exercice 4. (i) Montrer que

OZ(R){(cost —sint) :teR}U{<cost Sint> . tER).

sint cost sint —cost

(i1) En déduire que O3(R) est constitué des rotations et des symétries orthogonales.

(#ii) Montrer que plus généralement, toute symétrie orthogonale est une isométrie.
Théoréme I1.30. Groupe orthogonal

O, (R) est un sous-groupe compact de GL, (R).

Preuve

Nous avons déja vu que c¢’est un sous-groupe. Il est fermé comme préimage de {I,,} par ’application
A tAA.

11 est borné car chaque colonne C des éléments de O, (R) vérifient ||C|| = 1.

21



22



Chapitre 3

(GGéométrie Affine

Sommaire
1 Espaces et sous-espaces affines . . ... ... ... ... .. .. .00 24
2 Géométrie affine analytique . . . . . . ... ... 00 e .. 24
3 Barycentre . . . . . . . 0 e e e e e e e e e e e e e e e e 25
3.1 Définition . . . . . ..o 25
3.2 Associativité . . . ..o L 26
3.3 Coordonnées barycentriques . . . . . . . . . ... Lo 26
3.4 Convexité . . . . . . . . e 27
4 Applications Affines . . . . . . . . .. L L L e e e e e e e e 27
4.1 Définition . . . . . .. oL 27
4.2 Ecriture matricielle . . . . . . . . .. oL 28
4.3 Barycentre . . . . ... 28
4.4 Exemples . . . . . .. e 28
5 Quelques théorémes Classiques . . . . . . . v v v v v v v vt v v v v v v v u 31
5.1 Théoréme de Thales . . . . . . . .. .. . L o 31
5.2 Théoréme de Pappus . . . . . . . . . .. L 32
5.3 Théoréme de Désargues . . . . . . . .. . . .. oo 34
6 Classification affine des coniques planes . . . . . ... ... ... ....... 36
6.1 Le groupe affine . . . . . . ... .o 36
6.2 Les coniques . . . . . . . L 37

23



La géométrie affine est essentiellement la géométrie des points, des droites et des plans. En un certain
sens, le plan affine est le plan usuel avec ses droites. A la différence des espaces vectoriels on veut
considérer des droites qui ne passent pas par zéro. D’ailleurs il n’y aura méme pas de zéro. Cela va se
faire au prix d’un définition un peu abstraite qu’il conviendra de s’approprier.

1 Espaces et sous-espaces affines

En premiére approximation, l'espace affine réel de dimension deux est votre feuille de papier avec ses
points et ses droites. A partir de 1a, on peut construire les vecteurs comme des classes d’équivalence de
bipoints. C’est ainsi que les vecteurs sont présentés au lycée.

A Tuniversité, nous faisons 'inverse. On commence par définir les espaces vectoriels et donc les vecteurs.
A partir d’eux on définit les esapces affines.

Soit E un espace vectoriel de dimension finie. Un espace affine de direction E est un ensemble £
muni d’une action simplement transitive de FE.

A chaque fois que l’on fixe un point M dans &, £ s’identifie & E et M correspond au vecteur nul. Ainsi,
un espace vectoriel est un espace vectoriel sans point spécial (alors que dans un espace vectoriel, il y a
le veceur nul).

Par définition, la dimension de £ est la dimension de E.

Notation. L’action est notée ainsi. Pour M € £ et v € F, on note M + v.

Un sous-espace affine de £ est une orbite d’un sous-espace vectoriel de E.

Suivant la dimension, nous parlerons de droite, plan ou hyperplan affine.

Etant donnés deux points A et B dans &£, on note E I'unique élément de F tel que

A+ AB = B.

2 Géométrie affine analytique

Un reprere affine de £ est la donnée d'un point O € £ et d’une base B de E. Si B = (ey,...,ey),
on obtient alors une bijection

k" — £
(1,...,xn) — M:=0+), zie,.

—
Les scalaires x; sont appelés coordonnées du point. Ce sont les coordonnées du vecteur OM dans
la base B.
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Proposition I11.35: Repére affine

Soit € un espace affine de dimension n. Soit (Ag, A1,...,A,) n+ 1 points de €. Se valent :
s s
(i) (Ao, AgA1,...,AgA,) est un repére affine;

(ii) les points {Ay,...,A,} n’appartiennent a aucun hyperplan affine de &.

Preuve

Laissée en exercice.

Exercice 5. Soit £ le plan affine réel. Soit (O, e1,es) un repére de E.
(i) Soit a,b,c des réels tels que (a,b) # (0,0). Montrer que ’ensemble des points de & de coordonnées

(x,y) tels que
ar+by+c=0

est un sous-espace affine de dimension 1. Quelle est sa direction ?

(i1) Réciproquement, étant donnée une droite affine D de £, montrer qu’il existe (a,b,c) déterminant
cette droite.

(ii) A quelle condition deuz triplets (a,b,c) déterminent la méme droite.
3 Barycentre

3.1 Définition

Soit £ un espace affine de dimension n et de direction E. Soit A1,...,A,, des points de £ et A,..., A\,

des scalaires tels que
> A #0. (3.1)

Théoréme II1.36. Barycentre

Avec les notations ci-dessus, il existe un unique point G de £ tel que

S AGA = 0.
Le point G est appelé barycentre de sytéme ((A1, A1), ..., (Am, Am)).

Preuve
On fixe un point O et on vectorialise en O, c’est-a-dire que ’on remplace tous les points M par le
vecteur OM. On obtient ici, pour tout G dans & :

= (3, M)0C + X, \O0A,

Ce vecteur est nul si et seulement si

oC = S AOA:

Zi Ai

Ceci montre a la 'existence et I'unicité. Remarquons que cette opération est licite par la condi-
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tion (3.1).
Notons aussi que la formule c-dessus est & retenir.

e
Exercice 6. Montrer que si 'y . \; =0, le vecteur ), \;GA; ne dépend pas du point G.

Exercice 7. Montrer que le baricentre bar((A,1), (B, 1)) est le milieu du segment [AB].

3.2 Associativité

Cette opération dit que ’on peut déterminer un barycentre en regroupant les points par paquets.

Proposition I11.37: Associativité de barycentre

Soit ((A1, A1), (As, As)) et ((Bi,p1), .., (Bt, pt)) tels que

DNAO D A0 et Y py Y N #0.

Soit G4 et Gp les barycentres des points (A4;, \;) et (B;, t;) respectivement.
Alors le barycentre de ((A1, 1), ..., (As, As), (B1, 141), - - -, (B, 1)) est égal au barycentre de

(Ga: D M)y Gy Y1)

Preuve

Inspirez-vous de la preuve de la proposition ci-dessus pour montrer celle-la.

3.3 Coordonnées barycentriques

Soit £ un espace affine de dimension n et de diregtion E. Sqit Ag,..., A, des points de £ qui ne sont
pas dans un hyperplag affine de § Alors (Ag, Aoy, ..., AgA,) est un repére affine de £. Rappelons que
cela signifie que (ApA41,...,AgA,) est une base de E.

Lemme I11.38

Soit M un point de € et (z1,...,x,) les coordonnées de M. Alors
M= bar((Ao, 1= " 2), (Ay,21), .., (An,asn))

Le (n+ 1)-uplet (1 — >, x;,x1,...,xy) est appelé coordonnées barycentriques de M.

Démonstration. La définition des x; signifie que

En insérant M dans les vecteurs de la somme, on obtient
n
oo B e
A()M = sz(AOM + 1\4141)7
i=1
puis

n

[ =1

26



De maniére plus symétrique, les coordonnées barycentriques (A, ..., \,) de M sont caractérisées par

=1 M= bar((Ai,)\i))
3.4 Convexité

Pour A, B € £, on pote
[A; B] = {bar((A,t),(B,1—t) : t € [0;1]}.

Intuitivement, [A; B] est le segment d’extrémités A et B.

Une partie C de & est dite conveze si pour tout A et B dans C, on a [A4; B] € C.

Par associativité du barycentre, une partie convexe de £ est stable par barycentres a coefficients positifs.

Exercice 8. (i) Montrer que lintersection de parties convezes est conveze.

(ii) Trowver deux parties convezes du plan dont la réunion n’est pas conveze.

Soit A une partie quelconque. L’intersection des convexes qui contiennent A est noté Conv(A). C'est le
plus petit ensemble convexe qui contienne A. On I'appelle I’'enveloppe convexe de A.

4 Applications Affines

4.1 Définition

Les applications affines sont aux espaces affines ceux que les applications linéaires sont aux espaces
vectoriels. Elles ressemblent beaucoup aux applications linéaires mais avec des termes constants en plus.

Soit € et F deux espaces affines de direction E et F'. Soit A un point de £ (pensé copnme une origine).
Une application f : &€ — F est dite affine s’il existe une application linéaire : B — F telle
que pour tout M € £, on a

F(M) = F(A) + f (AD). (4.1)

L’égalité (4.1) peut aussi s’écrire .
F(A)f(B) = f (AR, (42)
Remarquons qu’en fait cette définition ne dépend pas du point A choisi puisque
— — — — —
JOM) = J(A)+ T (AM) = f(B)+ F(4)[(B)+  (AM) = f(B)+ J (AM)+ ] (AM) = f(B)+ f (BM),
L’application ? est appelée application linéaire associée a f.

Lemme I11.41. La composé de deux applications affines est une application affine. De plus, application
linéaire associée s’obtient en composant les applications linéaires associées.

Démonstration. Laissée en exercice. O
Lemme 111.42. L’image d’un sous-espace affine par une application affine est un sous-espace affine.

Démonstration. En écrivant le sous-espace affine sous la forme A 4+ F (pour A dans le sous-espace affine
et F' sa direction), ¢’est une conséquence immeédiate de la formule (4.2). O
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4.2 Ecriture matricielle

Soit £ et F deux espaces affines munis de repéres. En particulier on a deux bases des directions F et F.
A chaque point M de &, on associe le vecteur X € M,1(R) de ses coordonnées. Soit Y € M,1(R) le
vecteur des coordonnées de f(M). Alors on a

Y =T+ MX, (4.3)
ou T € M,,1(R) est le vecteur des coordonnées de I'image par f du centre du repére de £.
Remarquons que la formule (4.3) est la traduction matricielle de (4.1). Remarquons que la formule (4.3)
est proche de la formule pour une application linéaire, avec le terme constant (indépendant de X) en plus.
On suppose ici que & = F et que l'on a un seul repére. Par la formule (4.3), lorsque l'on a fixé des
repéres une application affine f correspond a une paire (M, T) € M, (R) x M,1(R). Soit g une seconde
application affine correspondant & une paire (N,U) € M, (R) x M,1(R). Alors

fog correspond a (MN,MU +T).

4.3 Barycentre

Proposition IT1.43: Applications affines et barycentre

Les applications affines préservent le barycentre. C’est-a-dire, on a la formule suivante :

f(bal"<(z407$0)a (Anao),.... <An,xn>>> - bar((f(Ao>,xo>, F(ADsar), .., <f<An>,xn>>.

Démonstration. Par associativité, il suffit de montrer la proposition pour deux points, cad n = 1. Posons

G= bar((Ao,xo), (Al,xl)). On a f(4y) = f(G) + ?G—Ao) et f(41) = f(G) + ?G—Al> Calculons

10 (G) (Ao} + 21 (G f (A1) = %ﬁ@;) +a f (GAY)
7

4.4 Exemples

Soit £ unn espace affine de direction FE.
Homothéties. Soit A un scalaire et O un point £. L’homothétie hy o de centre O et de rapport A est
I’application de £ dans lui-méme définie par

—
Oho7,\(M; = \OM. (4.4)
Voici leurs propriétés.
Proposition II1.44: Homothéties
Soit A un scalaire et O un point &.
(i) L’application hy o est une application affine dont 'application linéaire est AIdg.

(ii) Si A # 1, toute application affine dont I’application linéaire est Aldg est une homothétie.
(iii) Si A # 1, O est 'unique point fixe de hy 0.
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Démonstration. D’aprés (4.4), on a
—
ho’)\(M) =0+ \OM.

La premiére assertion en découle.

Soit A # 1. Soit A € & et f une application affine dont I'application linéaire est Aldg. Soit O =
((f(A),1),(A,N). Alors MAO = f(A)O, c'est-a-dire O = f(A) + MAO. En comparant & (4.1), on déduit
que O est un point fixe. Mais alors f est ’homothétie de cent_r)e O et rappg’g A

Soit ho. et /_1>un point fixe. Alors Or f(A) = f(O) + A\OA = O + \OA = A d’aprés (4.1). Donc
A—=1)OA= 0 et O=A (car A # 1). O

Translations. Soit v € E. La translation ¢, de vecteur v est 'application de £ dans lui-méme définie

par
1o (M) = M +v. (4.5)

Voici leurs propriétés.

Proposition IT1.45: Translations

Soit v € F.
(i) L’application ¢, est une application affine dont 'application linéaire est Idg.
(ii) Réciproquement, toute application affine f telle que 7 = Idg est une translation.

(iii) Deux translations commutent, et méme : t, oty = .

Démonstration. Fixons O € &.
Pour tout M € &, on part de M = O + OM et on lui applique t,, :

M+v=0+uv+ L (0M).
Donc t_g(O—J\j) — OM et t_g est 'identité. .
Soit f une application affine telle que ? = Idg. Pour tout M € &, on part de M = O + OM et on lui
applique f : N .
f(M)=f(O)+0OM = M+Mf(0; +O0M = M—I—Of(O;.

Donc f est la translation de vecteur Of(O;.
La derniére assertion est évidente. O

Projections.
Soit F un sous-espace affine de direction F' et G un sous-espace vectoriel de F. On suppose que

FoG=FL.

Alors, pour tout M € &, les sous-espaces affines F et M + G s’intersectent en un point que 'on note
pr,c(M). De plus, I'application
PF.G : E — &
M +— p]:)G(M)

est une application affine dont I'application linéaire associée est la projection linéaire d’image F' et de
noyau G. On lappelle la projection sur F parallélement a G. Bien sir, on a :

PFr.c °PF.G = PF,G-

Exercice 9. Construire une application affine dont la partie linéaire est une projection linéaire bien
qu’elle me soit pas une projection affine.
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g4 p(A) A
gB /
p(B) B
G

Symétries. Soit F un sous-espace affine de direction F' et G un sous-espace vectoriel de E. On suppose

que
FeG=E.

Notons p la projection sur F parallélement a G.
Alors, pour tout M € £. On définit un point sz ¢(M) (ou s(M)) par la relation

Mp(M) = p(M)s(M)  cad (M) =p(M)+ Mp(M).
L’application
SF.G : E — £

est une application affine dont ’application linéaire associée est la symétrie linéaire d’image F' et de
noyau G. On lappelle la symétrie par rapport a F parallélement ¢ G. Bien stir, on a :

sFaosra=ldg

Exercice 10. Construire une application affine dont la partie linéaire est une symétrie linéaire bien
qu’elle me soit pas une symétrie affine.
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5 Quelques théorémes Classiques

5.1 Théoréme de Thalés

Soit A, B et C trois points alignés de & tels que A # C. Alors il existe un unique scalaire A tel que
AB = MAC'. On définit

AB
— =\
AC

Théoréme II1.46. Thalés

Soient H1,Ho, Hs trois hyperplans paralléles et distincts d’un espace affine £ et D, D’ deux droites
dont aucune n’est faiblement paralléle & H;. On suppose que H; coupe D au point A; et D’ au

point B;. On a alors

A1 Ay _ BBy (5.1)
AA;s BB3 '
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Démonstration. Soit 7 la projection sur D’ parallélement a H;. Alors w(A;) = B; pour tout i. Regardons

la relation
—  AjAy——
A Ay = 22240 Ay

143
Appliquons lui 7 (qui est linéaire) :

P = 2o @m).

A1Ag) =
143
Mais alors
—— DBiBy——
Bi1B; = ==—2B, B;
B1Bs
L’égalité du théoréme en découle. O

D D
H1 / \
A B

Ho

¢ Ay By

¢ A3 B3

5.2 Théoréme de Pappus

Théoréme 111.47. Pappus
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Soit D et D’ deux droites distinctes du plan affine. Soit A, B et C (resp. A’, B’ et C”) trois points
distincts de D (resp. D). On suppose qu’aucun des 6 points n’est D N D’.
Si (AB')//(A'B) et (CB’)//(C'B) alors (AC")//(A’C).

Démonstration. On distingue deux cas :

— Cas 1: DNnD" ={0}.
Soit h; 'homothétie de centre O qui envoie A sur B. Soit he ’homothétie de centre O qui envoie
B sur C.
Or le théoréme de Thalés implique que hy(B’) = A’ et ho(C’) = B’. Mais alors

h2 e] hl(A) = hQ(B) = C
et

h1 o hQ(C/) = hl(B/> = A/.

Comme h; et hy ont le méme centre elles commutent : hy o hg = hy o hy =: hs. Donc h3((AC")) =
hs((A'C)). -

Comme hg est une homothétie, les directions de (A’C) et (AC’) sont égales (car hz est une ho-
mothétie linéaire et stabilise tous les sev). Donc (A'C)//(AC").

— Cas2: D//D'.

Soit ¢; la translation qui envoie A sur B. Soit 5 la tragslation qui envoie B sur C.
Puisque (ABA’B’) est un parallélogramme, AB = B’C’. De méme, BC' = C'B’. Donc

tg e} tl(A) = tQ(B) =C
et

tl ] tg(c/) = tl(B/) = A/.

Comme t; et ty commutent : ¢y oty = ts o t; =: t3. Donc t3((AC")) = t3((A'C)).
Comme t3 est une homothétie, les directions de (A’C) et (AC’) sont égales (car t3 est une
homothétie linéaire et stabilise tous les sev). Donc (A'C)//(AC").

O

Remarque. Dans cette preuve, une translation joue le role d’une homothétie dont le centre serait a I’infini.
Cette idée intuitive a laquelle il est difficile de donner un sens précis est pourtant assez riche.
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5.3 Théoréme de Désargues

Théoréme II1.48. Désargues

Soit (ABC) et (A'B’C") deux triangles non aplatis. On suppose que (AB)//(A’'B’), (BC)//(B'C")
et (AC)//(A'C).
Alors les trois droites (AA"), (BB’) et (CC’) sont concourantes ou paralléles.
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Démonstration. Nous allons prouver ce théoréme seulement dans un cas particulier : on suppose que
(AA")//(BB'). Dans ce cas on va montrer que (AA")//(CC").
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Soit ¢ la translation qui envoie A sur A’. Comme (ABA’'B’) est un parallélogramme, ¢(B) = B’. Donc
t((AC)) = (A'C") et t((BC)) = (B'C"). Donc ¢(C) = C" et CC" = AA’. Donc (AA")//(CC"). O
6 Classification affine des coniques planes

6.1 Le groupe affine

Théoréme 111.49. Applications affines inversibles

Une application affine de £ dans lui-méme est inversible si et seulement son application linéaire
associée f l'est. Dans ce cas l'application réciproque f~! est affine.

L’ensemble des applications affines de £ dans lui-méme est un groupe nomé le groupe affine et se
note GA(E).

Démonstration. Fixons un repére. En coordonnées, f s’écrit

X— MX+T.
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Comme T est constante, X — (M X + T) est bijective si et seulement si X — M X lest. Ceci montre la
premiére assertion.

Supposons M inversible. Posons Y = MX +T. Alors MX =Y —T et X = M~ 'Y — M~'T. En
particulier, Y — X est affine. O

6.2 Les coniques

e
Soit P un espace affine de dimension deux. On munit P d’un repére (A4g, AgA1, AgA;1) de sorte que les
coordonnées fournissent une bijection :

RZ: — P
— —
(;) —  Ag + zAgA; + yAgAs.

Une conique de P est une partie de P définie par une équation du type

ar’ +bzy+cy’ +de+ey+ f=0 (6.1)

avec (a,b,c,d, e, f) € RS tels que (a,b,c) # (0,0,0).

Classification. Soit az? + bxy + cy? + dx + ey + f 1’équation d’une conique. On discute selon le rang
de la forme quadratique Q := ax? + bxy + cy?. Quitte a multiplier ’équation par —1, on dans I'un des 3
cas suivant :

(i) rg@Q = 2 et sgn@ = (2,0). Aprés changement linéaire de variable, on obtient :
X24Y24+dX +eY + f=0.
En changeant X en (X + %) et Y en (Y + £), on obtient une équation de la forme
X24+Y?2 4 f=0.

Attention f a changé. Si f < 0, on trouve I'ensemble vide. Si f = 0, on trouve un point. Si f >0
on trouve une ellipse (en fait un cercle).

Avec un changement de variable X’ = AX et Y’ = AY', on peut supposer que f = —1,0 ou 1.
(ii) rg @ =2 et sgn@ = (1,1). Aprés changement linéaire de variable, on obtient :

XY +dX +eY + f =0.
En changeant X en (X +¢€) et Y en (Y + d), on obtient
XY + f=0.

Si f # 0, on trouve une hyperbole. Si f = 0, on trouve la réunion de deux droites sécantes.

(iii) rg @ =1 et sgn@ = (1,0). Aprés changement linéaire de variables, on obtient :
X2 4+dX +eY +f=0.

Puis on annule d comme précédemment. Si e = 0 et f > 0, on obtient le vide. Si e = 0 et

f < 0, on obtient deux droites paralléles. Si e = f = 0, on obtient une droite (double). Supposons
y—f

maintenant e # 0. En changeant Y en =, on obtient une équation de la forme
X?+Y =0.

On obtient donc une parabole.

37



Résumons cela dans un tableau.

Q Equation Nom Dessin
+4+ou——| X?24+Y?2=1 ellipse
++ou—— | X2+Y?2=-1 vide
++ou—| X2+Y?2=0 point X
+— XY =1 hyperbole
/<\
+— XY=0 droites sécantes h
+ ou — X?2+1=0 vide
+ ou — X?2-1=0 2 droites paralléles
+ ou — X2=0 droite double /
+ ou — X?2-Y =0 parabole U
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1 Définitions

1.1 Def et Exples

Soit A un ensemble muni de deux lois internes + et x : (A4, +,*) est un anneau si (A4,+) est un
groupe abélien (neutre noté 0), * est commutative, associative, distributive par rapport a + et
posséde un neutre (noté 1).

Remarque. Dans certains ouvrages, on ne demande pas que * soit commutative. Dans ce cas, ce que nous
appelons anneau s’appelle anneau commutatif.

La loi * est distributive par rapport & + signifie que pour tout (z,y,2) € A%, x* (y+2) =x*xy+ T * 2
et (z+y)xz=c*xz+y*z.

Exemples 6. Les ensembles suivants sont des annneaux.

(i) L’ensemble (Z, 4+, x) des entiers relatifs.
Ceci est 'exemple principal qu’il faut toujours garder en téte.
(ii) Les ensembles (Q, +, x), (R, +, x), (C,+, x).

Ces exemples ont une propriété supplémenntaires : tous les éléments de A sauf 0 ont un inverse
pour X.

(iii) L’espace des polynomes R[X].
Ceci est le deuxieme exemple a garder en téte.

(iv) Plus compliqué : R[X, Y] 'anneau des polynomes a 2 variables et coefficients réels.
Les ensembles suivants ne sont pas des annneaux. Trouver un argument expliquant que ces esembles ne
sont pas annneau.
Exemples 7. (i) L’ensemble N des entiers naturels.

(ii) L’ensemble 27Z des entiers pairs.

(iii) L’espace des polynomes R, [X] de degré inférieur a n.

(iv) L’ensemble M,,(R) des matrices.
A chaque fois, les opérations + et x sont les classiques.

1.2 Premiers constructeurs

Comme pour les groupes, on a une notion de sous-anneau :

Soit (A, +,*) un anneau, B € P(A) : B est un sous-anneau de Asi0 € B, 1 € B et B est stable
pour les lois +, a — —a et *.

Exemples 8. (i) Z est un sous-anneau de Q.
(ii) R est un sous-anneau de R[X].
(iii) {# : p € Zn € N} est un sous-anneau de Q.
(iv) L’ensemble Z[i] :== {x + iy : x,y € Z} est un sous-anneau de C. Il est appelé I'anneau des entiers

de Gauss.

Comme pour les groupes, on a une notion de produit :
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Soit (A, +,*) et (B, 4+, *) deux anneaux. On munit A x B des lois et éléments suivants :

1:=(1,1).

b)+ (a/,b') = (a+a',b+ V') pour tout a,a’ € A et bb' € B.

+ (a',b') (a+d',b+ 1) pour tout a,a’ € A et bt/ € B. On obtient ainsi un anneau
B

1.3 L’anneau Z/nZ

Fixons un entier naturel n > 2. On définit une relation d’équivalence sur Z (la congruence modulo n) :
a=b <<= nla-—b
La classe d’équivalence de a € Z est la partie suivante
a+nZ:={a+kn : keZ}.
Ces classes forment une partition de Z en n parties deux & deux distinctes :
Z=nZU(1+nZ)JU---U(n—1+nZ).

Par définition Z/nZ est 'ensemble de ces n parties de Z. Attention, un élément de Z/nZ est une partie
de Z. En particulier le cardinal de Z/nZ est n.
On définit deux opérations + et x sur Z/nZ par les formules suivantes :

(a+nZ)+ (b+nZ):=(a+b)+nZ e Z/nZ
(a+nZ) x (b+nZ) := (ab) + nZ € Z/nZ

pour tout a,b € Z.

Ces définitions posent une question. En effet, les membres de droite ne doit dépendre que (a + nZ) et
(b+nZ). Or a priori, les membres de droite dépendent de a et b, utiles pour calculer a+b et ab. Montrons
que ceci n’est qu’apparence pour + :

Soit @’ et b dans Z tels que a + nZ = o' + nZ et b+nZ = b +nZ. Alors il existe k et | dans Z tels que
a' =a+nk et =b+nl. Mais alors,

ad+b+nZ=a+nk+b+nl+nZ=a+b+nk+1+7Z)=(a+b)+nZ.

Théoréme IV.54. Anneau Z/nZ
L’ensemble Z/nZ muni de ces deux lois + et x est un anneau.

Démonstration. Chaque identité est une simple vérification laissée en exercice. O

Exemple n = 3.
0 1

Les traits de la graduation représentent les entiers relaturels. Les rouges sont ceux de 37Z, les bleus ceux
de 1+ 3Z et les verts ceux de 2 + 37Z. Le fait que chaque trait est une couleur et une seule dit que ces
parties forment une partition des entiers.

Les opérations + et x sont définie sur ces parties. Si on représente une partie par sa couleur, on obtient
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ofeoe—e o+ o= +

oleoe—e oo —= o+t o=
De méme pour le produit, on obtient :

exXeoe—eo oexXeoe—eo X =e

exXxeoe—eo ® X = ® X -

Revenons & Z/nZ. L'élément k + nZ € Z/nZ est noté k. En particulier le n est sous-entendu bien que
trés important.
Les tables d’addition et de multiplication de Z/3Z s’écrivent alors :

Nl = O 4+
o= O DI
=1 Ol N NI
NI~ O X
NI =1 Ol =1
1N Ol NI

Ol DI = =
ol o O

Exercice 11. Dresser de méme, les tables d’addition et de multiplication de Z/27 et Z/47Z.

1.4 Anneaux des polynémes

Soit A un anneau et X un symbole. On pose
AlX] = {Z anX" :a, €A et3IN VYn>= Na, =0}
n=0

La condition sur les coefficients a,, dit que tous sauf un nombre fini sont nuls. Lorsq’on écrit un polynome,
on oublie les termes de la forme 0X™, si bien que la somme devient finie. I1 est aussi important de
comprendre que la somme est formelle. Ce qui signifie que par définition Y )7 ja, X" = >0 (b, X" si
et seulement si a,, = b,, pour tout n.

On définit les deux opérations + et x sur A[X] par les formules suivantes :

Pour - -
P=> a,X" Q=) b, X",
n=0 n=0
on a o
P+Q=) (an+by)X"
n=0
et -
PQ=> cX"olico= Y  apb.
n=0 k+l=n

La formule qui définit ¢,, a bien un sens car seulement un nombre fini de termes apparaissent. Combien 7
Par ailleurs, PQ est bien un polynoéme car les ¢, sont presque tous nuls.

Proposition IV.55: Anneau des polyndémes
L’ensemble (A[X],+, X) est un anneau.

La preuve qui est une simple vérification est laissée en exercice.

Convention. On fait le choix d’omettre 0X*, X© et de noter 1X* par X*. Ainsi 1+ X3+ 2X% € R[X].
En effet

1 sin=0ou3
Ay = 2 sin==~6
0 sinon
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Fonction associée. Soit P € A[X]. Alors, on obtient une fonction
P:A— A,

dont la valeur P(a) s’obtient a substituer a & X dans P.
Si A = R, on obtient les fonctions polynomiales que vous connaissez bien. Pour d’autres anneaux, les
choses peuvent étre plus subtiles.

Exemple 9. Prenons A = Z/27 dont on note les éléments 0 et 1. Alors P =1+ X, Q = 1 + X3 sont
deux éléments distincts de A[X] car ils n’ont pas les mémes coefficients. R R

On calcule P(0) =1, P(1) =14+1=10,Q(0) =1 et Q(1) =1+ 1 = 0. Donc les fonctions P et () sont
égales.

1.5 Anneau des entiers de Gauss
L’ensemble Z[i] := {x + iy : x,y € Z} est un sous-anneau de C. Il est appelé 'anneau des entiers de
Gauss.

1.6 Petits anneaux

Dans cette section, on étudie les anneaux de petits cardinaux 2,3 et 4.

Proposition IV.56

Dans un anneau (A, +, x,0,1), on a, pour tout a € A :
Oxa=0 —1xa=—a.

Ici, —a signifie 'unique élément tel que a + (—a) = 0 (cad Uinverse de a pour la loi +).

Démonstration. En effet, 0 x a = (0+0) X a =0 X a + 0 X a. Donc 0 X a est I’élément neutre pour +,
c’est-a-dire 0.

Onaaussi—1xa+a=-1xa+1xa=(-14+1)xa=0xa=0.Donc —1 x a est bienl'inverse de a
pour +. O]

Exercice 12. Justifier chacune des égalités de la preuve ci-dessus a l’aide de la définition d’un anneau.

Cardinal 2. Soit A un anneau a deux éléments. Alors A = {0,1}. Ses tables d’addition et de multipli-
cation s’écrivent alors :

0 1
0 1
1 0

X
0
1

=l
o O o

1
0
1

Les valeurs noires s’obtiennent par définition des éléments neutres ou la proposition ci-dessus. La valeur
rouge s’obtient en remarquant que 0 doit apparaitre sur la ligne de 1 car 1 a un inverse pour +.
Ainsi Z /27 est le seul anneau a 2 éléments.

Cardinal 3. Soit A un anneau a trois éléments. Alors A = {0,1,a}. Ses tables d’addition et de multi-
plication s’écrivent alors :

e = O+
= OO
—| =
ISERS]

— O X
o O OO
Q = Ol
— Q Ole

a a

Les valeurs noires s’obtiennent par définition des éléments neutres ou la proposition ci-dessus. La valeur
rouge s’obtient par élimination : 1 + 1 = 1 est impossible car 1 # 0. Les valeurs vertes s’obtiennent par
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symétrie (4 est commutatif) et bijection de 'application y — = + y est bijective. La valeur verte se
justifie ainsi: a=1+1;doncaxa=(14+1)xa=a+a=1
Ainsi Z/3Z est le seul anneau & 3 éléments.

Cardinal 4. A partlr de 4 les choses se compliquent. Il y a 4 possibilités, mais cela est un peu long. Si
cela vous amuse vous pouvez essayer de continuer le raisonnement ci-dessous, bien que cela puisse étre
long.

Réciproquement, les pages précédentes de ce chapitre permettent de voir que Z/2 x Z/27Z et Z/4Z. Mais
il y a d’autres exemples. . .

Soit A un anneau a quatre éléments. Alors A = {0,1,a,b}. Ses tables d’addition et de multiplication
s’écrivent alors :

+]0 1 a b x|0 1 a b
0|0 1 a b 0|0 O 0O O
1|1 27 110 1 a b
a | a a |0 a
b|b b0 b

La lettre x ne peut étre 1 (chaque ligne est une permutation des éléments de A). Donc, x = 0, a ou b.
Quitte a changer les notations (entre a et b) on peut éliminer le dernier cas.

2 Inversibilité et divisibilité
2.1 Inversibilité

Un point important des anneaux est que —2 existe toujours alors que 2! par forcément. D’ot1 la définition
suivante :

Soit (A, +, x,0,1) un anneau. Un élément a € A est dit inversible s’il existe b € A tel que ab=1:

JbeA ab=1.

On note A* 'ensemble des éléments inversibles.

Exemples 10. Voici quelques exemples.
(i) On a Z* = {£1} et R[X]* =R* =R — {0}.
(if) Plus difficile Z[i]* = {£1, £i}.
Pour le montrer, on part de zz’ = 1 et on s’intéresse au module |z| de z.
(iii) (z/47)* ={1,3}
On peut le montrer en dressant la table de multiplication de Z/4Z.

On peut vérifier que (A*, x,1) est un groupe abélien.
2.2 Divisibilité

Bien que b~! n’est pas de sens dans un anneau, il se peut que £ en ait un. Penser a g dans Z.
D’ou la définition suivante :

Soit (A, 4+, x,0,1) un anneau et a,b € A avec b # 0. On dit que b divise a 81l existe ¢ € A tel que
a = bc et on écrit b| a.
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Dans Z on retrouve bien la divisibilité a laquelle nous sommes habitués. Voici un anneau dans lequel les
choses sont plus compliquées.

Exemple 11. Posons A = Z[\/5] = {a + bv/5|a,b € Z}. On peut vérifier que A est un sous-anneau de
R. Comme Z C A,on a 6 =2 x 3 et 2 et 3 divisent 6. Mais on a aussi

6= (1+5)(1 —V5)

et 1+ +/5 divisent aussi 6.
En revanche, on peut montrer que 1 + v/5 et 2 n’ont pas de diviseur commun. De méme, 1 + /5 et 3
n’ont pas de diviseur commun.

On pourra remarquer que si b € Ax alors b divise a pour tout a. Ce sont les relations de divisibilité
triviales. Un élément de A est dit irréductible si ces seuls diviseurs viennent de relations de divisibilité
triviales. Plus précisément :

Soit p € A. L’élément p est dit irréductible, si p n’est pas inversible et

p=ab = aoubest inversible.

Dans Z, les éléments irréductibles sont les nombres premiers et leurs opposés. De maniére plus générale,
dans ces questions de divisibilité un élément ou son produit avec un inversible jouent les méme role.

3 Anneaux intégres

Vous avez appris il y a longtemps que pour qu’un produit soit nul, il faut qu'un des terme le soit. Ceci
est vrai pour les nombres rééls, mais pas pour les matrices (qui ne forment pas un anneau). Dans les
anneaux, ¢a dépend. D’ou la définition :

L’anneau A est dit intégre si

Va,be A (ab=0 = a=0o0ub=0).

Exemples 12. (i) Z, R, C[X], Z[i] et Z[v/5] sont intégres.
(ii) Z/37Z est intégre (comment cela se lit-il sur sa table de multiplication ?).
(iii) Z/4Z n’est pas intégre car 2.2 = 4.
(iv) Z x Z n’est pas intégre car (1,0)(0,1) = 0.

4 Corps

Un corps (K, +, X) est un anneau dont tout élément non nul est inversible :

Va € A* dbeA ab=1.

Exemples 13. (i) Les corps que vous connaissiez en sont bien : Q, R, C.
(ii) L’ensemble R(X) des fractions rationelles est un corps.
(iii) Z/2Z et Z/37Z sont des corps.
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(iv) Le sous-anneau Q + iQ de C est un corps.
(V) Z/6Z n’est pas un corps. Trouver un élément non nul et non inversible.
(vi) Z, R[X], Z[i] ne sont pas des corps.

Trouver un élément non nul et non inversible pour chacun de ces anneaut.

5 Morphismes, idéaux et anneaux quotients
5.1 Morphismes

Soit A et B deux anneaux. Un morphisme f de A vers B est une application f : A — B telle
que

0)=0cet f(1)=1,;

a+a)= f(a)+ f(a’) pour tout a,a’ € A;
) = —f(a) pour tout a € A,

aa’) = f(a)f(a’) pour tout a,a’ € A.

Remarque. On pourra remarquer que f est en particulier un morphisme de groupes pour la loi +. En
particulier, la définition ci-dessus est redondante car f(a + a') = f(a) + f(a’) implique f(0) = 0 et
f(=a) = —f(a).

Il est immédiat de vérifier que la composé de deux morphismes est un morphisme.

De méme, la réciproque d’un morphisme bijectif f est un morphisme. On dit alors que f est un isomor-
phisme.

Voici quelques exemples de morphismes.

Exemples 14. (i) Pour n > 2 € N, I'application
7 — Z/nZ

k — k=k+nZ

est un morphisme.
(ii) Soit a € R. Alors, l'application
eve : R[X] — R
P +— P(a)
est un morphisme.
(iii) Soit A et B deux anneaux. Alors, 'application
AxB — A
(a,b) +— a
est un morphisme.
(iv) Soit A et B deux anneaux. Alors, I'application
A — AxB
a +— (a,0)
n’est pas un morphisme. Pourquoi ?

(v) L’application
RxR — C
(z,y) — x+iy

n’est pas un morphisme. Pourquoi ?
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(vi) Posons
A= {(Z ‘ab) € My(R)|a,b € R},
Alors (A,0,I2,+,.) ol . est le produit matriciel, I la matrice identité est un anneau. De plus

I’application
C — A

a+ib — (a _b>
b a

Le noyau de f : A — B est son noyau lorsque f est pensé comme un morphisme de groupes :

est un isomorphisme d’anneaux.

Kerf={a€ A: f(a) =0}.

5.2 Idéal

Soit A un anneau commutatif, I C A. Alors, I est un idéal ssi (I, +) est un sous-groupe de (A4, +)
et pour tout a € A, pour tout z € I, ax € I.

Proposition IV.64: Intersection d’idéaux

Toute intersection d’idéaux est un idéal.

La preuve est une simple vérification.

Soit P C A non vide. L’intersection de tous les idéaux de A contenant P est le plus petit idéal
contenant P. On I'appelle idéal engendré par P, noté (P).

Théoréme IV.66. Idéal engendré

L’idéal engendré par P est {d>_._, ua; /7 € N,a; € P,u; € A}.
Remarque : Soit a € A : L’idéal engendré par a est aA. On le note (a). Plus généralement, si
P={ay,...,as} onnote (ay,...,as) =a1A+- -+ asA.

Démonstration. L’ensemble est bien stable par +, — et multiplication par n’importe quel élément de A.
C’est donc un idéal.

Soit I est un idéal contenant P. Comme il est stable par + et multiplication par tout a € A il contient
I’ensemble. O

Exemples 15. (i) L’idéal (2) engendré par 2 dans Z est ’ensemble des nombres pairs.
(ii) L’idéal (6,9) engendré par 6 et 9 est 'ensemble des multiples de 3.
La preuve de ce fait est laissée en exercice.

(iii) L’idéal (X) engendré par le polynome X dans R[X] est I’ensemble des polynomes qui s’annulent
en 0.

(iv) L’idéal (2, X) engendré par les polynomes 2 et X dans Z[X] est 'ensemble des polynémes dont
le coefficient constant est pair.
La preuve de ce fait est laissée en exercice.
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(v) L’idéal engendré par deux idéaux I et J est ensemble

I+J={a+b:a€el be J}.
Théoréme IV.67. Noyau et Idéal

Le noyau d’un morphisme d’anneaux est un idéal.

Démonstration. Soit f un tel morphisme. Comme c’est un morphisme de groupe pour +, son noyau est
un sous-groupe. De plus, le calcul

flab) = f(a)f(b) = f(a)0 =0

montre que si b € Kerf alors ab € Kerf. O

5.3 Anneau quotient

Nous allons faire une construction qui montre la réciproque du théoréme précédent : tout idéal est le
noyau d’un morphisme.
Un idéal I de A est dit strict si I # A. Ceci équivaut a 1 ¢ A.

Théoréme IV.68. Anneau quotient

Soit I un idéal strict de A. On pose
A/l ={a+1 :a€c A}

inclus dans I'ensemble des parties de A. Il existe une unique structure d’anneau sur A/I telle que
I’application
m: A — A/l
a — a+1

soit un morphisme d’anneaux.

Les lois sont données par les formules, pour tout a,b € A :

(a+1)+(b+I) = (a+b)+1
(a+ID)(b+ 1) (ab) + 1

La preuve est directe et nous 'avons faite dans le cas suivant : A = Z et I = nZ = (n). Nous avions
obtenu 'anneau Z/nZ. Le cas général ne posant aucune difficulté supplémentaire est omise ici.

Souvent on note a + I =: @, lorsque la référence a I est claire.

Application : Construction des nombres complexes.

La relation clé dans le corps des nombres complexes est bien entendu 72 = —1. L’idée est donc de partir
de R[X] est d’imposer X? = —1 c’est-a-dire X2 + 1 = 0 par quotient. On obtient 'application

t: C — RX]/(X?2+1)
a+ib — a+bX + (X?+1)R[X]=a+bX

qui est isomorphisme d’anneaux.

Le théoréme de factorisation permet d’obtenir des isomorphismes comme .

Théoréme IV.69. Factorisation des morphismes

Soit f : A — B un morphisme d’anneaux et I un idéal strict de A. ~
Si I C Kerf alors il existe un unique morphisme f : A/I — B tel que form = f.
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A%B

-

AT
De plus, f est injectif si et seulement si I = Kerf. Enfin, f est surjectif si et seulement si f lest.

Application. Soit I = (P) lidéal de R[X] engendré par un polynéme P. La remarque est que si
P(z) =0, alors Q(z) = 0 pour tout @ € (P). Ainsi pour P = X? — 1 on obtient un morphisme

f: RX] — RxR
P (P(-1),P(1))

tel que I C Kerf. On obtient donc f : R[X]/(X? — 1) — R x R qui est en fait un isomorphisme.

Exercice 13. Montrer que R[X]/(X? — 4X) est isomorphe a R x R.
Plus difficile, montrer que R[X]/(X? —2X + 1) est isomorphe a R x R muni d’une loi a définir.
Montrer que R[X]/(X? —4X) et R[X]/(X? —2X + 1) ne sont pas isomorphes.

Correction du cas X% —2X + 1 = (X — 1)2. Les multiples de ce polynémes sont ceuz qui vérifient
P(1) = P'(1) = 0. Donc lapplication

6 : RIX]/(X2-2X+1) — RxR
p — (P(1),P'(1))

est une bijection linéaire. En revanche 0 n’est pas un morphisme d’anneau. En revanche, elle l’est pour
la loi
(a,b) * (a',b") := (ad’,ab’ + a'b).

5.4 Propriétés des idéaux

Un idéal I d’un anneau A est dit premier si

Va,be A (abel =aecloubel).

Cette propriété s’interpréte facilement en terme de quotients.

Proposition IV.71: Quotient par idéal premier
Soit I un idéal strict de A. Alors I est premier si et seulement si A/T est intégre.

Démonstration. Considérons m : A — A/I.

Supposons A/I est intégre. Soit a et b dans A. Alors ab € I si et seulement si w(ab) = 0 si et seulement
si m(a)mw(b) = 0. Alors, cette derniére égalité implique que m(a) = 0 ou 7(b) = 0. C’est-a~dire a € I ou
b € I. Donc I est premier.

Supposons maintenant I premier. Soit deux éléments de A/T dont le produit fait zéro. On écrit ces deux
éléments m(a) et w(b) avec a et b dans A. Alors 0 = 7(a)w(b) = w(ab). Donc ab € I. Comme I est premier
cela implique que a € I ou b € I. Donc 7(a) = 0 ou 7(b) = 0. O
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Un idéal I d’'un anneau A est dit maximal si I C J C A implique J =1 ou J = A.
Les seuls idéaux contenant I sont I et A.

Cette propriété s’interpréte facilement en terme de quotients.

Proposition IV.73: Quotient par idéal maximal

Soit I un idéal strict de A. Alors I est maximal si et seulement si A/I est un corps.

Démonstration. Considérons m : A — A/I.

Supposons A/I est un corps. Soit J un idéal contenant strictement I. Soit b € J tel que b ¢ I. Alors
m(b) # 0. Donc il existe ¢ € A tel que w(c)m(b) = 1 = 7(be). Ceci se réécrit 1 —be € I C J. Donc
1= (1-bc)+bce€ J. Mais alors J = A.

Supposons maintenant I maximal. Soit a € A tel que m(a) # 0. Cela signifie que a ¢ A. Considérons
I'idéal J = I + aA engendré par I et a. Comme I est maximal, J = A et 1 € J. Donc il existe b € A et
i € I tels que 1 =i+ ab. Mais alors 1 = m(ab) = m(a)w(b). Donc 7(a) est inversible.

On a bien montré que A/l est un corps. O

Ces derniers résultats montrent que I maximal implique I premier.

Exemples 16. (i) L’idéal (6) C Z n ’est ni premier ni maximal. En revanche, (5) est maximal (donc
premier).
(ii) (X% +1) C R[X] est maximal.
(iii) (X2 —1) C R[X] n’est pas premier.
(iv) (X) C Z|X] est premier, non maximal.
(v) (X2+Y?) C C[X,Y] est premier, non maximal.
(vi) (3,X) C Z[X] est maximal.

6 Anneaux euclidiens

6.1 Deéfinition et Idéaux

Soit A un anneau intégre. On dit que A est euclidien s’il existe une fonction N : A — {0} — N
telle que :

(i) N(ab) = N(b), Va,b e A — {0}
(ii) Ya,be A, b#0,3Iq,r) € Atq. a=bg+r (r=0o0uN(r) < N(b)

La fonction N est appelée norme euclidienne.

Exemples 17. (i) Z est euclidien, avec N(z) = |z|. Ceci est la division euclidienne que 1'on connait

depuis ’école primaire.

(ii) Si K est un corps, K[z] est euclidien, avec N(P) = deg(P). Ceci est la division euclidienne des
polyndémes.

(iii) Z[i] := {m +in, (m,n) € Z*} est euclidien, avec N(z = z + iy) = 22 + y>.
Esquisse de démonstration. Soit a,b € A, b # 0. On cherche ¢ et » comme dans la définition.
L’idée de base est que ¢ est une approximation du quotient a/b que 'on connait dans C. Posons
donc z = a/b € C. Les points de Z[i] forme un réseau donc il existe ¢ € Z[i] tel que |z —q| < v/2/2.
Alors ¢ convient.
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Encore un peu de vocabulaire afin de décrire les idéaux des anneaux euclidiens. Un idéal I d’un anneau
A est dit principal s’il est engendré par un élément. Un anneau est dit principal si tous ses idéaux le sont.

Théoréme IV.75. Euclidien et Principal
Tout anneau euclidien est principal.

Démonstration. Soit I un idéal de A. On regarde N (I). Comme partie non vide de N elle a un minimum.
Soit b € I tel que N(b) soit égal & ce minimum. Montrons que

I=()

11 est clair que (b) C 1.
Soit a € I. Ecrivons a = bg + r avec r = 0 ou N(r) < N(b). Puisque r = a — bq il appartient & I. Par
minimalité de N(b), on en déduit que r = 0. Mais alors, a € (b). O

On peut aussi comprendre les éléments inversibles. Regardons Z un élément non nul a est inversible ssi
la| = 1. Regardons K[X] : un élément non nul P est inversible ssi deg(P) = 0. En général, on a :

Proposition IV.76: Eléments inversibles

Soit A un anneau euclidien dont on note N la norme. Soit a € A non nul. Alors a est inversible si
et seulement si N(a) = N(1).

Démonstration. Si ab = 1 alors N(a) < N(1). Or a = a x 1 implique que N(1) < N(a). Donc si a est
inversible alors N(a) = N(1).

Réciproquement supposons que N(a) = N(1). On fait la division euclidienne : 1 = ag + r avec N(r) <
N(r). Ce qui est impossible. Donc r = 0 et a est inversible. O

6.2 Pgcd et ppcm

Les pged et ppem sont ceux que vous connaissez déja sur Z et K[X]. Cependant les concepts d’anneau
euclidien et d’idéal permettent des définitions et démonstrations a la fois homogénes et élégantes. Soit
donc A un anneau euclidien.

Une petite remarque préparatoire sous forme d’exercice.

Exercice 14. Soit a et b non nuls dans A. Alors (a) = (b) si et seulement s’il existe ¢ € A inversible
tel que a = cb.

Soit ay,...,as des éléments non tous nuls de A. Un élément 6 € A tel que (ay,...,as) = (§) est
appelé pged des éléments a, ..., as.

On note § = ay A---Aas. On peut remarquer que § n’est défini qu’a un inversible prés. Sur Z (resp.
K[X]), on fixe généralement cette indétermination en demandant que le pged soit positif (resp.
unitaire).

Le nom pged est justifié par ’exercice suivant.
Exercice 15. Soit ¢ dans A non nul. Alors q divise tous les a; si et seulement si q divise §.
Le lemme de Bezout est également facile & démontrer.

Exercice 16. Lemme de Bezout version 1.
Soit a et b dans A non nuls. Alors, il existe u et v dans A tels que au+bv = a A'b.
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Soit a1, ..., as des éléments non nuls de A. On dit qu’ils sont premiers entre eux si a; A---Aas =1
c’est-a-dire si (aq,...,as) = A.

Le lemme de Bezout est également facile & démontrer.

Exercice 17. Lemme de Bezout version 2.
Soit a et b dans A non nuls. Alors, a et b sont premiers entre eux si et seulement s’il existe u et v dans
A tels que au + bv = 1.

Soit ay,...,as des éléments non nuls de A. Un élément ¢ € A tel que (a1) N---N(as) = (¢) est
appelé ppcm des éléments a1, ..., as.
Onnotec=ai V- -V as.

6.3 Calcul des Pgcd et ppcm

On se donne a et b non nuls dans A. On veut calculer a A b et a V b. Un premier résultat nous dit que la
connaissance de I'un détermine ’autre.

Proposition I'V.80: Lien ppcm et pgcd

Il existe u inversible tel que
(a Ab)(aV b) = uab.

Démonstration. On pose a’ =a/(aAb) et b/ =b/(aAb). Comme ' A =1etad VI = (aVb)/(anb)il
suffit de montrer que
(@' vV') = (a'd),
sachant que a’ AV = 1.
Autrement dit on peut supposer que a A b = 1. Alors il existe u et v dans A tels que au + bv = 1.
11 est clair que (ab) C (a). Donc (ab) C (a) N (b) = (a V b).
Réciproquement montrons que a V b € (ab). Comme a divise a V b, il existe ¢ tel que a V b = ac. Or

¢ = acu + bev.

Puisque b divise bev et acu = u.(a V b) il divise ¢. Donc ¢ = be’. Ainsi a V b = ac = abc’. CQFD. O

Algorithme d’Euclide. Il s’agit d’un algorithme permettant de calculer a A b. Il est basé sur la formule
suivante. On suppose b non nul et soit a = bg + r la division euclidienne alors

aANb=1ADb
OAb=0D

Pour obtenir algorithme, on réitére le procédé en divisant b par r pour ré-exprimer r A b.

6.4 Factorisation

Comme nous commencons & le voir, le cadre des anneaux euclidiens (en fait principal suffit souvent) est
un bon cadre ou étendre les propriétés des entiers. Une propriété arithmétique fondamentale des entiers
est la décomposition en produit de nombres premiers. Cela s’étend a notre cadre du jour : on dit qu’un
anneau principal est factoriel.
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Théoréme 1V.81. Factoriel

Soit A un anneau euclidien et a un élément non nul de A. Alors, il existe des éléments irréductibles
P1,---,Ps dans A, des entiers naturels non nuls nq,...,ns et un élément inversible u tel que

a=upyt...pye.

De plus cette écriture est unique a ’ordre prés et & multiplication des p; et de u par des inversibles.

Un ingrédient clé pour montrer cela est le

Lemme IV.82 (Lemme de Gauss). Soit a,b et ¢ non nuls dans A. Si a divise bc et a Ab =1 alors a
divise c.

Démonstration. On utilise encore Bezout : au + bv = 1. Alors acu + bcv = ¢. Donc a divise c. O

Preuve du théoréeme de Factorialité. Pour l'existence on fait une récurrence sur N(a). Si a est irréduc-
tible, il n’y a rien & montrer. Sinon a = be avec b et ¢ non inversibles. Alors N(b) < N(a) et N(c) < N(a).
Par récurrence, on déduit que b et ¢ admettent des décompositions. Donc a aussi.

Pour I'unicité supposons que

Hpi:quj, (6.1)

- avec p; et q; irréductibles et u inversible. Ici on remplace les exposant par des répétitions.

Il est clair que ¢; divisent le membre de droite. Donc il divise celui de gauche. Supposons que ¢ n’est
pas conjugué a p;. Comme ils sont irréductibles, il suit que g1 A p; = 1. Mais alors le lemme de Gauss
implique que ¢ divise Hi>2 pi- On recommence. On aura nécessairement & un moment ¢; divise p;. On
divise ’expression (6.1) par ¢; et on recommence (cad on fait une récurrence sur le nombre de ¢;). O

Pour ceux qui auraient I'impression de ne rien avoir montré, il est intéressant de faire I’exercice suivant.

Exercice 18. Posons A = {a+bi\/5 : a,b € Z}.
(i) Montrer que A est un sous-anneau de C.
(i) Montrer que 2 et 3 sont irréductibles dans A.
(i) Montrer que 1+ i\/5 sont irréductibles dans A.
(iv) En remarquant que 2 x 3 = (1 +iv/5)(1 —iv/5), montrer que A n’est pas euclidien.

7 Anneau K[X]

Fixons un corps K. Vous pouvez penser & R, C, Q ou Z/pZ. Nous verrons d’autres exemples plus tard.
Nous avons déja vu que K[X] était un anneau euclidien : il vérifie donc Bezout, Gauss et il y a une unique
décomposition en produit de polynémes irréductibles. Nous allons maintenant voir quelques techniques
spécifiques a cet anneau.
7.1 Racines et Dérivation
Substitution. C’est 'opération la plus compliquée & comprendre. Soit
P:ao—i—alX—i—---—i—adXd
et ) deux polynoémes. On pose alors
(PoQ)(X) =ao+a1Q(X) + -+ asQ(X)".
Faisons un exemple : P=1+X3et Q =2+ X?:
(Po@)(X) =1+ (2+X?%)3
=9+3X?+3X*+ X6,
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L’application P — P o @ est linéaire mais PAS Q — P o Q.
Dérivation. L’ensemble (1, X, X2 ...) est une base de K[X]. On peut donc définir un endomorphisme
D de K[X] on donnant I'image de ces monémes.

D: K[X] — K[X]

Xk o EXF1 sk
1 — 0

On a définit ainsi ce que l'on appelle la dérivation. Dans le cas ou le corps est celui des réels cette
dérivation coincide avec la dérivation usuelle. On note souvent P’ pour D(P).
On a les régles de calculs usuelles de la dérivation :

Proposition IV.83: Propriétés de la dérivation

Soit P et @ dans K[X]. On a
D(PQ)=D(P)Q+PD(Q)  (PQ)=PQ+QF

et
D(PoQ)=D(Q).D(P)oQ (PoQ)=Q xPoQ.

Démonstration. Fixons Q). Les applications P — D(PQ) et P — D(P)Q + PD(Q) sont linéaires. Du
coup il suffit de montrer 1’égalité pour P = X*.
Fixons maintenant P = X*. Les applications Q — D(PQ) et Q — D(P)Q + PD(Q) sont linéaires. Du
coup il suffit de montrer I’égalité pour Q = X*.
Dans ce cas, on a
D(PQ) = D(X*) = (k + 1) x*H—1

et

D(P)Q + PD(Q) = D(X") X! + X*D(X") = kXFH=1 p I xkH=1 — (p 4 ) x P+

Montrons maintenant la seconde égalité. Les applications P — D(Po Q) et P — D(Q) x D(P) o @ sont
linéaires. Du coup il suffit de montrer 1’égalité pour P = X*.
Dans ce cas, on a

D(PoQ) = D(Q") = kD(Q)Q*"
et

D(Q)-D(P) o Q = D(Q)k.Q*".

Evaluation — Racines.
Soit a € K. Alors on a une application évaluation

evy, : K[X] — K
P +— P(a).

On vérifie sans peine que ev, est un morphisme d’anneaux. Son noyau est {P : P(a) = 0}. C’est un
idéal maximal de K[X] car le quotient est isomorphe a K. L’isomorphisme est donné par ev,.

Proposition IV.84: Racine et division

Soit P € K[X] et a € K. Alors a est une racine de P si et seulement si X — a divise P.

Démonstration. Si P = (X — a)Q, il est clair que P(a) = 0. Réciproquement supposons que P(a) = 0.
On écrit la division euclidienne P = Q(X — a) + R avec R nul ou de degré strictement inférieur a 1.
Donc R est en fait un polynome constant. Par ailleurs, 0 = P(a) = R(a). Donc R est nul et X — a divise
P. O
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Soit P € K[X] non nul, a € K et @ € N. On dit que a est racine d’odre au moins a si (X — a)®
divise P.

On dit que a est racine d’odre exactement « si elle est racine d’ordre au moins « mais n’est pas
d’odre au moins « + 1.

Proposition IV.86: Ordre racine et dérivées

Soit P € K[X] non nul, a € K et a € N. Alors

(1) Si a est racine d’odre au moins « alors
P(a) = Pl(a) == P(a_l)(a) =0.
(ii) Si de plus K est de caractéristique nulle, la réciproque de la premiére assertion est vrai.

Démonstration. Supposons d’abord que (X —a)® divise P. Il existe alors Q € C[X] tel que P = (X —a)“Q.
On rappelle la formule le Leibnitz :

k
(Fo) ™ =3 (k) FOg*.
=0

La preuve de cette formule se fait par récurrence sur k en utilisant la formule de dérivation d’un produit.
On obtient pour Pet k <a—1:

k
) =3 (1) (e -y, ()
1=0
On remarque alors que
(X —a)® = (a(a—1)...(a—i+1))(X —a)*" sii<a,

et ‘
(X —a)®)®D =0 sii>a

En particulier, pour tout : < k < o, on a
(x =299 @ =0

En injectant dans la formule (7.1), on déduit que P*)(a) = 0.

Réciproquement, supposons que P(a) = --- = P(®~1)(g) = 0. Ecrivons la division euclidienne de P par
(X —a)>:
P=(X-a)*Q+R,

avec deg(R) < a. L’assertion déja démontrée implique que
R(a) =--- =R Y(a) = 0.
Considérons le polynéme auxiliaire
S(X)=R(z+X) R(X)=5(X—a).
La formule de dérivation d’un polynéme composé implique que

§®(X) = R (z + X),
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donc
5(0)=---= 8@ D) =0.

Ecrivons S = ag + a1 X + -+ + aq_1 X" !. Par une récurrence immédiate, on montre que
S®0) = klap VE=0,...,a—1.

On en déduit que S = 0, puis que R = 0. Ainsi (X — a)® divise P. O

7.2 Irréductibilité
A Petits degrés
En petit degré, il y a un critére simple d’irréductibilité.
Proposition I'V.87: Irréductibilité et racines
On a
(i) Tout polynéme de degré 1 est irréductible.

(ii) Tout polynome irréductible de degré supérieur a 2 n’a pas de racine.

(iii) Tout polynoéme de degré 2 ou 3 qui n’a pas de racine est irréductible.

Démonstration. Soit P un polynome. Il est irréductible, si pour tout A, B dans K[X] tels que P = AB,
on a deg(A) ou deg(B) nul :

VA, B € K[X] (P=AB = (deg(A) =0 ou deg(B) =0)).

Les trois énoncés de la proposition découlent facilement des deux assertions suivantes :
(i) deg(P) = deg(A) + deg(B);
(ii) P est divisible par un polynome de degré un si et seulement si il a une racine.
O

En appliquant la proposition, on voit que X2+ X +1 € Z/2Z[X] est irréductible. Attention, il est possible
qu'un polynéme sans racine ne soit pas irréductible. (X2 + 1)? donne un exemple dans R[X].

B Nombres complexes

Théoréme IV.88. D’Alembert-Gauss
Les polynomes irréductibles de C[X] sont les polynomes de degré un.

Ceci est bien une version du théoréme de d’Alembert-Gauss qui dit que tout polynéme non constant sur
C a une racine et donc est divisible par un polynéme de degré un.

C Nombres réels

Encore une fagon de formuler le théoréme de d’Alembert-Gauss.

Théoréme IV.89. D’Alembert-Gauss

Les polynomes irréductibles de R[X] sont les polynémes de degré un et les polynomes de degré 2
et de discriminant négatif.
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D Nombres entiers et rationnels

On sort un peu du contexte en regardant les polynomes & coefficients entiers. Ce n’est pas un anneau
euclidien.

Pour P € Z[X] non nul on note ¢(P) le pged des coefficients de P. Ce nombre est appelé le contenu de
P.

Théoréme IV.90. Gauss

Soit P et @ dans Z[X] non nuls. Alors

c(PQ) = c(P)e(Q).

Cette formule est trés simple et trés utile. C’est la marque des grands. . .théorémes.

Démonstration. Posons P = P/c(P) et Q = Q/c(Q). Ceux sont des polynomes & coefficients entiers et
de contenu égal & 1. Il suffit de montrer que

¢(PQ) = 1.

Soit p un nombre premier. Soit P (resp. @) le polynome de Z/pZ[X] obtenu en considérant la classe

dans Z/pZ de chaque coefficient de P (resp. Q). Comme ¢(P) =1, P est non nul. Comme Z/pZ[X] est
intégre, on en déduit que PQ # 0. Donc p ne divise pas ¢(PQ). Vu l'arbitraire de p, on en déduit que
(PQ) = 1. O

Corollaire IV.91: Irred dans Z et Q

Soit P € Z[X] tel que ¢(P) = 1. Alors se valent
(i) P est irréductible dans Q[X];
(ii) P est irréductible dans Z[X].

Démonstration. Un sens est évident. Réciproquement supposons que P est irréductible dans Z[X]. Soit
P = AB dans Q[X]. En chassant les dénominateurs de A et B, on obtient d € N, A, B € Z[X] tels que

dP = AB. (7.2)

En prenant le contenu, sachant que ¢(P) = 1, on obtient d = ¢(A)c(B). Mais alors, en divisant I'équa-
tion (7.2) par d, on obtient

A B

P=—-—. (7.3)

c(A) c(4)
Cette équation vit dans Z[X]. Donc lirréductibilité de P dans Z[X] montre que deg(A) ou deg(B) est
nul. CQFD. O

Ce corollaire est trés puissant pour montrer qu’un polynéme de Q[X] est irréductible. Faisons un exemple.

Exemple 18. Soit P = X* + X + 1. Montrons que P est irréductible dans Q[X]. Comme P € Z[X] et
¢(P) =1, il suffit de monter qu’il est irréductible dans Z[X]. Ecrivons donc P = AB avec A et B dans
Z[X]. Il s’agit de montrer que A ou B est constant. Quitte & permuter A et B, on peut supposer que
deg(A) < deg(B). Comme deg(A) + deg(B) = deg(P) =4, il y deux cas & considérer :

(i) deg(A) =1 et deg(B) = 3.
Alors A = aX + b avec a,b € Z. En regardant le coefficient dominant de AB, on déduit que a est
inversible dans Z. Donc a = £1. On peut supposer que a = —1. Mais alors b € Z est une racine

de P. Avec des inégalité, on se convainc que cela est impossible.
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(ii) deg(A) =2 et deg(B) = 2.

Alors on a
X4 X +1=(aX?+bX +e)(d X2+ VX +¢)

dans Z. En particulier aa’ = 1. Donc on a a = @’ = +1. On peut supposer (quitte & multiplier les
deux facteurs par —1) que a = a’ = 1.

De plus, ¢¢ = 1. Donc ¢ = ¢ = +1. Or
(X2 bX +)(X2+VX +¢) =X 4+ (0 +0) X3+ (2c+ bV ) X% +c(b+ D)X +1.

On obtient donc ' = —b en regardant le coefficient en X3. Donc le coefficient en X est nul.
Contradiction.
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1 Corps, Sous-corps, Extension

1.1 Deéfinition et exemples

Un corps (K, +, X) est un anneau tel que tout élément non nul est inversible pour Xx.

Les premiers exemples sont les corps que vous manipulez depuis longtemps : R, C et Q. Autre exemple

Q@) = Q+ Qi.
L’anneau 7Z n’est pas un corps car 2 n’est ni nul ni inversible.

L’anneau Z/nZ est un corps si et seulement si n est premier. En effet, d’aprés le théoréme de Bezout,
k € Z/nZ est inversible si et seulement si k est premier avec n.

L’ensemble des fractions rationelles K(X) est un corps.

On montre facilement que K* = K — {0} est un groupe abélien. En particulier I'inverse dex € K* pour
X est unique : on le note z~ ! ou %

Comme nous 'avons déja vu des corps peuvent étre inclus les uns dans les autres.

Soit (L, +, x) un corps. Une partie K C LL est un sous-corps si ¢’est un sous-anneau tel que

Ve e K z ek

On dit aussi que L est une extension de K.

Une remarque trés importante est que si K C L est une extension de corps alors L est un K-espace
vectoriel. La dimension de cet espace vectoriel est appelée le degré de l’extension. On la note [L : K].
Par exemple [C: R] =2, [Q(i) : Q] =2 et [C: Q] = 0.

1.2 Caractéristique d’un corps

Soit A un anneau. Soit n un entier naturel. On peut bien stir le penser comme 1+ 1+ --- + 1 n fois.
Mais alors il prend un sens dans A. De plus, si n est négatif, n = —(—n). On obtient ainsi un morphisme
d’anneaux

L7 — A

Autrement dit, ¢(1) =1, ¢(2) = 1+ 141, ¢(3) = 1+ 141 etc. Et o(—1) = —u(1), o(=2) = —u(2),
1(—3) = —1(3) etc. Le noyau de ¢ est un idéal de A. Il ’écrit donc (n) pour un entier naturel n. L’entier
n est appelé la caractéristique de A. On la note car(A).

Lemme V.94. La caractéristique d’un corps est nulle ou un nombre premier p.

Démonstration. Comme Z/nZ s’injecte dans le corps il est intégre. Mais alors n est nul ou premier. [
Soit K un corps. En fait, si car(K) = 0 alors K contient Q. Si car(K) = p alors K contient Z/pZ.
Lemme V.95. Le cardinal d’un corps fini est une puissance d’un nombre premier.

Démonstration. Le morphisme ¢ ne peut étre injectif car Z est infini. Il suit que le corps contient Z/pZ
avec p-premier. En particulier il est isomorphe a (Z/pZ)™ comme espace vectoriel (pour un certain n).
Donc son cardinal est p™. O

Nous verrons dans ce chapitre que réciproquement pour tout n, il existe un unique (& iso prés) corps a
p" éléments.
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1.3 Double extension

Soit K; C Ky C L. Combien voyez-vous d’extension ? Deux ? Et non, c’est trois.

Théoréme V.96. Base télescopique

Soit K; € Ky C L. On suppose que K; C IL est une extension finie. Alors

[]L . Kl] = []L . Kg] . [KQ . Kl]

Démonstration. La démonstration de ce théoréme explique son nom. Soit (eq,...,eq) une base de Ky
comme K;j-espace vectoriel. Soit (f1, ..., for) une base de IL comme Ks-espace vectoriel.
Chaque élément y de L s’écrit
y= Z zifi
i

pour z; € Ks. Or chaque x; s’écrit
xXr; = Z mij 6]',
J
pour m;; € K;. Mais alors,
y=y_ mie;fi)
4,J
. Donc la famille (e; f;) engendre L comme K;-espace vectoriel.
Supposons maintenant que
> mijle;fi) =0,
,J
avec m;; € K;. Alors

Z(Z mijej) fi = 0.

i

Comme (f1,..., fa) est libre sur Ky, on en déduit que
Vi Zmijej =0.
J

Comme (e1,...,eq) est libre sur K;, on en déduit que

Ainsi la famille (e; f;) est libre.

Finalement la famille (e;f;) est une base de L comme K;-espace vectoriel. La formule du théoréme en
découle facilement. O
2 Corps des Fractions

Une premiére fagon de construire des corps est de faire ce que 'on a fait pour construire Q. Nous par-

tions de Z et considérions les fractions 7 comme un objet formel. En fait cela marche dés que 'anneau

de départ est intégre. Mais au fait, vous aviez déja vu un autre exemple : le corps des fractions rationnelles.
Soit A un anneau intégre. On considére ’ensemble quotient suivant
a
Frac(A) := {E ca€Abe A—{0}}/ ~
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ou la relation d’équivalence ~ est définie par

chl < ad—be=0.

Sl S

On définit ensuite sur A les deux opérations :

a c ac a c ad + be
_ — et —+—:

N d T db b T d db

On vérifie que ces opérations sont bien définies (c’est-a-dire passent au quotient par ~) et dont de Frac(A)
un corps. C’est un peu long mais sans difficulté.

L’anneau de départ A s’injecte dans K par 'application

t: A — Frac(A), a — %.

Le corps Frac(A) vérifie la propriété universelle suivante. Tout morphisme d’anneau injectif de A dans
un corps se prolonge de maniére unique a Frac(A). C’est une maniére de dire que Frac(A) est le plus
petit corps contenant A.

3 Elément algébrique — Corps de décomposition

3.1 Polyndéme minimal

Soit K C IL une extension de corps. Pensez ici & Q C C. Soit v € L et

0o KX] — L
P — Pa).

Un élément o € L est dit algébriqgue sur K s’il existe un polyndéme non nul P € K[X] tel que
P(a) = 0. Sinon il est dit transcendant.

Dit autrement, « est transcendant si ¢ est injectif et algébrique sinon. Dans ce dernier cas, le
générateur unitaire de Kerp est appelé le polynéome minimal de . On le note piq.

Proposition V.98: Corps engendré

Soit a € L algébrique sur K. Alors le polynéme minimal de « est irréductible. De plus, 'image de
©q est un corps, noté K[a] et isomorphe a K[X]/(pq)-

Démonstration. L’anneau quotient K[X]/(po) s'injecte dans L, donc il est intégre. Ce qui implique que
e, est irréductible.
Mais alors, (pq) est un idéal maximal donc K[X]/(uq) est un corps. O

Par exemple, v/2 est algébrique sur Q et son polynéme minimal est X2 — 2.

Théoréme V.99. Corps des nombres algébriques

L’ensemble des nombres de I qui sont algébriques sur K est un sous-corps de I et une extension
de K.
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Démonstration. La remarque essentielle de cette démonstration est la suivante : , n’est pas injective si
et seulement si son image est de dimension finie si et seulement si « est algébrique.

Soit maintenant o et 3 dans L. qui sont algébriques sur K. On a déja vu que a~! € K[a].

Considérons Ko, 8] := (K[a])[5]. Comme 8 est algébrique sur K il I'est sur K[a]. Donc la dimension de
K]e, 5] sur K[a] est finie et K[, 8] est un corps. D’aprés le théoréme de la base télescopique, la dimension
de K]a, 8] sur K est finie.

Or a + @ appartient a K[o, 8] qui est un corps. Donc I'image de ¢.+3 est incluse dans K[e, 5] et donc
de dimension finie. Donc a 4 3 est algébrique sur K. On montre de méme af est algébrique sur K. O

Le théoréme précédent implique par exemple que le nombre complexe

V5 +i
2+iv3
est algébrique sur Q. Il n’est pas facile du tout d’en trouver le polynéme minimal. On peut tout de méme
en mimant la preuve trouver une borne supérieure sur son degré.

3.2 Corps de décomposition

Soit P € K[X] un polynome irréductible. L’anneau quotient K[X]/(P) est un corps car 'idéal (P) est

maximal. Notons X la classe de X dans K[X]/(P). Alors, par définition P(X) = 0, si bien que K[X]/(P)
est un corps, une extension de K et contenant une racine P. De plus, K[X]/(P) est engendré par X et
K comme anneau et

[K[X]/(P) : K] = deg(P).

Le corps K[X]/(P) est appelé corps de rupture de P. C’est I'unique (& isomorphisme prés) extension de
K contenant une racine de P et engendré par celle-ci.
Nous admettrons le résultat suivant.

Théoréme V.100. Corps de décomposition

Soit P un polyndéme non nul de K[X]. Alors il existe une extension IL de K telle que P est scindé
sur L et L est engendré par les racines de P et K comme anneau.

De plus, L est I'unique extension de K vérifiant ces propriétés. I est appelé le corps de décomposition
de P.

4 Corps finis
Le but de cette section est de classifier tous les corps finis. L’énoncé est le suivant :

Théoréme V.101. Corps finis

(i) Soit K un corps fini. Alors il existe un nombre premier p et un entier naturel non nul n tel
que K = p”.

(ii) Réciproquement, soit p un nombre premier et n un entier naturel non nul. Alors, il existe
un corps a p™ éléments.

(iii) De plus, deux corps finis de méme cardinal sont isomorphes.
On note F, I'unique corps a ¢ = p™ éléments.

4.1 Premiéres propriétés et exemple

Soit K un corps fini. Sa caractéristique est non nulle (car il ne peut contenir Z), notons la p. Alors K
contient Z/pZ. Posons n = [K : Z/pZ) la dimension de K comme Z/pZ-espace vectoriel. Alors K = p™.
La premiére assertion du théoréme V.101 est démontrée.
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Sin =1, a la fois l'existence et 'unicité du théoréme V.101 sont claires. On pose donc F, = Z/pZ pensé
comme un corps. Regardons le plus petit cas qui suit p = 2 et n = 2. Soit K un corps de cardinal 4. On
note 0 et 1 les éléments de Z/2Z qui est inclus dans K. Soit « dans K — {0, 1}.

On peut voit que 1+ # 1 (car ¢ # 0), 1 + 2 # 0 (car x # 1), 1 +x # x (car 1 # 0). Donc
K =1{0,1,z,1 + z}. On peut dresser la table d’addition de K :

0 1 T 1+
0 0 1 T 1+=x
1 1 0 1+ =z T
T T 1+ 0 1
l1+z |14+ x 1 0

On s’intéresse a présent & x2. On voit que 22 # 0 (car z # 0), 22 # 1 (car 2 — 1 = (z — 1)?), 2% #
(car 22 — z = z(z — 1)). Donc 22 = 1 + x. On peut dresser la table de multiplication de K :

0 1 T 1+«
0 0 0 0 0
1 0 1 T 1+
T 0 T 1+=x 1
1+2z |0 1+=z 1 T

4.2 Préliminaires

Avant de se lancer dans la preuve du théoréme V.101, on va montrer un lemme dans C[X], Z[X] et Z.

Lemme V.102 (Des divisibilités). Soit m et n deuz entiers naturels non nuls.

(i) Dans C[X], X™ — 1 divise X™ — 1 si et seulement si n divise m.
(ii) De plus, X™ — 1 divise X™ — 1 dans C[X] si et seulement si il le divise dans Z[X].

(iti) Soit a > 2 un entier naturel. Alors a™ — 1 divise a™ — 1 si et seulement si n divise m.

Démonstration. Dans C, on écrit

xr—1= [ x-¢

¢eUn

N P . N sz 2ikm sos .
ou U, désigne I'ensemble des racines n-iéme de l'unité (les e™n ). Alors X™ — 1 divise X™ — 1 si et
seulement si U,, est inclus dans U,,, si et seulement si n divise m.

Il est clair que si X™ —1 divise X™ —1 dans Z[X] alors il le divise dans C[X]. Réciproquement, supposons
que X™ — 1 divise X™ — 1 dans C[X]. Effectuons la division euclidienne de X™ — 1 par X™ — 1 dans
Q[X]. Comme X™ — 1 est unitaire, on ne divise jamais et le quotient @ et le reste R sont a coefficients
entiers. Donc

X"—-1=X"-1)Q+R Q, R € Z[X].
Effectuons la division euclidienne de X™ —1 par X™ — 1 dans C[X]. On fait les méme calculs que lorsque
nous pensions les coefficients des polynémes dans Q. Donc les quotients et restes sont les mémes. Mais

alors comme X™ — 1 divise X™ — 1 dans C[X], R = 0. cdfd.

Si n divise m, alors X™ — 1 divise X™ — 1 dans Z[X]. Donc en substituant a & X, a™ — 1 divise a™ — 1.

Réciproquement supposons que a™ — 1 divise ™ — 1. On écrit m = ng + r avec 0 < r < n. Comme
a"—1=(a—1)(a" P +a" 2+ +1),
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lentier ("~ +a" 2+ ...+ 1) divise

1+ +a™2+am = 1+ +a )
+(1+.'.+an71)an
+(1+-+a" e

+(1 + e + anfl)a(qfl)n
+(14---+a""Ham.

Lentier N := (a1 +a""2+.--+1) est de la forme 1+ ab (un plus un multiple de a. Il est donc premier
avec a (par Bezout si vous voulez). Par ailleurs, il divise la somme ci-dessus ainsi que tous ses premiers
termes. Donc N divise le dernier terme de la somme, c’est-a-dire (1+---+a"~1)a?". Mais alors, le lemme
de Gauss implique que N divise (1 + --- +a""!). Le seul moyen (inégalités) est d’avoir r = 0. Donc n
divise m. O

4.3 Factorisation d’un polynéme dans F,[X]

Soit d un entier naturel non nul. On note Z(d, p) 'ensemble des polynémes de F,[X] unitaires irréductibles
et de degré d.

Lemme V.103. Si Z(d,p) est non vide, alors il existe un corps a p® éléments.
Démonstration. En effet, F,[X]/(P) convient pour P € Z(d,p). O

On veut donc montrer que Z(d,p) est non vide.

Proposition V.104: Factorisation de X?" — X

Soit n un entier non nul. Dans F,[X], on a

XP"-X:H H P.

d|n PeZ(d,p)

Démonstration. L’équation de la proposition est la décomposition de X?” — X en produit de polynomes

irréductibles. Il suffit donc de montrer les deux assertions suivantes, pour tout polynéme irréductible
unitaire P de F,[X] :

(i) P? ne divise pas X?" — X ;
(ii) P divise X?" — X si et seulement si deg(P) divise n.

Pour la premiére assertion, supposons par I'absurde que X?" — X = P2Q. Alors en dérivant on obtient
—-1=P2P'Q+ PQ").
Donc P divise —1. Contradiction.

Supposons maintenant que d = deg(P) divise n. Soit L = F,[X]/(P) et @ € L la classe de X. Alors
P(a) =0.

Sia=0, P =X etiln’y a rien a montré. Supposons donc « # 0. Alors « est un élément du groupe
multiplicatif L — {0} de cardinal p? — 1. Le théoréme de Lagrange montre donc que Pl =1. D’apres
le lemme V.102, on a aussi o ~! =1 (car p? — 1 divise p™ — 1). Mais alors « est racine de X?" — X.
Comme P et X?" — X ont une racine commune dans L leur pged n’est pas 1. Or, grace a l’algorithme
d’Euclide, le pged ne dépend pas du corps contenant les coefficients des polynémes. Donc, dans F,[X],
le pged de P et XP" — X n’est pas 1. Mais alors, comme P est irréductible, P divise X?" — X.

Supposons enfin que P divise X?" — X. Notons encore d = deg(P), L = F,[X]/(P) et a € L la classe de
X. On peut encore supposer « # 0. On fait la division euclidienne : n = ds + r avec 0 < r < d.
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« s n n__ n
Comme P divise XP" — X, o ~1 =1et o? = a. Donc
pn pds pr pr
ol =(a? P =af =a.

On en déduit que si 3 est une puissance de « alors

(s

pr =5

Si par ’absurde r # 0, on a
(J:—l—y)pr:xpr—i—ypr Ve,y €L

et

P =z Vx € Fp.

On en déduit que
=z vV € L.

En particulier le polynéme X?" — X de degré p” a au moins f. = p® racines. Contradiction.
Exemple 19. Dans F5[X], on obtient

XX =XX-DX*+ X+ )X+ X2+1).
Dans F5[X], on obtient

XP-X=XX-DX+DX*+DX*+ X - 1)(X' - X -1).

4.4 Existence

L’égalité des degré dans la proposition V.104 donne

p* =Y _4I(d,p)d.

d|n

Théoréme V.105. Existence polynéme irréductible

(4.2)

Dans F,,[X] il existe des polynomes irréductibles de tout degré. En particulier, pour tout n il existe

un corps a p” éléments.

Démonstration. 1l s’agit de montrer que Z(d, p) est non vide. Or, d’aprés (4.2), on a

p" =tI(n,p)n+ Y HI(d,p)d
d|n d<n

et
4Z(n,p)n < p".
Mais alors

s

D
p—1

n—1
pr<{Z(npn+ > p<tZ(n,p)n+ Y p* <HI(n,p)n+
dln d<n k=0

Donc #Z(n, p) est non nul.
Le lemme du début et I’existence de polynémes irréductibles impliquent ’existence de corps.
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4.5 Unicité

On peut montrer que
#7(50,2) = 22517997465 744.

Cela fait de nombreuses maniéres de construire Faso. Mais 'on obtient toujours la méme chose!!

Démonstration. Soit L un corps a p" éléments et P un polynémes irréductible unitaire de degré n dans
F,[X]. Posons K =T, [X]/(P).

Tous les éléments non nuls de L vérifient, o ~! = 1, en vertu du théoréme de Lagrange appliqué dans
le groupe multiplicatif . — {0}. Mais alors, pour tout o € L on a o = a. On en déduit que

XX =[x -a).
a€cll

Dans F,[X], on sait que P divise X?" — X. Donc il existe ag € L tel que P(ap) = 0. Comme P est
irréductible sur F,,, P est le polynome minimal de ag sur F,,. Ainsi, le morphisme

Fp[X] — L, @ — Q(ao)

induit un morphisme injectif

F,[X]/(P) — L.

Par égalité des cardinaux ce morphisme injectif est en fait un isomorphisme. O

5 Corps des nombres constructibles a la régle et au compas

Dans cette derniére section nous allons voir deux sous-corps de R et C inspirés par les mathématiques
de la Grece antique. On va développer des outils permettant d’étudier des problémes comme celui de la
trisection de I'angle, la quadrature du cercle ou la construction des polyédres réguliers.

Nous identifions le corps C au plan euclidien R2. Pour z; # 25 dans C, on note (z;23) la droite passant
par z1 et zo, et € (21, 22) le cercle de centre z; et passant par zs.

Soit S une partie de C. On dit qu'un nombre complexe est élémentairement constructible & partir de S
s'il existe z1 # 20 € S et z3 # z4 € S tels que 'une des affirmations suivantes est vrai :

(i) les droites (z122) et (2324) sont distinctes et sécantes en z.
(ii) les cercles 6(z1, z2) et 6€(z3, z4) sont distincts et sécants en z.

(iii) la droite (z122) et le cercle 6(zs, z4) s’intersectent en z.

On dit qu’un nombre complexe z est constructible s’il existe une suite 0, 1,4, 21,..., 2, = z telles que,
pour tout 1 < i < n, 2 est élémentairement constructible a partir de {0,1,4,...,2,_1, pour tout
ke {1,...,n}. On note K I'ensemble des nombres complexes constructibles. Enfin, un nombre réel x est

constructible s’il est constructible en tant que nombre complexe.

Théoréme V.106. Corps des nombres constructibles

On a
(i) Les ensembles K et A NR sont des corps.

(ii) Un élément z € C appartient a K si et seulement si ses parties réelle et imaginaire appar-
tiennent a A NR.

Démonstration. La deuxiéme assertion dit juste que 'on peut construire un point complexes ses coor-
données étant connues. Et que réciproquement, ses coordonnées sont constructibles & partir de z.
Comme on peut construire les paralellogrammes & est stable par addition. Comme on peut construire
les symétries centrales A est stable par opposé.

On peut aussi construire la paralelle a une droite passant par un point. Mais alors en utilisant le théoréme
de Thalés on voit facilement que & NR est stable par produit et inverse. Voir les dessins ci-dessous.
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1\ 1\

X x-x' x/x’ X

O

La théorie des corps, via le théoréme suivant permet de démonter que plusieurs problémes grecs n’ont
pas de solution.

Théoréme V.107. Obstruction a la constructibilité

Soit z € K. Alors z est algébrique sur Q et le degré [Q[z] : Q] de 'extension est une puissance de 2.

Démonstration. Soit A = x1 + iys et B = x5 + iys des nombres complexes. Alors la droite (AB) a une
équation de la forme :
ax + py+v=0 (5.1)

avec «, 8 et v dans Q(«, §). Et le cercle €(AB) a une équation de la forme :
2ty tar+Py+v=0 (5.2)

avec «, 0 et v dans Q(«, 5).

Soit I un sous-corps de R. Montrons que si z = = + iy est élémentairement constructible a partir IL 4 ilL
alors [L(z) : L] et [L(y) : L] valent 1 ou 2.

Si z est l'intersection de deux droites passant par des points dont les coordonnées sont dans L, ses
coordonnées s’obtiennent en résolvant un systéme linéaire & coefficient dans I donc sont dans L. Ainsi
L(z) =L(y) =L.

Si z est dans I'intersection d’une droite passant par des points dont les coordonnées sont dans L et d’un
cercle construit & partir de tels points, ses coordonnées vérifient

ax+ Py +v=0
x2+y2+a’x+ﬁ’y+'y’=0

avec a, a’, 3,3,y et 7/ dans L.

Supposons  # 0. Alors y s’exprime en fonction de x et . C L(y) C L(z). On tire alors y de la premiére
équation et I'injecte dans la seconde. Le nombre x vérifie une équation de degré 2 a coefficients dans L.
Donc [L(z) : L] =1 ou 2.

Supposons 8 = 0. Alors x appartient a L. Mais alors, la deuxiéme équation montre que y vérifie une
équation de degré 2 a coefficients dans LL. Done [L(y) : L] =1 ou 2.

Si z est dans l'intersection de deux cercles, ses coordonnées vérifient

>+’ +ar+By+v=0
x2+y2+a’x+ﬁ’y+7’20

avec a,a’, 3,8, et v/ dans L. En remplacant la premiére équation par la différence des deux, on se
rameéne au cas précédent. O

Le probléme de duplication du cube est le suivant. Etant donné un cube de c6té volume V' peut-on en
construire un de volume 2V. Il s’agit donc de construire /2. Si cela était possible le théoréme dirait que
[Q[/2] : Q) serait une puissance de deux.

Or /2 annule X3 — 2. Ce polynéme est de degré 3 et n’a pas de racine dans Q : il est donc irréductible
dans Q[X]. C’est donc le polynéme minimal de /2 et [Q[v/2] : Q] = 3. Contradiction.
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1 Géométrie projective : un premier contact

1.1 Améliorer la géométrie affine plane

Deux propriétés fondamentales de la géométrie affine plane sont :

(i) Par deux points distincts du plan passe une unique droite .

(ii) L’intersection de deux droites distinctes est soit vide soit réduit & un point.

Ces deux propriétés ont une certaine symétrie qui est brisée par 'alternative dans la seconde. On se
propose alors de construire une géométrie pour laquelle :

Deuzx droites distinctes s’intersectent en un point et un seul.

Soit P un plan affine (réel) et E l'espace vectoriel sous-jacent. On se propose de rajouter des points a P
et & ses droites de maniére & obtenir la propriété ci-dessus.

La question est donc quel est le point commun de deux droites paralléles. La réponse qui semble s’imposer
est leur direction. Une direction est un vecteur non nul défini a une constante multiplicative prés ou encore
une droite vectorielle de E. Notons PE ’ensemble des droites vectorielles de E. Posons

P=PUPE.

La réunion ci-dessus est formelle.
Toute partie de IP de la forme d union sa direction est appelée une droite de P. On a alors :

Deuzx droites distinctes de P s’intersectent en exactement un point.
En géométrie affine nous avions également la propriété :
Par deuz points distincts de P passent une droite et une seule.

Cette propriété est pour l'instant fausse dans P. En effet, par deux points distincts de PE ne passent
aucune droite. Pour remédier a cela nous décrétons que PE est une droite de PP. ; Nous 'appellerons plus
tard droite a l’infini. Nous avons maintenant les deux propriétés suivantes :

Deuzx droites distinctes de P s’intersectent en exactement un point.
Par deuz points distincts de P passent une droite et une seule.

Ces deux propriétés énoncées de maniére bréve, symétrique et esthétique recouvre déja des réalités
différentes de géométrie affine :

(i) Prenons une droite d et un point A du plan affine. Alors, par A passe une unique droite paralléle
ad.
En géométrie projective, A et la direction de d sont deux points par lequel passe une droite.

(ii) Deux droites se coupent en un point ou ont méme direction.

En géométrie projective, deux droites se coupent. Pour distinguer les deux cas il faut regarder si
le point d’intersection est dans P ou dans P(E).

1.2 L’ensemble P(F)

Soit k un corps commutatif et £ un k-espace vectoriel de dimension finie. Nous noterons P(E) I’ensemble
des droites vectorielles de E.
Essayons de décrire ensemblistement E. Pour cela, on se donne une base (eg, e, -+ ,e,) une base de E.
Soit H le plan affine de E constitué des points dont la premiére coordonnée vaut 1 et H sa direction.
L’application
n:H — PE)
v — kw
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est une injection.
Soit d un élément de P(E). Alors,
— soit d rencontre H en un point et un seul; c’est-a-dire appartient & 'image de 7,
— soit d est inclus dans H.
Autrement dit,
P(E) =n(H) UP(H).
De plus, H s’identifie & k™.
Exercice 19. Dessiner H, H lorsque n =1 et k = R.

Ceci décrit P(E) par induction sur la dimension de E :

— Sidim(F) =1, P(E) est réduit a un point.

— Sidim(E) = 2, P(E) =: kP! est la réunion de k est d'un point (00).

— Sidim(FE) = 3, ]P’( ) =: kIP? est la réunion de k2 et de kP!.

— kP" = k™ U kP
Ainsi, kP2 est un candidat trés raisonnable pour jouer le role du P du paragraphe 1.
L’ensemble P(FE) est appelé ’espace projectif de E. Nous venons de voir que P(E) est la réunion d’un
espace affine de dimension n (H) et d’un espace projectif plus petit P(F). Ceci explique que nous appelons
n = dim(E) — 1 la dimension de P(F).

2 Quelques structures sur P(F)

La section précédente était une introduction un peu informelle. On repart formellement & zéro.

2.1 Espaces et sous-espaces projectifs

Soit E un k-espace vectoriel. L’espace projectif P(E) est 'ensemble des droites vectorielles de E. Tout
vecteur non nul v de E engendre une unique droite vectoriel kv que I'on note [v]. On obtient ainsi une
application surjective
m: E — P(E)
v [v]

On peut donc penser a P(E) comme & un quotient

E—{0}
v~ ssiINER =
Si F est un sous-espace vectoriel de E alors toute droite vectorielle de F' est une droite vectorielle de
E. On obtient une inclusion P(F) C P(F). Une partie de P(F) de la forme P(F) est appelé une un
sous-espace projectif.

P(E) =

Dimension. Par définition dim(P(E)) = dim(E) — 1. Nous avons déja vu une explication pour ce —1 :
P(E) s’identifie & la d’un hyperplan affine de F et d’un espace projectif plus petit.

Un point de P(E) est un élément de P(E). C’est aussi un sous-espace projectif de dimension 0. Une
droite de P(F) est un sous-espace projectif de P(E) de dimension un (donc avec E de dimension 2). Une
hyperplan de P(E) est un sous-espace projectif de P(F) de dimension dim(P(F)) — 1.

2.2 Homographies

Le groupe GL(FE) agit naturellement sur E et envoie toute droite vectorielle sur une droite vectorielle.
Ce groupe agit donc sur P(E). De plus, le sous-groupe H des homothéties de GL(F) agit trivialement
sur P(E). Ainsi, le quotient PGL(E) := GL(E)/H agit sur P(E). Les ¢léments de PGL(E) sont appelées
homographies.

Proposition VI.108: Homographie et sep

L’image d’un sous-espace projectif par une homographie est un sous-espace projectif de méme
dimension.
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De plus, pour tout 0 < k < dim(E) — 1, Paction de PGL(FE) sur l'ensemble des sous-espaces
projectifs de dimension k est transitive.

Démonstration. 1l suffit de voir que GL(F) agit transitivement sur I’ensemble des sous-espaces vectoriels
de E de dimension k + 1. Ce qui est un exercice facile d’algebre linéaire (pensez au théoréme de la base
incompléte). O

Proposition VI.109: Points et sep

Soit P(E) un espace projectif de dimension n (donc dim(F) = n+ 1) et 1 < k < n — 1. Soit
P1,-.-,Pkt1 k+ 1 points de P(E).

Alors il existe un sous-espace projectif de dimension k contenant ces points.

De plus, si k =1 et p; # po, il existe une unique droite projective contenant p; et po. Elle est notée

(p1p2)~

Démonstration. 1l suffit de relever la situation & E. Les points p; sont des droites vectorielles [; de E.
Soit v; non nul sur ;. Considérons F' = Yect(vl, .oy Vk41). Clest un sev de E de dimension au plus égale

a k+ 1. Il est donc inclus dans un sev F' de dimension k + 1. Alors P(F) convient.

Si k=1 et p; # pe alors la famille (v1,vq) est libre. Donc F' a dimension 2. Alors P(F) est la seule droite
projective qui contienne p; e ps. O

Regardons maintenant l’action de PGL(E) sur les uples de points distincts.

Proposition VI.110: Actions sur n + 2-uplets

Soit P(E) un espace projectif de dimension n (donc dim(E) = n + 1). Soit R I'ensemble des n + 2-
uplets (py ..., pn42) de points de P(E) tels que aucun des n + 1-uplets (il y en a n 4 2) extraits (en
enlevant un des points) n’est inclus dans un hyperplan affine.

Le groupe PGL(FE) agit transitivement sur R.

Démonstration. 1l est clair que PGL(E) agit sur R. Montrons que I’action est transitive. Soit donc (p;)
et (g;) deux éléments de R. On reléve la situation a E. Les points p; sont des droites vectorielles [; de E.

Soit v; non nul sur /;. De méme on obtient les w;. D’aprés 'hypothése, (v1,...,vn41) €t (w1, ..., Wni1)
sont deux bases de F. Il existe donc g € GL(FE) tel que g.v; = w; pour tout . Quitte & composer avec g
on peut donc supposer que pour tout i =1,...,n+ 1, w; = v;.

Posons B = (v1,...,0p41). Soit (A1,..., Ant1) et (u1,..., tins1) les coordonnées de v,19 et w,1o dans
la base B.

Comme (v1,...,Vn, Unt2) est libre, A, 11 est non nul. De méme, tous les \; et tous les p; sont non nuls.
Soit g dans GL(E) dont la matrice dans la base B est diagonale avec (52, ..., ’;"—E) sur la diagonale. On
a bien gu,yo = wpqo et pouri =1,...,n+ 1, g.v; € l; donc gp; = p;. O

Exercice 20. Montrer qu’en fait laction de PGL(FE) sur R est simplement transitive.

2.3 Coordonnées projectives
Soit B = (eg, . . ., ey,) une base de E. Utilisant les coordonnées pour repérer les éléments de F, on obtient

_ {(zo, .-, wn) € K" — {0}
B(E) = (Toy .-y xn) ~ (ATo, ..., Azy) VA e k*’

Un élément de ce quotient est noté

[To -t Ty
La notation : fait référence a la division puisque lorsque les coordonnées sont non nulles
[o - txn] =[yo: - yn]

si et seulement si 7+ = z— pour tout 7 # j.
J J
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3 Lien Affine Projectif

3.1 Carte affine et droite a ’'infini

Soit E de dimension n+1 et H un hyperplan affine de E ne contenant pas 0. Notons H la direction de H.
Comme nous Pavons déja vu, H s’injecte dans P(E), c’est-a-dire s’identifie & une partie de P(E). Cette
application associe & un point de £ la droite vectorielle de E qu’il engendre et vue comme un point de
P(E). Le complémentaire de 'image est P(H). En effet, les droites vectorielles de E qui ne rencontrent
pas H sont exactement celles incluses dans H.

Théoréme VI.111. Sous-espaces affines et projectifs

Dans la situation ci-dessus, on a :

(i) L’intersection d’un sous-espace projectif de dimension d de P(E) et de P(E) —P(H) est soit
vide (8’1l est inclus dans P(H)) soit un sous-espace affine de dimension d.

(ii) Réciproquement, tout sous-espace affine F' de H est inclus dans un unique sous-espace pro-
jectif minimal de P(E). De plus, l'intersection de ce dernier et de H est F.

(iii) Toute homographie de P(E) qui préserve P(H) définit par restriction une application affine
de P(E) — P(H).

(iv) Réciproquement, toute application affine inversible de P(E) — P(H) se prolonge de maniére
unique en une homographie de P(E).

Démonstration. Soit P(G) un sous-espace projectif de P(E) ot G est un sous-espace vectoriel de E de
dimension d + 1.

Si G C H alors G est parallele & H et HN G = (). Alors, P(G) NH est vide aussi.

Sinon, G N H est un sous-espace affine de direction G N H. Alors P(G) NH s’identifie &8 G N H est un
sous-espace affine de dimension d.

Réciproquement, soit F C H un sous-espace affine de dimension d. Soit F' le sous-espace vectoriel en-

gendré par F : il est de dimension d + 1. Ainsi, P(F) est le seul sous-espace projectif contenant F'.

Pour la troisiéme assertion, on va expliciter les choses en choisissant une base. Soit B = (e1,...,€n11)
une base de E telle que

H={veFE:e, (v)=1}
Soit g € GL(E) qui préserve H. Alors la matrice de g dans la base est de la forme

Matg(g) = (61 1;)

Comme g est inversible A est non nul. Comme seule la classe de g dans GL(FE) compte, on peut supposer
que A = 1. Soit v un point de H. Ses coordonnées dans la base B sont de la forme

T1

Mais alors
gv =[AX +w: 1]

appartient a H. Comme X —— AX + w est affine I’assertion suit.

Réciproquement soit ¢ une application affine de H dans lui méme. Alors, en coordonnée p(X) = AX+ B
pour une matrice inversible A et un vecteur colonne B. Alors la matrice

Matg(g) = (61 ?)

fournit unne homographie qui étend ¢. O
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4 La droite projective

Soit E = k? le k-espace vectoriel de dimension 2 standard. Deux points [z : y] et [z’ : 3] sonnt égaux si

. / . . .
et seulement si % = %, au moins si y et ¢’ sont non nuls. On obtient donc

P(k?) = kP! = {[t:1] : t € k}U{[1:0]}.

Pensant a [1 : 0] comme & %, on le note co. Alors

0’
kP! = kU {o0}.
Exercice 21. Montrer que toute homographie est de la forme
0: kPY — EP!
[x:y] — [axz+by:cx+ dy]

avec a,b,c et d dans k tels que ad — bc # 0. St on prend la convention % = 00, on obtient

at+b
t) =
v =7d

et on reconnait les homographies usuelles du plan complexe lorsque k = C.

Vt ek

5 Le plan projectif
Soit E un k-espace vectoriel de dimension 3. On s’intéresse a P(E) = kP2

Proposition VI.112: Incidences droites-points

(i) Par deux points distincts passe une unique droite.

(ii) Deux droites distinctes s’intersectent en un unique point.

Démonstration. La premiére propriété est générale. Pour la seconde soit P(F}) et P(Fy) deux droites de
P(E). Alors Fy et Fy sont deux hyperplans distincts de E. Donc F; N Fy est un sous-espace vectoriel de
codimension 2. C’est donc un point de P(E). O

Fixons des coordonnées (x,y,z) sur k. Soit P(F) une droite projective et P(k%). Alors F est unn
hyperplan de k3. C’est donc le noyau d’une forme linéaire ¢ = az + by + cz = 0 pour a, b, c € k non tous
nuls.

et choisissons ’hyperplan affine z = 1.

Supposons un instant que k est fini, disons de cardinal ¢. Alors kP? = k2 U kP! est de cardinal ¢> +q+ 1.
De plus chaque droite est de cardinal ¢ + 1.

Il y a autant de droites que d’hyperplans dans E, c’est-a-dire que d’éléments de P(E*). Il y a donc
q*> 4+ ¢ + 1 droites. Si on dénombre les bases possibles pour les hyperplan plutot que les équations on

trouve : 5 3
(-1 ~q)

2
= 1.
@-(@—q ot

Exercice 22. Soit E = F3. Montrer que P(E) contient 7 points et 7 droites. Montrer que chaque droite
contient 3 points, que chaque point appartient & trois droites. En déduire qu’il existe une bijection de
P(E) sur l’ensemble des points de la figure ci-dessous telle que les droites s’envoient sur des points sur
un méme segment ou le cercle de la figure.

Vérifier qu’en enlevant une droite (disons celle dessinée comme un cercle), on retrouve F3 et ses 6 droites.
Le plan projectif F;IP? est appelé plan de Fano. Il est représenté par la figure 6.1

Exercice 23. Faire de méme avec E = F3. On doit trouver le dessin de la figures.
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FIGURE 6.1 — Plan projectif sur Fy

G

i
DL N
0—0-0—0
fwf@\//
IS
\é//g
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6 Dualité projective

Il s’agit d’une construction littéralement magique qui permet de transformer tout probléme de géométrie
affine plane faisant intervenir des points et des droites. L’idée est d’utiliser I'orthogonalité en dualité
linéaire.

Soit F un k-espace vectoriel de dimension trois. Pour tout sous-espace vectoriel F' de E, son orthogonal
F~ est un sous-espace vectoriel de E* de dimension 3 — dim(F).
Soit donc un point A de P(E). Alors A = P(F') ou F est un sous-espace vectoriel de F de dimension 1.

Donc F+ est un sous-espace vectoriel de E* de dimension 2. Donc P(F1) est une droite de P(E*), notée

pt.

De méme, si nous étions partis d’une droite d de P(E), nous aurions obtenu un point d*+ de P(E).
Le point est que Fy C Fy si et seulement si Fi- D F3-. Voici quelques exemples de conséquences :

(i) Un point A appartient & une droite d dans P(E) si et seulement si la droite AL contient le point
d* dans P(E*);

(ii) Les 3 points A, B et C de P(E) sont alignés si seulement si les droites A+, B+ et C*+ de P(E*)
sont concourantes. . .

Ci-dessous, nous montrons quelques exemples.

7 Application a la géométrie affine plane

Le principe ici est assez simple mais magnifiquement miraculeux.
(i) On part d’un énoncé de géomeétrie affine ne faisant intervenir que des droites et des points.

(ii) On le voit comme un dessin dans H une carte affine d’un plan projectif. Le théoréme VI.111 donne
un énoncé dans le plan projectif.

(iii) On change de carte affine. Le théoréme VI.111 donne un nouvel énoncé dans le plan affine.

Onn peut méme obtenir encore plus en appliquant la dualité projective.

7.1 Théoréme de Pappus

Nous allons illustré le principe énoncé ci-dessus avec le théoréme de Pappus. Commengons donc par
rappeler ’énoncé affine que nous avions vu et son dessin (figure 7.1).

Théoréme VI1.113. Pappus Affine

Soit D et D’ deux droites distinctes du plan affine. Soit A, B et C (resp. A’, B’ et C’) trois points
distincts de D (resp. D). On suppose qu’aucun des 6 points n’est D N D’.
Si (AB")//(A'B) et (CB’)//(C'B) alors (AC")//(A'C).

Considérons maintenant un plan projectif P(F) muni d’une carte affine #. Pensons au dessin de la figure
comme & l'intersection avec H d’un dessin plongé dans P(E). Alors,

(i) A,B,C, A’, B’ et C’ sont des points;
(ii) D et D’ sont des droites projectives (dont il manque un point le dessin)
(iii) (AB'), (AC"), (BA’), (BC"), (CA’) et (CB’) sont des droites projectives (dont il manque un point
le dessin)

(iv) Il y a droite P(H) qui n’est pas visible sur le dessin mais qui est dans toutes les tétes.

Les droites projectives (BC’) et (C'B’) se coupent (comme toute paire de droites projectives). Comme
on ne voit pas le point d’intersection (que nous appellerons A”), on a A” € P(H).

De méme, (AB’) et (BA’) se coupent (comme toute paire de droites projectives). Comme on ne voit pas
le point d’intersection (que nous appellerons C”), on a C” € P(H).
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FIGURE 6.3 — Pappus Affine

FIGURE 6.4 — Pappus projectif

De méme la conclusion du théoréme dit que
B":=(AC")n (CA") e P(H).

Donc les trois points A”, B” et C” sont sur la méme droite projective : ils sont alignés. On vient de
montrer ’énoncé projectif du théoréme VI.114 suivant illustré par la figure 7.1 :

Théoréme VI1.114. Pappus projectif
Soit P = RP2. Soit (4, B, C) et (A’, B', C") deux triplets de points alignés et 2 a 2 distincts de

P. Soit A” = (BC")N (B'C), B" = (AC") N (A'C) et C" = (BA") N (B'A).
Alors A”, B"” et C” sont alignés.

L’énoncé précédent reste vrai en affine a la seule condition que les points existes.
Notons 0 = DN D'. Si on envoie (O, B”) a l'infini, on obtient la figure 7.1.
La figure 7.1 vu comme un dessin affine donne le théorémeVI.115 suivant.
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FIGURE 6.5 — Pappus Affine 2

Théoréme VI.115. Pappus Affine v2

Soit D et D’ deux droites distinctes du plan affine. Soit A, B et C (resp. A’, B’ et C") trois points
distincts de D (resp. D). On suppose qu’aucun des 6 points n’est D N D’ telle que (AC")//(A'C).
Soit C"” = (AB'YN (A'B) et A” = (CB’) N (C'B).

Alors (C"A")//(AC").

Démonstration. Le point projectif B” appartient a la droite projective (C”A”) d’aprés la version pro-
jective. Par ailleurs, il est a Dinfini puisque (AC")//(A’C). Ceci signifie que les droites projectives
(C"A")//(AC") se coupent a 'infini. En affine, elles sont donc paralléles. O

A Version Duale

Théoréme VI1.116. Dual de Pappus projectif

Soit A et A’ deux points distinct du plan projectif kP2. Soit dy, dy et d3 3 droites passants par A.
Soit df, db et df 3 droites passants par A’.

On note df la droite passant par d; Ndj, et do Nd}. On note dj la droite passant par d; N d} et
ds N dj. On note d{ la droite passant par de N dj et ds N db.

Alors les trois droites dY, df et df sont concourantes.

Démonstration. C’est exactement le dual de Pappus projectif :
(i) A est Porthogonal de la droite (AB);
(ii) d; est Porthogonal du point A;
(iii) d} est l'orthogonal du point B’;
(iv) df’ est orthogonal de C”'. ..
O

Considérons unne version affine de ce théoréme en envoyant la droite (AA’) a Pinfini. Alors dy, dy et ds
sont paralléles ainsi que d, dj et ds. On obtient alors le théoréme VI.117, illustré par la figure 6.6 :

Théoréme VI.117. Pappus dual Affine
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FIGURE 6.6 — Pappus dual Affine

Soit (ABCD) un parallélogramme du plan affine et M un point en dehors des 4 droites cotés. La
paralléle & (AB) qui passe par M coupe (AD) et (BC) en E et F. La paralléle a (AD) qui passe
par M coupe (AB) et (DC) en G et H.

Alors les droites (AC), (EH) et (FG) sont concourantes.

7.2 Théoréme de Désargues

Rappelons I’énoncé affine.

Théoréme VI.118. Désargues

Soit (ABC) et (A’B’C’) deux triangles non aplatis. On suppose que (AB)//(A’B’), (BC)//(B'C")
et (AC)//(A'CY).
Alors les trois droites (AA’), (BB’) et (CC") sont concourantes ou paralléle.

La figure 6.7 illustre le théoréme VI.118.
Version projective de cet énoncé est le théoréme VI.119, illustré par la figure 6.8 Autrement dit, c’est
I’énoncé que 'on obtient en réalisant 1’énoncé affine dans une carte affine d’un plan projectif.

Théoréme VI1.119. Désargues projectif

Soit (ABC) et (A’ B’C") deux triangles non aplatis d’un plan projectif. Alors les assertions suivantes
sont équivalentes :

(i) Les droites (AA’), (BB’) et (CC") sont concourantes.
(ii) Les points P = (BC) N (B'C’), Q@ = (AC)N (A'C") et R = (AB) N (A’'B’) sont alignés.

Démonstration. Supposons la deuxiéme assertion vrai. Envoyons la droite (PQ) a Uinfini. Alors R est
aussi a U'infini. Donc (BC)//(B'C"), (AC)//(A’C") et (AB)//(A’B’). La version affine du théoréme im-
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FIGURE 6.7 — Désargues Affine

plique alors que Les droites (AA’), (BB') et (CC") sont concourantes. On a montré la premiére assertion.

On regarde a présent le dual de 'implication que 'on vient de montrer. Et quelle surprise : on obtient
que la premiére assertion implique la seconde. O

Remarque. Dans le théoréme VI.118 il se peut que les trois droites (AA’), (BB’) et (CC") soient paralléles.
Ceci n’arrive pas dans le cas projectif car en projectif des droites ne sont jamais paralléles. En fait si les
3 droites affines sont paralléle, elles ont méme direction. Cette direction est un point d’intersection des
3 droites projectives.

8 Application a I’étude des coniques

8.1 Homogénéisation

On se place dans kP? et on utilise les coordonnées projectives [z : y : z].

Une conique projective est une partie de kP2 définie par une équation du type

az? +by? 4+ c2® + dyz + exz + fay =0,

ot (a,b,c,d, e, f) € kS — {0}.

Quelques remarques s’imposent :
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FIGURE 6.8 — Désargues Projectif
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Remarque. (i) Attention, la quantité ax? +by? + cz? +dyz + exz + fry dépend du représentant choisi
pour écrire [z : y : z]. En effet, pour [Az : Ay : A\z], cette quantité est multiplié par A\?. En revanche
le fait que cette quantité soit nulle ou pas nne dépend pas du représentant choisi, si bien que la
conique est bien définie.

(i) L’application k* — k, (z,y, 2) — ax?® +by? + c2? + dyz + exz + fry est une forme quadratique.
En fait n’importe quelle forme quadratique non nulle.

Regardons la trace de la conique dans la carte affine z = 1.

Théoréme VI.121. Coniques projectives et affines

Soit (a,b,c,d, e, f) € k5 — {0}.
(i) L’intersection de la carte affine z = 1, et de la conique projective
Cp={lr:y:z] : ax® +by* +cz® +dyz + exz + fay = 0}

est
(a) la conique d’équation ax? + by? + fay + dy +ex +c =0, si (a,b, f) # (0,0,0);
(b) la droite d’équation dy + ex + ¢ =0, si (a, b, f) = (0,0,0).

(ii) Réciproquement, considérons la conique C, plane d’équation

az? + by + cxy +dy+ex+ f =0,

avec (a,b,c¢) # (0,0,0) vu comme une partie de la carte affine z = 1. Alors, la conique
projective C,, d’équation ax? + by + f22 + dyz + exz + cxy = 0 est I'unique contenant C,.

Démonstration. La premiére affirme est une conséquence directe du fait qu’en remplacant z par 1 dans
ax® + by? + cz? 4+ dyz + exz + fxy, on trouve ax? + by? + ¢+ dy + ex + fxy.

Réciproquement, az? + by? + f2% + dyz + exz + cxy est la seule forme quadratique que donne ax? + by? +
cxy + dy + ex + f lorsque z = 1. La seconde assertion en découle. O

Remarque. 11 est possible de munir kP? d’une topologie de sorte que C) soit 'adhérence de C,. Cela est
trés éclairant mais dépasse le cadre de cours.

8.2 Classification projective des coniques de RP?

Ici le corps est celui des nombres réels. Le groupe GL3(R) agit par changement de variables sur I’ensemble
des quadriques. Il agit donc sur I’ensemble des coniques. Par ailleurs, deux formes quadratiques opposées
donnent la méme conique.
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Théoréme VI1.122. Classification projective des coniques

A action de GL3(R) et multiplication par —1 prés, la liste compléte des coniques de RP? est la
suivante :

(i) L’équation
24+ 4+22=0
qui donne le vide. Ceci arrive lorsque la forme quadratique est de signature (3,0) ou (0, 3).
(if) L’équation
2’ +y? -2 =0
qui donne une conique non dégénérée. Ceci arrive lorsque la forme quadratique est de signa-
ture (2,1) ou (1,2).
(iii) L’équation
2242 =0

83



FIGURE 6.9 — Coniques projectives

qui donne un point. (On peut penser & un cercle de rayon zéro). Ceci arrive lorsque la forme
quadratique est de signature (2,0) ou (0, 2).
(iv) L’équation
zy =0

qui donne la réunion de deux droites. Ceci arrive lorsque la forme quadratique est de signature
(1,1).
(v) L’équation
z2=0

qui donne une droite (pensée comme une droite double). Ceci arrive lorsque la forme qua-
dratique est de signature (1,0) ou (0,1).

Démonstration. Ceci est une conséquence immédiate du fait que les formes quadratiques sont caractéri-
sées par leur signature. O

8.3 Application a la classification affine des coniques

Lorsque ’on regarde les théorémes VI.121 et VI.122 deux impressions opposées nous viennent. Le premier
énoncé semble dire que les coniques affines et projectives sont le méme objet. Le second semble dire que
les coniques projectives sont plus simples et moins nombreuses que les coniques affines. Nous allons lever
ce paradoxe.

En fait pour passer d’une conique projective & une conique affine, il faut choisir une carte affine ou, par
passage au complémentaire, une droite a I'infini. Suivant la position de cette derniére et de la conique
projective on trouve différentes coniques affines pour une méme conique projective.

Voici quelques exemples sur la figure 6.10 ou la droite a l'infini est rouge. A gauche, on a deux droites
sécantes, & droites deux droites paralléles.

Sur la figure 6.11 ou la droite & U'infini est rouge, nous avons dans l'ordre une ellipse, une hyperbole et
une parabole.
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FIGURE 6.10 — Droites sécantes et paralléles
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FIGURE 6.11 — Ellipse, hyperbole et parabole
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