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1 Matrices et bases
Nous fixons ici une notation pour la matrice associée une application linéaire entre espaces vectoriels
munis de bases et illustrons sa pertinence sur les formules de changement de bases.
Soit E et F deux espaces vectoriels de dimensions finies et f : E −→ F une application linéaire. Soit
BE et BF des bases de E et F respectivement. On note

MatBF BE (f), (1.1)

la matrice de f . Le coefficient (i, j) (ligne i et colonne j) est la ieme coordonnées de l’image par f du
jeme vecteur de BE .
On remarquera que la base de l’espace d’arrivée survient en premier dans la notation. Cela est en
cohérence avec la notation Mij on encore avec le fait que

MatBF BE (f) ∈M]BF ]BE (k),

où k est le corps de base.
Pour v ∈ E, on note MatBE (v) le vecteur colonne constitué des coordonnées de v dans la base BE . Les
seules formules à connaitre sont

MatBG BE (g ◦ f) = MatBG BF (g)MatBF BE (f) MatBF (f(v)) = MatBF BE (f)MatBE (v), (1.2)

où v ∈ E, f : E −→ F et g : F −→ G.
Pour retenir la position des bases dans les formules (1.2), on pourra remarquer l’analogie avec la formule
de Chasles :

−−→
GE =

−−→
GF +

−−→
FE.

Changement de base. Si B′E est une seconde base de E, on considère les matrices de passage MatB′E BE (IdE)
et MatBE B′E (IdE). En appliquant les formules (1.2) à IdE ◦ IdE = IdE et à f ◦ IdE = f on trouve

MatBE B′E (IdE)MatB′E BE (IdE) = In, MatBF BE (f)MatBE B′E (IdE) = MatBF B′E (f),

où n est la dimension de E. De manière analoge, on obtient les formules de changement de base PMP−1

et PMQ−1.
On a aussi

B′E
MatBE B′E (IdE) =

( )
BE .

2 Deux sous-espaces et formule de Grassmann

Proposition I.1: Formule de Grassmann

Soit F et G deux sous-espaces vectoriels de l’espace de dimension finie E. On a

dim(F ) + dim(G)− dim(F ∩G) = dim(F +G).

Preuve

Considérons la somme directe abstraire F ⊕G (c’est-à-dire le produit) et l’application linéaire

f : F ⊕G −→ E
(vF , vG) 7−→ vF + vG.

On vérifie sans peine que f est linéaire. Par définition, l’image de f est le sous-espace F +G. Enfin

Kerf = {(v,−v) : v ∈ F ∩G} ' F ∩G.
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En appliquant le théorème du rang à f , on obtient donc

dim(F +G) + dim(F ∩G) = dim(F ⊕G) = dimF + dimG,

et la formule voulue.

Exercice 1. Montrer, en appliquant de manière adéquate le théorème de la base incomplète plusieurs
fois, qu’il existe une base B de E telle que B ∩ F , B ∩G, B ∩ (F +G) et B ∩ F ∩G sont des bases de F ,
G, F +G et F ∩G respectivement. En déduire une autre démonstration du théorème I.1.

3 Dualité

3.1 Formes linéaires et bases duales

Soit E un espace vectoriel de dimension finie. Une forme linéaire sur E est une application linéaire de
E dans k. On note E∗ l’espace vectoriel constitué des formes linéaires. Observer que (1) est une base de
k. Si B est une base de E et ϕ ∈ E∗, Mat(1)B(ϕ) est une matrice ligne dont les entrées sont les valeurs
de ϕ aux éléments de B.

Exemple 1. Toute forme linéaire sur R2 est donnée par une formule

R2 −→ R(
x
y

)
7−→ ax+ by

pour des nombres réels fixés a et b.

Un exemple de forme linéaire sur R4 est




x
y
z
t


 7−→ 2x+ 4y − z + t.

Les formes linéaires coordonnées. Explicitons B = (e1, . . . , en). L’application e∗i qui à un vecteur
associe sa ieme coordonnée dans la base B est une fome linéaire. De plus, Mat(1)B(ϕ) = (λ1, . . . , λn) si
et seulement si

ϕ = λ1e
∗
1 + · · ·+ λne

∗
n.

On en déduit que (e∗1, . . . , e
∗
n) est une base, notée B∗ de E∗. La base B∗ est appelée base duale de B.

En particulier dim(E∗) = n. Remarquons aussi que MatB∗(ϕ) = tMat(1)B(ϕ). Observons aussi que la
coordonnée λi de ϕ dans la base duale est

λi = ϕ(ei) car e∗j (ei) = δji . (3.1)

Réciproquement, étant donnée une base C de E∗, on vérifie qu’il existe une unique base B de E telle que
B∗ = C. La base B est appelée base anteduale de C.

Remarque. Contrairement à ce que peut laisser croire la notation, e∗i dépend de la base B entière et
pas seulement de ei. Pour se convaincre de cela, regardons l’exemple suivant B = (e1, e2) est la base
canonique de R2 et C = (ε1, ε2) est donnée par ε1 = e1 et ε2 = e1 + e2. Soit v = xe1 + ye2 un vecteur.
On a v = (x− y)e1 + y(e1 + e2) = (x− y)ε1 + yε2. Donc ε∗1(v) = x− y ou encore ε∗1 = e∗1 − e∗2.
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3.2 Hyperplans
Le noyau Kerϕ d’une forme linéaire linéaire non nulle est un sous-espace vectoriel de E de dimension n−1
(par application directe du théorème de rang). Réciproquement pour tout sous-espace F de dimension
n−1 de E, il existe une forme linéaire linéaire non nulle telle que Kerϕ = F . Un tel sous-espace vectoriel
de F est appelé hyperplan.
Pour montrer la réciproque, on peut par exemple construire une base de E qui commence par une de F
et considérer la base duale.

3.3 Bidualité
L’espace vectoriel E∗ a lui-même un espace vectoriel dual E∗∗ appelé bidual de E.

Théorème I.2. Isomorphisme avec le bidual

L’application linéaire
ι : E −→ E∗∗

v 7−→ ι(v),

où
ι(v) : E∗ −→ k

ϕ 7−→ ϕ(v)

est bien définie et est un isomorphisme.

La démonstration est laissée en exercice. On pourra aussi montrer que si C est une base de E∗, on a
(
ι−1C∗

)∗
= C.

4 Orthogonalité
Pour F un sous-espace de E, on appelle

F⊥ = {ϕ ∈ E∗ : ∀v ∈ F ϕ(v) = 0},
l’orthogonal de F . On vérifie que

(i) F⊥ est un sous-espace vectoriel de E∗ ;
(ii) si B = (e1, . . . , ek, ek+1, . . . , en) est une base de E telle que (e1, . . . , ek) est une base de F alors

(e∗k+1, . . . , e
∗
n) est une base de F⊥ ;

(iii) dimF + dimF⊥ = dimE.
De manière similaire, pour G un sous-espace de E∗, on appelle

G◦ = {v ∈ E : ∀ϕ ∈ G ϕ(v) = 0},
l’ante-orthogonal de G. On vérifie que

(i) G◦ est un sous-espace vectoriel de E ;
(ii) si B = (e∗1, . . . , e

∗
k, e
∗
k+1, . . . , e

∗
n) est une base de E∗ telle que (e∗1, . . . , e

∗
k) est une base de G alors

(ek+1, . . . , en) est une base de G◦ ;
(iii) dimG+ dimG◦ = dimE.

Quelques propriétés de ces constructions :

Proposition I.3: Propriétés de l’orthogonal et de l’anteorthogonal

(i) Si F est un sous-espace vectoriel de E, on a (F⊥)◦ = F .
(ii) Si G est un sous-espace vectoriel de E∗, on a (G◦)⊥ = G. De plus, ι(G◦) = G⊥.
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(iii) Soit F1 et F2 deux sous-espaces vectoriels de E. Alors

(F1 + F2)⊥ = F⊥1 ∩ F⊥2 ,

et
(F1 ∩ F2)⊥ = F⊥1 + F⊥2 .

(iv) Soit G1 et G2 deux sous-espaces vectoriels de E∗. Alors

(G1 +G2)◦ = G◦1 ∩G◦2,

et
(G1 ∩G2)◦ = G◦1 +G◦2.

Preuve

Les deux premières assertions découlent directement de la description des orthogonaux avec des
bases.
En utilisant la deuxième assertion, la troisième est une conséquence de la dernière.
Montrons la dernière. Comme G1 ⊂ G1+G2, on a (G1+G2)◦ ⊂ G◦1 puis que (G1+G2)◦ ⊂ G◦1∩G◦2.
Réciproquement soit x ∈ G◦1 ∩G◦2. Soit ψ1 ∈ G1 et ψ2 ∈ G2. Alors

(ψ1 + ψ2)(x) = ψ1(x) + ψ2(x) = 0 + 0 = 0

et x appartient à (G1 +G2)◦. Finalement (G1 +G2)◦ = G◦1 ∩G◦2.

Comme G1 ∩G2 ⊂ G1, on a (G1 ∩G2)◦ ⊃ G◦1. Comme (G1 ∩G2)◦ est un espace vectoriel, on en
déduit par symétrie que (G1 ∩G2)◦ ⊃ G◦1 +G◦2.
Par ailleurs, on a

dim(G◦1 +G◦2) = dim(G◦1) + dim(G◦2)− dim(G◦1 ∩G◦2) = dim(G◦1) + dim(G◦2)− dim((G1 +G2)◦)
= n− dim(G1)− dim(G2) + dim(G1) + dim(G2)− dim(G1 ∩G2)
= dim((G1 ∩G2)◦)

Dans la première ligne, on a utilisé la formule de Grassmann puis l’égalité (G1 +G2)◦ = G◦1 ∩G◦2.
A la deuxième on utilise encore la formule de Grassmann.

5 Transposition

5.1 Définition et Matrices
Soit f : E −→ F une application linéaire. On appelle transposé de f l’application linéaire suivante :

tf : F ∗ −→ E∗

ϕ 7−→ ϕ ◦ f.

Le lien avec la transposition des matrices est le suivant :

Proposition I.4: Matrice de la transposé

Soit BE et BF des bases de E et F respectivement. Alors

MatB∗E B∗F (tf) = tMatBF BE (f).
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Preuve

Notons (e1, . . . , ep) la base de E et (ε1, . . . , εq) celle de F . L’entrée mij à la ligne i et la colonne j
de MatB∗E B∗F (tf) est la ieme coordonnées de tf(ε∗j ). D’après (3.1),

mij = ε∗j ◦ f(ei)

est la coordonnée en εj de f(ei), c’est-à-dire l’entrée (j, i) de MatBF BE (f).

Des formules faciles à démontrer

t(f + λg) = tf + λtg t(f ◦ g) = tg ◦ tf.

5.2 Noyaux et Images

Proposition I.5: Noyau et Image de la transposé

Soit f : E −→ F et tf : F ∗ −→ E∗. On a :
(i) Kertf = (Imf)⊥ ;

(ii) Imtf = (Kerf)⊥.

Preuve

Soit ϕ ∈ F ∗. On a ϕ ∈ Kertf si et seulement si ϕ ◦ f = 0 si et seulement si ϕ ◦ f(v) = 0 pour tout
v ∈ E si et seulement si ϕ(v) = 0 pour tout v ∈ Im(f) si et seulement si ϕ ∈ (Imf)⊥.

Soit ϕ ∈ F ∗ et donc tf(ϕ) ∈ Im(tf). Soit v ∈ Kerf . On a

tf(ϕ)(v) = ϕ(f(v)) = ϕ(0) = 0.

Donc tf(ϕ) ∈ (Kerf)⊥ et Imtf ⊂ (Kerf)⊥.
Par ailleurs, on a :

dim(Imtf) = dim(F ∗)− dim(Kertf) = dim(F ∗)− dim((Imf)⊥)
= dim(F ∗)− dim(F ) + dim(Imf) = dim(E)− dim(Kerf)
= dim((Kerf)⊥).

Avec l’inclusion déjà montrée cela permet de conclure que Imtf = (Kerf)⊥.
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1 Formes bilinéaires et matrices

1.1 Définitions

Définition II.6: Forme bilinéaire

Soit E un espace vectoriel de dimension finie. Une application

B : E × E −→ k
(v, w) 7−→ B(v, w)

est une forme bilinéaire si et seulement si
(i) ∀v1, v2, w ∈ E and ∀λ ∈ k, we have B(v1 + λv2, w) = B(v1, w) + λB(v2, w) ; et
(ii) ∀v, w1, w2 ∈ E and ∀λ ∈ k, we have B(v, w1 + λw2) = B(v, w1) + λB(v, w2).

On note Bil(E) l’ensemble des formes bilinéaires sur E.

Exemple 2. Commençons par regarder R2 puis Rn.

(i) Ici E = R2 et (e, f) est la base canonique. Soit v =

(
x1

y1

)
et w =

(
x2

y2

)
, deux vecteurs de E. Soit

B ∈ Bil(E). On a

B(v, w) = B(x1e+ y1f, x2e+ y2f)
= x1B(e, x2e+ y2f) + y1B(f, x2e+ y2f)
= x1x2B(e, e) + x1y2B(e, f) + y1x2B(f, e) + y1y2B(f, f).

En particulier, B est déterminée par ses quatre valeurs B(e, e), B(e, f), B(f, e) et B(f, f). Réci-
proquement, étant donnés quatre réels a, b, c et d, en posant

B(

(
x1

y1

)
,

(
x2

y2

)
) = x1x2 a+ x1y2 b+ y1x2 c+ y1y2 d

on définit bien un élément de Bil(E). Autrement dit, l’application

Bil(E) −→ M2(R)

B 7−→
(
B(e, e) B(e, f)
B(f, e) B(f, f)

)

est une bijection.
(ii) Ici E = Rn et (e1, . . . , en) est la base canonique. De même, on peut vérifier qu’en associant à

toute matrice A = (aij) ∈Mn(R) l’application B : E × E −→ k définie par

B(v, w) =
∑

16i,j6n

aij × e∗i (v)× e∗j (w)

on obtient une bijection
Mn(R) −→ Bil(Rn).

Revenons au cadre général avec B ∈ Bil(E). Soit B = (e1, . . . , en) une base de E. On définit le matrice
de B dans la base B par

MatB(B) =

(
B(ei, ej)

)
.

1.2 Avec la dualité
Soit B ∈ Bil(E). On lui associe l’application suivante

B̃ : E −→ E∗

w 7−→
{
E −→ k
v 7−→ B(v, w)
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Observer, tout d’abord que le premier axiome de la défintion II.6 assure que v 7→ B(v, w) est bien un
élément de E∗. Le second axiome assure que B̃ est linéaire. On obtient une identification

Bil(E) −→ L(E,E∗)
B 7−→ B̃.

Proposition II.7: Matrice comme matrice d’un application linéaire

Soit B = (e1, . . . , en) une base de E. Alors

MatB(B) = MatB∗ B(B̃).

Preuve

Regardons le coefficient (i, j) noté aij de la matrice MatB∗ B(B̃). Regardons donc B̃(ej). Considé-
rons les coordonnées dans la base B∗ : B̃(ej) =

∑
k xke

∗
k. On a

B̃(ej)(ei) =
∑

k

xke
∗
k(ei) =

∑

k

xkδ
i
k = xi = aij .

Par ailleurs, B̃(ej)(ei) = B(ei, ej) est le coefficient (i, j) de MatB(B). D’où la conclusion.

Evaluation. Soit B ∈ Bil(E) et B = (e1, . . . , en) une base de E. Soit v et w deux vecteurs de E. Posons

M = MatB(B) ∈Mn(k) X = MatB(v) ∈Mn,1(k) Y = MatB(w) ∈Mn,1(k).

D’après la Proposition II.7, MY est le vecteur colonne constitué des coordonnées de la forme linéaire
v 7→ B(v, w) dans la base duale B∗. Donc B(v, w) = t(MY )X = tY tMX. Comme tY tMX est un scalaire
il est égal à sa transposé. On obtient :

B(v, w) = tXMY. (1.1)

Changement de bases. Ce point de vue sur les formes bilinéaires permet de comprendre les change-
ments de bases. Soit C une seconde base de E.

Proposition II.8: Changement de bases pour les formes bilinéaires

Soit B et C deux bases de E. Alors

MatC(B) = tMatB C(IdE).MatB(B).MatB C(IdE).

Preuve

Comme B̃ = IdE∗ ◦ B̃ ◦ IdE , les formules (1.2) montrent que

MatC(B) = MatC∗ C(B̃)

= MatC∗ B∗(IdE∗).MatB∗ B(B̃).MatB C(IdE)

car B̃ = IdE∗ ◦ B̃ ◦ IdE . Or, comme tIdE = IdE∗ , Proposition I.4 montre que MatC∗ B∗(IdE∗) =
tMatBC(IdE). Ce qui permet de conclure.
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Définition II.9: Matrices congruentes

Soit A et B deux matrices carrées symétriques de même taille n. On dit que A et B sont congruentes
s’il existe P ∈ GLn(k) tel que

B = PA tP.

Résumons les correspondances matrices vs vecteurs.

Nom vecteur Endom. Forme lin. Evaluation Bil
Espace E L(E) E∗ k k

Symbole v f ϕ ϕ(v) B(v, w)
Matrice X (col.) M (carr) L (ligne) LX tXMY

1.3 Noyau et rang

Définition II.10: Noyau et Rang

Soit B ∈ Bil(E).
(i) Le rang de B est rg(B) = rg(B̃) = rg(MatB(B)).
(ii) Le noyau de B est

KerB := KerB̃ = {w ∈ E : ∀v ∈ E B(v, w) = 0}.

On dit que B est non dégénérée si rg(B) = dim(E) c’est-à-dire si B̃ est un isomorphisme c’est-à-dire
si KerB = {0}.

2 Formes bilinéaires symétriques et formes quadratiques

2.1 Symétrie

Proposition II.11: Symétrie

Soit B ∈ Bil(E) et B une base de E. Se valent :
(i) ∀v, w ∈ E B(v, w) = B(w, v) ;
(ii) Modulo ι, tB̃ = B̃ ;
(iii) MatB(B) est une matrice symétrique.

On dit alors que la forme bilinéaire est symétrique.

On note SBil(E) l’espace vectoriel des formes bilinéaires symétriques sur E.

2.2 Formes quadratiques
On suppose ici que la caractéristique du corps de base k est différente de 2. Autrement dit, on se place
sur un corps pour lequel 2 6= 0.
Soit B ∈ SBil(E). On définit la forme quadratique qB associée à B par :

qB : E −→ k
v 7−→ B(v, v).

Exemple 3. Regardons sur R3 la forme bilinéaire symétrique

B(



v1

v2

v3


 ,



w1

w2

w3


) = v1w1 + 2(v1w2 + v2w1) + π(v1w3 + v3w1) + 7v2w2.
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Alors

qB(



x1

x2

x3


) = x2

1 + 4x1x2 + 2πx1x3 + 7x2
2.

Plus généralement, une forme quadratique est une fonction donnée par une formule du type

q =
∑

16i6n

∗x2
i +

∑

16i<j6n

∗xixj . (2.1)

Le point important est que la connaissance de qB permet de retrouver B :

Proposition II.12: Formules de polarisation

Soit B une forme bilinéaire symétrique. Pour tout v et w dans E on a

B(v, w) =
1

2

(
qB(v + w)− qB(v)− qB(w)

)

et
B(v, w) =

1

4

(
qB(v + w)− qB(v − w)

)
.

Pour retenir ces formules on fera l’analogie avec les identités remarquables suivantes

ab =
1

2

(
(a+ b)2 − a2 − b2

)
et ab =

1

4

(
(a+ b)2 − (a− b)2

)
.

Preuve

La preuve, laissée en exercice, est un calcul direct utilisant la bilinéarité et la symétrie de B. Ici
on partira du membre de droite de l’égalité à démontrer dans les deux cas.

3 Réduction des formes quadratiques
Dans cette section, nous allons voir la réduction de Gauss sur un corps général, sur C et sur R. Il s’agit
d’un théorème de réduction au sens de l’algèbre linéaire. En effet, soit B ∈ SBil(E). On cherche une base
B de E telle que la matrice MatB(B) soit simple, c’est-à-dire avec beaucoup de zéros.

3.1 Théorème de Gauss

Théorème II.13. Réduction de Gauss

Soit q une forme quadratique sur E. Alors il existe une écriture

q = a1ϕ
2
1 + · · ·+ arϕ

2
r, (3.1)

où (ϕ1, . . . , ϕr) est une famille libre de E∗ et a1, . . . , ar sont dans k∗.

La démonstration est un algorithme basé sur les deux identités remarquables suivantes :

x2 + axy = (x+
a

2
y)2 − a2

4
y2 xy =

1

4
((x+ y)2 − (x− y)2).

Commençons par faire un exemple afin d’illustrer les principes. Soit

q(x, y, z) = 2x2 + y2 + xy − xz.
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La première étape consiste à écrire q sous la forme q = ∗( forme lin.)2 + forme quadratique en y et z.
Pour trouver la forme linéaire, on regarde seulement les termes 2x2, xy et −xz contenant des x :

q = 2(x+
1

4
y − 1

4
z)2 +

7

8
y2 − 1

8
z2 +

1

4
yz.

Regardons maintenant les termes contenant z :

q = 2(x+
1

4
y − 1

4
z)2 +

7

8
(y +

1

7
z)2 − 1

7
z2.

Ce qui est bien de la forme voulue.

Sur cet exemple, chaque forme linéaire « consomme » une variable. Il y a un cas où l’on ne peut pas faire
cela :

Si la forme quadratique ne contient pas de carré.

Regardons un exemple :

q′(x, y, z, t) = xy + 2yz + 3xz − xt+ 5zt.

On ne peut pas appliquer la même méthode que ci-dessus. L’idée est alors :

Consommer deux variables avec un produit de deux formes linéaires.

Ici, on cherche donc une formule du type :

(x+ · · · )(y + · · · ) = xy + yz + xz + xt+ · · ·

où les deux variables x et y ont disparue des derniers pointillés.
Explicitement on trouve

(x+ 2z)(y + 3z − t) = xy + 2yz + 3xz − xt− 6z2 + 3zt

et
q′ = ............

On utilise ensuite la formule XY = 1
4 ((X + Y )2 − (X − Y )2) :

q′ = ...............

On a donc éliminé deux variables au prix de deux formes linéaires.

Corollaire II.14: Réduction de Gauss version matricielle

Soit B une forme bilinéaire sur E. Alors il existe une base B de E et des scalaires non nuls a1, . . . , ar
tels que

MatB(B) =




a1

. . .
ar

0
. . .

0




. (3.2)

De plus r est le rang de B.
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Preuve

onsidérons la forme quadratique q associée à B et (ϕ1, . . . , ϕr) dans E∗ et a1, . . . , ar dans k∗ comme
dans le théorème II.13. Complétons (ϕ1, . . . , ϕr) en une base C de E∗. Soit B la base anteduale de
C.
Un calcul direct montre que MatB(B) a la forme voulue.

Remarque. Une façon amusante de reformuler ce théorème est que pour tout matrice symétrique S de
taille n

∃P ∈ GLn(k) PS tP est diagonale.

3.2 Le cas des nombres complexes
Dans cette sous-section E est un C-espace vectoriel de dimension finie n. On exploite ici que tout nombre
complexe est le carré d’un autre. En particulier, pour tout terme de la forme aϕ2 (avec a ∈ C∗ et ϕ ∈ E∗),
on a

aϕ2 = ψ2,

avec ψ = bϕ où b2 = a. On déduit donc du théorème de Gauss l’énoncé suivant

Théorème II.15. Réduction de Gauss sur C

Soit q une forme quadratique sur E et B la forme bilinéaire associée. Notons r le rang de B. Alors

(i) Il existe (ψ1, . . . , ψr) une famille libre de E∗ telle que

q = ψ2
1 + · · ·+ ψ2

r .

(ii) Il existe une base B de E telle que

MatB(B) =

(
Ir 0
0 0

)
, (3.3)

où Ir est la matrice Identité de taille r.

3.3 Le cas des nombres réels
Dans cette sous-section E est un R-espace vectoriel de dimension finie n. On exploite ici que tout nombre
réel positif est le carré d’un autre. En particulier, pour tout terme de la forme aϕ2 (avec a ∈ R∗ et ϕ ∈ E∗),
on a

aϕ2 = ±ψ2,

avec ψ = bϕ où b2 = |a|. On déduit donc du théorème de Gauss l’énoncé suivant

Théorème II.16. Réduction de Gauss sur R

Soit q une forme quadratique sur E et B la forme bilinéaire associée. Notons r le rang de B. Alors

(i) Il existe (ψ1, . . . , ψr) une famille libre de E∗ telle que

q = ψ2
1 + · · ·+ ψ2

s − ψ2
s+1 − · · · − ψ2

s+t=r.

(ii) Il existe une base B de E telle que

MatB(B) =



Is 0 0
0 −It 0
0 0 0


 , (3.4)
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avec r = s+ t.

Preuve

Il suffit de réordonner les formes linéaire pour avoir d’abord des ai positif puis des négatifs. On
applique alors la transformation expliquée avant le théorème.

On sait que s+ t ne dépend pas de la base (ou de l’écriture comme some de carré) parceque c’est le rang
que nous avons caractérisé de manière intrinsèque. Nous allons voir qu’en fait s et t ne dépendent pas
de la base, mais cela demande un peu dé préparation.
Pour comprendre la raison d’être des/ la motivation pour les définitions qui suivent il convient de faire
l’exercice suivant.

Exercice 2. Soit (ψ1, . . . , ψr) une famille libre de E∗ et

q = ψ2
1 + · · ·+ ψ2

s − ψ2
s+1 − · · · − ψ2

r .

(i) Montrer que s = r si et seulement si pour tout v ∈ E, q(v) > 0.
(ii) Montrer que s = r = n si et seulement si pour tout v ∈ E non nul, q(v) > 0.

Définition II.17: Positive et défénie positive

Ici le corps est R.

(i) Une forme quadratique q est positive si

∀v ∈ E q(v) > 0.

(ii) Une forme quadratique q est définie positive si

∀v ∈ E − {0} q(v) > 0.

De manière analogue, on définit négative et définie négative.

Pour q une forme quadratique et F un sous-espace vectoriel de E, on appelle restriction de q à F la
forme bilinéaire

qF : F −→ R
v 7−→ q(v).

Soit B la forme bilinéaire sur E associée à q et BF la forme bilinéaire sur F associée à qF . On a

∀v, w ∈ F B(v, w) = BF (v, w).

Définition II.18: Signature

Soit q une forme quadratique sur un R-espace vectoriel E. La signature de q est la paire d’entiers
naturels (s, t) où

s = max{dim(F ) : F sev de E tel que qF est définie positive}
t = max{dim(F ) : F sev de E tel que − qF est définie positive}

14



Théorème II.19. Théorème d’inertie de Sylvester

Soit q une forme quadratique sur un R-espace vectoriel E et B la forme bilinéaire associée. La
signature de q est (s, t) si et seulement si il existe une base B de E telle que

MatB(B) =



Is 0 0
0 −It 0
0 0 0


 . (3.5)

En particulier s+ t est le rang de B.

Preuve

Grace au théorème II.16, il suffit de montrer que la signature de q0 = x2
1+· · ·+x2

s−(x2
s+1+· · ·+x2

s+t

est (s, t). On travaille ici sur Rn muni de sa base canonique (e1, . . . , en).
Soit W = Vect(e1, . . . , es). Alors qW = x2

1 + · · ·+ x2
s est clairement définie positive. Donc

s = dim(W ) 6 max{dim(F ) : F sev de E tel que qF est définie positive}.

Soit F un sous-espace tel que qF est définie positive. Il s’agit de montrer que dim(F ) 6 s pour
obtenir l’inégalité réciproque. Supposons par l’absurde que dim(F ) > s.
Considérons maintenant G = Vect(es+1, . . . , en). Alors qG est négative. Alors la formule de Grass-
mann implique que dim(F ∩ G) > 1. Soit v non nul dans F ∩ G. Comme v est non nul dans F ,
q(v) > 0. Mais comme v est dans G, q(v) 6 0. Contradiction.
On traite de manière analogue le cas de t.

3.4 Le cas des nombres rationnels

Sur C et R, il y a beaucoup de carrés. Nous avons exploité cette remarque pour améliorer fortement
de théorème de Gauss sur ces deux corps. En particulier, le nombre de « matrices réduites » est fini.
Exprimons ce résultat en terme d’action de groupes.

Exercice 3. Soit Sn(k) l’ensemple des matrices symétriques.

(i) Montrer que la formule

P.M := PM tP ∀M ∈ Sn(k) and P ∈ GLn(k)

définit une action de GLn(k) sur Sn(k).

(ii) Montrer que GLn(C) a un nombre fini d’orbites dans Sn(C). Les dénombrer.

(iii) Montrer que GLn(R) a un nombre fini d’orbites dans Sn(R). Les dénombrer.

On se place ici sur E = Qn muni da la base canonique B. Soit p un nombre premier. Regardons la forme
quadratique qp = x2

1 + · · ·+ x2
n−1 + px2

n dont la matrice dans B est

Mp =




1
. . .

1
p


 .

Nous allons montrer que (voir définition II.9)

pour p 6= q premiers, les matrice Mp et Mq ne sont pas congruentes.
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La démonstration est intéressante et révèle que le déterminant d’une forme quadratique n’est pas bien
défini (dépend de la base). Remarqons qu’en général

det(PA tP ) = det(P )2 det(A).

Supposons par l’absurde queMp etMq sont congruentes. Alors, la forule ci-dessus assure l’existence d’un
nombre rationnel non nul x tel que p = x2q. Ecrivons x = a

b avec a et b deux entiers premiers entre eux
(et b > 0). On obtient

b2p = a2q.

Donc p divise a2q. Le théoèmre de Gauss et l’hypothèse p 6= q implique que p divise a. Mais alors p2

divise b2p et p divise b2 puis b. Donc a et b ne sont pas premiers entre eux. Contradiction.

4 Orthogonalité
Soit E un espace vectoriel quelconque sur un corps de caractéristique différente de 2. On fixe une forme
bilinéaire symétrique non dégénérée B.
Si F est un sous-espace vectoriel de E, on définit son orthogonal pour B par

F⊥B := {v ∈ E : ∀w ∈ F B(v, w) = 0} (4.1)

Le lien avec l’orthogonalité au sens de la dualité est le suivant. Par hypthèse B̃ : E −→ E∗ est un
isomorphisme. On a alors

F⊥B = B−1(F⊥).

En particulier,
dim(F⊥B ) = dim(E)− dim(F ).

Exemple 4. Soit Q = x2 + y2 − z2 la forme quadratique sur E = R3 et B la forme bilinéaire associée.
Soit F1 le sous-espace d’équation x+ y + z = 0 et F2 le sous-espace d’équation x+ z = 0.

(i) Déterminer une base de F⊥B1 et montrer que F1 ⊕ F⊥B1 = E.
(ii) Déterminer une base de F⊥B2 et montrer que F⊥B2 ⊂ F2.

(iii) Soit F3 l’espace vectoriel engendré par




1
0
1


. Montrer que D⊥B ⊃ D.

5 Produits scalaires
Dans cette section le corps est R.

5.1 Définition
Soit E un R-espace vectoriel de dimension finie n.

Définition II.20

Une forme bilinéaire symétrique B sur E est appelée un produit scalaire si B est définie positive.
On notera souvent B(v, w) par 〈v, w〉.
L’espace vectoriel E muni d’un praduit scalaire est appelé un espace euclidien.

Soit M la matrice dans une base donnée de la forme bilnéaire symétrique B. Alors B est un produit
scalaire si et seulement si

∀X ∈Mn,1(R) X 6= 0 ⇒ tXNX > 0.

C’est aussi équivalent à ce que qB = ϕ2
1 + · · ·+ ϕ2

n pour une base (ϕ1, . . . , ϕn) de E∗.
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Définition II.21: Base Orthonormée

Soit (E, 〈 , 〉) une espave euclidien. Une base B = (e1, . . . , en) de E est dite orthonormée si

∀i, j 〈ei, ej〉 = δji ,

où δ est le symbole de Kronecker.

La base B est orthonormée si et seulement si MatB(〈 , 〉) = In. En particulier, le théorème de réduction
montre qu’il existe toujours des bases orthonormées. Nous verrons plus tard l’algorithme de Gram-
Schmidt qui est une alternative à Gauss pour en calculer.

Exemple 5. (i) Sur Rn, la formule suivante définit un produit scalaire (appelé produit scalaire
canonique) :

〈



x1

...
xn


 ,



y1

...
yn


〉 =

∑

i

xiyi

Montrer que la base canonique est orthonormée.
(ii) SurMn(R), la formule suivante définit un produit scalaire :

〈A,B〉 = tr( tAB).

Montrer que la base canonique est orthonormée.
(iii) Soit E = Rn[X]. La formule suivante définit un produit scalaire :

〈P,Q〉 =

∫ 1

0

PQ(t)dt.

5.2 Cauchy-Schwarz et Minkowski

Théorème II.22. Inégalité de Cauchy-Schwarz

Soit E un espace vectoriel réel de dimension finie muni d’un produit scalaire ( , ). Soit u et v dans
E. Alors

|(u, v)| 6
√

(u, u)
√

(v, v).

De plus, on a égalité si et seulement si la famille (u, v) est liée.

Preuve

Considérons l’application
ϕ : R −→ R+

t 7−→ (u+ tv, u+ tv).

L’application est bien à valeur dans R+ car ( , ) est un produit scalaire. De plus comme ϕ(t) =
(v, v)t2 + 2(u, v)t+ (u, u), ϕ est un polynôme de degré au plus deux. Son discriminant est négatif
ou nul :

∆ = (u, v)2 − (v, v)(u, u) 6 0.

Comme √ est croissante, l’égalité cherchée en découle.

Quand a t-on égalité ?
Si v = 0, on a égalité et la famille (u, v) est liée. Supposons à présent v 6= 0. Alors, ϕ est de degré
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2. On a égalité dans l’inégalité du théorème si et seulement si

∆ = 0 ⇐⇒ ϕ(− b
2a ) = 0 où a, b et c sont les coefficients de ϕ

⇐⇒ (u− (u,v)
(v,v)v, u−

(u,v)
(v,v)v) = 0

⇐⇒ u− (u,v)
(v,v)v = 0

Ceci implique bien que (u, v) est liée. Réciproquement si la famille est liée alors u = λv (car v est
non nul) et on vérifie sans peine la relation.

On pose
‖u‖ =

√
(u, u). (5.1)

Il s’agit d’une norme en vertu du

Corollaire II.23: Inégalité de Minkowski

Soit E un espace vectoriel réel de dimension finie muni d’un produit scalaire ( , ). Soit u et v dans
E. Alors

‖u+ v‖ 6 ‖u‖+ ‖v‖.
De plus, on a égalité si et seulement si la famille (u, v) est positivement liée c’est-à-dire il existe λ
et µ dans R+ non tous les deux nuls tels que

λu+ µv = 0.

Preuve

Regardons

(‖u‖+ ‖v‖)2 − ‖u+ v‖2 = ‖u‖2 + ‖v‖2 + 2‖u‖ · ‖v‖ − (u+ v, u+ v)
= 2(‖u‖ · ‖v‖ − (u, v)) > 0.

L’inégalité à montrer en découle.
Si u = λv avec λ ∈ R+, un calcul direct montre qu’on a bien égalité.
Réciproquement supposons que l’on a égalité. D’après la suite d’inégalité ci-dessus, on a égalité
dans l’inégalité de Cauchy-Schwarz. Quitte à échanger u et v, on peut supposer qu’il existe λ ∈ R
tel que v = λu. Alors

‖u+ v‖ = |1 + λ|‖u‖
et

‖u‖+ ‖v‖ = (1 + |λ|)‖u‖
. Donc λ > 0 ou u = 0. La conclusion est satisfaite dans les deux cas.

L’exemple de Rn dans la section précédente révèle que nos plan et espace ambiants sont euclidiens. En
particulier la géométrie usuelle est euclidienne.
On dit que deux vecteurs u et v sont orthogonaux si (u, v) = 0.

Théorème II.24. Pythagore

Les vecteurs u et v sont orthogonaux si et seulement si

‖u+ v‖2 = ‖u‖2 + ‖v‖2.

La preuve est directe. Illustrer cet énoncé par un dessin dans le plan qui explique son nom.
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5.3 Projection orthogonale
Commençons par un résultat sur l’orthogonal d’un sous-espace.

Proposition II.25: L’Orthogonal est Supplémentaire

Soit E un espace vectoriel réel de dimension finie muni d’un produit scalaire ( , ) et F un sous-espace
vectoriel de E.
Alors

F ⊕ F⊥( , ) = E.

Preuve

Comme ( , ) est une forme bilinéaire non dégénérée

dim(F⊥( , )) = dim(E)− dim(F ).

Il suffit alors de montrer que F ∩ F⊥( , ) = {0}. Soit v un vecteur de cette intersection. Alors
0 = (v, v) = ‖v‖2. Donc v = 0.

La projection orthogonale sur F est l’application linéaire

pF : E = F ⊕ F⊥( , ) −→ F
x+ y 7−→ x

On vérifie sans peine que pF est linéaire et, Ker(pF ) = F⊥( , ) et Im(pF ) = F .

Le théorème suivant donne une interprétation de pF (v). Il affirme que ce point est le point de F le plus
proche de v. Cela est très utilisé en optimisation et en statistique. On pose

d(v, F ) = inf
x∈F
‖v − x‖,

la distance de v à F .

Théorème II.26. Projection orthogonale

Soit E un espace vectoriel réel de dimension finie muni d’un produit scalaire ( , ). Soit F un
sous-espace vectoriel de E et v un vecteur de E. Le point pF (v) est l’unique point de F tel que

‖v − pF (v)‖ = d(v, F ). (5.2)

Preuve

Il s’agit de montrer que pour tout w ∈ F , on a

‖v − pF (v)‖2 6 ‖v − w‖2.
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Écrivons v − w = (v − pF (v)) + (pF (v)− w). Comme v − pF (v) est dans l’orthogonal de F , il est
orthogonal à pF (v)− w. Mais alors, le théorème de Pythagore implique que

‖v − w‖2 = ‖v − pF (v)‖2 + ‖pF (v)− w‖2.

L’inégalité recherché en découle.

5.4 Algorithme de Gram-Schmidt

Théorème II.27. Gram-Schmidt

Soit C = (ε1, . . . , εn) une base de E. Il existe une unique base orthonormée (e1, . . . , en) telle que
(i) Pour tout k ∈ {1, . . . , n}, on a Vect(ε1, . . . , εk) = Vect(e1, . . . , ek) ;
(ii) Pour tout k ∈ {1, . . . , n}, on a (ek, εk) > 0.

Preuve

La preuve se fait par récurrence et est essentiellement un algorithme. Il convient d’être capable de
calculer la base orthonormée sur de petits exemples.
L’hypothèse de récurrence est : il existe une unique famille (e1, . . . , ek) tels que

(i) ∀k′ 6 k Vect(ε1, . . . , εk′) = Vect(e1, . . . , ek′) ;
(ii) ∀k′ 6 k (ek′ , εk′) > 0 ;
(iii) ∀i, j 6 k (ei, ej) = δji .

L’initialisation est laissée en exercice.
Hérédité. Supposons l’hypothèse de récurrence vrai au rang k − 1. Prenons un vecteur v de
Vect(ε1, . . . , εk). Comme Vect(ε1, . . . , εk−1) = Vect(e1, . . . , ek−1), on a une expression

v = βεk + ak−1ek−1 + · · ·+ a1e1.

A quelles conditions v = ek convient ? On veut que pour tout i < k,

0 = (ek, ei) = β(εk, ei) + ai. (5.3)

L’astuce consiste à considérer d’abord le cas où β = 1. Alors on pose alors

ãi = −(εk, ei) et ẽk = εk + ãk−1ek−1 + · · ·+ ã1e1.

On vérifie que ẽk satisfait toutes les conditions sauf
(i) (ek, ek) = 1 ;
(ii) (ek, εk) > 0.

Alors ek = ± ẽk
‖ẽk‖ convient.

Une relecture attentive de cette preuve montre que nous n’avions aucun choix et donc l’unicité.

5.5 Isométries et Groupe Orthogonal
Soit E un espace euclidien.

Définition II.28: Isométrie

Une isométrie u de E est un endomorphisme de E tel que

∀x ∈ E ‖u(x)‖ = ‖x‖.
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Avec les formules de polarisation on montre facilement que

∀x, y ∈ E (u(x), u(y)) = (x, y). (5.4)

On vérifie aussi que toute isométrie est inversible (son noyau étant réduit à {0}). De plus, l’ensemble des
isométries est stable par composition et par inverse. Ainsi, l’ensemble O(E) des isométries de E est un
sous-groupe de GL(E).

Proposition II.29: Isométries et bases orthonormées

Soit B une base orthonormée de E. Alors u est une isométrie si et seulement si u(B) est une base
orthonormée.

Preuve

On peut supposer que u est inversible. On pense alors à u comme a un changement de base de B
à u(B). D’après (5.4), u est une isométrie si et seulement si

MatB(( , )) = Matu(B)(( , )).

Or Matu(B)(( , )) est la matrice dont les coefficients vaut (u(ei), u(ej)).

La preuve de la proposition montre aussi que

u ∈ O(E) ⇐⇒ tMatB(u)MatB(u) = In.

On définit donc
On(R) = {A ∈Mn(R) : tAA = In}.

Exercice 4. (i) Montrer que

O2(R) = {
(

cos t − sin t
sin t cos t

)
: t ∈ R} ∪ {

(
cos t sin t
sin t − cos t

)
: t ∈ R}.

(ii) En déduire que O2(R) est constitué des rotations et des symétries orthogonales.
(iii) Montrer que plus généralement, toute symétrie orthogonale est une isométrie.

Théorème II.30. Groupe orthogonal

On(R) est un sous-groupe compact de GLn(R).

Preuve

Nous avons déjà vu que c’est un sous-groupe. Il est fermé comme préimage de {In} par l’application
A 7→ tAA.
Il est borné car chaque colonne C des éléments de On(R) vérifient ‖C‖ = 1.
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La géométrie affine est essentiellement la géométrie des points, des droites et des plans. En un certain
sens, le plan affine est le plan usuel avec ses droites. A la différence des espaces vectoriels on veut
considérer des droites qui ne passent pas par zéro. D’ailleurs il n’y aura même pas de zéro. Cela va se
faire au prix d’un définition un peu abstraite qu’il conviendra de s’approprier.

1 Espaces et sous-espaces affines
En première approximation, l’espace affine réel de dimension deux est votre feuille de papier avec ses
points et ses droites. A partir de là, on peut construire les vecteurs comme des classes d’équivalence de
bipoints. C’est ainsi que les vecteurs sont présentés au lycée.
A l’université, nous faisons l’inverse. On commence par définir les espaces vectoriels et donc les vecteurs.
A partir d’eux on définit les esapces affines.

Définition III.31: Espace affine

Soit E un espace vectoriel de dimension finie. Un espace affine de direction E est un ensemble E
muni d’une action simplement transitive de E.

A chaque fois que l’on fixe un point M dans E , E s’identifie à E et M correspond au vecteur nul. Ainsi,
un espace vectoriel est un espace vectoriel sans point spécial (alors que dans un espace vectoriel, il y a
le veceur nul).
Par définition, la dimension de E est la dimension de E.

Notation. L’action est notée ainsi. Pour M ∈ E et v ∈ E, on note M + v.

Définition III.32: Sous-Espace affine

Un sous-espace affine de E est une orbite d’un sous-espace vectoriel de E.

Suivant la dimension, nous parlerons de droite, plan ou hyperplan affine.

Définition III.33: Vecteur

Etant donnés deux points A et B dans E , on note
−−→
AB l’unique élément de E tel que

A+
−−→
AB = B.

2 Géométrie affine analytique

Définition III.34: Repère Affine

Un reprère affine de E est la donnée d’un point O ∈ E et d’une base B de E. Si B = (e1, . . . , en),
on obtient alors une bijection

kn −→ E
(x1, . . . , xn) 7−→ M := O +

∑
i xiei.

Les scalaires xi sont appelés coordonnées du point. Ce sont les coordonnées du vecteur
−−→
OM dans

la base B.
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Proposition III.35: Repère affine

Soit E un espace affine de dimension n. Soit (A0, A1, . . . , An) n+ 1 points de E . Se valent :
(i) (A0,

−−−→
A0A1, . . . ,

−−−→
A0An) est un repère affine ;

(ii) les points {A0, . . . , An} n’appartiennent à aucun hyperplan affine de E .

Preuve

Laissée en exercice.

Exercice 5. Soit E le plan affine réel. Soit (O, e1, e2) un repère de E.
(i) Soit a, b, c des réels tels que (a, b) 6= (0, 0). Montrer que l’ensemble des points de E de coordonnées

(x, y) tels que
ax+ by + c = 0

est un sous-espace affine de dimension 1. Quelle est sa direction ?
(ii) Réciproquement, étant donnée une droite affine D de E, montrer qu’il existe (a, b, c) déterminant

cette droite.
(iii) A quelle condition deux triplets (a, b, c) déterminent la même droite.

3 Barycentre

3.1 Définition
Soit E un espace affine de dimension n et de direction E. Soit A1, . . . , Am des points de E et λ1, . . . , λm
des scalaires tels que ∑

i

λi 6= 0. (3.1)

Théorème III.36. Barycentre

Avec les notations ci-dessus, il existe un unique point G de E tel que
∑

i

λi
−−→
GAi = 0.

Le point G est appelé barycentre de sytème ((A1, λ1), . . . , (Am, λm)).

Preuve

On fixe un point O et on vectorialise en O, c’est-à-dire que l’on remplace tous les points M par le
vecteur

−−→
OM . On obtient ici, pour tout G dans E :

∑
i λi
−−→
GAi =

∑
i λi(
−−→
GO +

−−→
OAi)

= −(
∑
i λi)
−−→
OG +

∑
i λi
−−→
OAi.

Ce vecteur est nul si et seulement si

−−→
OG =

1∑
i λi

∑

i

λi
−−→
OAi.

Ceci montre à la l’existence et l’unicité. Remarquons que cette opération est licite par la condi-
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tion (3.1).
Notons aussi que la formule c-dessus est à retenir.

Exercice 6. Montrer que si
∑
i λi = 0, le vecteur

∑
i λi
−−→
GAi ne dépend pas du point G.

Exercice 7. Montrer que le baricentre bar((A, 1), (B, 1)) est le milieu du segment [AB].

3.2 Associativité
Cette opération dit que l’on peut déterminer un barycentre en regroupant les points par paquets.

Proposition III.37: Associativité de barycentre

Soit ((A1, λ1), . . . , (As, λs)) et ((B1, µ1), . . . , (Bt, µt)) tels que
∑

λi 6= 0,
∑

µj 6= 0 et
∑

µj +
∑

λi 6= 0.

Soit GA et GB les barycentres des points (Ai, λi) et (Bj , µj) respectivement.
Alors le barycentre de ((A1, λ1), . . . , (As, λs), (B1, µ1), . . . , (Bt, µt)) est égal au barycentre de

((GA,
∑

λi), (GB ,
∑

µj)).

Preuve

Inspirez-vous de la preuve de la proposition ci-dessus pour montrer celle-là.

3.3 Coordonnées barycentriques
Soit E un espace affine de dimension n et de direction E. Soit A0, . . . , An des points de E qui ne sont
pas dans un hyperplan affine de E . Alors (A0,

−−−→
A0A1, . . . ,

−−−→
A0An) est un repère affine de E . Rappelons que

cela signifie que (
−−−→
A0A1, . . . ,

−−−→
A0An) est une base de E.

Lemme III.38

Soit M un point de E et (x1, . . . , xn) les coordonnées de M . Alors

M = bar

(
(A0, 1−

∑

i

xi), (A1, x1), . . . , (An, xn)

)

Le (n+ 1)-uplet (1−∑i xi, x1, . . . , xn) est appelé coordonnées barycentriques de M .

Démonstration. La définition des xi signifie que

−−−→
A0M =

n∑

i=1

xi
−−−→
A0Ai.

En insérant M dans les vecteurs de la somme, on obtient

−−−→
A0M =

n∑

i=1

xi(
−−−→
A0M +

−−−→
MAi),

puis

(1−
∑

i

xi)
−−−→
MA0 +

n∑

i=1

xi
−−−→
MAi =

−→
0 .
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De manière plus symétrique, les coordonnées barycentriques (λ0, . . . , λn) de M sont caractérisées par

∑

i

λi = 1 M = bar

(
(Ai, λi)

)
.

3.4 Convexité

Pour A,B ∈ E , on pote
[A;B] = {bar((A, t), (B, 1− t) : t ∈ [0; 1]}.

Intuitivement, [A;B] est le segment d’extrémités A et B.

Définition III.39: Convexe

Une partie C de E est dîte convexe si pour tout A et B dans C, on a [A;B] ∈ C.

Par associativité du barycentre, une partie convexe de E est stable par barycentres à coefficients positifs.

Exercice 8. (i) Montrer que l’intersection de parties convexes est convexe.

(ii) Trouver deux parties convexes du plan dont la réunion n’est pas convexe.

Soit A une partie quelconque. L’intersection des convexes qui contiennent A est noté Conv(A). C’est le
plus petit ensemble convexe qui contienne A. On l’appelle l’enveloppe convexe de A.

4 Applications Affines

4.1 Définition

Les applications affines sont aux espaces affines ceux que les applications linéaires sont aux espaces
vectoriels. Elles ressemblent beaucoup aux applications linéaires mais avec des termes constants en plus.

Définition III.40: Application Affine

Soit E et F deux espaces affines de direction E et F . Soit A un point de E (pensé comme une origine).
Une application f : E −→ F est dite affine s’il existe une application linéaire

−→
f : E −→ F telle

que pour tout M ∈ E , on a
f(M) = f(A) +

−→
f (
−−→
AM). (4.1)

L’égalité (4.1) peut aussi s’écrire −−−−−−→
f(A)f(B) =

−→
f (
−−→
AM). (4.2)

Remarquons qu’en fait cette définition ne dépend pas du point A choisi puisque

f(M) = f(A)+
−→
f (
−−→
AM) = f(B)+

−−−−−−→
f(A)f(B)+

−→
f (
−−→
AM) = f(B)+

−→
f (
−−→
AM)+

−→
f (
−−→
AM) = f(B)+

−→
f (
−−→
BM).

L’application
−→
f est appelée application linéaire associée à f .

Lemme III.41. La composé de deux applications affines est une application affine. De plus, l’application
linéaire associée s’obtient en composant les applications linéaires associées.

Démonstration. Laissée en exercice.

Lemme III.42. L’image d’un sous-espace affine par une application affine est un sous-espace affine.

Démonstration. En écrivant le sous-espace affine sous la forme A+F (pour A dans le sous-espace affine
et F sa direction), c’est une conséquence immédiate de la formule (4.2).
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4.2 Ecriture matricielle

Soit E et F deux espaces affines munis de repères. En particulier on a deux bases des directions E et F .
A chaque point M de E , on associe le vecteur X ∈ Mn1(R) de ses coordonnées. Soit Y ∈ Mn1(R) le
vecteur des coordonnées de f(M). Alors on a

Y = T +MX, (4.3)

où T ∈Mn1(R) est le vecteur des coordonnées de l’image par f du centre du repère de E .
Remarquons que la formule (4.3) est la traduction matricielle de (4.1). Remarquons que la formule (4.3)
est proche de la formule pour une application linéaire, avec le terme constant (indépendant de X) en plus.

On suppose ici que E = F et que l’on a un seul repère. Par la formule (4.3), lorsque l’on a fixé des
repères une application affine f correspond à une paire (M,T ) ∈Mn(R)×Mn1(R). Soit g une seconde
application affine correspondant à une paire (N,U) ∈Mn(R)×Mn1(R). Alors

f ◦ g correspond a (MN,MU + T ).

4.3 Barycentre

Proposition III.43: Applications affines et barycentre

Les applications affines préservent le barycentre. C’est-à-dire, on a la formule suivante :

f(bar

(
(A0, x0), (A1, x1), . . . , (An, xn)

)
) = bar

(
(f(A0), x0), (f(A1), x1), . . . , (f(An), xn)

)
.

Démonstration. Par associativité, il suffit de montrer la proposition pour deux points, cad n = 1. Posons

G = bar

(
(A0, x0), (A1, x1)

)
. On a f(A0) = f(G) +

−→
f
−−→
GA0 et f(A1) = f(G) +

−→
f
−−→
GA1. Calculons

x0

−−−−−−−→
f(G)f(A0) + x1

−−−−−−−→
f(G)f(A1) = x0

−→
f (
−−→
GA0) + x1

−→
f (
−−→
GA1)

=
−→
f (x0

−−→
GA0 + x1

−−→
GA1)

=
−→
f (
−→
0 ) =

−→
0 .

4.4 Exemples

Soit E unn espace affine de direction E.
Homothéties. Soit λ un scalaire et O un point E . L’homothétie hλ,O de centre O et de rapport λ est
l’application de E dans lui-même définie par

−−−−−−−→
OhO,λ(M) = λ

−−→
OM. (4.4)

Voici leurs propriétés.

Proposition III.44: Homothéties

Soit λ un scalaire et O un point E .
(i) L’application hλ,O est une application affine dont l’application linéaire est λIdE .
(ii) Si λ 6= 1, toute application affine dont l’application linéaire est λIdE est une homothétie.
(iii) Si λ 6= 1, O est l’unique point fixe de hλ,O.
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Démonstration. D’après (4.4), on a
hO,λ(M) = O + λ

−−→
OM.

La première assertion en découle.
Soit λ 6= 1. Soit A ∈ E et f une application affine dont l’application linéaire est λIdE . Soit O =
(̄(f(A), 1), (A, λ). Alors λ

−→
AO =

−−−−→
f(A)O, c’est-à-dire O = f(A) + λ

−→
AO. En comparant à (4.1), on déduit

que O est un point fixe. Mais alors f est l’homothétie de centre O et rapport λ.
Soit hO,λ et A un point fixe. Alors Or f(A) = f(O) + λ

−→
OA = O + λ

−→
OA = A d’après (4.1). Donc

(λ− 1)
−→
OA =

−→
0 et O = A (car λ 6= 1).

Translations. Soit v ∈ E. La translation tv de vecteur v est l’application de E dans lui-même définie
par

−−−−→
tv(M) = M + v. (4.5)

Voici leurs propriétés.

Proposition III.45: Translations

Soit v ∈ E.
(i) L’application tv est une application affine dont l’application linéaire est IdE .
(ii) Réciproquement, toute application affine f telle que

−→
f = IdE est une translation.

(iii) Deux translations commutent, et même : tv ◦ tv′ = tv+v′ .

Démonstration. Fixons O ∈ E .
Pour tout M ∈ E , on part de M = O +

−−→
OM et on lui applique tv :

M + v = O + v +
−→
tv (
−−→
OM).

Donc −→tv (
−−→
OM) =

−−→
OM et −→tv est l’identité.

Soit f une application affine telle que
−→
f = IdE . Pour tout M ∈ E , on part de M = O +

−−→
OM et on lui

applique f :
f(M) = f(O) +

−−→
OM = M +

−−−−−→
Mf(O) +

−−→
OM = M +

−−−−→
Of(O).

Donc f est la translation de vecteur
−−−−→
Of(O).

La dernière assertion est évidente.

Projections.
Soit F un sous-espace affine de direction F et G un sous-espace vectoriel de E. On suppose que

F ⊕G = E.

Alors, pour tout M ∈ E , les sous-espaces affines F et M + G s’intersectent en un point que l’on note
pF,G(M). De plus, l’application

pF,G : E −→ E
M 7−→ pF,G(M)

est une application affine dont l’application linéaire associée est la projection linéaire d’image F et de
noyau G. On l’appelle la projection sur F parallèlement à G. Bien sûr, on a :

pF,G ◦ pF,G = pF,G.

Exercice 9. Construire une application affine dont la partie linéaire est une projection linéaire bien
qu’elle ne soit pas une projection affine.
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Le fonction f est bien définie en dehors du point B, à valeurs positives ou nulles, et f�1({0}) =
{A}. D’autre part, f�1({1}) = {M 2 E , AM = BM} est la droite médiatrice du segment [AB].

Si k 2 R+ \ {0, 1}, soit M tel que f(M) = k. Alors AM = kBM , ce qui s’écrit encore��!
AM2 = k2��!BM2, ou 0 =

��!
AM2 � k2��!BM2 = (

��!
AM + k

��!
BM) · (��!AM � k

��!
BM). Si G+ est le barycentre

de ((A, 1), (B, k)) et G� celui de ((A, 1), (B,�k)) – bien définis car k 6= �1 et k 6= 1, distincts car

k 6= 0 – cette relation se réécrit encore
���!
G+M · ���!G�M = 0. Cela implique donc que f�1({k}) est

inclus dans le cercle Ck de diamètre [G+G�], puis on vérifie que tout le cercle Ck est dans f�1({k}) :
f�1({k}) = Ck.

• Soit E un R-espace a�ne, I un ensemble et (Ai)i2I 2 EI et (�i)i2I 2 k(I). La fonction de
Leibniz est définie par

R : E ! R
M 7!

X

i2I

�iAiM
2.

Son gradient est égal à 2L, où L est la fonction vectorielle de Leibniz définie précédemment.
Si

P
i2I �i = 0, les lignes de niveau sont les hyperplans orthogonaux au vecteur constant L(G)

pour tout choix de G 2 E .
Sinon, soit G le barycentre des (Ai, �i)i2I . Les lignes de niveau sont soit vides, soit des sphères

de centre G.

En e↵et, si G est un point de E , pour tout M 2 E , R(M) =
P

i2I �ik
��!
AiG +

��!
GMk2 =P

i2I �i(AiG
2 + GM2 + 2

��!
AiG · ��!GM) =

P
i2I �iAiG

2 + (
P

i2I �i)GM2 + 2(
P

i2I �i
��!
AiG) · ��!GM .

Lorsque
P

i2I �i = 0, R(M) = R(G) + 2L(G) · ��!GM , et la fonction L est constante, donc ne
dépend pas du point G choisi.

Sinon, choisissons pour point G le barycentre des (Ai, �i)i2I . On a alors
P

i2I �i
��!
AiG = 0 et

donc R(M) = R(G) + (
P

i2I �i)GM2 pour tout point M .

• Si f 2 GA(E) est d’ordre fini n et car(k) ne divise pas n, alors f admet un point fixe. En e↵et, si
M est un point de E , l’application f laisse fixe l’isobarycentre des points (M, f(M), . . . , fn�1(M)},
qui existe puisque dans k, n 6= 0.

ATTENTION, l’hypothèse sur la caractéristique du corps k est primordiale : si k = Fp et �!u
un vecteur non nul, la translation ⌧ de vecteur �!u est d’ordre p, mais n’admet pas de point fixe.

3.2 Projections et symétries.

3.2.1 Projections a�nes.

Soit E un espace a�ne et F un sous-espace a�ne strict de E , de direction F . Soit également G un
sous-espace vectoriel de E tel que E = F�G. Pour tout point A de E , notons GA = {A+�!u , �!u 2 G}
le sous-espace a�ne de direction G passant par A. Comme F et GA sont supplémentaires, ils
s’intersectent en un unique point, noté p(A).

F

GA Ap(A)

GB

Bp(B)

G

11

Symétries. Soit F un sous-espace affine de direction F et G un sous-espace vectoriel de E. On suppose
que

F ⊕G = E.

Notons p la projection sur F parallèlement à G.
Alors, pour tout M ∈ E . On définit un point sF,G(M) (ou s(M)) par la relation

−−−−−→
Mp(M) =

−−−−−−−→
p(M)s(M) cad s(M) = p(M) +

−−−−−→
Mp(M).

L’application
sF,G : E −→ E

M 7−→ s(M)

est une application affine dont l’application linéaire associée est la symétrie linéaire d’image F et de
noyau G. On l’appelle la symétrie par rapport à F parallèlement à G. Bien sûr, on a :

sF,G ◦ sF,G = IdE

Exercice 10. Construire une application affine dont la partie linéaire est une symétrie linéaire bien
qu’elle ne soit pas une symétrie affine.
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Proposition et Définition 16. L’application p : E ! F est une application a�ne, appelée
projection sur F parallèlement à G (ou à G si G est un sous-espace a�ne de direction G).
Son application linéaire associée est la projection vectorielle sur F parallèlement à G. De plus, p
restreinte à F est l’identité de F .

Démonstration.

Il su�t de voir que pour tout point A 2 E , l’application qui au vecteur �!u associe
����������!
p(A + �!u )p(A)

est linéaire. Si �!u 2 E, il existe un unique point B 2 E tel que �!u =
��!
AB.

Puisque E = F � G, soit ⇡ : E ! E la projection vectorielle sur F parallèlement à G. Alors��!
AB = �!u = ⇡(�!u ) + (�!u � ⇡(�!u )) 2 F � G.

D’après la relation de Chasles,
������!
p(A)p(B) =

����!
p(A)A +

��!
AB +

����!
Bp(B) = ⇡(�!u ) + (�!u � ⇡(�!u )) +����!

p(A)A +
����!
Bp(B). C’est un vecteur de F . Comme (�!u � ⇡(�!u )) +

����!
p(A)A +

����!
Bp(B) 2 G et ⇡(�!u ) 2 F ,

d’après la décomposition en somme directe, (�!u �⇡(�!u ))+
����!
p(A)A+

����!
Bp(B) =

�!
0 et

������!
p(A)p(B) = ⇡(�!u ).

Comme ⇡ est linéaire, l’application p est bien une application a�ne, d’application linéaire associée
⇡.

3.2.2 Symétries a�nes.

Soit E un k-espace a�ne avec car(k) 6= 2, et F un sous-espace a�ne de E , de direction F . Soit
G tel que E = F � G. Soit p le projecteur a�ne sur F parallèlement à G.

Proposition et Définition 17. L’application s : E ! E telle que pour tout M 2 E,
�����!
Mp(M) =�������!

p(M)s(M) est bien définie et est une application a�ne. On l’appelle symétrie par rapport à F
parallèlement à G. Son application linéaire associée est la symétrie vectorielle par rapport à F
parallèlement à G. De plus, s est une involution : s2 = idE .

F

•

•

•
p(M)

M

s(M)

G

Démonstration.
Le point s(M) est tel que p(M) est le milieu de M et s(M). Donc l’application s est bien définie

et involutive.
Si A est un point de E , et B 2 E ,

������!
s(A)s(B) =

������!
s(A)p(A) +

������!
p(A)p(B) +

������!
p(B)s(B) =

����!
p(A)A +������!

p(A)p(B) +
����!
Bp(B) = 2

������!
p(A)p(B) � ��!

AB = (2⇡ � idE)(
��!
AB), où ⇡ est la projection vectorielle sur

F parallèlement à G. Donc l’application s est a�ne, d’application linéaire associée la symétrie par
rapport à F parallèlement à G.

Remarque 18. Réciproquement, si s est une involution a�ne de E, s est une symétrie.

En e↵et, comme car(k) 6= 2 et s est d’ordre 2, s admet un point fixe (prendre le milieu d’un
point et de son image !). F = {M 2 E , s(M) = M} est donc un sous-espace a�ne de direction
ker(�!s � idE). Comme �!s 2 = idE , E = ker(�!s � idE)�ker(�!s + idE) et �!s est la symétrie vectorielle
selon ker(�!s � idE) parallèlement à ker(�!s + idE). L’application s est donc la symétrie a�ne par
rapport à F parallèlement à ker(�!s + idE).

3.2.3 Applications.

Si quatre points A, B, C et D sont sur une même droite a�ne, et A 6= B, il existe un unique

scalaire � 2 k tel que
��!
CD = k

��!
AB. Par convention, nous le noterons

��!
CD/

��!
AB.

12

5 Quelques théorèmes Classiques

5.1 Théorème de Thalès

Soit A,B et C trois points alignés de E tels que A 6= C. Alors il existe un unique scalaire λ tel que−−→
AB = λ

−→
AC. On définit

AB

AC
:= λ.

Théorème III.46. Thalès

Soient H1,H2,H3 trois hyperplans parallèles et distincts d’un espace affine E et D,D′ deux droites
dont aucune n’est faiblement parallèle à H1. On suppose que Hi coupe D au point Ai et D′ au
point Bi. On a alors

A1A2

A1A3

=
B1B2

B1B3

. (5.1)
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Démonstration. Soit π la projection sur D′ parallèlement à H1. Alors π(Ai) = Bi pour tout i. Regardons
la relation

−−−→
A1A2 =

A1A2

A1A3

−−−→
A1A3.

Appliquons lui −→π (qui est linéaire) :

−→π (
−−−→
A1A2) =

A1A2

A1A3

−→π (
−−−→
A1A3).

Mais alors
−−−→
B1B2 =

B1B2

B1B3

−−−→
B1B3.

L’égalité du théorème en découle.

Théorème 19 (Thalès). Soit E un espace a�ne de dimension finie. Soient H1, H2 et H3 trois
hyperplans a�nes de E parallèles et distincts. Soient D et D0 deux droites distinctes de E et dont
aucune n’est faiblement parallèle aux hyperplans Hi. Chaque droite coupe donc chacun des hyper-
plans en un unique point. Notons Ai le point d’intersection de Hi avec D, et Bi celui de Hi avec
D0, pour i = 1, 2 et 3.

Alors on a
���!
A1A3/

���!
A1A2 =

���!
B1B3/

���!
B1B2.

Réciproquement, si B 2 D0 vérifie
��!
B1B/

���!
B1B2 =

���!
A1A3/

���!
A1A2, alors B est le point d’intersection

de D0 et H3.

H1

H2

H3

D

•

•

•

A1

A2

A3

D0

•

•

•

B1

B2

B3

Démonstration.
Notons p la projection a�ne sur la droite D0 parallèlement à H1. Alors p(Ai) = Bi pour i = 1,

2 et 3. Si � =
���!
A1A3/

���!
A1A2,

���!
A1A3 = �

���!
A1A2 et cette relation est conservée par p.

Pour la réciproque, si
��!
B1B = �

���!
B1B2, cela signifie que B = p(A3) 2 H3 (les deux points B1 et

B2 forment un repère a�ne de la droite D0).

Lemme 20. [B1, Lemme 2.5.2]
Soient A et B deux points distincts du plan a�ne E, f 2 GA(E) \ {idE}. Soit A0 = f(A) et D0

la parallèle à la droite (AB) passant par A0. Soit B0 2 E.
• Si f est une translation, B0 = f(B) équivaut à dire que B0 est le point d’intersection de la

droite D0 avec la parallèle à (AA0) passant par B.
• Si f est une homothétie de centre O, B0 = f(B) équivaut à dire que B0 est le point d’inter-

section de la droite D0 avec la droite (OB).

A

B B0

A0

D0

O

B

A

B0

A0

D0

Démontration.

• Lorsque f est une translation, c’est donc la translation de vecteur
��!
AA0 et cela découle de la

règle du parallélogramme :
��!
BB0 =

��!
AA0 si, et seulement si

���!
A0B0 =

��!
AB.

• Lorsque f est une homothétie de centre O, on applique le théorème de Thalès. On prend comme
hyperplans les droites D = (AB), D0 et D00 la parallèle à D passant par O. Les deux droites sont

les droites (OA) et (OA0). Si � est le rapport de l’homothétie,
��!
OA0/

�!
OA = � =

����!
Of(B)/

��!
OB. Donc

B0 = f(B) si, et seulement si B0 est l’intersection des droites (D0) et (OB).

13

5.2 Théorème de Pappus

Théorème III.47. Pappus
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Soit D et D′ deux droites distinctes du plan affine. Soit A,B et C (resp. A′, B′ et C ′) trois points
distincts de D (resp. D′). On suppose qu’aucun des 6 points n’est D ∩D′.
Si (AB′)//(A′B) et (CB′)//(C ′B) alors (AC ′)//(A′C).

Démonstration. On distingue deux cas :

— Cas 1 : D ∩D′ = {O}.
Soit h1 l’homothétie de centre O qui envoie A sur B. Soit h2 l’homothétie de centre O qui envoie
B sur C.
Or le théorème de Thalès implique que h1(B′) = A′ et h2(C ′) = B′. Mais alors

h2 ◦ h1(A) = h2(B) = C

et

h1 ◦ h2(C ′) = h1(B′) = A′.

Comme h1 et h2 ont le même centre elles commutent : h1 ◦h2 = h2 ◦h1 =: h3. Donc h3((AC ′)) =
h3((A′C)).
Comme h3 est une homothétie, les directions de (A′C) et (AC ′) sont égales (car

−→
h3 est une ho-

mothétie linéaire et stabilise tous les sev). Donc (A′C)//(AC ′).

— Cas 2 : D//D′.
Soit t1 la translation qui envoie A sur B. Soit t2 la translation qui envoie B sur C.
Puisque (ABA′B′) est un parallélogramme,

−−→
AB =

−−−→
B′C ′. De même,

−−→
BC =

−−−→
C ′B′. Donc

t2 ◦ t1(A) = t2(B) = C

et

t1 ◦ t2(C ′) = t1(B′) = A′.

Comme t1 et t2 commutent : t1 ◦ t2 = t2 ◦ t1 =: t3. Donc t3((AC ′)) = t3((A′C)).
Comme t3 est une homothétie, les directions de (A′C) et (AC ′) sont égales (car −→t3 est une
homothétie linéaire et stabilise tous les sev). Donc (A′C)//(AC ′).

Remarque. Dans cette preuve, une translation joue le rôle d’une homothétie dont le centre serait à l’infini.
Cette idée intuitive à laquelle il est difficile de donner un sens précis est pourtant assez riche.
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Théorème 21 (Pappus, énoncé a�ne). [A, I.4.5], [B1, Proposition 2.5.3]
Soient D et D0 deux droites distinctes du plan a�ne. Soient A, B et C trois points de D et A0,

B0 et C 0 trois points de D0.
Si les droites (AB0) et (A0B) sont parallèles, ainsi que les droites (BC 0) et (CB0), alors les

droites (AC 0) et (CA0) sont aussi parallèles.

D0

D

A

B

C

A0B0C 0

Démonstration.
Il faut distinguer les cas, selon que les droites D et D0 sont parallèles ou non.
• Si D et D0 ne sont pas parallèles, elles se coupent en un unique point O. Soit f l’homothétie

de centre O telle que f(A) = B et g l’homothétie de centre O telle que g(B) = C. Comme les
droites (AB0) et (A0B) sont parallèles, d’après le lemme 20, f(B0) = A0. De même, g(C 0) = B0.
Comme f et g sont des homothéties de même centre, elles commutent et la composée est encore
une homothétie de centre O. Ainsi, comme C = g � f(A) = f � g(A) et A0 = f � g(C 0), toujours
d’après le lemme 20, les droites (AC 0) et (A0C) sont parallèles.

• Lorsque les droites D et D0 sont parallèles, on prend pour application f la translation telle
que f(A) = B et pour g la translation telle que g(B) = C. Comme deux translations commutent,
le raisonnement est identique, toujours à l’aide du lemme 20.

Théorème 22 (Desargues, énoncé a�ne). [A, I.4.6], [B1, Proposition 2.5.4]
Soient ABC et A0B0C 0 deux triangles d’un espace a�ne E sans sommet commun, et dont les

côtés sont deux à deux parallèles. Alors les droites (AA0), (BB0) et (CC 0) sont soit concourantes,
soit parallèles.

A

B

C

A0

B0

C 0

O

Démonstration.

14

5.3 Théorème de Désargues

Théorème III.48. Désargues

Soit (ABC) et (A′B′C ′) deux triangles non aplatis. On suppose que (AB)//(A′B′), (BC)//(B′C ′)
et (AC)//(A′C ′).
Alors les trois droites (AA′), (BB′) et (CC ′) sont concourantes ou parallèles.
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Théorème 21 (Pappus, énoncé a�ne). [A, I.4.5], [B1, Proposition 2.5.3]
Soient D et D0 deux droites distinctes du plan a�ne. Soient A, B et C trois points de D et A0,

B0 et C 0 trois points de D0.
Si les droites (AB0) et (A0B) sont parallèles, ainsi que les droites (BC 0) et (CB0), alors les

droites (AC 0) et (CA0) sont aussi parallèles.

D0

D

A

B

C

A0B0C 0

Démonstration.
Il faut distinguer les cas, selon que les droites D et D0 sont parallèles ou non.
• Si D et D0 ne sont pas parallèles, elles se coupent en un unique point O. Soit f l’homothétie

de centre O telle que f(A) = B et g l’homothétie de centre O telle que g(B) = C. Comme les
droites (AB0) et (A0B) sont parallèles, d’après le lemme 20, f(B0) = A0. De même, g(C 0) = B0.
Comme f et g sont des homothéties de même centre, elles commutent et la composée est encore
une homothétie de centre O. Ainsi, comme C = g � f(A) = f � g(A) et A0 = f � g(C 0), toujours
d’après le lemme 20, les droites (AC 0) et (A0C) sont parallèles.

• Lorsque les droites D et D0 sont parallèles, on prend pour application f la translation telle
que f(A) = B et pour g la translation telle que g(B) = C. Comme deux translations commutent,
le raisonnement est identique, toujours à l’aide du lemme 20.

Théorème 22 (Desargues, énoncé a�ne). [A, I.4.6], [B1, Proposition 2.5.4]
Soient ABC et A0B0C 0 deux triangles d’un espace a�ne E sans sommet commun, et dont les

côtés sont deux à deux parallèles. Alors les droites (AA0), (BB0) et (CC 0) sont soit concourantes,
soit parallèles.

A

B

C

A0

B0

C 0

O

Démonstration.

14

Démonstration. Nous allons prouver ce théorème seulement dans un cas particulier : on suppose que
(AA′)//(BB′). Dans ce cas on va montrer que (AA′)//(CC ′).
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A A0

B B0

C C0

Soit t la translation qui envoie A sur A0. Comme (AA0) 6= (BB0) et que (AA0)//(BB0) d’une part, (AB)//(A0B0)

d’autre part, (A, B, B0, A0) est un parallélogramme et t(B) = B +
��!
AA0 = B +

�!
BB0 = B0. Donc t((AC)) =

(A0C0) et t((BC)) = (B0C0). Donc t(C) = C0 et ainsi
�!
CC0 =

��!
AA0, donc (AA0), (BB0) et (CC0) sont pa-

rallèles.

30

Soit t la translation qui envoie A sur A′. Comme (ABA′B′) est un parallélogramme, t(B) = B′. Donc
t((AC)) = (A′C ′) et t((BC)) = (B′C ′). Donc t(C) = C ′ et

−−→
CC ′ =

−−→
AA′. Donc (AA′)//(CC ′).

6 Classification affine des coniques planes

6.1 Le groupe affine

Théorème III.49. Applications affines inversibles

Une application affine de E dans lui-même est inversible si et seulement son application linéaire
associée

−→
f l’est. Dans ce cas l’application réciproque f−1 est affine.

L’ensemble des applications affines de E dans lui-même est un groupe nomé le groupe affine et se
note GA(E).

Démonstration. Fixons un repère. En coordonnées, f s’écrit

X 7−→MX + T.
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Comme T est constante, X 7→ (MX + T ) est bijective si et seulement si X 7→MX l’est. Ceci montre la
première assertion.
Supposons M inversible. Posons Y = MX + T . Alors MX = Y − T et X = M−1Y − M−1T . En
particulier, Y 7→ X est affine.

6.2 Les coniques
Soit P un espace affine de dimension deux. On munit P d’un repère (A0,

−−−→
A0A1,

−−−→
A0A1) de sorte que les

coordonnées fournissent une bijection :

R2 : −→ P(
x
y

)
7−→ A0 + x

−−−→
A0A1 + y

−−−→
A0A2.

Définition III.50: Conique

Une conique de P est une partie de P définie par une équation du type

ax2 + bxy + cy2 + dx+ ey + f = 0 (6.1)

avec (a, b, c, d, e, f) ∈ R6 tels que (a, b, c) 6= (0, 0, 0).

Classification. Soit ax2 + bxy + cy2 + dx + ey + f l’équation d’une conique. On discute selon le rang
de la forme quadratique Q := ax2 + bxy + cy2. Quitte à multiplier l’équation par −1, on dans l’un des 3
cas suivant :

(i) rgQ = 2 et sgnQ = (2, 0). Après changement linéaire de variable, on obtient :

X2 + Y 2 + dX + eY + f = 0.

En changeant X en (X + d
2 ) et Y en (Y + e

2 ), on obtient une équation de la forme

X2 + Y 2 + f = 0.

Attention f a changé. Si f < 0, on trouve l’ensemble vide. Si f = 0, on trouve un point. Si f > 0
on trouve une ellipse (en fait un cercle).
Avec un changement de variable X ′ = λX et Y ′ = λY , on peut supposer que f = −1, 0 ou 1.

(ii) rgQ = 2 et sgnQ = (1, 1). Après changement linéaire de variable, on obtient :

XY + dX + eY + f = 0.

En changeant X en (X + e) et Y en (Y + d), on obtient

XY + f = 0.

Si f 6= 0, on trouve une hyperbole. Si f = 0, on trouve la réunion de deux droites sécantes.
(iii) rgQ = 1 et sgnQ = (1, 0). Après changement linéaire de variables, on obtient :

X2 + dX + eY + f = 0.

Puis on annule d comme précédemment. Si e = 0 et f > 0, on obtient le vide. Si e = 0 et
f < 0, on obtient deux droites parallèles. Si e = f = 0, on obtient une droite (double). Supposons
maintenant e 6= 0. En changeant Y en Y−f

e , on obtient une équation de la forme

X2 + Y = 0.

On obtient donc une parabole.
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Résumons cela dans un tableau.
Q Équation Nom Dessin

++ ou −− X2 + Y 2 = 1 ellipse
++ ou −− X2 + Y 2 = −1 vide
++ ou −− X2 + Y 2 = 0 point ×

+− XY = 1 hyperbole

+− XY=0 droites sécantes
+ ou − X2 + 1 = 0 vide

+ ou − X2 − 1 = 0 2 droites parallèles

+ ou − X2 = 0 droite double

+ ou − X2 − Y = 0 parabole
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Chapitre 4

Anneaux et Idéaux
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1 Définitions

1.1 Def et Exples

Définition IV.51: Anneau

Soit A un ensemble muni de deux lois internes + et ∗ : (A,+, ∗) est un anneau si (A,+) est un
groupe abélien (neutre noté 0), ∗ est commutative, associative, distributive par rapport à + et
possède un neutre (noté 1).

Remarque. Dans certains ouvrages, on ne demande pas que ∗ soit commutative. Dans ce cas, ce que nous
appelons anneau s’appelle anneau commutatif.
La loi ∗ est distributive par rapport à + signifie que pour tout (x, y, z) ∈ A3, x ∗ (y + z) = x ∗ y + x ∗ z
et (x+ y) ∗ z = x ∗ z + y ∗ z.

Exemples 6. Les ensembles suivants sont des annneaux.
(i) L’ensemble (Z,+,×) des entiers relatifs.

Ceci est l’exemple principal qu’il faut toujours garder en tête.
(ii) Les ensembles (Q,+,×), (R,+,×), (C,+,×).

Ces exemples ont une propriété supplémenntaires : tous les éléments de A sauf 0 ont un inverse
pour ×.

(iii) L’espace des polynômes R[X].
Ceci est le deuxième exemple à garder en tête.

(iv) Plus compliqué : R[X,Y ] l’anneau des polynômes à 2 variables et coefficients réels.

Les ensembles suivants ne sont pas des annneaux. Trouver un argument expliquant que ces esembles ne
sont pas annneaux.

Exemples 7. (i) L’ensemble N des entiers naturels.
(ii) L’ensemble 2Z des entiers pairs.
(iii) L’espace des polynômes Rn[X] de degré inférieur à n.
(iv) L’ensembleMn(R) des matrices.

A chaque fois, les opérations + et × sont les classiques.

1.2 Premiers constructeurs
Comme pour les groupes, on a une notion de sous-anneau :

Définition IV.52: Sous-Anneau

Soit (A,+, ∗) un anneau, B ∈ P(A) : B est un sous-anneau de A si 0 ∈ B, 1 ∈ B et B est stable
pour les lois +, a 7→ −a et ∗.

Exemples 8. (i) Z est un sous-anneau de Q.
(ii) R est un sous-anneau de R[X].
(iii) { p2n : p ∈ Z n ∈ N} est un sous-anneau de Q.
(iv) L’ensemble Z[i] := {x+ iy : x, y ∈ Z} est un sous-anneau de C. Il est appelé l’anneau des entiers

de Gauss.

Comme pour les groupes, on a une notion de produit :
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Définition IV.53: Produit d’Anneaux

Soit (A,+, ∗) et (B,+, ∗) deux anneaux. On munit A×B des lois et éléments suivants :

0 := (0, 0) et 1 := (1, 1).

(a, b) + (a′, b′) = (a+ a′, b+ b′) pour tout a, a′ ∈ A et b, b′ ∈ B.

(a, b) + (a′, b′) = (a + a′, b + b′) pour tout a, a′ ∈ A et b, b′ ∈ B. On obtient ainsi un anneau
(A×B,+,×).

1.3 L’anneau Z/nZ
Fixons un entier naturel n > 2. On définit une relation d’équivalence sur Z (la congruence modulo n) :

a ≡ b ⇐⇒ n | a− b.

La classe d’équivalence de a ∈ Z est la partie suivante

a+ nZ := {a+ kn : k ∈ Z}.

Ces classes forment une partition de Z en n parties deux à deux distinctes :

Z = nZ ∪ (1 + nZ) ∪ · · · ∪ (n− 1 + nZ).

Par définition Z/nZ est l’ensemble de ces n parties de Z. Attention, un élément de Z/nZ est une partie
de Z. En particulier le cardinal de Z/nZ est n.
On définit deux opérations + et × sur Z/nZ par les formules suivantes :

(a+ nZ) + (b+ nZ) := (a+ b) + nZ ∈ Z/nZ
(a+ nZ)× (b+ nZ) := (ab) + nZ ∈ Z/nZ

pour tout a, b ∈ Z.
Ces définitions posent une question. En effet, les membres de droite ne doit dépendre que (a + nZ) et
(b+nZ). Or à priori, les membres de droite dépendent de a et b, utiles pour calculer a+b et ab. Montrons
que ceci n’est qu’apparence pour + :
Soit a′ et b′ dans Z tels que a+ nZ = a′ + nZ et b+ nZ = b′ + nZ. Alors il existe k et l dans Z tels que
a′ = a+ nk et b′ = b+ nl. Mais alors,

a′ + b′ + nZ = a+ nk + b+ nl + nZ = a+ b+ n(k + l + Z) = (a+ b) + nZ.

Théorème IV.54. Anneau Z/nZ

L’ensemble Z/nZ muni de ces deux lois + et × est un anneau.

Démonstration. Chaque identité est une simple vérification laissée en exercice.

Exemple n = 3.
0 1

Les traits de la graduation représentent les entiers relaturels. Les rouges sont ceux de 3Z, les bleus ceux
de 1 + 3Z et les verts ceux de 2 + 3Z. Le fait que chaque trait est une couleur et une seule dit que ces
parties forment une partition des entiers.
Les opérations + et × sont définie sur ces parties. Si on représente une partie par sa couleur, on obtient
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•+ •= • •+ •= • •+ •= •
•+ •= • •+ •= • •+ •= •

De même pour le produit, on obtient :

•×•= • •×•= • •×•= •
•×•= • •×•= • •×•= •

Revenons à Z/nZ. L’élément k + nZ ∈ Z/nZ est noté k̄. En particulier le n est sous-entendu bien que
très important.
Les tables d’addition et de multiplication de Z/3Z s’écrivent alors :

+ 0̄ 1̄ 2̄
0̄ 0̄ 1̄ 2̄
1̄ 1̄ 2̄ 0̄
2̄ 2̄ 0̄ 1̄

× 0̄ 1̄ 2̄
0̄ 0̄ 0̄ 0̄
1̄ 0̄ 1̄ 2̄
2̄ 0̄ 2̄ 1̄

Exercice 11. Dresser de même, les tables d’addition et de multiplication de Z/2Z et Z/4Z.

1.4 Anneaux des polynômes
Soit A un anneau et X un symbole. On pose

A[X] := {
∞∑

n=0

anX
n : an ∈ A et ∃N ∀n > Nan = 0}.

La condition sur les coefficients an dit que tous sauf un nombre fini sont nuls. Lorsq’on écrit un polynôme,
on oublie les termes de la forme 0Xn, si bien que la somme devient finie. Il est aussi important de
comprendre que la somme est formelle. Ce qui signifie que par définition

∑∞
n=0 anX

n =
∑∞
n=0 bnX

n si
et seulement si an = bn pour tout n.
On définit les deux opérations + et × sur A[X] par les formules suivantes :
Pour

P =

∞∑

n=0

anX
n Q =

∞∑

n=0

bnX
n,

on a

P +Q =

∞∑

n=0

(an + bn)Xn

et

PQ =

∞∑

n=0

cnX
n où cn =

∑

k+l=n

akbl.

La formule qui définit cn a bien un sens car seulement un nombre fini de termes apparaissent. Combien ?
Par ailleurs, PQ est bien un polynôme car les cn sont presque tous nuls.

Proposition IV.55: Anneau des polynômes

L’ensemble (A[X],+,×) est un anneau.

La preuve qui est une simple vérification est laissée en exercice.

Convention. On fait le choix d’omettre 0Xk, X0 et de noter 1Xk par Xk. Ainsi 1 +X3 + 2X6 ∈ R[X].
En effet

an =





1 si n = 0 ou 3
2 si n = 6
0 sinon
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Fonction associée. Soit P ∈ A[X]. Alors, on obtient une fonction

P̃ : A −→ A,

dont la valeur P (a) s’obtient à substituer a à X dans P .
Si A = R, on obtient les fonctions polynômiales que vous connaissez bien. Pour d’autres anneaux, les
choses peuvent être plus subtiles.

Exemple 9. Prenons A = Z/2Z dont on note les éléments 0 et 1. Alors P = 1 + X, Q = 1 + X3 sont
deux éléments distincts de A[X] car ils n’ont pas les mêmes coefficients.
On calcule P̃ (0) = 1, P̃ (1) = 1 + 1 = 0, Q̃(0) = 1 et Q̃(1) = 1 + 1 = 0. Donc les fonctions P̃ et Q̃ sont
égales.

1.5 Anneau des entiers de Gauss
L’ensemble Z[i] := {x + iy : x, y ∈ Z} est un sous-anneau de C. Il est appelé l’anneau des entiers de
Gauss.

1.6 Petits anneaux
Dans cette section, on étudie les anneaux de petits cardinaux 2,3 et 4.

Proposition IV.56

Dans un anneau (A,+,×, 0, 1), on a, pour tout a ∈ A :

0× a = 0 − 1× a = −a.

Ici, −a signifie l’unique élément tel que a+ (−a) = 0 (cad l’inverse de a pour la loi +).

Démonstration. En effet, 0 × a = (0 + 0) × a = 0 × a + 0 × a. Donc 0 × a est l’élément neutre pour +,
c’est-à-dire 0.
On a aussi −1× a+ a = −1× a+ 1× a = (−1 + 1)× a = 0× a = 0. Donc −1× a est bienl’inverse de a
pour +.

Exercice 12. Justifier chacune des égalités de la preuve ci-dessus à l’aide de la définition d’un anneau.

Cardinal 2. Soit A un anneau à deux éléments. Alors A = {0, 1}. Ses tables d’addition et de multipli-
cation s’écrivent alors :

+ 0 1
0 0 1
1 1 0

× 0 1
0 0 0
1 0 1

Les valeurs noires s’obtiennent par définition des éléments neutres ou la proposition ci-dessus. La valeur
rouge s’obtient en remarquant que 0 doit apparaître sur la ligne de 1 car 1 a un inverse pour +.
Ainsi Z/2Z est le seul anneau à 2 éléments.

Cardinal 3. Soit A un anneau à trois éléments. Alors A = {0, 1, a}. Ses tables d’addition et de multi-
plication s’écrivent alors :

+ 0 1 a
0 0 1 a
1 1 a 0
a a 0 1

× 0 1 a
0 0 0 0
1 0 1 a
a 0 a 1

Les valeurs noires s’obtiennent par définition des éléments neutres ou la proposition ci-dessus. La valeur
rouge s’obtient par élimination : 1 + 1 = 1 est impossible car 1 6= 0. Les valeurs vertes s’obtiennent par
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symétrie (+ est commutatif) et bijection de l’application y 7→ x + y est bijective. La valeur verte se
justifie ainsi : a = 1 + 1 ; donc a× a = (1 + 1)× a = a+ a = 1.
Ainsi Z/3Z est le seul anneau à 3 éléments.

Cardinal 4. A partIr de 4 les choses se compliquent. Il y a 4 possibilités, mais cela est un peu long. Si
cela vous amuse vous pouvez essayer de continuer le raisonnement ci-dessous, bien que cela puisse être
long.
Réciproquement, les pages précédentes de ce chapitre permettent de voir que Z/2×Z/2Z et Z/4Z. Mais
il y a d’autres exemples. . .

Soit A un anneau à quatre éléments. Alors A = {0, 1, a, b}. Ses tables d’addition et de multiplication
s’écrivent alors :

+ 0 1 a b
0 0 1 a b
1 1 x?
a a
b b

× 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a
b 0 b

La lettre x ne peut être 1 (chaque ligne est une permutation des éléments de A). Donc, x = 0, a ou b.
Quitte à changer les notations (entre a et b) on peut éliminer le dernier cas.

2 Inversibilité et divisibilité

2.1 Inversibilité
Un point important des anneaux est que−x existe toujours alors que x−1 par forcément. D’où la définition
suivante :

Définition IV.57: Elément inversible

Soit (A,+,×, 0, 1) un anneau. Un élément a ∈ A est dit inversible s’il existe b ∈ A tel que ab = 1 :

∃b ∈ A ab = 1.

On note A∗ l’ensemble des éléments inversibles.

Exemples 10. Voici quelques exemples.
(i) On a Z∗ = {±1} et R[X]∗ = R∗ = R− {0}.
(ii) Plus difficile Z[i]∗ = {±1,±i}.

Pour le montrer, on part de zz′ = 1 et on s’intéresse au module |z| de z.
(iii) (Z/4Z)∗ = {1̄, 3̄}

On peut le montrer en dressant la table de multiplication de Z/4Z.

On peut vérifier que (A∗,×, 1) est un groupe abélien.

2.2 Divisibilité
Bien que b−1 n’est pas de sens dans un anneau, il se peut que a

b en ait un. Penser à 6
2 dans Z.

D’où la définition suivante :

Définition IV.58: Elément inversible

Soit (A,+,×, 0, 1) un anneau et a, b ∈ A avec b 6= 0. On dit que b divise a s’il existe c ∈ A tel que
a = bc et on écrit b | a.
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Dans Z on retrouve bien la divisibilité à laquelle nous sommes habitués. Voici un anneau dans lequel les
choses sont plus compliquées.

Exemple 11. Posons A = Z[
√

5] = {a + b
√

5 | a, b ∈ Z}. On peut vérifier que A est un sous-anneau de
R. Comme Z ⊂ A, on a 6 = 2× 3 et 2 et 3 divisent 6. Mais on a aussi

6 = (1 +
√

5)(1−
√

5)

et 1±
√

5 divisent aussi 6.
En revanche, on peut montrer que 1 +

√
5 et 2 n’ont pas de diviseur commun. De même, 1 +

√
5 et 3

n’ont pas de diviseur commun.

On pourra remarquer que si b ∈ A∗ alors b divise a pour tout a. Ce sont les relations de divisibilité
triviales. Un élément de A est dit irréductible si ces seuls diviseurs viennent de relations de divisibilité
triviales. Plus précisément :

Définition IV.59: Elément irréductible

Soit p ∈ A. L’élément p est dit irréductible, si p n’est pas inversible et

p = ab ⇒ a ou b est inversible.

Dans Z, les éléments irréductibles sont les nombres premiers et leurs opposés. De manière plus générale,
dans ces questions de divisibilité un élément ou son produit avec un inversible jouent les même rôle.

3 Anneaux intègres
Vous avez appris il y a longtemps que pour qu’un produit soit nul, il faut qu’un des terme le soit. Ceci
est vrai pour les nombres rééls, mais pas pour les matrices (qui ne forment pas un anneau). Dans les
anneaux, ça dépend. D’où la définition :

Définition IV.60: Anneau intègre

L’anneau A est dit intègre si

∀a, b ∈ A (ab = 0 ⇒ a = 0 ou b = 0).

Exemples 12. (i) Z, R, C[X], Z[i] et Z[
√

5] sont intègres.
(ii) Z/3Z est intègre (comment cela se lit-il sur sa table de multiplication ?).
(iii) Z/4Z n’est pas intègre car 2̄.2̄ = 4̄.
(iv) Z× Z n’est pas intègre car (1, 0)(0, 1) = 0.

4 Corps

Définition IV.61: Corps

Un corps (K,+,×) est un anneau dont tout élément non nul est inversible :

∀a ∈ A∗ ∃b ∈ A ab = 1.

Exemples 13. (i) Les corps que vous connaissiez en sont bien : Q, R, C.
(ii) L’ensemble R(X) des fractions rationelles est un corps.
(iii) Z/2Z et Z/3Z sont des corps.
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(iv) Le sous-anneau Q + iQ de C est un corps.
(v) Z/6Z n’est pas un corps. Trouver un élément non nul et non inversible.
(vi) Z, R[X], Z[i] ne sont pas des corps.

Trouver un élément non nul et non inversible pour chacun de ces anneaux.

5 Morphismes, idéaux et anneaux quotients

5.1 Morphismes

Définition IV.62: Morphisme

Soit A et B deux anneaux. Un morphisme f de A vers B est une application f : A −→ B telle
que

(i) f(0) = 0 et f(1) = 1 ;
(ii) f(a+ a′) = f(a) + f(a′) pour tout a, a′ ∈ A ;
(iii) f(−a) = −f(a) pour tout a ∈ A,
(iv) f(aa′) = f(a)f(a′) pour tout a, a′ ∈ A.

Remarque. On pourra remarquer que f est en particulier un morphisme de groupes pour la loi +. En
particulier, la définition ci-dessus est redondante car f(a + a′) = f(a) + f(a′) implique f(0) = 0 et
f(−a) = −f(a).
Il est immédiat de vérifier que la composé de deux morphismes est un morphisme.
De même, la réciproque d’un morphisme bijectif f est un morphisme. On dit alors que f est un isomor-
phisme.

Voici quelques exemples de morphismes.

Exemples 14. (i) Pour n > 2 ∈ N, l’application

Z −→ Z/nZ
k 7−→ k̄ = k + nZ

est un morphisme.
(ii) Soit a ∈ R. Alors, l’application

eva : R[X] −→ R
P 7−→ P (a)

est un morphisme.
(iii) Soit A et B deux anneaux. Alors, l’application

A×B −→ A
(a, b) 7−→ a

est un morphisme.
(iv) Soit A et B deux anneaux. Alors, l’application

A −→ A×B
a 7−→ (a, 0)

n’est pas un morphisme. Pourquoi ?
(v) L’application

R× R −→ C
(x, y) 7−→ x+ iy

n’est pas un morphisme. Pourquoi ?
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(vi) Posons

A = {
(
a −b
b a

)
∈M2(R) | a, b ∈ R}.

Alors (A, 0, I2,+, .) où . est le produit matriciel, I2 la matrice identité est un anneau. De plus
l’application

C −→ A

a+ ib 7−→
(
a −b
b a

)

est un isomorphisme d’anneaux.

Le noyau de f : A −→ B est son noyau lorsque f est pensé comme un morphisme de groupes :

Kerf = {a ∈ A : f(a) = 0}.

5.2 Idéal

Définition IV.63: Idéal

Soit A un anneau commutatif, I ⊂ A. Alors, I est un idéal ssi (I,+) est un sous-groupe de (A,+)
et pour tout a ∈ A, pour tout x ∈ I, ax ∈ I.

Proposition IV.64: Intersection d’idéaux

Toute intersection d’idéaux est un idéal.

La preuve est une simple vérification.

Définition IV.65: Idéal Engendré par une Partie

Soit P ⊂ A non vide. L’intersection de tous les idéaux de A contenant P est le plus petit idéal
contenant P . On l’appelle idéal engendré par P , noté (P ).

Théorème IV.66. Idéal engendré

L’idéal engendré par P est {∑r
i=1 uiai / r ∈ N, ai ∈ P, ui ∈ A}.

Remarque : Soit a ∈ A : L’idéal engendré par a est aA. On le note (a). Plus généralement, si
P = {a1, . . . , as} on note (a1, . . . , as) = a1A+ · · ·+ asA.

Démonstration. L’ensemble est bien stable par +, − et multiplication par n’importe quel élément de A.
C’est donc un idéal.
Soit I est un idéal contenant P . Comme il est stable par + et multiplication par tout a ∈ A il contient
l’ensemble.

Exemples 15. (i) L’idéal (2) engendré par 2 dans Z est l’ensemble des nombres pairs.
(ii) L’idéal (6, 9) engendré par 6 et 9 est l’ensemble des multiples de 3.

La preuve de ce fait est laissée en exercice.
(iii) L’idéal (X) engendré par le polynôme X dans R[X] est l’ensemble des polynômes qui s’annulent

en 0.
(iv) L’idéal (2, X) engendré par les polynômes 2 et X dans Z[X] est l’ensemble des polynômes dont

le coefficient constant est pair.
La preuve de ce fait est laissée en exercice.
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(v) L’idéal engendré par deux idéaux I et J est l’ensemble

I + J = {a+ b : a ∈ I, b ∈ J}.

Théorème IV.67. Noyau et Idéal

Le noyau d’un morphisme d’anneaux est un idéal.

Démonstration. Soit f un tel morphisme. Comme c’est un morphisme de groupe pour +, son noyau est
un sous-groupe. De plus, le calcul

f(ab) = f(a)f(b) = f(a)0 = 0

montre que si b ∈ Kerf alors ab ∈ Kerf .

5.3 Anneau quotient
Nous allons faire une construction qui montre la réciproque du théorème précédent : tout idéal est le
noyau d’un morphisme.
Un idéal I de A est dit strict si I 6= A. Ceci équivaut à 1 6∈ A.

Théorème IV.68. Anneau quotient

Soit I un idéal strict de A. On pose

A/I = {a+ I : a ∈ A}

inclus dans l’ensemble des parties de A. Il existe une unique structure d’anneau sur A/I telle que
l’application

π : A −→ A/I
a 7−→ a+ I

soit un morphisme d’anneaux.

Les lois sont données par les formules, pour tout a, b ∈ A :

(a+ I) + (b+ I) = (a+ b) + I
(a+ I)(b+ I) = (ab) + I

La preuve est directe et nous l’avons faite dans le cas suivant : A = Z et I = nZ = (n). Nous avions
obtenu l’anneau Z/nZ. Le cas général ne posant aucune difficulté supplémentaire est omise ici.
Souvent on note a+ I =: ā, lorsque la référence à I est claire.
Application : Construction des nombres complexes.
La relation clé dans le corps des nombres complexes est bien entendu i2 = −1. L’idée est donc de partir
de R[X] est d’imposer X2 = −1 c’est-à-dire X2 + 1 = 0 par quotient. On obtient l’application

ι : C −→ R[X]/(X2 + 1)

a+ ib 7−→ a+ bX + (X2 + 1)R[X] = a+ bX

qui est isomorphisme d’anneaux.

Le théorème de factorisation permet d’obtenir des isomorphismes comme ι.

Théorème IV.69. Factorisation des morphismes

Soit f : A −→ B un morphisme d’anneaux et I un idéal strict de A.
Si I ⊂ Kerf alors il existe un unique morphisme f̄ : A/I −→ B tel que f̄ ◦ π = f .
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A B

A/I

f

π
f̄

De plus, f̄ est injectif si et seulement si I = Kerf . Enfin, f̄ est surjectif si et seulement si f l’est.

Application. Soit I = (P ) l’idéal de R[X] engendré par un polynôme P . La remarque est que si
P (x) = 0, alors Q(x) = 0 pour tout Q ∈ (P ). Ainsi pour P = X2 − 1 on obtient un morphisme

f : R[X] −→ R× R
P 7−→ (P (−1), P (1))

tel que I ⊂ Kerf . On obtient donc f̄ : R[X]/(X2 − 1) −→ R× R qui est en fait un isomorphisme.

Exercice 13. Montrer que R[X]/(X2 − 4X) est isomorphe à R× R.
Plus difficile, montrer que R[X]/(X2 − 2X + 1) est isomorphe à R× R muni d’une loi à définir.
Montrer que R[X]/(X2 − 4X) et R[X]/(X2 − 2X + 1) ne sont pas isomorphes.

Correction du cas X2 − 2X + 1 = (X − 1)2. Les multiples de ce polynômes sont ceux qui vérifient
P (1) = P ′(1) = 0. Donc l’application

θ : R[X]/(X2 − 2X + 1) −→ R× R
P 7−→ (P (1), P ′(1))

est une bijection linéaire. En revanche θ n’est pas un morphisme d’anneau. En revanche, elle l’est pour
la loi

(a, b) ? (a′, b′) := (aa′, ab′ + a′b).

5.4 Propriétés des idéaux

Définition IV.70: Idéal Premier

Un idéal I d’un anneau A est dit premier si

∀a, b ∈ A (ab ∈ I ⇒ a ∈ I ou b ∈ I).

Cette propriété s’interprète facilement en terme de quotients.

Proposition IV.71: Quotient par idéal premier

Soit I un idéal strict de A. Alors I est premier si et seulement si A/I est intègre.

Démonstration. Considérons π : A −→ A/I.
Supposons A/I est intègre. Soit a et b dans A. Alors ab ∈ I si et seulement si π(ab) = 0 si et seulement
si π(a)π(b) = 0. Alors, cette dernière égalité implique que π(a) = 0 ou π(b) = 0. C’est-à-dire a ∈ I ou
b ∈ I. Donc I est premier.
Supposons maintenant I premier. Soit deux éléments de A/I dont le produit fait zéro. On écrit ces deux
éléments π(a) et π(b) avec a et b dans A. Alors 0 = π(a)π(b) = π(ab). Donc ab ∈ I. Comme I est premier
cela implique que a ∈ I ou b ∈ I. Donc π(a) = 0 ou π(b) = 0.
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Définition IV.72: Idéal Maximal

Un idéal I d’un anneau A est dit maximal si I ⊂ J ⊂ A implique J = I ou J = A.
Les seuls idéaux contenant I sont I et A.

Cette propriété s’interprète facilement en terme de quotients.

Proposition IV.73: Quotient par idéal maximal

Soit I un idéal strict de A. Alors I est maximal si et seulement si A/I est un corps.

Démonstration. Considérons π : A −→ A/I.
Supposons A/I est un corps. Soit J un idéal contenant strictement I. Soit b ∈ J tel que b 6∈ I. Alors
π(b) 6= 0. Donc il existe c ∈ A tel que π(c)π(b) = 1 = π(bc). Ceci se réécrit 1 − bc ∈ I ⊂ J . Donc
1 = (1− bc) + bc ∈ J . Mais alors J = A.
Supposons maintenant I maximal. Soit a ∈ A tel que π(a) 6= 0. Cela signifie que a 6∈ A. Considérons
l’idéal J = I + aA engendré par I et a. Comme I est maximal, J = A et 1 ∈ J . Donc il existe b ∈ A et
i ∈ I tels que 1 = i+ ab. Mais alors 1 = π(ab) = π(a)π(b). Donc π(a) est inversible.
On a bien montré que A/I est un corps.

Ces derniers résultats montrent que I maximal implique I premier.

Exemples 16. (i) L’idéal (6) ⊂ Z n ’est ni premier ni maximal. En revanche, (5) est maximal (donc
premier).

(ii) (X2 + 1) ⊂ R[X] est maximal.
(iii) (X2 − 1) ⊂ R[X] n’est pas premier.
(iv) (X) ⊂ Z[X] est premier, non maximal.
(v) (X2 + Y 3) ⊂ C[X,Y ] est premier, non maximal.
(vi) (3, X) ⊂ Z[X] est maximal.

6 Anneaux euclidiens

6.1 Définition et Idéaux

Définition IV.74: Anneau euclidien

Soit A un anneau intègre. On dit que A est euclidien s’il existe une fonction N : A − {0} −→ N
telle que :

(i) N(ab) > N(b), ∀a, b ∈ A− {0}
(ii) ∀a, b ∈ A, b 6= 0, ∃(q, r) ∈ A tq. a = bq + r (r = 0 ou N(r) < N(b)

La fonction N est appelée norme euclidienne.

Exemples 17. (i) Z est euclidien, avec N(x) = |x|. Ceci est la division euclidienne que l’on connait
depuis l’école primaire.

(ii) Si K est un corps, K[x] est euclidien, avec N(P ) = deg(P ). Ceci est la division euclidienne des
polynômes.

(iii) Z[i] := {m+ in, (m,n) ∈ Z2} est euclidien, avec N(z = x+ iy) = x2 + y2.
Esquisse de démonstration. Soit a, b ∈ A, b 6= 0. On cherche q et r comme dans la définition.
L’idée de base est que q est une approximation du quotient a/b que l’on connait dans C. Posons
donc z = a/b ∈ C. Les points de Z[i] forme un réseau donc il existe q ∈ Z[i] tel que |z−q| 6

√
2/2.

Alors q convient.
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Encore un peu de vocabulaire afin de décrire les idéaux des anneaux euclidiens. Un idéal I d’un anneau
A est dit principal s’il est engendré par un élément. Un anneau est dit principal si tous ses idéaux le sont.

Théorème IV.75. Euclidien et Principal

Tout anneau euclidien est principal.

Démonstration. Soit I un idéal de A. On regarde N(I). Comme partie non vide de N elle a un minimum.
Soit b ∈ I tel que N(b) soit égal à ce minimum. Montrons que

I = (b).

Il est clair que (b) ⊂ I.
Soit a ∈ I. Ecrivons a = bq + r avec r = 0 ou N(r) < N(b). Puisque r = a − bq il appartient à I. Par
minimalité de N(b), on en déduit que r = 0. Mais alors, a ∈ (b).

On peut aussi comprendre les éléments inversibles. Regardons Z un élément non nul a est inversible ssi
|a| = 1. Regardons K[X] : un élément non nul P est inversible ssi deg(P ) = 0. En général, on a :

Proposition IV.76: Eléments inversibles

Soit A un anneau euclidien dont on note N la norme. Soit a ∈ A non nul. Alors a est inversible si
et seulement si N(a) = N(1).

Démonstration. Si ab = 1 alors N(a) 6 N(1). Or a = a × 1 implique que N(1) 6 N(a). Donc si a est
inversible alors N(a) = N(1).
Réciproquement supposons que N(a) = N(1). On fait la division euclidienne : 1 = aq + r avec N(r) <
N(r). Ce qui est impossible. Donc r = 0 et a est inversible.

6.2 Pgcd et ppcm
Les pgcd et ppcm sont ceux que vous connaissez déjà sur Z et K[X]. Cependant les concepts d’anneau
euclidien et d’idéal permettent des définitions et démonstrations à la fois homogènes et élégantes. Soit
donc A un anneau euclidien.
Une petite remarque préparatoire sous forme d’exercice.

Exercice 14. Soit a et b non nuls dans A. Alors (a) = (b) si et seulement s’il existe c ∈ A inversible
tel que a = cb.

Définition IV.77: pgcd

Soit a1, . . . , as des éléments non tous nuls de A. Un élément δ ∈ A tel que (a1, . . . , as) = (δ) est
appelé pgcd des éléments a1, . . . , as.
On note δ = a1∧· · ·∧as. On peut remarquer que δ n’est défini qu’à un inversible près. Sur Z (resp.
K[X]), on fixe généralement cette indétermination en demandant que le pgcd soit positif (resp.
unitaire).

Le nom pgcd est justifié par l’exercice suivant.

Exercice 15. Soit q dans A non nul. Alors q divise tous les ai si et seulement si q divise δ.

Le lemme de Bezout est également facile à démontrer.

Exercice 16. Lemme de Bezout version 1.
Soit a et b dans A non nuls. Alors, il existe u et v dans A tels que au+ bv = a ∧ b.
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Définition IV.78: éléments premiers entre eux

Soit a1, . . . , as des éléments non nuls de A. On dit qu’ils sont premiers entre eux si a1 ∧ · · · ∧as = 1
c’est-à-dire si (a1, . . . , as) = A.

Le lemme de Bezout est également facile à démontrer.

Exercice 17. Lemme de Bezout version 2.
Soit a et b dans A non nuls. Alors, a et b sont premiers entre eux si et seulement s’il existe u et v dans
A tels que au+ bv = 1.

Définition IV.79: ppcm

Soit a1, . . . , as des éléments non nuls de A. Un élément c ∈ A tel que (a1) ∩ · · · ∩ (as) = (c) est
appelé ppcm des éléments a1, . . . , as.
On note c = a1 ∨ · · · ∨ as.

6.3 Calcul des Pgcd et ppcm
On se donne a et b non nuls dans A. On veut calculer a ∧ b et a ∨ b. Un premier résultat nous dit que la
connaissance de l’un détermine l’autre.

Proposition IV.80: Lien ppcm et pgcd

Il existe u inversible tel que
(a ∧ b)(a ∨ b) = uab.

Démonstration. On pose a′ = a/(a∧ b) et b′ = b/(a∧ b). Comme a′ ∧ b′ = 1 et a′ ∨ b′ = (a∨ b)/(a∧ b) il
suffit de montrer que

(a′ ∨ b′) = (a′b′),

sachant que a′ ∧ b′ = 1.
Autrement dit on peut supposer que a ∧ b = 1. Alors il existe u et v dans A tels que au+ bv = 1.
Il est clair que (ab) ⊂ (a). Donc (ab) ⊂ (a) ∩ (b) = (a ∨ b).
Réciproquement montrons que a ∨ b ∈ (ab). Comme a divise a ∨ b, il existe c tel que a ∨ b = ac. Or

c = acu+ bcv.

Puisque b divise bcv et acu = u.(a ∨ b) il divise c. Donc c = bc′. Ainsi a ∨ b = ac = abc′. CQFD.

Algorithme d’Euclide. Il s’agit d’un algorithme permettant de calculer a∧ b. Il est basé sur la formule
suivante. On suppose b non nul et soit a = bq + r la division euclidienne alors

{
a ∧ b = r ∧ b
0 ∧ b = b

Pour obtenir l’algorithme, on réitère le procédé en divisant b par r pour ré-exprimer r ∧ b.

6.4 Factorisation
Comme nous commençons à le voir, le cadre des anneaux euclidiens (en fait principal suffit souvent) est
un bon cadre où étendre les propriétés des entiers. Une propriété arithmétique fondamentale des entiers
est la décomposition en produit de nombres premiers. Cela s’étend à notre cadre du jour : on dit qu’un
anneau principal est factoriel.
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Théorème IV.81. Factoriel

Soit A un anneau euclidien et a un élément non nul de A. Alors, il existe des éléments irréductibles
p1, . . . , ps dans A, des entiers naturels non nuls n1, . . . , ns et un élément inversible u tel que

a = upn1
1 . . . pnss .

De plus cette écriture est unique à l’ordre près et à multiplication des pi et de u par des inversibles.

Un ingrédient clé pour montrer cela est le

Lemme IV.82 (Lemme de Gauss). Soit a, b et c non nuls dans A. Si a divise bc et a ∧ b = 1 alors a
divise c.

Démonstration. On utilise encore Bezout : au+ bv = 1. Alors acu+ bcv = c. Donc a divise c.

Preuve du théorème de Factorialité. Pour l’existence on fait une récurrence sur N(a). Si a est irréduc-
tible, il n’y a rien à montrer. Sinon a = bc avec b et c non inversibles. Alors N(b) < N(a) et N(c) < N(a).
Par récurrence, on déduit que b et c admettent des décompositions. Donc a aussi.

Pour l’unicité supposons que ∏

i

pi = u
∏

j

qj , (6.1)

- avec pi et qi irréductibles et u inversible. Ici on remplace les exposant par des répétitions.
Il est clair que q1 divisent le membre de droite. Donc il divise celui de gauche. Supposons que q1 n’est
pas conjugué à p1. Comme ils sont irréductibles, il suit que q1 ∧ p1 = 1. Mais alors le lemme de Gauss
implique que q1 divise

∏
i>2 pi. On recommence. On aura nécessairement à un moment q1 divise pi. On

divise l’expression (6.1) par q1 et on recommence (cad on fait une récurrence sur le nombre de qi).

Pour ceux qui auraient l’impression de ne rien avoir montré, il est intéressant de faire l’exercice suivant.

Exercice 18. Posons A = {a+ bi
√

5 : a, b ∈ Z}.
(i) Montrer que A est un sous-anneau de C.
(ii) Montrer que 2 et 3 sont irréductibles dans A.
(iii) Montrer que 1± i

√
5 sont irréductibles dans A.

(iv) En remarquant que 2× 3 = (1 + i
√

5)(1− i
√

5), montrer que A n’est pas euclidien.

7 Anneau K[X]

Fixons un corps K. Vous pouvez penser à R, C, Q ou Z/pZ. Nous verrons d’autres exemples plus tard.
Nous avons déjà vu que K[X] était un anneau euclidien : il vérifie donc Bezout, Gauss et il y a une unique
décomposition en produit de polynômes irréductibles. Nous allons maintenant voir quelques techniques
spécifiques à cet anneau.

7.1 Racines et Dérivation
Substitution. C’est l’opération la plus compliquée à comprendre. Soit

P = a0 + a1X + · · ·+ adX
d

et Q deux polynômes. On pose alors

(P ◦Q)(X) = a0 + a1Q(X) + · · ·+ adQ(X)d.

Faisons un exemple : P = 1 +X3 et Q = 2 +X2 :

(P ◦Q)(X) = 1 + (2 +X2)3

= 9 + 3X2 + 3X4 +X6.
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L’application P 7→ P ◦Q est linéaire mais PAS Q 7→ P ◦Q.
Dérivation. L’ensemble (1, X,X2, . . . ) est une base de K[X]. On peut donc définir un endomorphisme
D de K[X] on donnant l’image de ces monômes.

D : K[X] −→ K[X]
Xk 7−→ kXk−1 si k > 1
1 7−→ 0

On a définit ainsi ce que l’on appelle la dérivation. Dans le cas où le corps est celui des réels cette
dérivation coïncide avec la dérivation usuelle. On note souvent P ′ pour D(P ).
On a les règles de calculs usuelles de la dérivation :

Proposition IV.83: Propriétés de la dérivation

Soit P et Q dans K[X]. On a

D(PQ) = D(P )Q+ PD(Q) (PQ)′ = P ′Q+QP ′

et
D(P ◦Q) = D(Q).D(P ) ◦Q (P ◦Q)′ = Q′ × P ′ ◦Q.

Démonstration. Fixons Q. Les applications P 7→ D(PQ) et P 7→ D(P )Q + PD(Q) sont linéaires. Du
coup il suffit de montrer l’égalité pour P = Xk.
Fixons maintenant P = Xk. Les applications Q 7→ D(PQ) et Q 7→ D(P )Q+ PD(Q) sont linéaires. Du
coup il suffit de montrer l’égalité pour Q = X l.
Dans ce cas, on a

D(PQ) = D(Xk+l) = (k + l)Xk+l−1

et
D(P )Q+ PD(Q) = D(Xk)X l +XkD(X l) = kXk+l−1 + lXk+l−1 = (k + l)Xk+l−1.

Montrons maintenant la seconde égalité. Les applications P 7→ D(P ◦Q) et P 7→ D(Q)×D(P ) ◦Q sont
linéaires. Du coup il suffit de montrer l’égalité pour P = Xk.
Dans ce cas, on a

D(P ◦Q) = D(Qk) = kD(Q)Qk−1

et
D(Q).D(P ) ◦Q = D(Q).k.Qk−1.

Evaluation – Racines.
Soit a ∈ K. Alors on a une application évaluation

eva : K[X] −→ K
P 7−→ P (a).

On vérifie sans peine que eva est un morphisme d’anneaux. Son noyau est {P : P (a) = 0}. C’est un
idéal maximal de K[X] car le quotient est isomorphe à K. L’isomorphisme est donné par eva.

Proposition IV.84: Racine et division

Soit P ∈ K[X] et a ∈ K. Alors a est une racine de P si et seulement si X − a divise P .

Démonstration. Si P = (X − a)Q, il est clair que P (a) = 0. Réciproquement supposons que P (a) = 0.
On écrit la division euclidienne P = Q(X − a) + R avec R nul ou de degré strictement inférieur à 1.
Donc R est en fait un polynôme constant. Par ailleurs, 0 = P (a) = R(a). Donc R est nul et X − a divise
P .
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Définition IV.85: Ordre d’une racine

Soit P ∈ K[X] non nul, a ∈ K et α ∈ N. On dit que a est racine d’odre au moins α si (X − a)α

divise P .
On dit que a est racine d’odre exactement α si elle est racine d’ordre au moins α mais n’est pas
d’odre au moins α+ 1.

Proposition IV.86: Ordre racine et dérivées

Soit P ∈ K[X] non nul, a ∈ K et α ∈ N. Alors
(i) Si a est racine d’odre au moins α alors

P (a) = P ′(a) = · · · = P (α−1)(a) = 0.

(ii) Si de plus K est de caractéristique nulle, la réciproque de la première assertion est vrai.

Démonstration. Supposons d’abord que (X−a)α divise P . Il existe alorsQ ∈ C[X] tel que P = (X−a)αQ.
On rappelle la formule le Leibnitz :

(fg)(k) =

k∑

i=0

(
k
i

)
f (i)g(k−i).

La preuve de cette formule se fait par récurrence sur k en utilisant la formule de dérivation d’un produit.
On obtient pour P et k 6 α− 1 :

(P )(k) =

k∑

i=0

(
k
i

)
((X − a)α)(i)Q(k−i). (7.1)

On remarque alors que

((X − a)α)(i) = (α.(α− 1) . . . (α− i+ 1))(X − a)α−i si i 6 α,

et
((X − a)α)(i) = 0 si i > α.

En particulier, pour tout i 6 k < α, on a
(

((X − z)α)(i)

)
(a) = 0.

En injectant dans la formule (7.1), on déduit que P (k)(a) = 0.

Réciproquement, supposons que P (a) = · · · = P (α−1)(a) = 0. Ecrivons la division euclidienne de P par
(X − a)α :

P = (X − a)αQ+R,

avec deg(R) < α. L’assertion déjà démontrée implique que

R(a) = · · · = R(α−1)(a) = 0.

Considérons le polynôme auxiliaire

S(X) = R(z +X) R(X) = S(X − a).

La formule de dérivation d’un polynôme composé implique que

S(k)(X) = R(k)(z +X),
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donc
S(0) = · · · = S(α−1)(0) = 0.

Ecrivons S = a0 + a1X + · · ·+ aα−1X
α−1. Par une récurrence immédiate, on montre que

S(k)(0) = k!ak ∀k = 0, . . . , α− 1.

On en déduit que S = 0, puis que R = 0. Ainsi (X − a)α divise P .

7.2 Irréductibilité

A Petits degrés

En petit degré, il y a un critère simple d’irréductibilité.

Proposition IV.87: Irréductibilité et racines

On a
(i) Tout polynôme de degré 1 est irréductible.
(ii) Tout polynôme irréductible de degré supérieur à 2 n’a pas de racine.
(iii) Tout polynôme de degré 2 ou 3 qui n’a pas de racine est irréductible.

Démonstration. Soit P un polynôme. Il est irréductible, si pour tout A,B dans K[X] tels que P = AB,
on a deg(A) ou deg(B) nul :

∀A,B ∈ K[X] (P = AB ⇒ (deg(A) = 0 ou deg(B) = 0)).

Les trois énoncés de la proposition découlent facilement des deux assertions suivantes :

(i) deg(P ) = deg(A) + deg(B) ;

(ii) P est divisible par un polynôme de degré un si et seulement si il a une racine.

En appliquant la proposition, on voit que X2+X+1 ∈ Z/2Z[X] est irréductible. Attention, il est possible
qu’un polynôme sans racine ne soit pas irréductible. (X2 + 1)2 donne un exemple dans R[X].

B Nombres complexes

Théorème IV.88. D’Alembert-Gauss

Les polynômes irréductibles de C[X] sont les polynômes de degré un.

Ceci est bien une version du théorème de d’Alembert-Gauss qui dit que tout polynôme non constant sur
C a une racine et donc est divisible par un polynôme de degré un.

C Nombres réels

Encore une façon de formuler le théorème de d’Alembert-Gauss.

Théorème IV.89. D’Alembert-Gauss

Les polynômes irréductibles de R[X] sont les polynômes de degré un et les polynômes de degré 2
et de discriminant négatif.
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D Nombres entiers et rationnels

On sort un peu du contexte en regardant les polynômes à coefficients entiers. Ce n’est pas un anneau
euclidien.
Pour P ∈ Z[X] non nul on note c(P ) le pgcd des coefficients de P . Ce nombre est appelé le contenu de
P .

Théorème IV.90. Gauss

Soit P et Q dans Z[X] non nuls. Alors

c(PQ) = c(P )c(Q).

Cette formule est très simple et très utile. C’est la marque des grands. . .théorèmes.

Démonstration. Posons P̃ = P/c(P ) et Q̃ = Q/c(Q). Ceux sont des polynômes à coefficients entiers et
de contenu égal à 1. Il suffit de montrer que

c(P̃ Q̃) = 1.

Soit p un nombre premier. Soit P̄ (resp. Q̄) le polynôme de Z/pZ[X] obtenu en considérant la classe
dans Z/pZ de chaque coefficient de P̃ (resp. Q̃). Comme c(P̃ ) = 1, P̄ est non nul. Comme Z/pZ[X] est
intègre, on en déduit que P̄ Q̄ 6= 0. Donc p ne divise pas c(P̃ Q̃). Vu l’arbitraire de p, on en déduit que
c(P̃ Q̃) = 1.

Corollaire IV.91: Irred dans Z et Q

Soit P ∈ Z[X] tel que c(P ) = 1. Alors se valent
(i) P est irréductible dans Q[X] ;
(ii) P est irréductible dans Z[X].

Démonstration. Un sens est évident. Réciproquement supposons que P est irréductible dans Z[X]. Soit
P = AB dans Q[X]. En chassant les dénominateurs de A et B, on obtient d ∈ N, Ã, B̃ ∈ Z[X] tels que

dP = ÃB̃. (7.2)

En prenant le contenu, sachant que c(P ) = 1, on obtient d = c(Ã)c(B̃). Mais alors, en divisant l’équa-
tion (7.2) par d, on obtient

P =
Ã

c(Ã)

B̃

c(Ã)
. (7.3)

Cette équation vit dans Z[X]. Donc l’irréductibilité de P dans Z[X] montre que deg(A) ou deg(B) est
nul. CQFD.

Ce corollaire est très puissant pour montrer qu’un polynôme de Q[X] est irréductible. Faisons un exemple.

Exemple 18. Soit P = X4 +X + 1. Montrons que P est irréductible dans Q[X]. Comme P ∈ Z[X] et
c(P ) = 1, il suffit de monter qu’il est irréductible dans Z[X]. Ecrivons donc P = AB avec A et B dans
Z[X]. Il s’agit de montrer que A ou B est constant. Quitte à permuter A et B, on peut supposer que
deg(A) 6 deg(B). Comme deg(A) + deg(B) = deg(P ) = 4, il y deux cas à considérer :

(i) deg(A) = 1 et deg(B) = 3.

Alors A = aX + b avec a, b ∈ Z. En regardant le coefficient dominant de AB, on déduit que a est
inversible dans Z. Donc a = ±1. On peut supposer que a = −1. Mais alors b ∈ Z est une racine
de P . Avec des inégalité, on se convainc que cela est impossible.
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(ii) deg(A) = 2 et deg(B) = 2.

Alors on a
X4 +X + 1 = (aX2 + bX + c)(a′X2 + b′X + c′)

dans Z. En particulier aa′ = 1. Donc on a a = a′ = ±1. On peut supposer (quitte à multiplier les
deux facteurs par −1) que a = a′ = 1.
De plus, cc′ = 1. Donc c′ = c = ±1. Or

(X2 + bX + c)(X2 + b′X + c) = X4 + (b′ + b)X3 + (2c+ bb′)X2 + c(b+ b′)X + 1.

On obtient donc b′ = −b en regardant le coefficient en X3. Donc le coefficient en X est nul.
Contradiction.
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1 Corps, Sous-corps, Extension

1.1 Définition et exemples

Définition V.92: Corps

Un corps (K,+,×) est un anneau tel que tout élément non nul est inversible pour ×.

Les premiers exemples sont les corps que vous manipulez depuis longtemps : R, C et Q. Autre exemple
Q(i) = Q + Qi.

L’anneau Z n’est pas un corps car 2 n’est ni nul ni inversible.

L’anneau Z/nZ est un corps si et seulement si n est premier. En effet, d’après le théorème de Bezout,
k̄ ∈ Z/nZ est inversible si et seulement si k est premier avec n.

L’ensemble des fractions rationelles K(X) est un corps.

On montre facilement que K∗ = K − {0} est un groupe abélien. En particulier l’inverse dex ∈ K∗ pour
× est unique : on le note x−1 ou 1

x .
Comme nous l’avons déjà vu des corps peuvent être inclus les uns dans les autres.

Définition V.93: Sous-Corps

Soit (L,+,×) un corps. Une partie K ⊂ L est un sous-corps si c’est un sous-anneau tel que

∀x ∈ K x−1 ∈ K.

On dit aussi que L est une extension de K.

Une remarque très importante est que si K ⊂ L est une extension de corps alors L est un K-espace
vectoriel. La dimension de cet espace vectoriel est appelée le degré de l’extension. On la note [L : K].
Par exemple [C : R] = 2, [Q(i) : Q] = 2 et [C : Q] =∞.

1.2 Caractéristique d’un corps
Soit A un anneau. Soit n un entier naturel. On peut bien sûr le penser comme 1 + 1 + · · · + 1 n fois.
Mais alors il prend un sens dans A. De plus, si n est négatif, n = −(−n). On obtient ainsi un morphisme
d’anneaux

ι : Z −→ A.

Autrement dit, ι(1) = 1, ι(2) = 1 + 1 + 1, ι(3) = 1 + 1 + 1 etc. Et ι(−1) = −ι(1), ι(−2) = −ι(2),
ι(−3) = −ι(3) etc. Le noyau de ι est un idéal de A. Il s’écrit donc (n) pour un entier naturel n. L’entier
n est appelé la caractéristique de A. On la note car(A).

Lemme V.94. La caractéristique d’un corps est nulle ou un nombre premier p.

Démonstration. Comme Z/nZ s’injecte dans le corps il est intègre. Mais alors n est nul ou premier.

Soit K un corps. En fait, si car(K) = 0 alors K contient Q. Si car(K) = p alors K contient Z/pZ.

Lemme V.95. Le cardinal d’un corps fini est une puissance d’un nombre premier.

Démonstration. Le morphisme ι ne peut être injectif car Z est infini. Il suit que le corps contient Z/pZ
avec p-premier. En particulier il est isomorphe à (Z/pZ)n comme espace vectoriel (pour un certain n).
Donc son cardinal est pn.

Nous verrons dans ce chapitre que réciproquement pour tout n, il existe un unique (à iso près) corps à
pn éléments.
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1.3 Double extension

Soit K1 ⊂ K2 ⊂ L. Combien voyez-vous d’extension ? Deux ? Et non, c’est trois.

Théorème V.96. Base télescopique

Soit K1 ⊂ K2 ⊂ L. On suppose que K1 ⊂ L est une extension finie. Alors

[L : K1] = [L : K2] · [K2 : K1].

Démonstration. La démonstration de ce théorème explique son nom. Soit (e1, . . . , ed) une base de K2

comme K1-espace vectoriel. Soit (f1, . . . , fd′) une base de L comme K2-espace vectoriel.
Chaque élément y de L s’écrit

y =
∑

i

xifi

pour xi ∈ K2. Or chaque xi s’écrit
xi =

∑

j

mijej ,

pour mij ∈ K1. Mais alors,
y =

∑

i,j

mij(ejfi)

. Donc la famille (eifj) engendre L comme K1-espace vectoriel.

Supposons maintenant que ∑

i,j

mij(ejfi) = 0,

avec mij ∈ K1. Alors ∑

i

(
∑

j

mijej)fi = 0.

Comme (f1, . . . , fd′) est libre sur K2, on en déduit que

∀i
∑

j

mijej = 0.

Comme (e1, . . . , ed) est libre sur K1, on en déduit que

∀i, j mij = 0.

Ainsi la famille (eifj) est libre.

Finalement la famille (eifj) est une base de L comme K1-espace vectoriel. La formule du théorème en
découle facilement.

2 Corps des Fractions

Une première façon de construire des corps est de faire ce que l’on a fait pour construire Q. Nous par-
tions de Z et considérions les fractions a

b comme un objet formel. En fait cela marche dès que l’anneau
de départ est intègre. Mais au fait, vous aviez déjà vu un autre exemple : le corps des fractions rationnelles.

Soit A un anneau intègre. On considère l’ensemble quotient suivant

Frac(A) := {a
b

: a ∈ A, b ∈ A− {0}}/ ∼
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où la relation d’équivalence ∼ est définie par

a

b
∼ c

d
⇔ ad− bc = 0.

On définit ensuite sur A les deux opérations :

a

b
× c

d
=
ac

db
et

a

b
+

c

d
=
ad+ bc

db
.

On vérifie que ces opérations sont bien définies (c’est-à-dire passent au quotient par ∼) et dont de Frac(A)
un corps. C’est un peu long mais sans difficulté.

L’anneau de départ A s’injecte dans K par l’application

ι : A −→ Frac(A), a 7−→ a

1
.

Le corps Frac(A) vérifie la propriété universelle suivante. Tout morphisme d’anneau injectif de A dans
un corps se prolonge de manière unique à Frac(A). C’est une manière de dire que Frac(A) est le plus
petit corps contenant A.

3 Elément algébrique – Corps de décomposition

3.1 Polynôme minimal
Soit K ⊂ L une extension de corps. Pensez ici à Q ⊂ C. Soit α ∈ L et

ϕα : K[X] −→ L
P 7−→ P (α).

Définition V.97: Algébrique/Transcendant

Un élément α ∈ L est dit algébrique sur K s’il existe un polynôme non nul P ∈ K[X] tel que
P (α) = 0. Sinon il est dit transcendant.

Dit autrement, α est transcendant si ϕ est injectif et algébrique sinon. Dans ce dernier cas, le
générateur unitaire de Kerϕ est appelé le polynôme minimal de α. On le note µα.

Proposition V.98: Corps engendré

Soit α ∈ L algébrique sur K. Alors le polynôme minimal de α est irréductible. De plus, l’image de
ϕα est un corps, noté K[α] et isomorphe à K[X]/(µα).

Démonstration. L’anneau quotient K[X]/(µα) s’injecte dans L, donc il est intègre. Ce qui implique que
µα est irréductible.
Mais alors, (µα) est un idéal maximal donc K[X]/(µα) est un corps.

Par exemple,
√

2 est algébrique sur Q et son polynôme minimal est X2 − 2.

Théorème V.99. Corps des nombres algébriques

L’ensemble des nombres de L qui sont algébriques sur K est un sous-corps de L et une extension
de K.
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Démonstration. La remarque essentielle de cette démonstration est la suivante : ϕα n’est pas injective si
et seulement si son image est de dimension finie si et seulement si α est algébrique.
Soit maintenant α et β dans L qui sont algébriques sur K. On a déjà vu que α−1 ∈ K[α].
Considérons K[α, β] := (K[α])[β]. Comme β est algébrique sur K il l’est sur K[α]. Donc la dimension de
K[α, β] sur K[α] est finie et K[α, β] est un corps. D’après le théorème de la base télescopique, la dimension
de K[α, β] sur K est finie.
Or α + β appartient à K[α, β] qui est un corps. Donc l’image de ϕα+β est incluse dans K[α, β] et donc
de dimension finie. Donc α+ β est algébrique sur K. On montre de même αβ est algébrique sur K.

Le théorème précédent implique par exemple que le nombre complexe
√

5 + i
3
√

2 + i 5
√

3

est algébrique sur Q. Il n’est pas facile du tout d’en trouver le polynôme minimal. On peut tout de même
en mimant la preuve trouver une borne supérieure sur son degré.

3.2 Corps de décomposition
Soit P ∈ K[X] un polynôme irréductible. L’anneau quotient K[X]/(P ) est un corps car l’idéal (P ) est
maximal. Notons X̄ la classe de X dans K[X]/(P ). Alors, par définition P (X̄) = 0, si bien que K[X]/(P )
est un corps, une extension de K et contenant une racine P . De plus, K[X]/(P ) est engendré par X̄ et
K comme anneau et

[K[X]/(P ) : K] = deg(P ).

Le corps K[X]/(P ) est appelé corps de rupture de P . C’est l’unique (à isomorphisme près) extension de
K contenant une racine de P et engendré par celle-ci.
Nous admettrons le résultat suivant.

Théorème V.100. Corps de décomposition

Soit P un polynôme non nul de K[X]. Alors il existe une extension L de K telle que P est scindé
sur L et L est engendré par les racines de P et K comme anneau.
De plus, L est l’unique extension de K vérifiant ces propriétés. L est appelé le corps de décomposition
de P .

4 Corps finis
Le but de cette section est de classifier tous les corps finis. L’énoncé est le suivant :

Théorème V.101. Corps finis

(i) Soit K un corps fini. Alors il existe un nombre premier p et un entier naturel non nul n tel
que ]K = pn.

(ii) Réciproquement, soit p un nombre premier et n un entier naturel non nul. Alors, il existe
un corps à pn éléments.

(iii) De plus, deux corps finis de même cardinal sont isomorphes.

On note Fq l’unique corps à q = pn éléments.

4.1 Premières propriétés et exemple
Soit K un corps fini. Sa caractéristique est non nulle (car il ne peut contenir Z), notons là p. Alors K
contient Z/pZ. Posons n = [K : Z/pZ] la dimension de K comme Z/pZ-espace vectoriel. Alors ]K = pn.
La première assertion du théorème V.101 est démontrée.
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Si n = 1, à la fois l’existence et l’unicité du théorème V.101 sont claires. On pose donc Fp = Z/pZ pensé
comme un corps. Regardons le plus petit cas qui suit p = 2 et n = 2. Soit K un corps de cardinal 4. On
note 0 et 1 les éléments de Z/2Z qui est inclus dans K. Soit x dans K− {0, 1}.
On peut voit que 1 + x 6= 1 (car x 6= 0), 1 + x 6= 0 (car x 6= 1), 1 + x 6= x (car 1 6= 0). Donc
K = {0, 1, x, 1 + x}. On peut dresser la table d’addition de K :

0 1 x 1 + x

0 0 1 x 1 + x
1 1 0 1 + x x
x x 1 + x 0 1

1 + x 1 + x x 1 0

On s’intéresse à présent à x2. On voit que x2 6= 0 (car x 6= 0), x2 6= 1 (car x2 − 1 = (x − 1)2), x2 6= x
(car x2 − x = x(x− 1)). Donc x2 = 1 + x. On peut dresser la table de multiplication de K :

0 1 x 1 + x

0 0 0 0 0
1 0 1 x 1 + x
x 0 x 1 + x 1

1 + x 0 1 + x 1 x

4.2 Préliminaires

Avant de se lancer dans la preuve du théorème V.101, on va montrer un lemme dans C[X], Z[X] et Z.

Lemme V.102 (Des divisibilités). Soit m et n deux entiers naturels non nuls.

(i) Dans C[X], Xn − 1 divise Xm − 1 si et seulement si n divise m.

(ii) De plus, Xn − 1 divise Xm − 1 dans C[X] si et seulement si il le divise dans Z[X].

(iii) Soit a > 2 un entier naturel. Alors an − 1 divise am − 1 si et seulement si n divise m.

Démonstration. Dans C, on écrit

Xn − 1 =
∏

ζ∈Un
X − ζ,

où Un désigne l’ensemble des racines n-ième de l’unité (les e
2ikπ
n ). Alors Xn − 1 divise Xm − 1 si et

seulement si Un est inclus dans Um si et seulement si n divise m.

Il est clair que si Xn−1 divise Xm−1 dans Z[X] alors il le divise dans C[X]. Réciproquement, supposons
que Xn − 1 divise Xm − 1 dans C[X]. Effectuons la division euclidienne de Xn − 1 par Xm − 1 dans
Q[X]. Comme Xm − 1 est unitaire, on ne divise jamais et le quotient Q et le reste R sont à coefficients
entiers. Donc

Xn − 1 = (Xm − 1)Q+R Q,R ∈ Z[X].

Effectuons la division euclidienne de Xn−1 par Xm−1 dans C[X]. On fait les même calculs que lorsque
nous pensions les coefficients des polynômes dans Q. Donc les quotients et restes sont les mêmes. Mais
alors comme Xn − 1 divise Xm − 1 dans C[X], R = 0. cdfd.

Si n divise m, alors Xn − 1 divise Xm − 1 dans Z[X]. Donc en substituant a à X, an − 1 divise am − 1.
Réciproquement supposons que an − 1 divise am − 1. On écrit m = nq + r avec 0 6 r < n. Comme

an − 1 = (a− 1)(an−1 + an−2 + · · ·+ 1),
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l’entier (an−1 + an−2 + · · ·+ 1) divise

1 + · · ·+ am−2 + am−1 = (1 + · · ·+ an−1)
+(1 + · · ·+ an−1)an

+(1 + · · ·+ an−1)a2n

...
+(1 + · · ·+ an−1)a(q−1)n

+(1 + · · ·+ ar−1)aqn.

L’entier N := (an−1 +an−2 + · · ·+1) est de la forme 1+ab (un plus un multiple de a. Il est donc premier
avec a (par Bezout si vous voulez). Par ailleurs, il divise la somme ci-dessus ainsi que tous ses premiers
termes. Donc N divise le dernier terme de la somme, c’est-à-dire (1+ · · ·+ar−1)aqn. Mais alors, le lemme
de Gauss implique que N divise (1 + · · · + ar−1). Le seul moyen (inégalités) est d’avoir r = 0. Donc n
divise m.

4.3 Factorisation d’un polynôme dans Fp[X]

Soit d un entier naturel non nul. On note I(d, p) l’ensemble des polynômes de Fp[X] unitaires irréductibles
et de degré d.

Lemme V.103. Si I(d, p) est non vide, alors il existe un corps à pd éléments.

Démonstration. En effet, Fp[X]/(P ) convient pour P ∈ I(d, p).

On veut donc montrer que I(d, p) est non vide.

Proposition V.104: Factorisation de Xpn −X

Soit n un entier non nul. Dans Fp[X], on a

Xpn −X =
∏

d |n

∏

P∈I(d,p)

P.

Démonstration. L’équation de la proposition est la décomposition de Xpn −X en produit de polynômes
irréductibles. Il suffit donc de montrer les deux assertions suivantes, pour tout polynôme irréductible
unitaire P de Fp[X] :

(i) P 2 ne divise pas Xpn −X ;

(ii) P divise Xpn −X si et seulement si deg(P ) divise n.

Pour la première assertion, supposons par l’absurde que Xpn −X = P 2Q. Alors en dérivant on obtient

−1 = P (2P ′Q+ PQ′).

Donc P divise −1. Contradiction.

Supposons maintenant que d = deg(P ) divise n. Soit L = Fp[X]/(P ) et α ∈ L la classe de X. Alors
P (α) = 0.
Si α = 0, P = X et il n’y a rien à montré. Supposons donc α 6= 0. Alors α est un élément du groupe
multiplicatif L− {0} de cardinal pd − 1. Le théorème de Lagrange montre donc que αp

d−1 = 1. D’après
le lemme V.102, on a aussi αp

n−1 = 1 (car pd − 1 divise pn − 1). Mais alors α est racine de Xpn −X.
Comme P et Xpn −X ont une racine commune dans L leur pgcd n’est pas 1. Or, grâce à l’algorithme
d’Euclide, le pgcd ne dépend pas du corps contenant les coefficients des polynômes. Donc, dans Fp[X],
le pgcd de P et Xpn −X n’est pas 1. Mais alors, comme P est irréductible, P divise Xpn −X.

Supposons enfin que P divise Xpn −X. Notons encore d = deg(P ), L = Fp[X]/(P ) et α ∈ L la classe de
X. On peut encore supposer α 6= 0. On fait la division euclidienne : n = ds+ r avec 0 6 r < d.
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Comme P divise Xpn −X, αp
n−1 = 1 et αp

n

= α. Donc

αp
n

= (αp
ds

)p
r

= αp
r

= α.

On en déduit que si β est une puissance de α alors

βp
r

= β.

Si par l’absurde r 6= 0, on a
(x+ y)p

r

= xp
r

+ yp
r ∀x, y ∈ L

et
xp

r

= x ∀x ∈ Fp.

On en déduit que
xp

r

= x ∀x ∈ L. (4.1)

En particulier le polynôme Xpr −X de degré pr a au moins ]L = pd racines. Contradiction.

Exemple 19. Dans F2[X], on obtient

X8 −X = X(X − 1)(X3 +X + 1)(X3 +X2 + 1).

Dans F3[X], on obtient

X9 −X = X(X − 1)(X + 1)(X2 + 1)(X2 +X − 1)(X1 −X − 1).

4.4 Existence

L’égalité des degré dans la proposition V.104 donne

pn =
∑

d |n
]I(d, p)d. (4.2)

Théorème V.105. Existence polynôme irréductible

Dans Fp[X] il existe des polynômes irréductibles de tout degré. En particulier, pour tout n il existe
un corps à pn éléments.

Démonstration. Il s’agit de montrer que I(d, p) est non vide. Or, d’après (4.2), on a

pn = ]I(n, p)n+
∑

d |n d<n

]I(d, p)d

et
]I(n, p)n 6 pn.

Mais alors

pn 6 ]I(n, p)n+
∑

d |n d<n

pd 6 ]I(n, p)n+

n−1∑

k=0

pk 6 ]I(n, p)n+
pn − 1

p− 1
< ]I(n, p)n+ pn.

Donc ]I(n, p) est non nul.

Le lemme du début et l’existence de polynômes irréductibles impliquent l’existence de corps.
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4.5 Unicité

On peut montrer que
]I(50, 2) = 22 517 997 465 744.

Cela fait de nombreuses manières de construire F250 . Mais l’on obtient toujours la même chose ! !

Démonstration. Soit L un corps à pn éléments et P un polynômes irréductible unitaire de degré n dans
Fp[X]. Posons K = Fp[X]/(P ).
Tous les éléments non nuls de L vérifient, αp

n−1 = 1, en vertu du théorème de Lagrange appliqué dans
le groupe multiplicatif L− {0}. Mais alors, pour tout α ∈ L on a αp

n

= α. On en déduit que

Xpn −X =
∏

α∈L
(X − α).

Dans Fp[X], on sait que P divise Xpn − X. Donc il existe α0 ∈ L tel que P (α0) = 0. Comme P est
irréductible sur Fp, P est le polynôme minimal de α0 sur Fp. Ainsi, le morphisme

Fp[X] −→ L, Q 7−→ Q(α0)

induit un morphisme injectif
Fp[X]/(P ) −→ L.

Par égalité des cardinaux ce morphisme injectif est en fait un isomorphisme.

5 Corps des nombres constructibles à la règle et au compas

Dans cette dernière section nous allons voir deux sous-corps de R et C inspirés par les mathématiques
de la Grece antique. On va développer des outils permettant d’étudier des problèmes comme celui de la
trisection de l’angle, la quadrature du cercle ou la construction des polyèdres réguliers.
Nous identifions le corps C au plan euclidien R2. Pour z1 6= z2 dans C, on note (z1z2) la droite passant
par z1 et z2, et C(z1, z2) le cercle de centre z1 et passant par z2.
Soit S une partie de C. On dit qu’un nombre complexe est élémentairement constructible à partir de S
s’il existe z1 6= z2 ∈ S et z3 6= z4 ∈ S tels que l’une des affirmations suivantes est vrai :

(i) les droites (z1z2) et (z3z4) sont distinctes et sécantes en z.

(ii) les cercles C(z1, z2) et C(z3, z4) sont distincts et sécants en z.

(iii) la droite (z1z2) et le cercle C(z3, z4) s’intersectent en z.

On dit qu’un nombre complexe z est constructible s’il existe une suite 0, 1, i, z1, . . . , zn = z telles que,
pour tout 1 6 i 6 n, zk est élémentairement constructible à partir de {0, 1, i, . . . , zk−1, pour tout
k ∈ {1, . . . , n}. On note K l’ensemble des nombres complexes constructibles. Enfin, un nombre réel x est
constructible s’il est constructible en tant que nombre complexe.

Théorème V.106. Corps des nombres constructibles

On a
(i) Les ensembles K et K ∩ R sont des corps.
(ii) Un élément z ∈ C appartient à K si et seulement si ses parties réelle et imaginaire appar-

tiennent à K ∩ R.

Démonstration. La deuxième assertion dit juste que l’on peut construire un point complexes ses coor-
données étant connues. Et que réciproquement, ses coordonnées sont constructibles à partir de z.
Comme on peut construire les paralellogrammes K est stable par addition. Comme on peut construire
les symétries centrales K est stable par opposé.
On peut aussi construire la paralelle à une droite passant par un point. Mais alors en utilisant le théorème
de Thalès on voit facilement que K ∩ R est stable par produit et inverse. Voir les dessins ci-dessous.
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est encore plus facile en utilisant le report du compas. Sinon construire d’abord le
milieu x+x 0

2 puis le symétrique de 0 par rapport à ce milieu : c’est x + x 0.

0

z

z 0

z + z 0

2. L’opposé de z s’obtient ainsi : tracez la droite passant par 0 et z ; tracez le cercle de
centre 0 passant par z ; ce cercle recoupe la droite en -z. (C’est aussi le symétrique
de z par rapport à 0.)

z

-z

3. Commençons par le produit de deux nombres réels x · x 0. On suppose construits les
points (x, 0) et (0, x 0). On trace la droite D passant par (x, 0) et (0, 1). On construit
ensuite –à la règle et au compas– la droite D 0 parallèle à D et passant par (0, x 0). Le
théorème de Thalès prouve que D 0 recoupe l’axe des abscisses en (x · x 0, 0).

1

x

x 0

x · x 0

1

x/x 0

x 0

x

4. Pour le quotient la méthode est similaire.

5. Il reste à s’occuper du produit et du quotient de deux nombres complexes. Tout
d’abord soit z = ⇢ei✓ un nombre complexe constructible alors ⇢ est constructible (con-
sidérer le cercle centré à l’origine qui passe par z, il recoupe l’axe des abscisses en
(⇢, 0)). Le nombre ei✓ est aussi constructible : c’est l’intersection de la droite passant
par l’origine et z avec le cercle unité.

6

La théorie des corps, via le théorème suivant permet de démonter que plusieurs problèmes grecs n’ont
pas de solution.

Théorème V.107. Obstruction à la constructibilité

Soit z ∈ K. Alors z est algébrique sur Q et le degré [Q[z] : Q] de l’extension est une puissance de 2.

Démonstration. Soit A = x1 + iy2 et B = x2 + iy2 des nombres complexes. Alors la droite (AB) a une
équation de la forme :

αx+ βy + γ = 0 (5.1)

avec α, β et γ dans Q(α, β). Et le cercle C(AB) a une équation de la forme :

x2 + y2 + αx+ βy + γ = 0 (5.2)

avec α, β et γ dans Q(α, β).
Soit L un sous-corps de R. Montrons que si z = x+ iy est élémentairement constructible à partir L+ iL
alors [L(x) : L] et [L(y) : L] valent 1 ou 2.
Si z est l’intersection de deux droites passant par des points dont les coordonnées sont dans L, ses
coordonnées s’obtiennent en résolvant un système linéaire à coefficient dans L donc sont dans L. Ainsi
L(x) = L(y) = L.
Si z est dans l’intersection d’une droite passant par des points dont les coordonnées sont dans L et d’un
cercle construit à partir de tels points, ses coordonnées vérifient

{
αx+ βy + γ = 0
x2 + y2 + α′x+ β′y + γ′ = 0

avec α, α′, β, β′, γ et γ′ dans L.
Supposons β 6= 0. Alors y s’exprime en fonction de x et L ⊂ L(y) ⊂ L(x). On tire alors y de la première
équation et l’injecte dans la seconde. Le nombre x vérifie une équation de degré 2 à coefficients dans L.
Donc [L(x) : L] = 1 ou 2.
Supposons β = 0. Alors x appartient à L. Mais alors, la deuxième équation montre que y vérifie une
équation de degré 2 à coefficients dans L. Donc [L(y) : L] = 1 ou 2.

Si z est dans l’intersection de deux cercles, ses coordonnées vérifient
{
x2 + y2 + αx+ βy + γ = 0
x2 + y2 + α′x+ β′y + γ′ = 0

avec α, α′, β, β′, γ et γ′ dans L. En remplaçant la première équation par la différence des deux, on se
ramène au cas précédent.

Le problème de duplication du cube est le suivant. Etant donné un cube de côté volume V peut-on en
construire un de volume 2V . Il s’agit donc de construire 3

√
2. Si cela était possible le théorème dirait que

[Q[ 3
√

2] : Q] serait une puissance de deux.
Or 3
√

2 annule X3 − 2. Ce polynôme est de degré 3 et n’a pas de racine dans Q : il est donc irréductible
dans Q[X]. C’est donc le polynôme minimal de 3

√
2 et [Q[ 3

√
2] : Q] = 3. Contradiction.
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1 Géométrie projective : un premier contact

1.1 Améliorer la géométrie affine plane

Deux propriétés fondamentales de la géométrie affine plane sont :

(i) Par deux points distincts du plan passe une unique droite .
(ii) L’intersection de deux droites distinctes est soit vide soit réduit à un point.

Ces deux propriétés ont une certaine symétrie qui est brisée par l’alternative dans la seconde. On se
propose alors de construire une géométrie pour laquelle :

Deux droites distinctes s’intersectent en un point et un seul.

Soit P un plan affine (réel) et E l’espace vectoriel sous-jacent. On se propose de rajouter des points à P
et à ses droites de manière à obtenir la propriété ci-dessus.
La question est donc quel est le point commun de deux droites parallèles. La réponse qui semble s’imposer
est leur direction. Une direction est un vecteur non nul défini à une constante multiplicative près ou encore
une droite vectorielle de E. Notons PE l’ensemble des droites vectorielles de E. Posons

P = P ∪ PE.

La réunion ci-dessus est formelle.
Toute partie de P de la forme d union sa direction est appelée une droite de P. On a alors :

Deux droites distinctes de P s’intersectent en exactement un point.

En géométrie affine nous avions également la propriété :

Par deux points distincts de P passent une droite et une seule.

Cette propriété est pour l’instant fausse dans P. En effet, par deux points distincts de PE ne passent
aucune droite. Pour remédier à cela nous décrétons que PE est une droite de P. ; Nous l’appellerons plus
tard droite à l’infini. Nous avons maintenant les deux propriétés suivantes :

Deux droites distinctes de P s’intersectent en exactement un point.
Par deux points distincts de P passent une droite et une seule.

Ces deux propriétés énoncées de manière brève, symétrique et esthétique recouvre déjà des réalités
différentes de géométrie affine :

(i) Prenons une droite d et un point A du plan affine. Alors, par A passe une unique droite parallèle
à d.
En géométrie projective, A et la direction de d sont deux points par lequel passe une droite.

(ii) Deux droites se coupent en un point ou ont même direction.
En géométrie projective, deux droites se coupent. Pour distinguer les deux cas il faut regarder si
le point d’intersection est dans P ou dans P(E).

1.2 L’ensemble P(E)

Soit k un corps commutatif et E un k-espace vectoriel de dimension finie. Nous noterons P(E) l’ensemble
des droites vectorielles de E.
Essayons de décrire ensemblistement E. Pour cela, on se donne une base (e0, e1, · · · , en) une base de E.
Soit H le plan affine de E constitué des points dont la première coordonnée vaut 1 et H sa direction.
L’application

η : H −→ P(E)
v 7−→ k.v
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est une injection.
Soit d un élément de P(E). Alors,

— soit d rencontre H en un point et un seul ; c’est-à-dire appartient à l’image de η,
— soit d est inclus dans H.

Autrement dit,
P(E) = η(H) ∪ P(H).

De plus, H s’identifie à kn.

Exercice 19. Dessiner H, H lorsque n = 1 et k = R.
Ceci décrit P(E) par induction sur la dimension de E :

— Si dim(E) = 1, P(E) est réduit à un point.
— Si dim(E) = 2, P(E) =: kP1 est la réunion de k est d’un point (∞).
— Si dim(E) = 3, P(E) =: kP2 est la réunion de k2 et de kP1.
— kPn = kn ∪ kPn−1.

Ainsi, kP2 est un candidat très raisonnable pour jouer le rôle du P du paragraphe 1.
L’ensemble P(E) est appelé l’espace projectif de E. Nous venons de voir que P(E) est la réunion d’un
espace affine de dimension n (H) et d’un espace projectif plus petit P(E). Ceci explique que nous appelons
n = dim(E)− 1 la dimension de P(E).

2 Quelques structures sur P(E)

La section précédente était une introduction un peu informelle. On repart formellement à zéro.

2.1 Espaces et sous-espaces projectifs
Soit E un k-espace vectoriel. L’espace projectif P(E) est l’ensemble des droites vectorielles de E. Tout
vecteur non nul v de E engendre une unique droite vectoriel kv que l’on note [v]. On obtient ainsi une
application surjective

π : E −→ P(E)
v 7−→ [v]

On peut donc penser à P(E) comme à un quotient

P(E) =
E − {0}

v ∼ v′ ssi ∃λ ∈ k v′ = λv
.

Si F est un sous-espace vectoriel de E alors toute droite vectorielle de F est une droite vectorielle de
E. On obtient une inclusion P(F ) ⊂ P(E). Une partie de P(E) de la forme P(F ) est appelé une un
sous-espace projectif.

Dimension. Par définition dim(P(E)) = dim(E)− 1. Nous avons déjà vu une explication pour ce −1 :
P(E) s’identifie à la d’un hyperplan affine de E et d’un espace projectif plus petit.
Un point de P(E) est un élément de P(E). C’est aussi un sous-espace projectif de dimension 0. Une
droite de P(E) est un sous-espace projectif de P(E) de dimension un (donc avec E de dimension 2). Une
hyperplan de P(E) est un sous-espace projectif de P(E) de dimension dim(P(E))− 1.

2.2 Homographies
Le groupe GL(E) agit naturellement sur E et envoie toute droite vectorielle sur une droite vectorielle.
Ce groupe agit donc sur P(E). De plus, le sous-groupe H des homothéties de GL(E) agit trivialement
sur P(E). Ainsi, le quotient PGL(E) := GL(E)/H agit sur P(E). Les éléments de PGL(E) sont appelées
homographies.

Proposition VI.108: Homographie et sep

L’image d’un sous-espace projectif par une homographie est un sous-espace projectif de même
dimension.
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De plus, pour tout 0 6 k 6 dim(E) − 1, l’action de PGL(E) sur l’ensemble des sous-espaces
projectifs de dimension k est transitive.

Démonstration. Il suffit de voir que GL(E) agit transitivement sur l’ensemble des sous-espaces vectoriels
de E de dimension k + 1. Ce qui est un exercice facile d’algèbre linéaire (pensez au théorème de la base
incomplète).

Proposition VI.109: Points et sep

Soit P(E) un espace projectif de dimension n (donc dim(E) = n + 1) et 1 6 k 6 n − 1. Soit
p1, . . . , pk+1 k + 1 points de P(E).
Alors il existe un sous-espace projectif de dimension k contenant ces points.
De plus, si k = 1 et p1 6= p2, il existe une unique droite projective contenant p1 et p2. Elle est notée
(p1p2).

Démonstration. Il suffit de relever la situation à E. Les points pi sont des droites vectorielles li de E.
Soit vi non nul sur li. Considérons F = Vect(v1, . . . , vk+1). C’est un sev de E de dimension au plus égale
à k + 1. Il est donc inclus dans un sev F̃ de dimension k + 1. Alors P(F̃ ) convient.

Si k = 1 et p1 6= p2 alors la famille (v1, v2) est libre. Donc F a dimension 2. Alors P(F ) est la seule droite
projective qui contienne p1 e p2.

Regardons maintenant l’action de PGL(E) sur les uples de points distincts.

Proposition VI.110: Actions sur n+ 2-uplets

Soit P(E) un espace projectif de dimension n (donc dim(E) = n+ 1). Soit R l’ensemble des n+ 2-
uplets (p1 . . . , pn+2) de points de P(E) tels que aucun des n+ 1-uplets (il y en a n+ 2) extraits (en
enlevant un des points) n’est inclus dans un hyperplan affine.
Le groupe PGL(E) agit transitivement sur R.

Démonstration. Il est clair que PGL(E) agit sur R. Montrons que l’action est transitive. Soit donc (pi)
et (qi) deux éléments de R. On relève la situation à E. Les points pi sont des droites vectorielles li de E.
Soit vi non nul sur li. De même on obtient les wi. D’après l’hypothèse, (v1, . . . , vn+1) et (w1, . . . , wn+1)
sont deux bases de E. Il existe donc g ∈ GL(E) tel que g.vi = wi pour tout i. Quitte à composer avec g
on peut donc supposer que pour tout i = 1, . . . , n+ 1, wi = vi.
Posons B = (v1, . . . , vn+1). Soit (λ1, . . . , λn+1) et (µ1, . . . , µn+1) les coordonnées de vn+2 et wn+2 dans
la base B.
Comme (v1, . . . , vn, vn+2) est libre, λn+1 est non nul. De même, tous les λi et tous les µi sont non nuls.
Soit g dans GL(E) dont la matrice dans la base B est diagonale avec (µ1

λ1
, . . . , µn+1

λn+1
) sur la diagonale. On

a bien gvn+2 = wn+2 et pour i = 1, . . . , n+ 1, g.vi ∈ li donc gpi = pi.

Exercice 20. Montrer qu’en fait l’action de PGL(E) sur R est simplement transitive.

2.3 Coordonnées projectives
Soit B = (e0, . . . , en) une base de E. Utilisant les coordonnées pour repérer les éléments de E, on obtient

P(E) =
{(x0, . . . , xn) ∈ kn − {0}

(x0, . . . , xn) ∼ (λx0, . . . , λxn) ∀λ ∈ k∗ .

Un élément de ce quotient est noté
[x0 : · · · : xn].

La notation : fait référence à la division puisque lorsque les coordonnées sont non nulles

[x0 : · · · : xn] = [y0 : · · · : yn]

si et seulement si xixj = yi
yj

pour tout i 6= j.
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3 Lien Affine Projectif

3.1 Carte affine et droite à l’infini
Soit E de dimension n+1 et H un hyperplan affine de E ne contenant pas 0. Notons H la direction de H.
Comme nous l’avons déjà vu, H s’injecte dans P(E), c’est-à-dire s’identifie à une partie de P(E). Cette
application associe à un point de E la droite vectorielle de E qu’il engendre et vue comme un point de
P(E). Le complémentaire de l’image est P(H). En effet, les droites vectorielles de E qui ne rencontrent
pas H sont exactement celles incluses dans H.

Théorème VI.111. Sous-espaces affines et projectifs

Dans la situation ci-dessus, on a :
(i) L’intersection d’un sous-espace projectif de dimension d de P(E) et de P(E)−P(H) est soit

vide (s’il est inclus dans P(H)) soit un sous-espace affine de dimension d.
(ii) Réciproquement, tout sous-espace affine F de H est inclus dans un unique sous-espace pro-

jectif minimal de P(E). De plus, l’intersection de ce dernier et de H est F .
(iii) Toute homographie de P(E) qui préserve P(H) définit par restriction une application affine

de P(E)− P(H).
(iv) Réciproquement, toute application affine inversible de P(E)− P(H) se prolonge de manière

unique en une homographie de P(E).

Démonstration. Soit P(G) un sous-espace projectif de P(E) où G est un sous-espace vectoriel de E de
dimension d+ 1.
Si G ⊂ H alors G est parallèle à H et H ∩G = ∅. Alors, P(G) ∩H est vide aussi.
Sinon, G ∩ H est un sous-espace affine de direction G ∩ H. Alors P(G) ∩ H s’identifie à G ∩ H est un
sous-espace affine de dimension d.

Réciproquement, soit F ⊂ H un sous-espace affine de dimension d. Soit F̃ le sous-espace vectoriel en-
gendré par F : il est de dimension d+ 1. Ainsi, P(F̃ ) est le seul sous-espace projectif contenant F .

Pour la troisième assertion, on va expliciter les choses en choisissant une base. Soit B = (e1, . . . , en+1)
une base de E telle que

H = {v ∈ E : e∗n+1(v) = 1}.
Soit g ∈ GL(E) qui préserve H. Alors la matrice de g dans la base est de la forme

MatB(g) =

(
A w
0 λ

)

Comme g est inversible λ est non nul. Comme seule la classe de g dans GL(E) compte, on peut supposer
que λ = 1. Soit v un point de H. Ses coordonnées dans la base B sont de la forme

v =




x1

...
xn
1




Mais alors
gv = [AX + w : 1]

appartient à H. Comme X 7−→ AX + w est affine l’assertion suit.

Réciproquement soit ϕ une application affine de H dans lui même. Alors, en coordonnée ϕ(X) = AX+B
pour une matrice inversible A et un vecteur colonne B. Alors la matrice

MatB(g) =

(
A B
0 1

)

fournit unne homographie qui étend ϕ.
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4 La droite projective
Soit E = k2 le k-espace vectoriel de dimension 2 standard. Deux points [x : y] et [x′ : y′] sonnt égaux si
et seulement si xy = x′

y′ , au moins si y et y′ sont non nuls. On obtient donc

P(k2) = kP1 = {[t : 1] : t ∈ k} ∪ {[1 : 0]}.
Pensant à [1 : 0] comme à 1

0 , on le note ∞. Alors

kP1 = k ∪ {∞}.
Exercice 21. Montrer que toute homographie est de la forme

ϕ : kP1 −→ kP1

[x : y] 7−→ [ax+ by : cx+ dy]

avec a, b, c et d dans k tels que ad− bc 6= 0. Si on prend la convention 6=0
0 =∞, on obtient

ϕ(t) =
at+ b

ct+ d
∀t ∈ k

et on reconnait les homographies usuelles du plan complexe lorsque k = C.

5 Le plan projectif
Soit E un k-espace vectoriel de dimension 3. On s’intéresse à P(E) = kP2.

Proposition VI.112: Incidences droites-points

(i) Par deux points distincts passe une unique droite.
(ii) Deux droites distinctes s’intersectent en un unique point.

Démonstration. La première propriété est générale. Pour la seconde soit P(F1) et P(F2) deux droites de
P(E). Alors F1 et F2 sont deux hyperplans distincts de E. Donc F1 ∩ F2 est un sous-espace vectoriel de
codimension 2. C’est donc un point de P(E).

Fixons des coordonnées (x, y, z) sur k3. Soit P(F ) une droite projective et P(k3). Alors F est unn
hyperplan de k3. C’est donc le noyau d’une forme linéaire ϕ = ax+ by+ cz = 0 pour a, b, c ∈ k non tous
nuls.
et choisissons l’hyperplan affine z = 1.

Supposons un instant que k est fini, disons de cardinal q. Alors kP2 = k2∪kP1 est de cardinal q2 + q+ 1.
De plus chaque droite est de cardinal q + 1.
Il y a autant de droites que d’hyperplans dans E, c’est-à-dire que d’éléments de P(E∗). Il y a donc
q2 + q + 1 droites. Si on dénombre les bases possibles pour les hyperplan plutôt que les équations on
trouve :

(q3 − 1)(q3 − q)
(q2 − 1)(q2 − q) = q2 + q + 1.

Exercice 22. Soit E = F3
2. Montrer que P(E) contient 7 points et 7 droites. Montrer que chaque droite

contient 3 points, que chaque point appartient à trois droites. En déduire qu’il existe une bijection de
P(E) sur l’ensemble des points de la figure ci-dessous telle que les droites s’envoient sur des points sur
un même segment ou le cercle de la figure.
Vérifier qu’en enlevant une droite (disons celle dessinée comme un cercle), on retrouve F2

2 et ses 6 droites.
Le plan projectif F7P2 est appelé plan de Fano. Il est représenté par la figure 6.1

Exercice 23. Faire de même avec E = F2
3. On doit trouver le dessin de la figure5.
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Figure 6.1 – Plan projectif sur F2
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Figure 6.2 – Plan projectif sur F3
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6 Dualité projective

Il s’agit d’une construction littéralement magique qui permet de transformer tout problème de géométrie
affine plane faisant intervenir des points et des droites. L’idée est d’utiliser l’orthogonalité en dualité
linéaire.

Soit E un k-espace vectoriel de dimension trois. Pour tout sous-espace vectoriel F de E, son orthogonal
F⊥ est un sous-espace vectoriel de E∗ de dimension 3− dim(F ).
Soit donc un point A de P(E). Alors A = P(F ) où F est un sous-espace vectoriel de E de dimension 1.
Donc F⊥ est un sous-espace vectoriel de E∗ de dimension 2. Donc P (F⊥) est une droite de P(E∗), notée
p⊥.
De même, si nous étions partis d’une droite d de P(E), nous aurions obtenu un point d⊥ de P(E).

Le point est que F1 ⊂ F2 si et seulement si F⊥1 ⊃ F⊥2 . Voici quelques exemples de conséquences :

(i) Un point A appartient à une droite d dans P(E) si et seulement si la droite A⊥ contient le point
d⊥ dans P(E∗) ;

(ii) Les 3 points A, B et C de P(E) sont alignés si seulement si les droites A⊥, B⊥ et C⊥ de P(E∗)
sont concourantes. . .

Ci-dessous, nous montrons quelques exemples.

7 Application à la géométrie affine plane

Le principe ici est assez simple mais magnifiquement miraculeux.

(i) On part d’un énoncé de géométrie affine ne faisant intervenir que des droites et des points.

(ii) On le voit comme un dessin dans H une carte affine d’un plan projectif. Le théorème VI.111 donne
un énoncé dans le plan projectif.

(iii) On change de carte affine. Le théorème VI.111 donne un nouvel énoncé dans le plan affine.

Onn peut même obtenir encore plus en appliquant la dualité projective.

7.1 Théorème de Pappus

Nous allons illustré le principe énoncé ci-dessus avec le théorème de Pappus. Commençons donc par
rappeler l’énoncé affine que nous avions vu et son dessin (figure 7.1).

Théorème VI.113. Pappus Affine

Soit D et D′ deux droites distinctes du plan affine. Soit A,B et C (resp. A′, B′ et C ′) trois points
distincts de D (resp. D′). On suppose qu’aucun des 6 points n’est D ∩D′.
Si (AB′)//(A′B) et (CB′)//(C ′B) alors (AC ′)//(A′C).

Considérons maintenant un plan projectif P(E) muni d’une carte affine H. Pensons au dessin de la figure
comme à l’intersection avec H d’un dessin plongé dans P(E). Alors,

(i) A,B,C,A′, B′ et C ′ sont des points ;

(ii) D et D′ sont des droites projectives (dont il manque un point le dessin)

(iii) (AB′), (AC ′), (BA′), (BC ′), (CA′) et (CB′) sont des droites projectives (dont il manque un point
le dessin)

(iv) Il y a droite P(H) qui n’est pas visible sur le dessin mais qui est dans toutes les têtes.

Les droites projectives (BC ′) et (CB′) se coupent (comme toute paire de droites projectives). Comme
on ne voit pas le point d’intersection (que nous appellerons A′′), on a A′′ ∈ P(H).
De même, (AB′) et (BA′) se coupent (comme toute paire de droites projectives). Comme on ne voit pas
le point d’intersection (que nous appellerons C ′′), on a C ′′ ∈ P(H).
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Figure 6.3 – Pappus Affine
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Figure 6.4 – Pappus projectif

De même la conclusion du théorème dit que

B′′ := (AC ′) ∩ (CA′) ∈ P(H).

Donc les trois points A′′, B′′ et C ′′ sont sur la même droite projective : ils sont alignés. On vient de
montrer l’énoncé projectif du théorème VI.114 suivant illustré par la figure 7.1 :

Théorème VI.114. Pappus projectif

Soit P = RP 2. Soit (A, B, C) et (A′, B′, C ′) deux triplets de points alignés et 2 à 2 distincts de
P. Soit A′′ = (BC ′) ∩ (B′C), B′′ = (AC ′) ∩ (A′C) et C ′′ = (BA′) ∩ (B′A).
Alors A′′, B′′ et C ′′ sont alignés.

L’énoncé précédent reste vrai en affine à la seule condition que les points existes.
Notons 0 = D ∩D′. Si on envoie (O,B′′) à l’infini, on obtient la figure 7.1.
La figure 7.1 vu comme un dessin affine donne le théorèmeVI.115 suivant.
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Figure 6.5 – Pappus Affine 2

Théorème VI.115. Pappus Affine v2

Soit D et D′ deux droites distinctes du plan affine. Soit A,B et C (resp. A′, B′ et C ′) trois points
distincts de D (resp. D′). On suppose qu’aucun des 6 points n’est D ∩D′ telle que (AC ′)//(A′C).
Soit C ′′ = (AB′) ∩ (A′B) et A′′ = (CB′) ∩ (C ′B).
Alors (C ′′A′′)//(AC ′).

Démonstration. Le point projectif B′′ appartient à la droite projective (C ′′A′′) d’après la version pro-
jective. Par ailleurs, il est à l’infini puisque (AC ′)//(A′C). Ceci signifie que les droites projectives
(C ′′A′′)//(AC ′) se coupent à l’infini. En affine, elles sont donc parallèles.

A Version Duale

Théorème VI.116. Dual de Pappus projectif

Soit A et A′ deux points distinct du plan projectif kP2. Soit d1, d2 et d3 3 droites passants par A.
Soit d′1, d′2 et d′3 3 droites passants par A′.
On note d′′3 la droite passant par d1 ∩ d′2 et d2 ∩ d′1. On note d′′2 la droite passant par d1 ∩ d′3 et
d3 ∩ d′1. On note d′′1 la droite passant par d2 ∩ d′3 et d3 ∩ d′2.
Alors les trois droites d′′1 , d′′2 et d′′3 sont concourantes.

Démonstration. C’est exactement le dual de Pappus projectif :
(i) A est l’orthogonal de la droite (AB) ;
(ii) d1 est l’orthogonal du point A ;
(iii) d′2 est l’orthogonal du point B′ ;
(iv) d′′′3 est l’orthogonal de C ′′. . .

Considérons unne version affine de ce théorème en envoyant la droite (AA′) à l’infini. Alors d1, d2 et d3

sont parallèles ainsi que d′1, d′2 et d′3. On obtient alors le théorème VI.117, illustré par la figure 6.6 :

Théorème VI.117. Pappus dual Affine
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Figure 6.6 – Pappus dual Affine

Soit (ABCD) un parallélogramme du plan affine et M un point en dehors des 4 droites côtés. La
parallèle à (AB) qui passe par M coupe (AD) et (BC) en E et F . La parallèle à (AD) qui passe
par M coupe (AB) et (DC) en G et H.
Alors les droites (AC), (EH) et (FG) sont concourantes.

7.2 Théorème de Désargues

Rappelons l’énoncé affine.

Théorème VI.118. Désargues

Soit (ABC) et (A′B′C ′) deux triangles non aplatis. On suppose que (AB)//(A′B′), (BC)//(B′C ′)
et (AC)//(A′C ′).
Alors les trois droites (AA′), (BB′) et (CC ′) sont concourantes ou parallèle.

La figure 6.7 illustre le théorème VI.118.
Version projective de cet énoncé est le théorème VI.119, illustré par la figure 6.8 Autrement dit, c’est
l’énoncé que l’on obtient en réalisant l’énoncé affine dans une carte affine d’un plan projectif.

Théorème VI.119. Désargues projectif

Soit (ABC) et (A′B′C ′) deux triangles non aplatis d’un plan projectif. Alors les assertions suivantes
sont équivalentes :

(i) Les droites (AA′), (BB′) et (CC ′) sont concourantes.
(ii) Les points P = (BC) ∩ (B′C ′), Q = (AC) ∩ (A′C ′) et R = (AB) ∩ (A′B′) sont alignés.

Démonstration. Supposons la deuxième assertion vrai. Envoyons la droite (PQ) à l’infini. Alors R est
aussi à l’infini. Donc (BC)//(B′C ′), (AC)//(A′C ′) et (AB)//(A′B′). La version affine du théorème im-
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Figure 6.7 – Désargues Affine

plique alors que Les droites (AA′), (BB′) et (CC ′) sont concourantes. On a montré la première assertion.

On regarde à présent le dual de l’implication que l’on vient de montrer. Et quelle surprise : on obtient
que la première assertion implique la seconde.

Remarque. Dans le théorème VI.118 il se peut que les trois droites (AA′), (BB′) et (CC ′) soient parallèles.
Ceci n’arrive pas dans le cas projectif car en projectif des droites ne sont jamais parallèles. En fait si les
3 droites affines sont parallèle, elles ont même direction. Cette direction est un point d’intersection des
3 droites projectives.

8 Application à l’étude des coniques

8.1 Homogénéisation

On se place dans kP2 et on utilise les coordonnées projectives [x : y : z].

Définition VI.120: Conique projective

Une conique projective est une partie de kP2 définie par une équation du type

ax2 + by2 + cz2 + dyz + exz + fxy = 0,

où (a, b, c, d, e, f) ∈ k6 − {0}.

Quelques remarques s’imposent :
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81



Remarque. (i) Attention, la quantité ax2 +by2 +cz2 +dyz+exz+fxy dépend du représentant choisi
pour écrire [x : y : z]. En effet, pour [λx : λy : λz], cette quantité est multiplié par λ2. En revanche
le fait que cette quantité soit nulle ou pas nne dépend pas du représentant choisi, si bien que la
conique est bien définie.

(ii) L’application k3 −→ k, (x, y, z) 7−→ ax2 + by2 + cz2 +dyz+ exz+fxy est une forme quadratique.
En fait n’importe quelle forme quadratique non nulle.

Regardons la trace de la conique dans la carte affine z = 1.

Théorème VI.121. Coniques projectives et affines

Soit (a, b, c, d, e, f) ∈ k6 − {0}.
(i) L’intersection de la carte affine z = 1, et de la conique projective

Cp = {[x : y : z] : ax2 + by2 + cz2 + dyz + exz + fxy = 0}

est
(a) la conique d’équation ax2 + by2 + fxy + dy + ex+ c = 0, si (a, b, f) 6= (0, 0, 0) ;
(b) la droite d’équation dy + ex+ c = 0, si (a, b, f) = (0, 0, 0).

(ii) Réciproquement, considérons la conique Ca plane d’équation

ax2 + by2 + cxy + dy + ex+ f = 0,

avec (a, b, c) 6= (0, 0, 0) vu comme une partie de la carte affine z = 1. Alors, la conique
projective Cp d’équation ax2 + by2 + fz2 + dyz + exz + cxy = 0 est l’unique contenant Ca.

Démonstration. La première affirme est une conséquence directe du fait qu’en remplaçant z par 1 dans
ax2 + by2 + cz2 + dyz + exz + fxy, on trouve ax2 + by2 + c+ dy + ex+ fxy.

Réciproquement, ax2 + by2 +fz2 +dyz+exz+ cxy est la seule forme quadratique que donne ax2 + by2 +
cxy + dy + ex+ f lorsque z = 1. La seconde assertion en découle.

Remarque. Il est possible de munir kP2 d’une topologie de sorte que Cp soit l’adhérence de Ca. Cela est
très éclairant mais dépasse le cadre de cours.

8.2 Classification projective des coniques de RP2

Ici le corps est celui des nombres réels. Le groupe GL3(R) agit par changement de variables sur l’ensemble
des quadriques. Il agit donc sur l’ensemble des coniques. Par ailleurs, deux formes quadratiques opposées
donnent la même conique.
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Théorème VI.122. Classification projective des coniques

A action de GL3(R) et multiplication par −1 près, la liste complète des coniques de RP2 est la
suivante :

(i) L’équation
x2 + y2 + z2 = 0

qui donne le vide. Ceci arrive lorsque la forme quadratique est de signature (3, 0) ou (0, 3).
(ii) L’équation

x2 + y2 − z2 = 0

qui donne une conique non dégénérée. Ceci arrive lorsque la forme quadratique est de signa-
ture (2, 1) ou (1, 2).

(iii) L’équation
x2 + y2 = 0
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Figure 6.9 – Coniques projectives

qui donne un point. (On peut penser à un cercle de rayon zéro). Ceci arrive lorsque la forme
quadratique est de signature (2, 0) ou (0, 2).

(iv) L’équation
xy = 0

qui donne la réunion de deux droites. Ceci arrive lorsque la forme quadratique est de signature
(1, 1).

(v) L’équation
x2 = 0

qui donne une droite (pensée comme une droite double). Ceci arrive lorsque la forme qua-
dratique est de signature (1, 0) ou (0, 1).

Démonstration. Ceci est une conséquence immédiate du fait que les formes quadratiques sont caractéri-
sées par leur signature.

8.3 Application à la classification affine des coniques
Lorsque l’on regarde les théorèmes VI.121 et VI.122 deux impressions opposées nous viennent. Le premier
énoncé semble dire que les coniques affines et projectives sont le même objet. Le second semble dire que
les coniques projectives sont plus simples et moins nombreuses que les coniques affines. Nous allons lever
ce paradoxe.
En fait pour passer d’une conique projective à une conique affine, il faut choisir une carte affine ou, par
passage au complémentaire, une droite à l’infini. Suivant la position de cette dernière et de la conique
projective on trouve différentes coniques affines pour une même conique projective.
Voici quelques exemples sur la figure 6.10 où la droite à l’infini est rouge. A gauche, on a deux droites
sécantes, à droites deux droites parallèles.
Sur la figure 6.11 où la droite à l’infini est rouge, nous avons dans l’ordre une ellipse, une hyperbole et
une parabole.
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Figure 6.10 – Droites sécantes et parallèles

Figure 6.11 – Ellipse, hyperbole et parabole
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