Numerical Verification of Conjectures à la Stark in the Abelian Case

Xavier-François Roblot CICMA, Concordia University

Conjectures à la Stark

Let K be a totally real field and let N/K be a finite abelian extension of number fields with conductor $\mathfrak{f} = \mathfrak{f}_0 \mathfrak{f}_{\infty}$ and Galois group G. Let S be a finite set of places of K such that $S_{\infty} \cup \{\mathfrak{p} \mid \mathfrak{f}_0\} \subset S$.

Values of transcendentals functions associated to
$$N/K$$
 and to S

$$\text{at } s = 0 \text{ or } s = 1$$
Regulator of some S -units in S

The Abelian Rank One Stark Conjecture
The Brumer-Stark Conjecture
Solomon's Conjecture

The Abelian Rank One Stark Conjecture

Assume that S contains a totally split place v (also that |S| > 2). Then there exists a v-unit $\varepsilon \in N$ such that

- (a) $\log |\sigma(\varepsilon)|_w = -m \zeta_S'(0, \sigma), \ \forall \sigma \in G$
- (b) $N(\varepsilon^{1/m})/K$ is an abelian extension

where $m = \operatorname{Card}(W_N)$ and w is a fixed place of N dividing v.

Numerical verification: take v real (so m=2), compute approximations of the values of $\zeta_S'(0,\sigma)$ and construct the minimal polynomial of $\varepsilon \in U_N$ over K using the formula

$$\sigma(\varepsilon) = e^{-2\zeta_S'(0,\sigma)}$$

for all $\sigma \in G$.

An example

Base field		Extension N/K	
$K = \mathbb{Q}(\sqrt{1093})$		Conductor	$\mathfrak{f}=\mathfrak{p}_3v'$
Discriminant	$d_K = 1093$	with	$3\mathcal{O}_K = \mathfrak{p}_3\mathfrak{q}_3$
ring of integers	$\mathcal{O}_K=\mathbb{Z}+\mathbb{Z}\omega$	and	$v'(\sqrt{1093}) > 0$
with	$\omega = (1 + \sqrt{1093})/2$	Galois group	$G \simeq C_{10}$
Class group	$\mathrm{Cl}_K \simeq C_5$	Set of places	$S = \{v, v', \mathfrak{p}_3\}$

Then the numbers $e^{-2\zeta_S'(0,\sigma)}$ (with $\sigma \in G$) are the *roots* of the following polynomial which defines N over K

$$X^{10} + (-32\omega - 507)X^9 + (801\omega + 12858)X^8 + (-6575\omega - 105364)X^7 + (22986\omega + 368523)X^6 + (-35264\omega - 565234)X^5 + (22986\omega + 368523)X^4 + (-6575\omega - 105364)X^3 + (801\omega + 12858)X^2 + (-32\omega - 507)X + 1$$

The Brumer-Stark Conjecture

Assume N is totally complex and define

$$\gamma = m \sum_{\sigma \in G} \zeta_S(0, \sigma) \sigma^{-1} \in \mathbb{Z}[G]$$

Then, for any fractional ideal \mathfrak{A} of N, there exists $\varepsilon_{\mathfrak{A}} \in N^{\times}$ such that

- (a) $\mathfrak{A}^{\gamma} = (\varepsilon_{\mathfrak{A}})$
- (b) $|\varepsilon_{\mathfrak{A}}|_{w} = 1, \ \forall w \mid \infty$
- (c) $N(\varepsilon_{\mathfrak{A}}^{1/m})/K$ is an abelian extension

Numerical verification: compute γ and test the conjecture for ideals \mathfrak{A} generating $\mathrm{Cl}(N)$ over $\mathbb{Z}[G]$: compute a generator α of \mathfrak{A}^{γ} , find a unit u such that $\varepsilon := u\alpha$ satisfies (b) and check if (c) holds.

An example

Extension N/K		Top field	
$K = \mathbb{Q}(\sqrt{23})$		$N=\mathbb{Q}(heta)$	
Conductor	$\mathfrak{f}=\mathfrak{p}_2^7 vv'$	with $\theta^8 + 16\theta^6 + 86\theta^4 + 176\theta^2 + 98 = 0$	
with	$2\mathcal{O}_K = \mathfrak{p}_2^2$	Discriminant	$d_N = 2^{27} 23^4$
Ray class group	$\mathrm{Cl}_K(\mathfrak{f}) \simeq C_4 \times C_2^3$	Class group	$\mathrm{Cl}_N \simeq C_{26}$
Congruence group	$(\operatorname{Cl}_K(\mathfrak{f}):\mathcal{H})=4$	Galois group	$G = \langle \sigma \rangle \simeq C_4$
Set of places	$S = \{v, v', \mathfrak{p}_2\}$	$\mathbb{Z}[G]$ -generator	$\mathrm{Cl}_N = \langle \mathfrak{P}_7 \rangle_{\mathbb{Z}[G]}$

Compute
$$\gamma = 8 + 12\sigma - 8\sigma - 12\sigma^2 = 4(2+3\sigma)(1-\sigma)$$
. Then $\mathfrak{P}_7^{\gamma} = (\alpha)$ with $\alpha = \frac{1}{13841287201} \left(34264708\theta^7 - 2934281536\theta^6 + 1283421116\theta^5 - 36382338016\theta^4 + 8883415264\theta^3 - 121806067088\theta^2 + 14130266024\theta - 92400986335$ and $\mathcal{N}_{N/N\sigma^2}(\alpha) = 1$ and $X^2 - \alpha^{\sigma-1} = (X - \alpha_1)(X - \alpha_2)$ in $N[X]$. The same is true with γ replaced by $\gamma/2$ and α replaced by $\alpha^{1/2}$ (but not with γ replaced with $\gamma/4$).

Solomon's Conjecture: Twisted Zeta Functions

Assume that \mathfrak{f}_{∞} is empty, $\mathfrak{f}_0 \neq \mathcal{O}_k$, and $N = K(\mathfrak{f})$ (\mathfrak{f} not necessarily conductor).

Define $W_{\mathfrak{f}} = \{(\xi, \mathfrak{a}) \text{ with } \mathfrak{a} \triangleleft \mathcal{O}_k, \ \xi : \mathfrak{a} \rightarrow \mathbb{C}^{\times} \text{ and } \operatorname{Ann}_{\mathcal{O}_k}(\xi) = \mathfrak{f}\}.$

Say that $(\xi, \mathfrak{a}) \sim (\xi', \mathfrak{a}')$ if $\xi' = \xi \circ c$ and $\mathfrak{a} = c\mathfrak{a}'$ for some $c \in k^{\times}$.

Then $\mathfrak{W}_{\mathfrak{f}} = W_{\mathfrak{f}} / \sim$ is canonically isomorphic to $\mathrm{Cl}_K(\mathfrak{f})$.

Fix a finite set T of prime ideals disjoint from S, and for $\mathfrak{w} \in \mathfrak{W}_{\mathfrak{f}}$ choose $(\xi, \mathfrak{a}) \in \mathfrak{w}$ such that $(\mathfrak{a}, T) = 1$ and define for $\Re(s) > 1$

$$Z_T(s, \mathfrak{w}) = \sum_{\substack{\alpha \in \mathfrak{a}/U_K(\mathfrak{f}) \\ (\alpha, T) = 1}} \xi(\alpha) |\mathcal{N}\mathfrak{a}^{-1}\alpha|^{-s} \text{ and } \Phi_T(s) = \sum_{\mathfrak{c} \in \operatorname{Cl}_K(\mathfrak{f})} Z_T(s, \mathfrak{w}_{\mathfrak{c}}) \sigma_{\mathfrak{c}}^{-1}$$

 $\Phi_{\emptyset}(s)$ extends to an holomorphic function on $\mathbb{C}[G]$ and for any odd prime p with $(p, \mathfrak{f}) = 1$ there exists a p-adic function $\Phi_p(s)$ on $\mathbb{Z}_p[G]$ interpolating the values of $\Phi_{T_p}(m)$ at negative integers m congruent to 1 modulo p-1 where $T_p = \{\mathfrak{p} \mid p\}$.

Solomon's Conjecture: S-units and Regulators

Let $r = [K : \mathbb{Q}]$ and fix $\iota_1, \ldots, \iota_r : N \hookrightarrow \mathbb{R}$ representatives of the action of G on $S_{\infty}(N)$ and for each prime p, fix $j_p : \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}_p$ and let $\iota_{i,p} = j_p \circ \iota_i : N \hookrightarrow \mathbb{C}_p$.

Define logarithmic maps λ_i , $\lambda_{i,p}$ from $U_S = U_{N,S(N)}$ to $\mathbb{R}[G]$, $\mathbb{C}_p[G]$ by

$$\lambda_i(u) = \sum_{\sigma \in G} \log |\iota_i \circ \sigma(u)| \sigma^{-1} \text{ and } \lambda_{i,p}(u) = \sum_{\sigma \in G} \log_p(\iota_{i,p} \circ \sigma(u)) \sigma^{-1}$$

And define complex/p-adic regulators maps on $\bigwedge_{\mathbb{Q}[G]}^r \mathbb{Q}U_S$ by

$$R(u_1 \wedge \cdots \wedge u_r) = \det(\lambda_i(u_l))_{i,l}$$
 and $R_p(u_1 \wedge \cdots \wedge u_r) = \det(\lambda_{i,p}(u_l))_{i,l}$

For $\chi \in \hat{G}$, let $r(S, \chi) = \dim_{\mathbb{C}}(e_{\chi} \mathbb{C}U_S)$ then $r(S, \chi) = r + \operatorname{ord}_{s=1}(\chi(\Phi_{\emptyset}(s))).$

Set
$$e_{S,>r} = |G| \sum_{r(S,\chi)>r} e_{\chi} \in \mathbb{Z}[G]$$
 and

$$\Lambda_{S,>r} = \ker\left(e_{S,>r} : \overline{\bigwedge_{\mathbb{Z}[G]}^r U_S} \to \overline{\bigwedge_{\mathbb{Z}[G]}^r U_S}\right)$$

Solomon's (Weak Refined Combined) Conjecture

There exists a unique $\eta_{\mathfrak{f}} \in \frac{1}{2}\mathbb{Z}[1/g]\Lambda_{S,>r}$ with g = |G| such that

(a)
$$\frac{2^r}{\sqrt{d_K}}R(\eta_{\mathfrak{f}}) = \Phi_{\emptyset}(1)$$

(b)
$$\prod_{\mathfrak{p}\in T_p} \left(1 - \mathcal{N}\mathfrak{p}^{-1}\sigma_{\mathfrak{p}}\right) \frac{2^r}{j_p(\sqrt{d_K})} R_p(\eta_{\mathfrak{f}}) = \Phi_p(1), \ \forall p \text{ with } (p,\mathfrak{f}) = 1$$

(c)
$$\eta_{\mathfrak{f}} \in \mathbb{Z}[1/g]\Lambda_{S,>r} \text{ if } \mathfrak{f} \neq \mathfrak{q}^l \iff r(S,\chi_0) > r$$

(d)
$$\nu \eta_{\mathfrak{f}} \in \Lambda_{S,>r}, \ \forall \nu \in I(\mathbb{Z}[G])$$

Numerical verification: take r=2, compute $\Phi_{\emptyset}(1)$ (using complex Hecke L-functions) and $\Lambda_{S,>r}$. Find a $\mathbb{Z}[G]$ -generator γ of a subgroup of finite index d in $\Lambda_{S,>r}$ and $A \in \frac{1}{2d}\mathbb{Z}[1/g]$ such that $AR(\gamma) = \frac{\sqrt{d_K}}{4}\Phi_{\emptyset}(1)$, then set $\eta_{\mathfrak{f}} = A\gamma$. Take p split with $p-1 \mid f$ and compute $\Phi_p(1)$ using Shintani's method to check (b).

An example

Extension N/K		Top field	
$K = \mathbb{Q}(\sqrt{37})$		$N = \mathbb{Q}(\theta)$	
Conductor	$\mathfrak{f}=2\mathcal{O}_K$	with $\theta^6 - 3\theta^5 - 2\theta^4 + 9\theta^3 - 5\theta + 1 = 0$	
Galois group	$G = \langle \sigma \rangle \simeq C_3$	Discriminant	$d_N = 2^4 37^3$
Set of places	$S = \{v, v', 2\mathcal{O}_K\}$	Ring of integers	$\mathcal{O}_N=\mathbb{Z}[heta]$

We have
$$r(S, \chi) = 2$$
 for all $\chi \in \hat{G}$ so $\Lambda_{S,>r} = \overline{\bigwedge_{\mathbb{Z}[G]}^2 U_S}$. The element $\gamma = (\theta^5 - 2\theta^4 - 3\theta^3 + 5\theta^2 + 2\theta - 2) \wedge (\theta^3 - 2\theta^2 - 2\theta + 3)$

generates $\Lambda_{S,>r}$ over $\mathbb{Z}[G]$. We compute

$$R(\gamma) \simeq 2.259671133469861984094 + 0.5973346127019657221931(\sigma + \sigma^2)$$

 $4^{-1}\sqrt{37}\Phi_{\emptyset}(1) \simeq \left(0.5325009540329652698542 - 1.129835566734930992047(\sigma + \sigma^2)\right)$
so $AR(\gamma) = 4^{-1}\sqrt{37}\Phi_{\emptyset}(1)$ for $A = \frac{1}{2}(1 - \sigma - \sigma^2)$ and we set $\eta_{\mathfrak{f}} = A\gamma \in \frac{1}{2}\Lambda_{S,>r}$.

• For p = 3, $\Phi_3(1) \simeq 0.2020212220012020220_3 + 0.0021122222121101202_3(\sigma + \sigma^2)$ and

$$\left(1 - \frac{\sigma_{\mathfrak{p}_3}}{3}\right) \left(1 - \frac{\sigma_{\mathfrak{p}_3'}}{3}\right) \frac{4}{j_3(\sqrt{d_K})} R_3(\eta_{\mathfrak{f}}) = \Phi_3(1)$$

• For p = 7, $\Phi_7(1) \simeq 0.2320340034221553061_7 + 0.6242144620411626601_7(\sigma + \sigma^2)$ and

$$\left(1 - \frac{\sigma_{\mathfrak{p}_7}}{7}\right) \left(1 - \frac{\sigma_{\mathfrak{p}_7'}}{7}\right) \frac{4}{j_7(\sqrt{d_K})} R_7(\eta_{\mathfrak{f}}) = \Phi_7(1)$$

• For p = 11, $\Phi_{11}(1) \simeq 0.859 AA8491A4592272_{11} + 0.593A1A1A496337044_{11}(\sigma + \sigma^2)$ and

$$\left(1 - \frac{\sigma_{\mathfrak{p}_{11}}}{11}\right) \left(1 - \frac{\sigma_{\mathfrak{p}'_{11}}}{11}\right) \frac{4}{j_{11}(\sqrt{d_K})} R_{11}(\eta_{\mathfrak{f}}) = \Phi_{11}(1)$$

And finally

$$(\sigma - 1) \eta_{\mathfrak{f}} = (\sigma - 1) \frac{1}{2} (1 - \sigma - \sigma^2) \gamma = (\sigma - 1) \gamma \in \Lambda_{S, > r}$$