Numerical Verification of

 Conjectures à la Stark in the Abelian CaseXavier-François Roblot

CICMA, Concordia University

Conjectures à la Stark

Let K be a totally real field and let N / K be a finite abelian extension of number fields with conductor $\mathfrak{f}=\mathfrak{f}_{0} \mathfrak{f}_{\infty}$ and Galois group G. Let S be a finite set of places of K such that $S_{\infty} \cup\left\{\mathfrak{p} \mid \mathfrak{f}_{0}\right\} \subset S$.

$$
\left(\begin{array}{c}
\text { Values of transcendentals functions } \\
\text { associated to } N / K \text { and to } S \\
\text { at } s=0 \text { or } s=1
\end{array}\right) \sim\left(\begin{array}{c}
\text { Regulator } \\
\text { of some } \\
S \text {-units in } N
\end{array}\right)
$$

The Abelian Rank One Stark Conjecture
The Brumer-Stark Conjecture
Solomon's Conjecture

The Abelian Rank One Stark Conjecture

Assume that S contains a totally split place v (also that $|S|>2$). Then there exists a v-unit $\varepsilon \in N$ such that

$$
\begin{aligned}
& \text { (a) } \log |\sigma(\varepsilon)|_{w}=-m \zeta_{S}^{\prime}(0, \sigma), \forall \sigma \in G \\
& \text { (b) } N\left(\varepsilon^{1 / m}\right) / K \text { is an abelian extension }
\end{aligned}
$$

where $m=\operatorname{Card}\left(W_{N}\right)$ and w is a fixed place of N dividing v.

Numerical verification: take v real (so $m=2$), compute approximations of the values of $\zeta_{S}^{\prime}(0, \sigma)$ and construct the minimal polynomial of $\varepsilon \in U_{N}$ over K using the formula

$$
\sigma(\varepsilon)=e^{-2 \zeta_{S}^{\prime}(0, \sigma)}
$$

for all $\sigma \in G$.

An example

Base field		Extension N / K	
$K=\mathbb{Q}(\sqrt{1093})$		Conductor	$\mathfrak{f}=\mathfrak{p}_{3} v^{\prime}$
Discriminant	$d_{K}=1093$	with	$3 \mathcal{O}_{K}=\mathfrak{p}_{3} \mathfrak{q}_{3}$
ring of integers	$\mathcal{O}_{K}=\mathbb{Z}+\mathbb{Z} \omega$	and	$v^{\prime}(\sqrt{1093})>0$
with	$\omega=(1+\sqrt{1093}) / 2$	Galois group	$G \simeq C_{10}$
Class group	$\mathrm{Cl}_{K} \simeq C_{5}$	Set of places	$S=\left\{v, v^{\prime}, \mathfrak{p}_{3}\right\}$

Then the numbers $e^{-2 \zeta_{S}^{\prime}(0, \sigma)}$ (with $\sigma \in G$) are the roots of the following polynomial which defines N over K

$$
\begin{aligned}
& X^{10}+(-32 \omega-507) X^{9}+(801 \omega+12858) X^{8}+(-6575 \omega-105364) X^{7}+ \\
& (22986 \omega+368523) X^{6}+(-35264 \omega-565234) X^{5}+(22986 \omega+368523) X^{4}+ \\
& \quad(-6575 \omega-105364) X^{3}+(801 \omega+12858) X^{2}+(-32 \omega-507) X+1
\end{aligned}
$$

The Brumer-Stark Conjecture

Assume N is totally complex and define

$$
\gamma=m \sum_{\sigma \in G} \zeta_{S}(0, \sigma) \sigma^{-1} \in \mathbb{Z}[G]
$$

Then, for any fractional ideal \mathfrak{A} of N, there exists $\varepsilon_{\mathfrak{A}} \in N^{\times}$such that
(a) $\mathfrak{A}^{\gamma}=\left(\varepsilon_{\mathfrak{A}}\right)$
(b) $\left|\varepsilon_{\mathfrak{A}}\right|_{w}=1, \forall w \mid \infty$
(c) $N\left(\varepsilon_{\mathfrak{A}}^{1 / m}\right) / K$ is an abelian extension

Numerical verification: compute γ and test the conjecture for ideals \mathfrak{A} generating $\mathrm{Cl}(N)$ over $\mathbb{Z}[G]$: compute a generator α of \mathfrak{A}^{γ}, find a unit u such that $\varepsilon:=u \alpha$ satisfies (b) and check if (c) holds.

An example

Extension N / K		Top field	
$K=\mathbb{Q}(\sqrt{23})$		$N=\mathbb{Q}(\theta)$	
Conductor	$\mathfrak{f}=\mathfrak{p}_{2}^{7} v v^{\prime}$	with $\theta^{8}+16 \theta^{6}+86 \theta^{4}+176 \theta^{2}+98=0$	
with	$2 \mathcal{O}_{K}=\mathfrak{p}_{2}^{2}$	Discriminant	$d_{N}=2^{27} 23^{4}$
Ray class group	$\mathrm{Cl}_{K}(\mathfrak{f}) \simeq C_{4} \times C_{2}^{3}$	Class group	$\mathrm{Cl}_{N} \simeq C_{26}$
Congruence group	$\left(\mathrm{Cl}_{K}(\mathfrak{f}): \mathcal{H}\right)=4$	Galois group	$G=\langle\sigma\rangle \simeq C_{4}$
Set of places	$S=\left\{v, v^{\prime}, \mathfrak{p}_{2}\right\}$	$\mathbb{Z}[G]$-generator	$\mathrm{Cl}_{N}=\left\langle\mathfrak{P}_{7}\right\rangle_{\mathbb{Z}[G]}$

Compute $\gamma=8+12 \sigma-8 \sigma-12 \sigma^{2}=4(2+3 \sigma)(1-\sigma)$. Then $\mathfrak{P}_{7}^{\gamma}=(\alpha)$ with

$$
\begin{aligned}
& \alpha=\frac{1}{13841287201}\left(34264708 \theta^{7}-2934281536 \theta^{6}+1283421116 \theta^{5}-36382338016 \theta^{4}\right. \\
&+8883415264 \theta^{3}-121806067088 \theta^{2}+14130266024 \theta-92400986335
\end{aligned}
$$

and $\mathcal{N}_{N / N^{\sigma^{2}}}(\alpha)=1$ and $X^{2}-\alpha^{\sigma-1}=\left(X-\alpha_{1}\right)\left(X-\alpha_{2}\right)$ in $N[X]$. The same is true with γ replaced by $\gamma / 2$ and α replaced by $\alpha^{1 / 2}$ (but not with γ replaced with $\gamma / 4$).

Solomon's Conjecture: Twisted Zeta Functions

Assume that \mathfrak{f}_{∞} is empty, $\mathfrak{f}_{0} \neq \mathcal{O}_{k}$, and $N=K(\mathfrak{f})(\mathfrak{f}$ not necessarily conductor).

Define $W_{\mathfrak{f}}=\left\{(\xi, \mathfrak{a})\right.$ with $\mathfrak{a} \triangleleft \mathcal{O}_{k}, \xi: \mathfrak{a} \rightarrow \mathbb{C}^{\times}$and $\left.\operatorname{Ann}_{\mathcal{O}_{k}}(\xi)=\mathfrak{f}\right\}$.
Say that $(\xi, \mathfrak{a}) \sim\left(\xi^{\prime}, \mathfrak{a}^{\prime}\right)$ if $\xi^{\prime}=\xi \circ c$ and $\mathfrak{a}=c \mathfrak{a}^{\prime}$ for some $c \in k^{\times}$.
Then $\mathfrak{W}_{\mathfrak{f}}=W_{\mathfrak{f}} / \sim$ is canonically isomorphic to $\mathrm{Cl}_{K}(\mathfrak{f})$.
Fix a finite set T of prime ideals disjoint from S, and for $\mathfrak{w} \in \mathfrak{W}_{\mathfrak{f}}$ choose $(\xi, \mathfrak{a}) \in \mathfrak{w}$ such that $(\mathfrak{a}, T)=1$ and define for $\Re(s)>1$

$$
Z_{T}(s, \mathfrak{w})=\sum_{\substack{\alpha \in \mathfrak{a} / U_{K^{\prime}(\mathfrak{f})} \\(\alpha, T)=1}} \xi(\alpha)\left|\mathcal{N} \mathfrak{a}^{-1} \alpha\right|^{-s} \text { and } \Phi_{T}(s)=\sum_{\mathfrak{c} \in \mathrm{Cl}_{K}(\mathfrak{f})} Z_{T}\left(s, \mathfrak{w}_{\mathfrak{c}}\right) \sigma_{\mathfrak{c}}^{-1}
$$

$\Phi_{\emptyset}(s)$ extends to an holomorphic function on $\mathbb{C}[G]$ and for any odd prime p with $(p, \mathfrak{f})=1$ there exists a p-adic function $\Phi_{p}(s)$ on $\mathbb{Z}_{p}[G]$ interpolating the values of $\Phi_{T_{p}}(m)$ at negative integers m congruent to 1 modulo $p-1$ where $T_{p}=\{\mathfrak{p} \mid p\}$.

Solomon's Conjecture: S-units and Regulators

Let $r=[K: \mathbb{Q}]$ and fix $\iota_{1}, \ldots, \iota_{r}: N \hookrightarrow \mathbb{R}$ representatives of the action of G on $S_{\infty}(N)$ and for each prime p, fix $j_{p}: \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}_{p}$ and let $\iota_{i, p}=j_{p} \circ \iota_{i}: N \hookrightarrow \mathbb{C}_{p}$.

Define logarithmic maps $\lambda_{i}, \lambda_{i, p}$ from $U_{S}=U_{N, S(N)}$ to $\mathbb{R}[G], \mathbb{C}_{p}[G]$ by

$$
\lambda_{i}(u)=\sum_{\sigma \in G} \log \left|\iota_{i} \circ \sigma(u)\right| \sigma^{-1} \text { and } \lambda_{i, p}(u)=\sum_{\sigma \in G} \log _{p}\left(\iota_{i, p} \circ \sigma(u)\right) \sigma^{-1}
$$

And define complex/ p-adic regulators maps on $\bigwedge_{\mathbb{Q}[G]}^{r} \mathbb{Q} U_{S}$ by

$$
R\left(u_{1} \wedge \cdots \wedge u_{r}\right)=\operatorname{det}\left(\lambda_{i}\left(u_{l}\right)\right)_{i, l} \text { and } R_{p}\left(u_{1} \wedge \cdots \wedge u_{r}\right)=\operatorname{det}\left(\lambda_{i, p}\left(u_{l}\right)\right)_{i, l}
$$

For $\chi \in \hat{G}$, let $r(S, \chi)=\operatorname{dim}_{\mathbb{C}}\left(e_{\chi} \mathbb{C} U_{S}\right)$ then

$$
r(S, \chi)=r+\operatorname{ord}_{s=1}\left(\chi\left(\Phi_{\emptyset}(s)\right)\right)
$$

Set $e_{S,>r}=|G| \sum_{r(S, \chi)>r} e_{\chi} \in \mathbb{Z}[G]$ and

$$
\Lambda_{S,>r}=\operatorname{ker}\left(e_{S,>r}: \overline{\bigwedge_{\mathbb{Z}[G]}^{r} U_{S}} \rightarrow \overline{\bigwedge_{\mathbb{Z}[G]}^{r} U_{S}}\right)
$$

Solomon's (Weak Refined Combined) Conjecture

There exists a unique $\eta_{\mathfrak{f}} \in \frac{1}{2} \mathbb{Z}[1 / g] \Lambda_{S,>r}$ with $g=|G|$ such that
(a) $\frac{2^{r}}{\sqrt{d_{K}}} R\left(\eta_{\mathfrak{f}}\right)=\Phi_{\emptyset}(1)$
(b) $\quad \prod_{\mathfrak{p} \in T_{p}}\left(1-\mathcal{N p}^{-1} \sigma_{\mathfrak{p}}\right) \frac{2^{r}}{j_{p}\left(\sqrt{d_{K}}\right)} R_{p}\left(\eta_{\mathfrak{f}}\right)=\Phi_{p}(1), \forall p$ with $(p, \mathfrak{f})=1$
(c) $\quad \eta_{\mathfrak{f}} \in \mathbb{Z}[1 / g] \Lambda_{S,>r}$ if $\mathfrak{f} \neq \mathfrak{q}^{l} \Longleftrightarrow r\left(S, \chi_{0}\right)>r$
(d) $\quad \nu \eta_{\mathfrak{f}} \in \Lambda_{S,>r}, \forall \nu \in I(\mathbb{Z}[G])$

Numerical verification: take $r=2$, compute $\Phi_{\emptyset}(1)$ (using complex Hecke L-functions) and $\Lambda_{S,>r}$. Find a $\mathbb{Z}[G]$-generator γ of a subgroup of finite index d in $\Lambda_{S,>r}$ and $A \in \frac{1}{2 d} \mathbb{Z}[1 / g]$ such that $A R(\gamma)=\frac{\sqrt{d_{K}}}{4} \Phi_{\emptyset}(1)$, then set $\eta_{\mathfrak{f}}=A \gamma$. Take p split with $p-1 \mid f$ and compute $\Phi_{p}(1)$ using Shintani's method to check (b).

An example

Extension N / K	
$K=\mathbb{Q}(\sqrt{37})$	
Conductor	$\mathfrak{f}=2 \mathcal{O}_{K}$
Galois group	$G=\langle\sigma\rangle \simeq C_{3}$
Set of places	$S=\left\{v, v^{\prime}, 2 \mathcal{O}_{K}\right\}$

We have $r(S, \chi)=2$ for all $\chi \in \hat{G}$ so $\Lambda_{S,>r}=\overline{\bigwedge_{\mathbb{Z}[G]}^{2} U_{S}}$. The element

$$
\gamma=\left(\theta^{5}-2 \theta^{4}-3 \theta^{3}+5 \theta^{2}+2 \theta-2\right) \wedge\left(\theta^{3}-2 \theta^{2}-2 \theta+3\right)
$$

generates $\Lambda_{S,>r}$ over $\mathbb{Z}[G]$. We compute

$$
\begin{aligned}
& R(\gamma) \simeq 2.259671133469861984094+0.5973346127019657221931\left(\sigma+\sigma^{2}\right) \\
& 4^{-1} \sqrt{37} \Phi_{\emptyset}(1) \simeq\left(0.5325009540329652698542-1.129835566734930992047\left(\sigma+\sigma^{2}\right)\right)
\end{aligned}
$$

so $A R(\gamma)=4^{-1} \sqrt{37} \Phi_{\emptyset}(1)$ for $A=\frac{1}{2}\left(1-\sigma-\sigma^{2}\right)$ and we set $\eta_{\mathfrak{f}}=A \gamma \in \frac{1}{2} \Lambda_{S,>r}$.

- For $p=3$,
$\Phi_{3}(1) \simeq 0.2020212220012020220_{3}+0.0021122222121101202_{3}\left(\sigma+\sigma^{2}\right)$ and

$$
\left(1-\frac{\sigma_{\mathfrak{p}_{3}}}{3}\right)\left(1-\frac{\sigma_{\mathfrak{p}_{3}^{\prime}}}{3}\right) \frac{4}{j_{3}\left(\sqrt{d_{K}}\right)} R_{3}\left(\eta_{\mathfrak{f}}\right)=\Phi_{3}(1)
$$

- For $p=7$,
$\Phi_{7}(1) \simeq 0.2320340034221553061_{7}+0.6242144620411626601_{7}\left(\sigma+\sigma^{2}\right)$ and

$$
\left(1-\frac{\sigma_{\mathfrak{p}_{7}}}{7}\right)\left(1-\frac{\sigma_{\mathfrak{p}_{7}^{\prime}}}{7}\right) \frac{4}{j_{7}\left(\sqrt{d_{K}}\right)} R_{7}\left(\eta_{\mathfrak{f}}\right)=\Phi_{7}(1)
$$

- For $p=11$,
$\Phi_{11}(1) \simeq 0.859 A A 8491 A 4592272_{11}+0.593 A 1 A 1 A 496337044_{11}\left(\sigma+\sigma^{2}\right)$ and

$$
\left(1-\frac{\sigma_{\mathfrak{p}_{11}}}{11}\right)\left(1-\frac{\sigma_{\mathfrak{p}_{11}^{\prime}}}{11}\right) \frac{4}{j_{11}\left(\sqrt{d_{K}}\right)} R_{11}\left(\eta_{\mathfrak{f}}\right)=\Phi_{11}(1)
$$

And finally

$$
(\sigma-1) \eta_{\mathrm{f}}=(\sigma-1) \frac{1}{2}\left(1-\sigma-\sigma^{2}\right) \gamma=(\sigma-1) \gamma \in \Lambda_{S,>r}
$$

