
MATHEMATICS OF COMPUTATION
Volume 00, Number 0, Pages 000–000
S 0025-5718(XX)0000-0

THE BRUMER-STARK CONJECTURE IN SOME FAMILIES OF
EXTENSIONS OF SPECIFIED DEGREE
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Abstract. As a starting point, an important link is established between

Brumer’s conjecture and the Brumer-Stark conjecture which allows one to

translate recent progress on the former into new results on the latter. For
example, if K/F is an abelian extension of relative degree 2p, p an odd prime,

we prove the l-part of the Brumer-Stark conjecture for all odd primes l 6= p
with F belonging to a wide class of base fields. In the same setting, we study
the 2-part and p-part of Brumer-Stark with no special restriction on F and

are left with only two well-defined specific classes of extensions that elude
proof. Extensive computations were carried out within these two classes and a

complete numerical proof of the Brumer-Stark conjecture was obtained in all
cases.

0. Overview and results

An important conjecture due to Brumer predicts that specific group ring ele-
ments constructed from the values of partial zeta-functions at s = 0 annihilate the
ideal class groups of certain number fields. Recent progress has been made on this
conjecture ([Gr1], [Wi]) and this will be used to obtain new results on the related
conjecture of Brumer-Stark where progress thus far has been more restricted (see
Section 1 of [RT] for the present status of the Brumer-Stark conjecture). The set-
ting for these conjectures is the following: K/F is a relative Galois extension, with
G = Gal(K/F ) abelian, K totally complex, and F totally real. Both conjectures
predict that certain elements of ZZ[G] annihilate the ideal class group ClK of K.

Our results fall naturally into two parts. The first part (Sections 1 – 3) presents
our theoretical results, which we now briefly state:

(1) (Probably well-known) There is the following localization principle: The
Brumer-Stark conjecture (BS) holds for K/F if and only if, for all prime numbers
l, an “l-primary analog” (BS)l holds for K/F .

(2) (Semi-simple case) If F is an abelian extension of QI with the l-part of
Gal(F/QI ) cyclic, K is a CM field, and l 6= 2 is prime to the order of G, then
(BS)l holds. For example, given this set-up, if G is abelian of order 2p, p an odd
prime, then it suffices to prove (BS)2 and (BS)p in order to establish (BS) for K/F .
(The condition that F be abelian over QI can be relaxed somewhat, see Proposition
1.3 for details.)

(3) If G is abelian of order 2p, p an odd prime, then (BS)p holds unless K/F is
of type ] or [. Here ] means that K contains a primitive p-th root of unity ζp and
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K/F is unramified outside the primes above p. The case [ is even more exceptional;
details will be given later. We shall see that, for instance, [ does not happen if p = 3
or if p = 5 and F is real quadratic.

(4) Suppose F is real quadratic and K/F is cyclic of degree 6. Then (BS) holds
in full, except perhaps in case ]. In particular, we prove (BS)2 without exception
in this setting.

The second part (Section 4) presents our computational work, where certain
situations not covered in full by our theoretical results are studied, for example:

(5) In the setting of (4): The “first” 534 instances of case ] satisfy the full
Brumer-Stark conjecture as well. We will of course give details on what “first”
means. For the moment let us just say: A list of cases was generated, with various
cut-off criteria and elimination of uninteresting cases, for instance cases where the
minus class number of K happened to not be divisible by 3, and consequently (BS)3,
and (BS), are known to hold for simple reasons. This list, with elimination and
search limits, came to 534 items, and (BS) was successfully verified in every case.

(6) We also carried out extensive computations involving cyclic extensions K/F
of degree 6 over real cubic fields F . Both ] and [ type extensions arise in this
scenario and we generated lists of non-trivial cases for both types using cut-off and
elimination criteria. The Brumer-Stark conjecture was successfully verified in all
114 ] cases and all 145 [ cases considered.

We have one further result we would like to mention here: (BS) holds in full
when F is real quadratic and K/F is cyclic of degree 4. This was previously the
situation involving the lowest degree fields over QI still unproved (see [RT]). We are
planning to treat this situation and give further results in particular involving the
2-primary part (BS)2 in a sequel to the present paper.

1. Statement of (BS) and its primary parts; the link with the Brumer

conjecture

For the first part of this section we assume that K/F is an abelian G-Galois ex-
tension with F totally real and K totally complex. (Towards the end of this section
and for the complete remainder of the paper we will make the extra assumption
that K is a CM field.) For simplicity, we make the blanket assumption throughout
the paper that the base field F is not equal to QI , since the conjecture is known
to be true in that case based upon Stickelberger’s classic theorem concerning the
factorization of Gauss sums (see [Ta2], p. 109).

Given an extension K/F as above, let S(K/F ) denote the set of all primes of
F , finite and infinite, that ramify in K. With respect to a finite set S of primes
in F containing S(K/F ), we define a partial zeta-function corresponding to each
element σ ∈ G in the usual way:

ζS(s, σ) =
∑
σa=σ

1
Nas

where the sum is over all integral ideals a of F relatively prime to the finite primes
in S and having the same Artin symbol (K/F, a) = σa = σ. The infinite sum
on the right side converges only for <(s) > 1, but ζS(s, σ) has a meromorphic
continuation to all of CI with exactly one (simple) pole at s = 1. In particular,
ζS(s, σ) is analytic at s = 0, and based upon the work of Klingen [Kl] and Siegel
[Si] we know that ζS(0, σ) ∈ QI , and therefore the group ring element (referred to
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as a “Brumer-Stickelberger element”)

θS(K/F ) =
∑
σ∈G

ζS(0, σ)σ−1

lies in QI [G]. We generally take S = S(K/F ) and in that case we will usually omit
S from the notation and simply write θ(K/F ). If F , K, and S are all fixed in a
given context, we will sometimes just use θ to denote θS(K/F ).

Let w = wK denote the order of the group of roots of unity µK in K. A famous
result, due independently to Deligne and Ribet [DR], Barsky [Ba], and Cassou-
Noguès [CN], states that wθS(K/F ) ∈ ZZ[G] and more generally ξθS(K/F ) ∈ ZZ[G]
whenever ξ is an annihilator in ZZ[G] of µK . An element x ∈ K∗ will be called
w-abelian if its w-th root generates an extension field of K which is abelian over F
(not just over K). An anti-unit is an element x ∈ K∗ which has absolute value 1
at all archimedean places of K (recall that by our assumptions all these places are
complex). If K happens to be CM, with complex conjugation j ∈ G, then x is an
anti-unit if and only if x1+j = 1. We may now state the
Brumer-Stark Conjecture: For every nonzero fractional ideal a of K, the ideal
awθS(K/F ) is principal and has a generator x which is an anti-unit, and w-abelian.
The first part stating that awθS(K/F ) is always principal (i.e. that wθS(K/F )
annihilates the class group ClK) is due to Brumer (he predicts something even
stronger, see below). The generator x in the conjecture, if it exists, is unique up
to a root of unity in K, and the prediction that such an element in K exists with
the special properties above is due to Stark. The set of nonzero fractional ideals
a that satisfy the conjecture forms a group under multiplication which contains all
principal ideals (see [Ta1] for this and other basic properties). Thus one may speak
of the subgroup in ClK made up by the classes [a] satisfying the BS property.

The (BS)l conjecture states, for any prime number l: For every nonzero fractional
ideal a whose class is in the l-primary part ClK{l} of ClK , the ideal awθS(K/F )

is principal and has a generator x which is an anti-unit, and wl-abelian. Here
wl = |M |, where M = µK{l}. The criterion that x be wl-abelian can be stated as
follows (see pp. 83–85 of [Ta2]): Let {σi}i∈I be a system of generators of G. Since
M is cyclic, there exists a system of integers {ni}i∈I such that ζσi−ni = 1 for all
ζ ∈M , i ∈ I. The element x ∈ K∗ is wl-abelian if and only if there exists a system
of elements {αi}i∈I in K∗ such that xσi−ni = αwli for all i ∈ I and ασj−nji = ασi−nij

for all i, j ∈ I. A weakened version of this criterion, sufficient for our purposes, will
be proved in the course of proving Proposition 1.2 below.

Remark: If l is odd, we may omit the condition that the generator x is an anti-
unit, by the following argument: For a given archimedean place v of F let jv be the
nontrivial element of the decomposition group Gv ⊂ G. By property 3) on page
24-02 of [Ta1], we have (1 + jv)θ = 0, and hence (1− jv)θ = (2− (1 + jv))θ = 2θ.
On letting A =

∏
v(1 − jv) (product over the archimedean places v of F ) we thus

obtain Aθ = 2aθ with a = [F : QI ]. Since squaring is a bijection on ClK{l}, we find
b with a = (u)b2a for some u ∈ K∗, and hence awθ = (uwθ)bwθA. Thus, a generator
z for bwθ which is wl-abelian immediately gives a generator x = uwθzA for awθ

which is again wl-abelian, and it is an anti-unit since 1 + jv annihilates both θ and
A for all archimedean places v of F .

Proposition 1.1. The Brumer-Stark conjecture holds for K/F if and only if (BS)l
holds for every prime l.
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Proof. It is obvious that (BS) implies (BS)l for all primes l. To prove the converse,
we have to show that the subgroup U of classes satisfying the BS property is the
whole of ClK . For this it suffices that U contains the l-primary part of ClK for
all l, so fix some l and take some [a] ∈ ClK{l}. Then (BS)l gives almost what we
want, the only problem being that the generator is only wl-abelian, and we want
it to be w-abelian. To mend this, write w = w′wl with w′ prime to l and use a
similar trick as just before: exponentiation by w′ is bijective on ClK{l}. Thus we
find b and u ∈ K∗ with a = (u)bw

′
. Let bwθ = (z) with z a wl-abelian anti-unit.

Then awθ = (uwθzw
′
), and the latter generator is now again an anti-unit, and w-

abelian. �

Our next goal is to state and prove a result which links the Brumer conjecture
to the Brumer-Stark conjecture, and to explain which parts of the conjectures (the
“semi-simple cases”) are already known in some generality. To this end, we recall
the Brumer conjecture. We keep our hypotheses on K, F , G, and S. The Brumer
conjecture (B) then affirms that IθS(K/F ) annihilates the class group ClK , where
I is the annihilator in ZZ[G] of µK . Just like the Brumer-Stark conjecture, (B) is
equivalent to the collection of all (B)l, l running over all prime numbers, where (B)l
means that IlθS(K/F ) annihilates the l-primary part of ClK , with Il the annihilator
of M := µK{l} in ZZl[G], and ZZl denotes the l-adic integers.

C. Popescu has informed us that he has also obtained an essential part of the
following result:

Proposition 1.2. Fix an odd prime l and assume that, in the above notation, the
module M is G-cohomologically trivial. Then (B)l holds if and only if (BS)l holds.

Proof. We need two little preparations. Firstly we claim: whenever M is not zero,
the l-part G{l} of the (abelian) group G must be cyclic. Reason: G{l} must act
faithfully on M , otherwise a nontrivial l-subgroup H ⊂ G would act trivially on M ,
and the cohomology of H with coefficients in M would be nontrivial. This easily
implies that G{l} is cyclic, since M is cyclic of l-power order.

Second, there is the following group-theoretical observation: SupposeG is abelian
with cyclic l-part and there is an extension of groups

1→ C → Γ→ G→ 1

with C an abelian l-group. Then Γ is abelian if and only if the action of G on C
via conjugation is the trivial action. (This is left to the reader. The main point is
that the extension splits if G has no l-part.)

Now assume that (B)l holds. Let wl = |M |; recall w = wK = |µK | and write
w = wlw

′ with w′ prime to l. Since M is cyclic, we have a canonical isomorphism
M ∼= ZZl[G]/Il. The hypothesis on cohomological triviality yields that Il is again
cohomologically trivial; now Il has no ZZ-torsion, hence Il is ZZl[G]-projective, hence
free on one generator, let us say Il = (ξ). Since Il contains a suitable l-power, it is
a routine matter to show that we may choose ξ ∈ ZZ[G]. Since wl ∈ Il and ξ is a
non zero divisor, we have

wl = ξ · ν for a unique ν ∈ ZZl[G].

Given an ideal a of K, we have to find a generator x of awlw
′θ which is wl-abelian.

(By a previous remark, we do not have to worry whether x is an anti-unit.) Let lN

be a high power of l (larger than wl times the l-class number of K), and ν′ ∈ ZZ[G]
congruent to ν modulo lN . Thus, awlw

′θ is the product of a very high l-power of
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an ideal with the ideal aξν
′w′θ. By hypothesis, aξw

′θ is principal, with generator y,
say. What remains is to show that x = yν

′
has the “abelian property”: L := K(ρ)

is abelian over F with ρwl = x. We show that L is normal over K: the element
x̄ ∈ K∗/K∗wl is annihilated by ξ, hence by the whole of Il. Thus, for σ ∈ G, we
find some integer a with σ − a ∈ Il (this is the cyclicity of M over ZZ), and σ(x̄) is
just the a-th power of x̄. Thus, all conjugates of L/K over K coincide with L.

Now we show L is abelian over F . If wl = 1, there is nothing to show, so we
may assume wl > 1, which implies, as mentioned above, that the l-part of G is
cyclic. By virtue of the second preparatory remark, it suffices to show that the
action by conjugation of G on Gal(L/K) is the trivial one. Let σ be any element
of G and lift it to an automorphism σ̃ of L over F . Then we just have to show that
σ̃ commutes with every automorphism τ : ρ 7→ ζρ of L/K (ζ ∈ M). If a ∈ ZZ such
that σ − a ∈ Il, then as seen above, σ̃(ρ) must have the form sρa with s ∈ K. We
get

σ̃τ(ρ) = σ(ζ)σ̃(ρ) = σ(ζ)sρa,

and
τ σ̃(ρ) = τ(sρa) = ζasρa.

This is the same result as in the previous equation since σ(ζ) = ζa, thus Gal(L/F )
is indeed abelian.

Remark: This last part of the argument is standard and well known. It actually
shows that the property “x is wl-abelian” is equivalent in the present setting to the
statement that x̄ is annihilated by Il, since Il is generated by terms of the form
σ − a.

We now prove the reverse implication, so assume (BS)l. Let J be the group
of non-zero fractional ideals in K. This is a torsion-free ZZ-module, containing
the submodule P of principal ideals. It is convenient to calculate with the l-adic
completions Jl and Pl. Let [b] ∈ ClK{l}. Then bwlw

′θ = (x), and x satisfies the
abelian condition, that is: the class of x modulo wl-th powers is annihilated by Il.
Thus xξ can be written as ywl . In Pl we then have equations

(x)ξ = (y)wl = (y)νξ;

since ξ divides wl in ZZl[G] and Pl has no torsion, we may cancel ξ and obtain

(x) = (y)ν . Now (x) is bwlw
′θ =

(
bξw

′θ
)ν

. With the same argument we may cancel

the exponent ν and find bw
′ξθ = (y) in Jl. Since [bξθ] ∈ ClK{l}, we may conclude

that bξθ is principal. Since ξ generates Il, we have proved the l-part of the Brumer
conjecture. �

This proposition will be important in the proof of the next result.
We will continue to keep all of the assumptions made at the beginning of this

section, but from now onward we impose the extra hypothesis that K is a CM field.
Thus, K is a quadratic extension of a totally real subfield K+. Necessarily, the
totally real field F lies in K+. The nontrivial element j of Gal(K/K+) coincides
with all jv in earlier notation; it is “the” complex conjugation in G = Gal(K/F ).

Proposition 1.3. If the relative degree [K : F ] is prime to l (which still is an odd
prime), then the l-part of the Brumer conjecture is true for K/F under either of
the following two conditions:

(a) F/QI is abelian and the l-part of Gal(F/QI ) is cyclic, or
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(b) F is cubic over QI , and l2 does not divide the discriminant of F . (Remark:
We do not strive for maximum generality here but rather wish to provide
the results we need later in the paper.)

Proof. We use character decompositions: for every l-adic character χ of G, there
is an exact functor M → Mχ on ZZl[G]-modules, defined by base change: Mχ =
M ⊗ZZl[G] ZZl[χ]. The functor M → Mχ is naturally isomorphic to the functor
M → Mχ in [Wi]. This property, and the exactness, are due to the circumstance
that l does not divide the order of G. Every module M decomposes as a direct sum
of Mχ, with χ ranging over the QI l-conjugacy classes of all characters of G. The
l-part of the Brumer conjecture for K/F is, in the present situation, equivalent to
the conjunction of all the χ-parts of this conjecture, in an obvious sense. Note that
since l 6= 2 and F 6= QI , the Brumer-Stickelberger element has zero plus part and it
suffices to consider the Brumer conjecture on A(K), which denotes the l-part of the
minus class group of K. In particular we may restrict attention to odd characters
in what follows.

Now we begin with case (a). Standard module theory over discrete valuation
rings shows that the χ-part of the l-part of the Brumer conjecture is a consequence
of the following statement à la Leopoldt-Iwasawa:

|A(K)χ| divides [ZZl(χ) : (χ(θ(K/F )))] · |(µK{l})χ|, (∗)
for any odd character χ of G. This formula follows directly from the statement
of Theorem 3 in [Wi]; note that the equality given there becomes a divisibility
statement since there may be primes ramifying in K/F but not in the conductor
of χ, which gives extra Euler factors. This theorem is stated and proved under the
hypothesis that a certain set Sχ,l is empty. So if this set is empty, we are done. If
it isn’t empty, then by the very definition of Sχ,l, the character χ must be inflated
from a character χ0 of F cl(ζl)/F , where the superscript cl means taking the normal
closure over QI . Of course we may omit this superscript here. Write K0 for F (ζl).
Then we have a canonical isomorphism A(K)χ ∼= A(K0)χ0 , due to the fact that
l does not divide [K : K0]. On the other hand, χ(θ(K/F )) equals χ0(θ(K0/F ))
times a product of Euler factors, by standard properties of L-functions.

This means that we are left with proving the above divisibility statement under
the extra hypothesis that K = F (ζl) and thus K is absolutely abelian (we now write
again K for K0 and χ for χ0). Again, this can be extracted from the literature:
we will use a result of Solomon [So]. Let Γ = Gal(K/QI ) and Γ′ the non-l-part of
Γ. Then G = Gal(K/F ) is a subgroup of Γ′, and A(K)χ is the direct sum of all
A(K)η with η running over all characters up to conjugacy of Γ′ that restrict to χ
on G. We use the formula for A(K)η at the top of p.6 of [Gr2], which is based on
[So], and we take the product over all η up to conjugacy. (The required condition
that the l-part of Γ is cyclic does hold, thanks to the corresponding condition we
imposed on F , and also thanks to K = F (ζl).) This gives the following formula
in which ψ runs over all characters of the whole group Γ whose restriction to G is
conjugate to χ:

|A(K)χ| =
∏

η|G∼χ

lδη ·
∏

ψ|G∼χ

∣∣B1,ψ−1

∣∣
l
.

Here |b|l = lvl(b), where vl : QI l → QI is the extension of the l-adic valuation, so
vl(l) = 1. The quantity δη is defined as follows: it is 1 unless η is the Teich-
müller character, and in that case it equals r with lr = |µK{l}|. Since B1,ψ−1 =
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−L(0, ψ−1), and since L-functions are fully inductive, we get∏
ψ|G∼χ

∣∣B1,ψ−1

∣∣
l

=
∏
χ1∼χ

∣∣LF (0, χ−1
1 )
∣∣
l

= [ZZl(χ) : (LF (0, χ−1))].

On the other hand, χ(θ(K/F )) is a multiple of LF (0, χ−1). Moreover it is easy to
check that

∏
η|G∼χ l

δη is exactly the order of the χ-part of µK{l}. This concludes
the verification of statement (*).

It remains to handle case (b). We may assume F is not abelian over QI . Again
we must show that for all characters χ of G the set Sχ,l is empty, so suppose
q ∈ Sχ,l. Then we have by the definition in [Wi]: q divides l; χ factors through
Gal(F cl(ζl)/F ); χ(q) = 1 and the order of χ (m, say) is at least 3. We show that
such a setup cannot exist.

Indeed the condition that l2 does not divide d = disc(F ) gives that the rami-
fication degree of q | l is at most 2. Since F cl/F is composed from the quadratic
extension QI (

√
d)/QI , χ actually factors through a faithful character of Gal(MF/F )

with M a cyclic degree m subextension of QI (
√
d, ζl). Since m > 2, the ramification

exponent of l in M is m, or possibly m/2 if m/2 is odd. Therefore all primes of
MF above l have ramification degree at least 3. On the other hand q does not
ramify in MF/F since χ(q) = 1. This is a contradiction. �

Corollary 1.4. Assume F is a field satisfying the conditions in either part (a) or
(b) of Prop. 1.3. If K/F is as above (K is a CM field) with [K : F ] prime to l (l
an odd prime), then the l-part of the Brumer-Stark conjecture is true for K/F .

Proof. The module M = µK{l} is G-cohomologically trivial for the simple reason
that its cardinality is coprime to the order of G; we may thus invoke Prop. 1.2 and
Prop. 1.3. �

2. The p-primary part of (BS) in case [K : F ] = 2p

We assume in this section that the abelian group G = Gal(K/F ) is of order 2p,
p an odd prime number, with F totally real and K totally complex. The field K is
automatically CM since each jv in earlier notation is equal to the unique element
j of order 2 in the cyclic group G. In this setting, Corollary 1.4 gives a widely
applicable result covering (BS)l with l 6= p an odd prime. We study (BS)p in this
section and (BS)2 in section 3. Some extra notation:
E denotes the quadratic extension of F sitting in K;
H = Gal(K/E), which we will identify with Gal(K+/F ), hence H has order p;
σ is a fixed generator of H;
j ∈ G is complex conjugation.
Thus G is generated by jσ. Just for this section we will use the following nota-

tion for a CM field L: AL = Cl−L{p}, the p-part of Cl−L . Our approach is now to
distinguish some cases and subcases, and in most of them we show how the conjec-
ture can be deduced from the analytic class number formula with some algebraic
tricks. Two classes of exceptional cases will remain where these arguments fail: the
first one (called type [) given by the condition that

ζp 6∈ K and primes splitting in E/F do not ramify in K/E and Kcl ⊂ (Kcl)+(ζp),
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where the exponent cl means: taking normal closure over QI ; the second (type ]) is
given by the condition

ζp ∈ K and K/E is at most ramified at primes over p.

It will soon be discussed how frequently these exceptions occur.
We distinguish, first of all, the two major cases I and II: ζp is not, respectively

is, contained in E. Note that ζp ∈ E if and only if ζp ∈ K.
We further distinguish Cases I and II in two subcases: (a) some prime p in E

which is split in E/F ramifies in K/E, and subcase (b), the logical complement of
(a). In Case II a simpler, equivalent, formulation of (b) will be given.

Proposition 2.1. (BS)p holds in Case I with the possible exception of [.

Proof. We first do the subcase (a). By Lemma 2.5 (below), the order of the
subgroup AHK fixed under H in AK is strictly larger than the order of AE . This
will be important later.

In what follows, we always consider projections to minus parts. That is, θ(K/F )
will be considered as an element of QI [H] (originally it is in QI [G] and G = H ×{j};
we send complex conjugation j to −1.) In the same vein, θ(E/F ) will be considered
as an element of QI . Now θ(K/F ) · N has an expression as ε · N · θ(E/F ) where
N = 1 + σ + . . . + σp−1 is the norm element attached to H and ε is a product of
Euler factors attached to the primes that ramify in K but not in E. The hypothesis
of case (a) is just chosen to ensure that (the minus projection of) ε is zero. In other
words, θ(K/F ) is annihilated by N , and we’ll make the most of that: we write
θ(K/F ) = (σ − 1)α for some α ∈ QI [H].

Now we consider the analytic class number formula which gives, thanks to ζp 6∈ E
(overbar is the canonical map ZZp[H]→ ZZp[ζp]):

|AK | = [ZZp[ζp] : (θ̄(K/F ))][ZZp : (θ(E/F ))]

= p · [ZZp[ζp] : (ᾱ)][ZZp : (θ(E/F ))];

|AE | = [ZZp : (θ(E/F ))].

Some remarks concerning integrality: Both |AE | and |AK |/(p|AE |) are integers (the
latter since |AE | strictly divides |AHK | and this divides |AK |). Therefore θ(E/F ) ∈
ZZp and ᾱ ∈ ZZp[ζp], and this shows that α can also be taken in ZZp[H].

We can now show that θ(K/F ) kills AK as follows: The module (σ − 1)AK is,
via multiplication by σ − 1, an epimorphic image of AK/AHK . This latter quotient
has cardinal strictly less than |AK |/|AE |, so

|(σ − 1)AK | ≤
1
p
|AK |/|AE | ≤ [ZZp[ζp] : (ᾱ)].

Now we argue over the discrete valuation ring R = ZZp[ζp]. The R-module (σ−1)AK
is annihilated by α as a consequence of the last equation; hence AK is annihilated by
θ(K/F ) = (σ−1)α. Since K has no nontrivial p-th roots of unity, this annihilation
statement already proves (BS)p by virtue of Prop. 1.2.

It remains to treat case (b). Again by Prop. 1.2, we just want to see that the
p-part of the Brumer conjecture (minus Stark) holds for K/F . Here we rely on the
paper [Gr1]. Theorems 4.10 and 4.11 of that paper show the p-part of the Brumer
conjecture under the condition that K/F is “nice”. Those theorems were not stat-
ed “prime by prime”, and for this reason, one does not need the full “niceness”
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hypothesis for the p-part of the conjecture. An extension was called nice if a cer-
tain condition CP holds, and for all odd l, the module µK{l} is G-cohomologically
trivial. This latter condition is clearly satisfied in our situation for l = p. The point
is that we only need a part of condition CP which originally stated that no critical
prime of F splits from K+ to K. There are two kinds of critical primes: those p
that ramify in K/F (first kind), and those q which lie over a rational prime q such
that Kcl ⊂ (Kcl)+(ζq) (second kind). It is easy to see from [Gr1] that the q with
q 6= p play no role for the proof of the p-part. One has only to look at §4 for this,
since critical primes of the second kind never make an appearance in the earlier
sections. Let’s sum up. To ensure the validity of (B)p it is enough to check two
things:

(CP1) no critical prime of the first kind splits from K+ to K;
(CP2) there exist no critical primes of the second kind that divide p.
The first condition is assured by the hypotheses of case (b). The second condi-

tion is equivalent to saying that we are not in the exceptional case [, by the very
definition of exceptional primes of the second kind. �

The subdivision of Case II (ζp ∈ E) is the same as in Case I: with case II.a we
mean that some prime p in F splits in E and ramifies in K; case II.b is then what’s
left. In contrast to Case I, we can make a much sharper statement concerning
subcase II.b:
Remark: In subcase II.b, only primes over p can ramify in K/E (or equivalently,
in K+/F ); in other words, subcase II.b is identical with the Exceptional Case ]
defined above. Suppose the prime p of E does not divide p and is ramified in K.
Then the prime p+ below p in E+ = F ramifies in K+, and the absolute norm of
p+ is congruent to 1 modulo p (see [FT], Theorem 28(ii) on p. 145). But then,
since E = F (ζp), p+ must split in E (see [Ja], Proposition 3.1 on p. 131), which
puts us in case II.a.

Proposition 2.2. (BS)p holds in case II.a; in other words, (BS)p holds in case II
with the possible exception of ].

Proof. This is very similar to the first proposition. Lemma 2.5 gives that AHK has
order strictly larger than AE . We now again look at the analytic class number
formula. Let us first assume that ζp2 is not in K. Then

|AK | = p · [ZZp[ζp] : (θ̄(K/F ))][ZZp : (θ(E/F ))]

= p2 · [ZZp[ζp] : (ᾱ)][ZZp : (θ(E/F ))];

|AE | = p · [ZZp : (θ(E/F ))].

Here α is defined exactly as in the proof of Prop. 2.1. The module (σ − 1)AK
is an epimorphic image of AK/AHK which in turn has cardinality smaller than
|AK |/|AE | = p · [ZZp[ζp] : (ᾱ)]. Therefore (σ − 1)AK is annihilated by α, so AK is
annihilated by θ(K/F ). The punchline is that we still have a margin: the conjec-
ture (BS)p talks about the exponent pθ(K/F ), so (BS)p is a direct consequence of
the annihilation statement.

We still have to consider the case that K contains a higher p-power root of unity.
No new ideas come in. The final step just becomes a little technical. So assume
|µp∞(K)| = pe with e ≥ 2. Then |µp∞(E)| is at least pe−1. If it is pe, the proof
runs as before, so let us assume it is pe−1. If one suitably replaces the factors
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immediately after the equality signs in the formulas for |AK | and |AE | displayed
above, one ends up with the statement that the order of (σ − 1)AK is strictly less
than p2[ZZp[ζp] : (ᾱ)] (so the factor p has become p2). This means that (σ − 1)AK
is annihilated by (σ − 1)α, and AK by (σ − 1)θ. We must show that this is strong
enough to imply that peθ is a Brumer-Stark annihilator.

Now the action of σ on µp∞(K) is exponentiation by g, with g − 1 exactly
divisible by pe−1, and x ∈ K is pe-abelian if and only if xσ−g is a pe-th power in
K. For this it is sufficient that x be of the form zγ , γ = σp−1 + gσp−2 + . . .+ gp−1,
since (σ − g)γ = 1 − gp, which is exactly divisible by pe. It is thus sufficient to
show that the equation peθ = γα(σ − 1)θ has a solution α in ZZp[G], for then
every ideal ap

eθ has a generator which is a γ-th power. Since θ is killed by the
norm element, we may just solve the equation with ζp substituted for σ, thus:
pe = (1− gp) · (ζp− g)−1 ·α · (ζp− 1). This equation is indeed solvable, since 1− gp
is exactly divisible by pe and since ζp − g is associated to ζp − 1. �

We now discuss the “range” of the exceptional cases. If F/QI is normal and E/QI
is unramified over p, then [ is impossible. In case ] we must have E = F (ζp);
in particular, since E/F is quadratic, the absolute degree of F must be at least
(p− 1)/2. If F is real quadratic and p > 5, case ] is therefore ruled out; if F is real
quadratic and p = 5, case ] is only possible if F = QI (

√
5) and E = QI (ζ5). With a

view towards calculations, we also show:

Lemma 2.3. For p = 3 and p = 5, case [ does not happen if F is real quadratic.

Proof. Under the assumption ζp 6∈ E, we prove that the inclusion Kcl ⊂ (Kcl)+(ζp)
cannot hold. Indeed, Kcl is the compositumMM ′, withM quadratic or biquadratic
over F , and M ′ abelian of degree p or p2 over F . If the inclusion were true, we
could pass to the maximal fields of exponent 2 over F , which would give

M ⊂M+(ζp).

Note that ζp has 2-power degree over QI , and over F . The above inclusion would
have to be an equality since M is not real. Therefore ζp would lie in M . We show
that this implies ζp ∈ E which finishes the proof. Indeed, ζp and F generate an
abelian extension of QI . If E is normal over QI , then E = M and we are done. If
not, M is dihedral of degree 8 over QI and M = EE′ where E′/F is the unique
conjugate of E/F over F . Then the maximal subfield of M abelian over QI is E′′,
the third relatively quadratic subfield of the biquadratic extension EE′/F , and ζp
must be in E′′. On the other hand, E/F and E′/F are both totally complex, so
E′′ would have to be totally real, a contradiction. �

From 2.1, 2.2, and 2.3 we obtain the following which we point out as a corollary
for later reference:

Corollary 2.4. Let K/F be a relative abelian extension with K totally complex,
F totally real, and [K : F ] = 2p, p an odd prime. Then (BS)p is proved in general
outside of cases ] and [. If F is real quadratic and p = 3 or 5, then (BS)p is proved
except in case ].

It remains to state and prove the lemma used in the proof of Proposition 2.1.
Until the end of this section, we consider a cyclic Galois extension K/E of CM
fields of relative degree p an odd prime and Galois group H. One defines the total
ramification index e(K/E) as the product over all ramification indices ep with p
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running over the primes of E that ramify in K. There is also the index e−(K/E)
defined as e(K/E)

/
e(K+/E+). The index e−(K/E) is equal to pt with t the

number of primes of E+ that split in E and ramify in K. We recall that AK means
the p-part of the minus part of ClK .

Lemma 2.5. Suppose H is cyclic of odd prime order p. Then

|AHK | = |AE | · e−(K/E).

Proof. From Lemma 4.1 on p. 307 of [La] we have the formula

|ClHK | =
|ClE | e(K/E)

[K : E][OE∗ : NK/EK∗ ∩ OE∗]
.

An analogous formula holds with K/E replaced by K+/E+. We now divide the
former by the latter and extract the maximal p-power. On the left hand, we do
end up with |AHK |. On the right hand, the quotient of |ClE | by |ClE+ | contributes
|AE |. The quotient of the e-terms gives the e− term. The term [K : E] simply
cancels against [K+ : E+], and what is most important, the quotient of the two
norm indices gives

[µE : NK/EK∗ ∩ µE ],

by the theory of units in CM fields: the minus part of the multiplicative group of
units is the group of roots of unity, and we may decompose into plus and minus
parts with no worries since we are only interested in p-primary torsion.

We have to show that the above norm index is 1. Indeed, let η ∈ µE . We have to
show it is in NK/EK∗. By the Hasse norm theorem, this reduces to showing that η
is locally a norm in K/E. Now K/E is induced from the cyclic extension K+/E+

by composing with E. Thus, locally, η is a norm from K if and only if NE/E+η

is a norm from K+. But luckily the latter norm NE/E+η is 1 since Gal(E/E+) is
generated by complex conjugation. �

3. Completing the proof for sextic extensions

We suppose now that F is totally real, and K is an abelian sextic CM extension
of F , with Galois group G. From Proposition 1.1 and Corollary 1.4 we know that
if F is a real quadratic field then (BS) holds for K/F if and only if the local
counterparts (BS)l hold for l = 2 and l = 3. Moreover, the case l = 3 was proved
in the preceding section (Cor. 2.4) for F real quadratic, with the exception of one
particular class of cases, called ]. The point now is that we can prove the case l = 2
without exception, even over an arbitrary totally real field F . Actually the proof
is quite similar in spirit to Sands’ [Sa1] treatment of the relative quadratic case,
adorned with some slight algebraic complications. We do not push for maximum
generality here: certainly other abelian extensions could be treated as well.

Let G′ be the subgroup of order 3 of G and let K0 be the relatively quadratic
subfield of K/F . (This was E in the last section.) The group ring ZZ2[G] contains
two orthogonal idempotents e = NG′ and e′ = 1 − e; we have eZZ2[G] ∼= ZZ2[j]
and e′ZZ2[G] ∼= ZZ2[ζ3][j]. All ZZ2[G]-modules M decompose as M = eM

⊕
e′M .

Actually eM is the part of M belonging to the trivial character of G′, and e′M
belongs to either of the two nontrivial characters. Let A (resp. A0) be the 2-part of
the class group of K (of K0 respectively); let B (resp. B0) be the factor group of A
(A0) modulo the group of ambiguous ideals in the extension K/K+ (resp. K0/F ).
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Since θ(K/F ) maps to a multiple of θ(K0/F ), and since (BS)2 holds for the
relative quadratic extension K0/F by [Sa1], we know right away that A0 = eA (the
group of ideal classes coming from K0) is contained in the subgroup of A of classes
satisfying the (BS)2 property. Thus we need only show the same thing for e′A.
This takes some preparation.

Let d denote the number of finite primes of K+ that ramify in K, and let d0 be
defined accordingly for K0/F . Then the analytic class number formula yields (cf.
[Sa1] Prop. 3.2):

wKθS(K/K+)(K/K+) ∼ 2[K+:QI ]+d−2|B|(1− j),

where ∼ means that the two quantities differ by a unit factor in ZZ2; and a similar
formula results on replacing K by K0, K+ by F , B by B0, and d by d0. (Bibli-
ographical note: the factor wK is erroneously missing in the quoted proposition;
however, it is present, as it should, at the beginning of the proof of Prop. 5.2 1) of
the same paper.) Let ξ be the nontrivial character on {1, j}, and let χ0, χ1, χ2 be
the three odd characters of G, numbered so that χ0 is trivial on G′. We recall our
notational convention that θ(K/F ) = θS(K/F )(K/F ), with S(K/F ) precisely the
set of places that ramify in K/F . We need a lemma:

Lemma 3.1. ξ(θ(K/K+)) = ξ(θ(K0/F )) · χ1(θ(K/F )) · χ2(θ(K/F )).

Proof. From well known inductive properties of L-functions we have

LS(K/K+, ξ, s) = LS(K/F, χ0, s)LS(K/F, χ1, s)LS(K/F, χ2, s)

with S = S(K/F ) throughout. The first factor on the right is LS(K0/F, ξ, s),
and this may be expressed as LS(K0/F )(K0/F, ξ, s) times U , with U =

∏
(1 −

ξ(p)Np−s) and p running over the primes of F that ramify in K but not in K0.
The expression on the left of the = sign is LS(K/K+)(K/K+, ξ, s) times V with
V =

∏
(1− ξ(P)NP−s) and P running over the primes of K+ that are unramified

in K but ramified over F . One sees easily that U = V , which gives, by cancellation:

LS(K/K+)(K/K+, ξ, s) = LS(K0/F )(K0/F, ξ, s)LS(K/F, χ1, s)LS(K/F, χ2, s).

It now suffices to set s = 0 and recall the construction of the Brumer-Stickelberger
elements. �

From Sands’ formula (see above) we get

|B| = wKξ(θ(K/K+) · 2−[K+:QI ]−d+1

(note 1 − j became a factor 2 upon applying ξ), and a similar formula for |B0|.
Since |e′B| = |B|/|B0|, we obtain by division, noting wK = wK0 :

|e′B| = χ1(θ(K/F )) · χ2(θ(K/F )) · 2−[K+:QI ]−d+[F :QI ]+d0 .

Now e′B is a module over the PID R = ZZ2[χ1] = ZZ2[ζ3]. We use α to denote
χ1(θ(K/F )) ∈ R. The exponent of 2 in the last formula is −4 or even more
negative, so |e′B| divides the norm of α/22 from R to ZZ2. This means that α/22

annihilates e′B.
The step from this last statement to the desired statement that every class in

e′A has the BS property is exactly the same as in [Sa1], proof of (5.2) 1). (In our
case, we have more factors of 2 than we actually need.)

We sum up what we have proved here:
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Theorem 3.2. For K/F sextic abelian with F totally real and K totally complex
(automatically CM), (BS)2 holds.

Applying Prop. 1.1, Cor. 1.4, Cor. 2.4, and Theorem 3.2, we finally obtain:

Theorem 3.3. Let K/F be a sextic abelian extension with K totally complex and F
either a real quadratic or a real cubic field. If F is real quadratic, the Brumer-Stark
conjecture holds in full unless K/F falls under case ]. If F is real cubic, abelian
over QI or such that no square of a prime other than 2 or 3 divides its discriminant,
then the Brumer-Stark conjecture holds in full unless K/F falls under case ] or
case [. In all of these cases only (BS)3 remains to be verified.

4. Computations

The Brumer-Stark conjecture has been proved in general when G = Gal(K/F )
is cyclic of order 2 [Ta1] or bicyclic of order 4 [Sa1]. When G is cyclic of order 4
and F is real quadratic, Corollary 1.4 shows that only (BS)2 requires verification.
One reason we directed our efforts towards relative abelian sextic extensions was the
intention of studying a situation where (BS)3 is of paramount importance. Theorem
3.3 delineates for us exactly those extensions over real quadratic or real cubic base
fields where (BS)3 seems most difficult to prove. Our goal in this section is to give a
complete numerical verification of the Brumer-Stark conjecture for a large number
of examples within each of the three families of extensions where Theorem 3.3 falls
short of a complete proof: ] over real quadratic fields, ] over real cubic fields, and
[ over real cubic fields.

Our method of constructing the examples in this section is of interest in it-
self. In each case we start with a real quadratic or real cubic field F satisfying
the conditions in Theorem 3.3. We then need to construct a field K+ that is a
cyclic cubic extension of F (note that K+ is totally real as well) and has restricted
ramification (for example, we only want ramification above the prime 3 with ] ex-
tensions). A particularly attractive way to generate such extensions is offered by a
related conjecture of Stark and we refer to [Co] or [Ro] for a detailed explanation
of this procedure. Even if we generate K+ based upon an unproved conjecture, an
independent check can be made to ensure that a root of the irreducible cubic poly-
nomial in F [x] produced by Stark’s conjecture truly does generate a cyclic cubic
extension K+/F of the desired type. In the ] cases, K is obtained from K+ simply
by adjoining ζ3. We need to be slightly more clever to obtain [ examples but K+

is obtained there as well using Stark’s related conjecture. Given an extension K/F
falling into one of our three categories, we still face the task of computing θS(K/F ).
In every case, S was taken to be the minimal set S(K/F ) which is precisely the set
of primes in F that ramify in K. Throughout this section we simply write θ in place
of θS(K/F )(K/F ). A detailed explanation of how to compute θ over any totally real
base field F was given in [RT] and this method was used in all of our computations.
Further details on our method of verifying the Brumer-Stark conjecture itself may
be found in [RT] as well.

All computations were carried out using the PARI/GP package [PARI].

4.1. The real quadratic case. We generated 534 examples of type ] over real
quadratic fields using the search constraints listed below on F and K+. We have
K = K+(ζ3) in each case.

(1) F is real quadratic,
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(2) K+/F is a cyclic cubic extension,
(3) K+/F is unramified outside 3,
(4) dK+ ≤ 1012,
(5) the minus class number of K is divisible by 3.

Note that if condition (5) does not hold, then (BS)3 follows easily. Of the 534 ex-
tensions K/F satisfying conditions (1)-(5), there are 91 where K is abelian over QI .
When K/QI is abelian, Sands [Sa2] and Hayes [Ha] have proved the (BS) conjecture
for K/F with respect to the Brumer-Stickelberger element θSH = θ ·

∏
(1 − σ−1

p ),
with the product taken over all primes p in F ramified in F/QI but not ramified
in K/F (this product always includes at least one factor in each of the examples
in our family). If all of the additional factors in θSH are 3-adic units in the minus
part of the group ring, then the result of Sands-Hayes applies to prove (BS) with
respect to θ as well and this phenomenon occurred in 44 of our examples. For the
remaining 490 examples, we computationally verified (BS)3 to be true and therefore
the full (BS) conjecture follows.

Proposition 4.1. The Brumer-Stark conjecture is true for all 534 extensions K/F
satisfying conditions (1)-(5) above.

We now give an example of such a verification. Let F = QI (
√

69), let K+ be the
ray class field of conductor 3, and K = K+(ζ3). The extension K/F is a type ]
extension satisfying conditions (1)-(5) above. The field K is generated over QI by
an algebraic integer α satisfying

α12 − 6α11 + 21α10 − 44α9 + 63α8 − 72α7 + 103α6 − 174α5 + 51α4+

192α3 − 63α2 − 180α+ 144 = 0.

Let σ be the generator of Gal(K/F ) defined by

σ(α) =
1

39384
(
805α11 − 3995α10 + 12649α9 − 20944α8 + 23354α7−

18508α6 + 39459α5 − 68889α4 − 68817α3 + 160020α2 + 14454α− 121896
)
.

The element θ was computed to be equal to

θ =
1
3

(4 + 2σ − 2σ2 − 4σ3 − 2σ4 + 2σ5).

The class group of K is of order 3 and K+ is a class number one field. The following
ideal is a generator of ClK :

a = 2OK + (1 + α4 + α5 + α8)OK .
We computed a3θ and its class in the class group. We found that it is principal and
generated by

z =
1

256
(
− 289089 + 234063α− 529186α2 − 807811α3 − 35091α4 + 125033α5−

222916α6 − 47864α7 + 38987α8 − 106532α9 + 55649α10 − 602512α11
)
.

We now look for a generator of a3θ that is also an anti-unit. It is not necessary
to find a generator that is also an anti-unit in order to prove (BS)3 by the remark
preceding Prop. 1.1. But since this gives a neat way to find also a generator which
is 3-abelian (if (BS)3 is true!), this seems to be the easiest way to proceed from
a computational point of view. Here, it turns out that the generator z is actually
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already an anti-unit (this was also true in almost all examples; this can be explained
by the fact that PARI tries to return a generator as “small” as possible). Finally,
K(z1/3) is abelian over F if and only if zN−σ is a cube in K, where N is an integer
such that σ(ζ3) = ζN3 ; in this setting, it is easy to see that one can always take
N = −1. We find

z−1−σ =
[ 1

630144
(
− 15453α11 + 73560α10 − 240326α9 + 414447α8−

568768α7 + 595508α6 − 1125963α5 + 1585780α4 + 586818α3−

1319271α2 − 654420α+ 1880208
)]3

,

and therefore (BS)3 is true for this extension.

Listed below is a table of the structure of the minus 3-class groups occurring in
the 490 examples we computationally verified. Each entry consists of two parts.
The first part gives the invariant factor decomposition of an abelian group A in the
form n1, . . . , nr where 3 | nj for all j and nj+1 | nj for 1 ≤ j < r. The group A has
structure Cn1 × · · · × Cnr , where Cn denotes the cyclic group of n elements. The
second part gives the number of minus 3-class groups isomorphic to A.

3 258
9 79
27 10
3, 3 33
9, 3 76

9, 9 2
27, 9 5
9, 3, 3 20
27, 3, 3 4
27, 9, 3 3

Remark: For F real quadratic and p = 5, case ] is only possible if F = QI (
√

5)
and E = QI (ζ5) since E/F must be a quadratic extension. To be in case ] means
that K+/F is cyclic of degree 5 and unramified outside 5. A short calculation in
local class field theory shows that K+ is then uniquely determined: it is the degree
10 field over QI of conductor 25. The field K = QI (ζ25) has class number one and
thus the full (BS) conjecture is true for K/F by [Ta1].

4.2. The real cubic case. In this subsection we consider both type ] and [ ex-
tensions over real cubic fields. For ] type extensions, we proceed similarly to the
real quadratic case and consider all extensions K/F with K = K+(ζ3), and F and
K+ satisfying the following constraints:

(1) F is real cubic,
(2) F/QI abelian or (q prime and q2 | dF ⇒ q = 2 or 3),
(3) K+/F is cyclic cubic,
(4) K+/F is unramified outside 3,
(5) dK+ ≤ 1015,
(6) the minus class number of K is divisible by 3.

Condition (2) is necessary to ensure that Theorem 3.3 applies and condition (4)
ensures that K/F is a type ] extension. There are 114 extensions satisfying these
conditions and 15 of these are such that K is abelian over QI . The result of Sands-
Hayes ([Sa2], [Ha]) did not apply in any of these abelian cases to prove the (BS)
conjecture with respect to θ and therefore we computationally verified (BS)3 in all
114 examples using the same method as in the real quadratic case.
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Proposition 4.2. The Brumer-Stark conjecture is true for all 114 extensions K/F
satisfying conditions (1)-(6) above.

The following table gives the structure of the minus 3-class groups of these 114
fields:

3 47
9 11
27 1
3, 3 19
9, 3 22

9, 9 5
3, 3, 3 4
9, 3, 3 2
9, 9, 3 3

In order to construct type [ extensions, we use the following tactic. Assume that
the discriminant of F has the form dF = 3dh2 with d, h ≥ 1, d square-free and
3 - d (F is not abelian over QI since dF is not a square). Set E = F (

√
−d), and let

K+ be a (totally real) cyclic cubic extension of F such that all the primes ramified
in K+/F are either ramified or inert in E/F . Now, let K = K+E = K+(

√
−d).

It is clear that ζ3 6∈ K, but since Ecl = F (
√
−d,
√
dF ) = F (

√
−d,
√
−3) ⊂ Kcl,

we see that ζ3 ∈ Kcl and actually Kcl = (Kcl)+(ζ3). Therefore K/F is a type [
extension. Finally, in order to ensure that Theorem 3.3 applies we must restrict
the allowed values of h to 1, 2, 3, 6, 9, or 18 (23 and 35 are the highest powers of 2
and 3 respectively that can divide dF ). We thus consider all extensions K/F with
F , K+, and K satisfying the following constraints:

(1) F is real cubic,
(2) dF = 3dh2 with d square-free, 3 - d, and h = 1, 2, 3, 6, 9, or 18,
(3) K+/F is cyclic cubic,
(4) p ramified in K+/F ⇒ p ramified or inert in F (

√
−d)/F ,

(5) dK+ ≤ 1015,
(6) the minus class number of K = K+(

√
−d) is divisible by 3.

There are 145 such extensions. For each of these we have computationally proved
(BS)3. However, we did not verify (BS)3 directly. Indeed, the way these extensions
are constructed implies that the discriminants of the fields K are much larger
than the ones we found for ] type extensions over real cubic fields (the average
discriminant of K in our [ examples is about 1040 as compared with about 1032 for
the ] examples). Finding generators of the ideals awKθ in the [ case would require a
tremendous amount of computer work. Fortunately, we can take advantage of the
fact that ζ3 6∈ K and deduce from Prop. 1.2 that (BS)3 is equivalent to (B)3 which
is a lot easier to check computationally.

Proposition 4.3. The Brumer-Stark conjecture is true for all 145 extensions K/F
satisfying conditions (1)-(6) above.

We now give an example of how (B)3 was checked in this setting. Let F = QI (β)
with β3− 15β− 11 = 0 and dF = 33 · 379. If K+ is the ray class field modulo 3 and
K = K+(

√
−379), then K/F is a type [ extension satisfying the conditions above.

The field K is generated over QI by an algebraic integer α satisfying

α18 − 18α16 − 27α15 + 135α14 + 108α13 + 345α12 + 243α11 + 7065α10−
26730α9 + 47304α8 − 183465α7 + 212529α6 − 337041α5+

1982187α4 − 319113α3 + 4234869α2 − 1074978α+ 2138797 = 0.
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Let σ be the generator of Gal(K/F ) defined by

σ(α) =
1

25642504251998015091363136823852538505350

(
− 25269652050923497929212771120026077α

17
+

40102332900383807248126529375112654α
16

+ 472143852594195097517708119595806967α
15−

40556171859845878461143042418164629α
14 − 4879316343979543590590886861288093147α

13
+

2143997949648729840779430938111638246α
12 − 472973717538113819727856636934455350α

11
+

12874314031468850703781916134606295925α
10 − 175034778726883761526482554920769518064α

9
+

937707788369275078182681363965190126961α
8 − 2147256501457017200394102724004023763715α

7
+

6063904950213330802965554608991729941733α
6 − 12246526239717823142768415853103938661601α

5
+

14923188674625299628566095708659108616482α
4 − 60032163251501835275377729140669965121226α

3
+

86713900497115826322509607741480020610254α
2 − 84338008294198391998255893276165939205806α+

136920780019591940272486568579277920858014
)
.

We computed θ to be equal to

θ = 60− 60σ − 84σ2 − 60σ3 + 60σ4 + 84σ5 = 12
(
1− σ3

)(
5− 5σ − 7σ2

)
.

The field K+ has class number one and the minus 3-class group of K is isomor-
phic to C27 × C9 × C3. Each cyclic component is generated respectively by the
classes of the ideals a1, a2 and a3 where

a1 = 1346743OK +
(
α17 + 113401α16 + 164111α15 − 6120α14 + 60471α13+

192014α12 + 588905α11 + 301501α10 + 227250α9 + 176104α8−

486356α7 + 187668α6 + 392157α5 + 2273α4 − 544623α3+

334792α2 + 485257α+ 14022
)
OK ,

a2 = 21701161OK +
(
α17 + 5967947α16 + 6035814α15 + 901785α14+

5050230α13 − 2257687α12 + 5599077α11 + 10036919α10 + 3808177α9+

9283078α8 − 797894α7 − 5933662α6 + 595599α5 − 9968717α4 + 4645261α3−

267451α2 − 5650796α+ 2159654
)
OK ,

a3 = 31538539OK +
(
α17 + 11072706α16 + 7219250α15 − 9719308α14−

14233721α13 − 11309241α12 + 9919126α11 + 13593987α10 − 1474838α9+

3019847α8 + 13482312α7 + 2534813α6 + 5113039α5 + 4458431α4−

14063623α3 − 864926α2 + 8475998α+ 1373957
)
.

We use the notation (b) to denote the class in the minus class group of the ideal b.
Since ζ3 6∈ K, the annihilator of µK{3} is I3 = ZZ[G], so to verify the conjecture, it
suffices to prove that aθi is principal for i = 1, 2, 3. We use the factorized form of θ
to simplify the computations. Since a3 is of order 3, we have that a12

3 , hence aθ3, is
principal. The factor 1 − σ3 won’t contribute to the annihilation. Indeed, σ3 acts
as complex conjugation and K+ is a class number one field so that (bσ

3
) = (b)−1.

Therefore (b1−σ3
) = (b)2 and 1 − σ3 induces an isomorphism of the minus 3-class

group. We now look at the action of the factor 5− 5σ − 7σ2:(
a5−5σ−7σ2

1

)
= (a3

2 · a2
3),(

a5−5σ−7σ2

2

)
= (a6

2),
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so a
12(5−5σ−7σ2)
1 and a

12(5−5σ−7σ2)
2 are both principal, and hence so are aθ1 and aθ2.

Thus (B)3, and therefore (BS)3, is true for the extension K/F .

The following table gives the structure of the minus 3-class groups of these 145
fields.

9 64
27 15
9, 3 8
9, 9 9
27, 3 14
27, 9 5

27, 27 1
81, 3 3
81, 9 4
243, 3 1
3, 3, 3 5
27, 3, 3 4
27, 9, 3 5

81, 3, 3 1
9, 3, 3, 3 1
27, 9, 3, 3 1
27, 9, 9, 3 2
81, 9, 3, 3 1
81, 27, 3, 3 1
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