Computation of values of p-adic Dirichlet L-functions using PARI/GP

Xavier-François Roblot
IGD, Université Claude Bernard - Lyon 1

September 14th, 2004

Let $f \geq 2$ and let $a, c \in \mathbb{N}$ such that $(a, f)=(c, f)=1$ and $c>1$.
For $s \in \mathbb{C}$ with $\Re(s)>1$, set
$Z_{f}(a, s):=\sum_{n \equiv a(f)} n^{-s}$ and $Z_{f}(a, c, s):=c^{1-s} Z_{f}\left(a c^{-1}, s\right)-Z_{f}(a, s)$.

Both functions have continuations to \mathbb{C}, with a single pole at $s=1$ for the first one, and no pole for the second one.

Let $f \geq 2$ and let $a, c \in \mathbb{N}$ such that $(a, f)=(c, f)=1$ and $c>1$.
For $s \in \mathbb{C}$ with $\Re(s)>1$, set
$Z_{f}(a, s):=\sum_{n \equiv a(f)} n^{-s}$ and $Z_{f}(a, c, s):=c^{1-s} Z_{f}\left(a c^{-1}, s\right)-Z_{f}(a, s)$.

Both functions have continuations to \mathbb{C}, with a single pole at $s=1$ for the first one, and no pole for the second one.
a multiple of δ and let c be such that $\chi(c) \neq 1$. Then we have

Let $f \geq 2$ and let $a, c \in \mathbb{N}$ such that $(a, f)=(c, f)=1$ and $c>1$.
For $s \in \mathbb{C}$ with $\Re(s)>1$, set
$Z_{f}(a, s):=\sum_{n \equiv a(f)} n^{-s}$ and $Z_{f}(a, c, s):=c^{1-s} Z_{f}\left(a c^{-1}, s\right)-Z_{f}(a, s)$.

Both functions have continuations to \mathbb{C}, with a single pole at $s=1$ for the first one, and no pole for the second one.

Let χ be a non-trivial Dirichlet character of conductor δ. Let f be a multiple of δ and let c be such that $\chi(c) \neq 1$. Then we have

$$
\sum_{\substack{a=1 \\(a, f)=1}}^{f-1} \chi(a) Z_{f}(a, c, s)=\left(c^{1-s} \chi(c)-1\right) \prod_{\ell \mid f}\left(1-\chi(\ell) \ell^{-s}\right) L(\chi, s)
$$

Lemma

For $r \in \mathbb{Q}$, set $\xi_{r}:=\exp (2 i \pi r)$. Then

$$
Z_{f}(a, c, s)=\sum_{i=1}^{c-1} \sum_{n \equiv a(f)} \xi_{n / c}^{i} n^{-s}
$$

Let η be a root of unity such that $\eta^{f} \neq 1$. Define

then the lemma can restated as

Lemma

For $r \in \mathbb{Q}$, set $\xi_{r}:=\exp (2 i \pi r)$. Then

$$
Z_{f}(a, c, s)=\sum_{i=1}^{c-1} \sum_{n \equiv a(f)} \xi_{n / c}^{i} n^{-s}
$$

Let η be a root of unity such that $\eta^{f} \neq 1$. Define

$$
Z_{f}(a, \eta, s):=\sum_{n \equiv a(f)} \eta^{n} n^{-s}
$$

then the lemma can restated as

$$
Z_{f}(a, c, s)=\sum_{i=1}^{c-1} Z_{f}\left(a, \xi_{i / c}, s\right)
$$

Define the following power series in T

$$
F_{f, a, \eta}(T):=\frac{\eta^{a}(1+T)^{a}}{1-\eta^{f}(1+T)^{f}}
$$

and the operator Δ on power series by

$$
\Delta:=(1+T) \frac{d}{d T} .
$$

Theorem

For any $k \geq 0$, we have

$$
Z_{f}(a, \eta,-k)=\Delta^{k} F_{f, a, \eta}(T)
$$

Define the following power series in T

$$
F_{f, a, \eta}(T):=\frac{\eta^{a}(1+T)^{a}}{1-\eta^{f}(1+T)^{f}}
$$

and the operator Δ on power series by

$$
\Delta:=(1+T) \frac{d}{d T} .
$$

Theorem

For any $k \geq 0$, we have

$$
Z_{f}(a, \eta,-k)=\Delta^{k} F_{f, a, \eta}(T)_{\left.\right|_{T=0}} .
$$

Theorem

For any $k \geq 0$, we have

$$
Z_{f}(a, \eta,-k)=\Delta^{k} F_{f, a, \eta}(T)_{\left.\right|_{T=0}} .
$$

False proof. Expand the power series $F_{f, a, \eta}$ in terms of $(1+T)$ (which of course is not possible)

Then we have

Theorem

For any $k \geq 0$, we have

$$
Z_{f}(a, \eta,-k)=\Delta^{k} F_{f, a, \eta}(T)_{\left.\right|_{T=0}} .
$$

False proof. Expand the power series $F_{f, a, \eta}$ in terms of $(1+T)$ (which of course is not possible)

$$
F_{f, a, \eta}(T)=\eta^{a}(1+T)^{a} \sum_{n \geq 0} \eta^{n f}(1+T)^{n f}=\sum_{n \equiv a(f)} \eta^{n}(1+T)^{n}
$$

Then we have

$$
\Delta^{k} F_{f, a, \eta}(T)=\sum_{n \equiv a(f)} \eta^{n} n^{k}(1+T)^{n}
$$

and so

$$
\Delta^{k} F_{f, a, \eta}(T)_{\left.\right|_{T=0}}=\sum_{n \equiv a(f)} \eta^{n} n^{k}=Z_{f}(a, \eta,-k)
$$

A measure μ is a linear form on $\mathcal{C}:=\mathcal{C}\left(\mathbb{Z}_{p}, \mathbb{C}_{p}\right)$ such that there exists $B>0$ with

$$
|\mu(f)| \leq B|f|
$$

where $|f|=\sup _{x \in \mathbb{Z}_{p}}|f(x)|$. We write $\int f d \mu:=\mu(f)$.
with $\left(a_{n}\right) \subset \mathbb{C}_{p}$. Furthermore $\lim a_{n}=0$.

A measure μ is a linear form on $\mathcal{C}:=\mathcal{C}\left(\mathbb{Z}_{p}, \mathbb{C}_{p}\right)$ such that there exists $B>0$ with

$$
|\mu(f)| \leq B|f|
$$

where $|f|=\sup _{x \in \mathbb{Z}_{p}}|f(x)|$. We write $\int f d \mu:=\mu(f)$.
Any function $f \in \mathcal{C}$ has a unique Mahler expansion

$$
f(x)=\sum_{n \geq 0} a_{n}\binom{x}{n}
$$

with $\left(a_{n}\right) \subset \mathbb{C}_{p}$. Furthermore $\lim a_{n}=0$.

Furthermore, if μ is a measure

Any function $f \in \mathcal{C}$ has a unique Mahler expansion

$$
f(x)=\sum_{n \geq 0} a_{n}\binom{x}{n}
$$

with $\left(a_{n}\right) \subset \mathbb{C}_{p}$. Furthermore $\lim a_{n}=0$.

Theorem
A linear form μ on C is a measure iff there exits $B>0$ such that for all $n \geq 0$

Furthermore, if μ is a measure

Any function $f \in \mathcal{C}$ has a unique Mahler expansion

$$
f(x)=\sum_{n \geq 0} a_{n}\binom{x}{n}
$$

with $\left(a_{n}\right) \subset \mathbb{C}_{p}$. Furthermore $\lim a_{n}=0$.

Theorem

A linear form μ on \mathcal{C} is a measure iff there exits $B>0$ such that for all $n \geq 0$

$$
\left|\int\binom{x}{n} d \mu(x)\right| \leq B .
$$

Furthermore, if μ is a measure

$$
\int f d \mu=\sum_{n \geq 0} a_{n} \int\binom{x}{n} d \mu(x)
$$

Measures on \mathcal{C} and power series in $\mathbb{C}_{p}[[T]]^{\text {bd }}$ are in 1-to-1 correspondance by the formula

$$
F_{\mu}(T):=\int(1+T)^{x} d \mu(x)=\sum_{n \geq 0} \int\binom{x}{n} d \mu \cdot T^{n}
$$

Recall that $\Delta:=(1+T) \frac{d}{d T}$.

Theorem

Measures on \mathcal{C} and power series in $\mathbb{C}_{p}[[T]]^{\text {bd }}$ are in 1-to-1 correspondance by the formula

$$
F_{\mu}(T):=\int(1+T)^{x} d \mu(x)=\sum_{n \geq 0} \int\binom{x}{n} d \mu \cdot T^{n}
$$

Recall that $\Delta:=(1+T) \frac{d}{d T}$.

Theorem

For all $k \geq 0$

$$
\Delta^{k} F_{\mu}(T)_{\left.\right|_{T=0}}=\int x^{k} d \mu(x)
$$

Embed $\overline{\mathbb{Q}} \subset \mathbb{C}_{p}$, then

$$
F_{f, a, c}(T):=\sum_{i=1}^{c-1} F_{f, a, \xi_{i / c}}(T) \in \mathbb{C}_{p}[[T]]^{b d}
$$

Call $\mu_{f, a, c}$ the measure associated to $F_{f, a, c}$. Then

Theorem

For all $k \geq 0$, we have

Embed $\overline{\mathbb{Q}} \subset \mathbb{C}_{p}$, then

$$
F_{f, a, c}(T):=\sum_{i=1}^{c-1} F_{f, a, \xi_{i / c}}(T) \in \mathbb{C}_{p}[[T]]^{b d}
$$

Call $\mu_{f, a, c}$ the measure associated to $F_{f, a, c}$. Then

Theorem

For all $k \geq 0$, we have

$$
\int x^{k} d \mu_{f, a, c}(x)=Z_{f}(a, c,-k)
$$

Recall that $\mathbb{Z}_{p}^{\times}:=\mathbb{Z}_{p} \backslash p \mathbb{Z}_{p}$ splits as $\mathbb{Z}_{p}^{\times}=W_{p} \times \mathcal{U}_{p}$ with W_{p} the torsion part and $\mathcal{U}_{p}=1+q \mathbb{Z}_{p}$. For $x \in \mathbb{Z}_{p}^{\times}$, write $\omega(x)$ (resp. $\left.\langle x\rangle\right)$ the projection of x onto $W_{p}\left(\right.$ resp. $\left.\mathcal{U}_{p}\right)$.

Fix $s \in \mathbb{Z}_{p}$ and $m \in \mathbb{Z}$, then the function

is continuous. The function is extended to \mathbb{Z}_{p} by setting

Recall that $\mathbb{Z}_{p}^{\times}:=\mathbb{Z}_{p} \backslash p \mathbb{Z}_{p}$ splits as $\mathbb{Z}_{p}^{\times}=W_{p} \times \mathcal{U}_{p}$ with W_{p} the torsion part and $\mathcal{U}_{p}=1+q \mathbb{Z}_{p}$. For $x \in \mathbb{Z}_{p}^{\times}$, write $\omega(x)$ (resp. $\langle x\rangle$) the projection of x onto W_{p} (resp. \mathcal{U}_{p}).

Fix $s \in \mathbb{Z}_{p}$ and $m \in \mathbb{Z}$, then the function

$$
\begin{aligned}
\varphi_{s}^{(m)}: \mathbb{Z}_{p}^{\times} & \rightarrow \mathbb{Z}_{p} \\
x & \mapsto \omega(x)^{m}\langle x\rangle^{-s}
\end{aligned}
$$

is continuous. The function is extended to \mathbb{Z}_{p} by setting $\varphi_{s}^{(m)}(x):=0$ for $x \in p \mathbb{Z}_{p}$. The function $\varphi_{s}^{(m)}$ will serve as the " p-adic analogue" of x^{-s}.

The p-adic twisted partial zeta function (with character ω^{m}) is defined for $s \in \mathbb{Z}_{p}$ by

$$
Z_{f, p}^{(m)}(a, c, s):=\int \varphi_{s}^{(m)}(x) d \mu_{f, a, c}(x)
$$

This is a continous function on \mathbb{Z}_{p} that depends only upon the class of m modulo $\phi(q)$.

The function

$$
Z_{f, p}(a, c, s):=Z_{f, p}^{(-1)}(a, c, s)
$$

is the p-adic twisted partial zeta function.

The p-adic twisted partial zeta function (with character ω^{m}) is defined for $s \in \mathbb{Z}_{p}$ by

$$
Z_{f, p}^{(m)}(a, c, s):=\int \varphi_{s}^{(m)}(x) d \mu_{f, a, c}(x)
$$

This is a continous function on \mathbb{Z}_{p} that depends only upon the class of m modulo $\phi(q)$.

The function

$$
Z_{f, p}(a, c, s):=Z_{f, p}^{(-1)}(a, c, s)
$$

is the p-adic twisted partial zeta function.
Theorem
Assume p divides f. Then for all $k \geq 0$ with $k \equiv-1(\bmod \phi(q))$

The p-adic twisted partial zeta function (with character ω^{m}) is defined for $s \in \mathbb{Z}_{p}$ by

$$
Z_{f, p}^{(m)}(a, c, s):=\int \varphi_{s}^{(m)}(x) d \mu_{f, a, c}(x) .
$$

This is a continous function on \mathbb{Z}_{p} that depends only upon the class of m modulo $\phi(q)$.

The function

$$
Z_{f, p}(a, c, s):=Z_{f, p}^{(-1)}(a, c, s)
$$

is the p-adic twisted partial zeta function.

Theorem

Assume p divides f. Then for all $k \geq 0$ with $k \equiv-1(\bmod \phi(q))$

$$
Z_{f, p}(a, c,-k)=Z_{f}(a, c,-k)
$$

Let $s \in \mathbb{Z}_{p}$. Write

$$
\varphi_{s}^{(-1)}(x)=\sum_{n \geq 0} \phi_{n}\binom{x}{n}
$$

and

$$
F_{f, a, c}(T)=\sum_{n \geq 0} f_{n} T^{n}
$$

Let $s \in \mathbb{Z}_{p}$. Write

$$
\varphi_{s}^{(-1)}(x)=\sum_{n \geq 0} \phi_{n}\binom{x}{n}
$$

and

$$
F_{f, a, c}(T)=\sum_{n \geq 0} f_{n} T^{n}
$$

Then

$$
Z_{f, p}(a, c, s)=\int \varphi_{s}^{(-1)}(x) d \mu_{f, a, c}(x)=\sum_{n \geq 0} \phi_{n} f_{n}
$$

Let χ be a character of conductor δ, and let $s \in \mathbb{Z}_{p}$. We want to compute $L_{p}(s, \chi)$ up to a given precision.

Types: p-adic numbers will be represented by p-adic numbers and

 power series by power seriesLet χ be a character of conductor δ, and let $s \in \mathbb{Z}_{p}$. We want to compute $L_{p}(s, \chi)$ up to a given precision.

Types: p-adic numbers will be represented by p-adic numbers and power series by power series

For simplicity, assume from now on that $p \neq 2$ and that $s=k$ is

Let χ be a character of conductor δ, and let $s \in \mathbb{Z}_{p}$. We want to compute $L_{p}(s, \chi)$ up to a given precision.

Types: p-adic numbers will be represented by p-adic numbers and power series by power series

For simplicity, assume from now on that $p \neq 2$ and that $s=k$ is an integer.

Code: initialization of the roots of unity

```
p1= x^(p-1)-1;
n2 = vector(n-1, j x - j);
p1=polhensellift(p1, p2, p, precp);
return(vector(p-1,j, -polcoeff(p1[j], 0)
+O(D^precp))):
```


Call vp the vector returned by the previous function.

Code: computation of $\omega(x)$

return

Code: initialization of the roots of unity

$\mathrm{p} 1=\mathrm{x}^{\wedge}(\mathrm{p}-1)-1$;
$\mathrm{p} 2=\operatorname{vector}(\mathrm{p}-1, \mathrm{j}, \mathrm{x}-\mathrm{j})$;
$\mathrm{p} 1=\mathrm{polhensellift}(\mathrm{p} 1, \mathrm{p} 2, \mathrm{p}, \mathrm{precp})$;
return(vector (p - 1, j, -polcoeff(p1[j], 0) $+O\left(p^{\wedge}\right.$ precp $\left.)\right)$)

Call vp the vector returned by the previous function Code: computation of (x)
return

Code: initialization of the roots of unity

$\mathrm{p} 1=\mathrm{x}^{\wedge}(\mathrm{p}-1)-1$;
$\mathrm{p} 2=\operatorname{vector}(\mathrm{p}-1, \mathrm{j}, \mathrm{x}-\mathrm{j})$;
p1 = polhensellift (p1, p2, p, precp);
return(vector (p - 1, j, -polcoeff(p1[j], 0) $+O\left(p^{\wedge}\right.$ precp $\left.)\right)$)

Call vp the vector returned by the previous function.

Code: computation of $\omega(x)$

return (vp[$\mathrm{x} \% \mathrm{p}]$);

Call teichm (x) the function computing $\omega(x)$ assuming $x \in \mathbb{Z}_{p}^{\times}$. Recall that

$$
\varphi_{k}^{(m)}(x):= \begin{cases}0 & \text { if } x \in p \mathbb{Z}_{p} \\ \omega(x)^{m}\langle x\rangle^{-k} & \text { otherwise }\end{cases}
$$

Code: computation of $\varphi_{k}^{(m)}(x)$

Call teichm (x) the function computing $\omega(x)$ assuming $x \in \mathbb{Z}_{p}^{\times}$. Recall that

$$
\varphi_{k}^{(m)}(x):= \begin{cases}0 & \text { if } x \in p \mathbb{Z}_{p} \\ \omega(x)^{m}\langle x\rangle^{-k} & \text { otherwise }\end{cases}
$$

Code: computation of $\varphi_{k}^{(m)}(x)$
if $(x \% p=0$, return (0));
$\mathrm{p} 1=$ teichm $(x)^{\wedge}(k+m)$;
$\mathrm{p} 2=\mathrm{x}^{\wedge}(-\mathrm{k})$;
return ($\mathrm{p} 1 * \mathrm{p} 2$) ;

Recall that

$$
\varphi_{k}^{(m)}(x)=\sum_{n \geq 0} \phi_{n}\binom{x}{n}
$$

Now, if $A \in \mathbb{N}$, then we have $\binom{A}{n}=0$ for all $n>A$.

Code: computation of $\varphi_{0}, \ldots, \phi_{N-1}$

Recall that

$$
\varphi_{k}^{(m)}(x)=\sum_{n \geq 0} \phi_{n}\binom{x}{n}
$$

Now, if $A \in \mathbb{N}$, then we have $\binom{A}{n}=0$ for all $n>A$.
Code: computation of $\phi_{0}, \ldots, \phi_{N-1}$
$v=\operatorname{vector}(N)$;
for $(A=1, N$,
val $=$ phi_k(A, $k, m)$;
$v[A]=\operatorname{val}-\operatorname{sum}(j=1, A-1$,
binomial (A, j) $*$ v[j])
);
return (v);

Let e be a root of unity of order c, recall that

$$
F_{f, a, \mathrm{e}}(T):=\frac{\mathrm{e}^{\mathrm{a}}(1+T)^{a}}{1-\mathrm{e}^{f}(1+T)^{f}}
$$

Code: Compute $F_{f, a, \eta}$

Let e be a root of unity of order c, recall that

$$
F_{f, a, \mathrm{e}}(T):=\frac{\mathrm{e}^{\mathrm{a}}(1+T)^{a}}{1-\mathrm{e}^{f}(1+T)^{f}}
$$

Code: Compute $F_{f, a, \eta}$

```
mon = (1 + O(p^precp ))*(1 + X + O(X^precX ));
den = 1 - e^f*mon^f;
num = e^a*mon^a;
return (num/den);
```


Recall that

$$
F_{f, a, c}(T):=\sum_{i=1}^{c-1} F_{f, a, \xi_{i / c}}(T)=\sum_{i=1}^{c-1} F_{f, a, \xi^{i}}(T)
$$

where ξ is any primitive c-th root of unity.

Code: "formal" c-th root of unity

Code: compute $F_{f, a, c}$

Recall that

$$
F_{f, a, c}(T):=\sum_{i=1}^{c-1} F_{f, a, \xi_{i / c}}(T)=\sum_{i=1}^{c-1} F_{f, a, \xi^{i}}(T)
$$

where ξ is any primitive c-th root of unity.

Code: "formal" c-th root of unity

$e=\operatorname{Mod}\left(y,\left(y^{\wedge} c-1\right) /(y-1)\right) ;$

Code: compute $F_{f, a, c}$
$F=$ computeF_eta (N, f, e, a);
return (trace(F));

Take $f=\operatorname{lcm}(p, \delta)$, and let c be such that $\chi(c) \neq 1$. Recall that

$$
\sum_{\substack{a=1 \\(a, f)=1}}^{f-1} \chi(a) Z_{f}(a, c, s)=\left(c^{1-s} \chi(c)-1\right)\left(1-\chi(p) p^{-s}\right) L(\chi, s)
$$

The corresponding p-adic L-function is defined by

Take $f=\operatorname{lcm}(p, \delta)$, and let c be such that $\chi(c) \neq 1$. Recall that

$$
\sum_{\substack{a=1 \\(a, f)=1}}^{f-1} \chi(a) Z_{f}(a, c, s)=\left(c^{1-s} \chi(c)-1\right)\left(1-\chi(p) p^{-s}\right) L(\chi, s)
$$

The corresponding p-adic L-function is defined by

$$
L_{p}(\chi, s):=\left(c \varphi_{s}^{(-1)}(c) \chi(c)-1\right)^{-1} \sum_{\substack{a=1 \\(a, f)=1}}^{f-1} \chi(a) Z_{f, p}(a, c, s)
$$

