Computation of values of *p*-adic Dirichlet *L*-functions using PARI/GP

Xavier-François Roblot

IGD, Université Claude Bernard – Lyon 1

September 14th, 2004

Let $f \geq 2$ and let $a, c \in \mathbb{N}$ such that (a, f) = (c, f) = 1 and c > 1. For $s \in \mathbb{C}$ with $\Re(s) > 1$, set

$$Z_f(a,s) := \sum_{n \equiv a(f)} n^{-s} \text{ and } Z_f(a,c,s) := c^{1-s} Z_f(ac^{-1},s) - Z_f(a,s).$$

Both functions have continuations to \mathbb{C} , with a single pole at s=1 for the first one, and no pole for the second one.

Let χ be a non-trivial Dirichlet character of conductor δ . Let f be a multiple of δ and let c be such that $\chi(c) \neq 1$. Then we have

$$\sum_{\substack{a=1\\a,f\}=1}}^{f-1} \chi(a) Z_f(a,c,s) = \left(c^{1-s} \chi(c) - 1\right) \prod_{\ell \mid f} (1 - \chi(\ell) \ell^{-s}) L(\chi,s).$$

Let $f \geq 2$ and let $a, c \in \mathbb{N}$ such that (a, f) = (c, f) = 1 and c > 1. For $s \in \mathbb{C}$ with $\Re(s) > 1$, set

$$Z_f(a,s) := \sum_{n \equiv a(f)} n^{-s} \text{ and } Z_f(a,c,s) := c^{1-s} Z_f(ac^{-1},s) - Z_f(a,s).$$

Both functions have continuations to \mathbb{C} , with a single pole at s=1 for the first one, and no pole for the second one.

Let χ be a non-trivial Dirichlet character of conductor δ . Let f be a multiple of δ and let c be such that $\chi(c) \neq 1$. Then we have

$$\sum_{\substack{a=1\\a,f)=1}}^{f-1} \chi(a) Z_f(a,c,s) = \left(c^{1-s} \chi(c) - 1\right) \prod_{\ell \mid f} (1 - \chi(\ell) \ell^{-s}) L(\chi,s).$$

Let $f \geq 2$ and let $a, c \in \mathbb{N}$ such that (a, f) = (c, f) = 1 and c > 1. For $s \in \mathbb{C}$ with $\Re(s) > 1$, set

$$Z_f(a,s) := \sum_{n \equiv a(f)} n^{-s} \text{ and } Z_f(a,c,s) := c^{1-s} Z_f(ac^{-1},s) - Z_f(a,s).$$

Both functions have continuations to \mathbb{C} , with a single pole at s=1 for the first one, and no pole for the second one.

Let χ be a non-trivial Dirichlet character of conductor δ . Let f be a multiple of δ and let c be such that $\chi(c) \neq 1$. Then we have

$$\sum_{\substack{a=1 \ (a,f)=1}}^{f-1} \chi(a) Z_f(a,c,s) = \left(c^{1-s} \chi(c) - 1\right) \prod_{\ell \mid f} (1 - \chi(\ell) \ell^{-s}) L(\chi,s).$$

Lemma

For $r \in \mathbb{Q}$, set $\xi_r := \exp(2i\pi r)$. Then

$$Z_f(a,c,s) = \sum_{i=1}^{c-1} \sum_{n \equiv a(f)} \xi_{n/c}^i \, n^{-s}.$$

Let η be a root of unity such that $\eta^f \neq 1$. Define

$$Z_f(a,\eta,s) := \sum_{n \equiv a(f)} \eta^n n^{-s},$$

then the lemma can restated as

$$Z_f(a,c,s) = \sum_{i=1}^{c-1} Z_f(a,\xi_{i/c},s).$$

Lemma

For $r \in \mathbb{Q}$, set $\xi_r := \exp(2i\pi r)$. Then

$$Z_f(a,c,s) = \sum_{i=1}^{c-1} \sum_{n\equiv a(f)} \xi_{n/c}^i \, n^{-s}.$$

Let η be a root of unity such that $\eta^f \neq 1$. Define

$$Z_f(a,\eta,s) := \sum_{n \equiv a(f)} \eta^n n^{-s},$$

then the lemma can restated as

$$Z_f(a,c,s) = \sum_{i=1}^{c-1} Z_f(a,\xi_{i/c},s).$$

Define the following power series in T

$$F_{f,a,\eta}(T):=rac{\eta^a(1+T)^a}{1-\eta^f(1+T)^f}$$

and the operator Δ on power series by

$$\Delta := (1+T)\frac{d}{dT}.$$

Theorem

For any $k \geq 0$, we have

$$Z_f(a,\eta,-k) = \Delta^k F_{f,a,\eta}(T)|_{T=0}$$

False proof. Expand the power series $F_{f,a,\eta}$ in terms of (1+T) (which of course is not possible)

$$F_{f,a,\eta}(T) = \eta^a (1+T)^a \sum_{n\geq 0} \eta^{nf} (1+T)^{nf} = \sum_{n\equiv a(f)} \eta^n (1+T)^n$$

Then we have

Define the following power series in T

$$F_{f,a,\eta}(T):=rac{\eta^a(1+T)^a}{1-\eta^f(1+T)^f}$$

and the operator Δ on power series by

$$\Delta := (1+T)\frac{d}{dT}.$$

Theorem

For any $k \ge 0$, we have

$$Z_f(a,\eta,-k) = \Delta^k F_{f,a,\eta}(T)|_{T=0}.$$

False proof. Expand the power series $F_{f,a,\eta}$ in terms of (1+T) (which of course is not possible)

$$F_{f,a,\eta}(T) = \eta^a (1+T)^a \sum_{n\geq 0} \eta^{nf} (1+T)^{nf} = \sum_{n\equiv a(f)} \eta^n (1+T)^n$$

Then we have

Theorem

For any $k \ge 0$, we have

$$Z_f(a,\eta,-k)=\Delta^k F_{f,a,\eta}(T)_{|_{T=0}}.$$

False proof. Expand the power series $F_{f,a,\eta}$ in terms of (1+T) (which of course is not possible)

$$F_{f,a,\eta}(T) = \eta^{a}(1+T)^{a} \sum_{n\geq 0} \eta^{nf} (1+T)^{nf} = \sum_{n\equiv a(f)} \eta^{n} (1+T)^{n}.$$

Then we have

$$\Delta^k F_{f,a,\eta}(T) = \sum_{n \equiv a(f)} \eta^n n^k (1+T)^n,$$

and so

$$\Delta^k F_{f,a,\eta}(T)_{|_{T=0}} = \sum_{n\equiv a(f)} \eta^n n^k = Z_f(a,\eta,-k). \quad \Box$$

Theorem

For any $k \ge 0$, we have

$$Z_f(a,\eta,-k) = \Delta^k F_{f,a,\eta}(T)|_{T=0}.$$

False proof. Expand the power series $F_{f,a,\eta}$ in terms of (1+T) (which of course is not possible)

$$F_{f,a,\eta}(T) = \eta^a (1+T)^a \sum_{n\geq 0} \eta^{nf} (1+T)^{nf} = \sum_{n\equiv a(f)} \eta^n (1+T)^n.$$

Then we have

$$\Delta^k F_{f,a,\eta}(T) = \sum_{n \equiv a(f)} \eta^n n^k (1+T)^n,$$

and so

$$\Delta^k F_{f,a,\eta}(T)_{|_{T=0}} = \sum_{n\equiv a(f)} \eta^n n^k = Z_f(a,\eta,-k). \quad \Box$$

A measure μ is a linear form on $\mathcal{C}:=\mathcal{C}(\mathbb{Z}_p,\mathbb{C}_p)$ such that there exists B>0 with

$$|\mu(f)| \leq B|f|,$$

where $|f| = \sup_{x \in \mathbb{Z}_p} |f(x)|$. We write $\int f d\mu := \mu(f)$.

Any function $f \in \mathcal{C}$ has a unique Mahler expansion

$$f(x) = \sum_{n \ge 0} a_n \binom{x}{n}$$

with $(a_n) \subset \mathbb{C}_p$. Furthermore $\lim a_n = 0$.

Theorem

A linear form μ on $\mathcal C$ is a measure iff there exits B>0 such that for all n>0

$$\int \binom{x}{n} \, d\mu(x) \bigg| \le B.$$

$$\int f \, d\mu = \sum_{n} a_n \int \binom{x}{n} \, d\mu(x)$$

A measure μ is a linear form on $\mathcal{C}:=\mathcal{C}(\mathbb{Z}_p,\mathbb{C}_p)$ such that there exists B>0 with

$$|\mu(f)| \leq B|f|,$$

where $|f| = \sup_{x \in \mathbb{Z}_p} |f(x)|$. We write $\int f d\mu := \mu(f)$. Any function $f \in \mathcal{C}$ has a unique Mahler expansion

$$f(x) = \sum_{n \ge 0} a_n \binom{x}{n}$$

with $(a_n) \subset \mathbb{C}_p$. Furthermore $\lim a_n = 0$.

Theorem

A linear form μ on $\mathcal C$ is a measure iff there exits B>0 such that for all n>0

$$\int \binom{x}{n} \, d\mu(x) \bigg| \le B.$$

$$\int f \, d\mu = \sum_{n \ge 0} a_n \int \binom{x}{n} \, d\mu(x).$$

Any function $f \in \mathcal{C}$ has a unique Mahler expansion

$$f(x) = \sum_{n \ge 0} a_n \binom{x}{n}$$

with $(a_n) \subset \mathbb{C}_p$. Furthermore $\lim a_n = 0$.

Theorem

A linear form μ on $\mathcal C$ is a measure iff there exits B>0 such that for all $n\geq 0$

$$\left| \int \binom{x}{n} \, d\mu(x) \right| \le B.$$

$$\int f d\mu = \sum_{n \ge 0} a_n \int \binom{x}{n} d\mu(x).$$

Any function $f \in \mathcal{C}$ has a unique Mahler expansion

$$f(x) = \sum_{n \ge 0} a_n \binom{x}{n}$$

with $(a_n) \subset \mathbb{C}_p$. Furthermore $\lim a_n = 0$.

Theorem

A linear form μ on $\mathcal C$ is a measure iff there exits B>0 such that for all n>0

$$\left| \int \binom{x}{n} \, d\mu(x) \right| \leq B.$$

$$\int f d\mu = \sum_{n>0} a_n \int \binom{x}{n} d\mu(x).$$

Measures on C and power series in $\mathbb{C}_p[[T]]^{bd}$ are in 1-to-1 correspondence by the formula

$$F_{\mu}(T) := \int (1+T)^{x} d\mu(x) = \sum_{n\geq 0} \int {x \choose n} d\mu \cdot T^{n}.$$

Recall that $\Delta := (1+T)\frac{d}{dT}$

Theorem

For all k > 0

$$\Delta^k F_{\mu}(T)_{|_{T=0}} = \int x^k d\mu(x).$$

Measures on C and power series in $\mathbb{C}_p[[T]]^{bd}$ are in 1-to-1 correspondence by the formula

$$F_{\mu}(T) := \int (1+T)^{x} d\mu(x) = \sum_{n\geq 0} \int {x \choose n} d\mu \cdot T^{n}.$$

Recall that $\Delta := (1 + T) \frac{d}{dT}$.

Theorem

For all k > 0

$$\Delta^k F_{\mu}(T)_{|_{T=0}} = \int x^k d\mu(x).$$

Embed $\overline{\mathbb{Q}} \subset \mathbb{C}_p$, then

$$F_{f,a,c}(T) := \sum_{i=1}^{c-1} F_{f,a,\xi_{i/c}}(T) \in \mathbb{C}_p[[T]]^{bd}.$$

Call $\mu_{f,a,c}$ the measure associated to $F_{f,a,c}$. Then

Theorem

For all k > 0, we have

$$\int x^k d\mu_{f,a,c}(x) = Z_f(a,c,-k).$$

Embed $\overline{\mathbb{Q}} \subset \mathbb{C}_p$, then

$$F_{f,a,c}(T) := \sum_{i=1}^{c-1} F_{f,a,\xi_{i/c}}(T) \in \mathbb{C}_p[[T]]^{bd}.$$

Call $\mu_{f,a,c}$ the measure associated to $F_{f,a,c}$. Then

Theorem

For all k > 0, we have

$$\int x^k d\mu_{f,a,c}(x) = Z_f(a,c,-k).$$

Recall that $\mathbb{Z}_p^{\times} := \mathbb{Z}_p \setminus p\mathbb{Z}_p$ splits as $\mathbb{Z}_p^{\times} = W_p \times \mathcal{U}_p$ with W_p the torsion part and $\mathcal{U}_p = 1 + q\mathbb{Z}_p$. For $x \in \mathbb{Z}_p^{\times}$, write $\omega(x)$ (resp. $\langle x \rangle$) the projection of x onto W_p (resp. \mathcal{U}_p).

Fix $s \in \mathbb{Z}_p$ and $m \in \mathbb{Z}$, then the function

$$\varphi_s^{(m)}: \mathbb{Z}_p^{\times} \to \mathbb{Z}_p$$
$$x \mapsto \omega(x)^m \langle x \rangle^{-s}$$

is continuous. The function is extended to \mathbb{Z}_p by setting $\varphi_s^{(m)}(x) := 0$ for $x \in p\mathbb{Z}_p$. The function $\varphi_s^{(m)}$ will serve as the "p-adic analogue" of x^{-s} .

Recall that $\mathbb{Z}_p^{\times} := \mathbb{Z}_p \setminus p\mathbb{Z}_p$ splits as $\mathbb{Z}_p^{\times} = W_p \times \mathcal{U}_p$ with W_p the torsion part and $\mathcal{U}_p = 1 + q\mathbb{Z}_p$. For $x \in \mathbb{Z}_p^{\times}$, write $\omega(x)$ (resp. $\langle x \rangle$) the projection of x onto W_p (resp. \mathcal{U}_p).

Fix $s \in \mathbb{Z}_p$ and $m \in \mathbb{Z}$, then the function

$$\varphi_s^{(m)}: \mathbb{Z}_p^{\times} \to \mathbb{Z}_p$$

$$x \mapsto \omega(x)^m \langle x \rangle^{-s}$$

is continuous. The function is extended to \mathbb{Z}_p by setting $\varphi_s^{(m)}(x) := 0$ for $x \in p\mathbb{Z}_p$. The function $\varphi_s^{(m)}$ will serve as the "p-adic analogue" of x^{-s} .

The *p*-adic twisted partial zeta function (with character ω^m) is defined for $s \in \mathbb{Z}_p$ by

$$Z_{f,p}^{(m)}(a,c,s):=\int \varphi_s^{(m)}(x)\,d\mu_{f,a,c}(x).$$

This is a continous function on \mathbb{Z}_p that depends only upon the class of m modulo $\phi(q)$.

The function

$$Z_{f,p}(a,c,s) := Z_{f,p}^{(-1)}(a,c,s)$$

is the p-adic twisted partial zeta function.

Theorem

Assume p divides f . Then for all $k \geq 0$ with $k \equiv -1 \pmod{\phi(q)}$

$$Z_{f,p}(a, c, -k) = Z_f(a, c, -k)$$

The *p*-adic twisted partial zeta function (with character ω^m) is defined for $s \in \mathbb{Z}_p$ by

$$Z_{f,p}^{(m)}(a,c,s):=\int \varphi_s^{(m)}(x)\,d\mu_{f,a,c}(x).$$

This is a continous function on \mathbb{Z}_p that depends only upon the class of m modulo $\phi(q)$.

The function

$$Z_{f,p}(a,c,s) := Z_{f,p}^{(-1)}(a,c,s)$$

is the p-adic twisted partial zeta function.

Theorem

Assume p divides f . Then for all $k \geq 0$ with $k \equiv -1 \pmod{\phi(q)}$

$$Z_{f,p}(a,c,-k) = Z_f(a,c,-k)$$

The *p*-adic twisted partial zeta function (with character ω^m) is defined for $s \in \mathbb{Z}_p$ by

$$Z_{f,p}^{(m)}(a,c,s):=\int \varphi_s^{(m)}(x)\,d\mu_{f,a,c}(x).$$

This is a continous function on \mathbb{Z}_p that depends only upon the class of m modulo $\phi(q)$.

The function

$$Z_{f,p}(a,c,s) := Z_{f,p}^{(-1)}(a,c,s)$$

is the p-adic twisted partial zeta function.

Theorem

Assume p divides f. Then for all $k \ge 0$ with $k \equiv -1 \pmod{\phi(q)}$

$$Z_{f,p}(a,c,-k) = Z_{f}(a,c,-k).$$

Let $s \in \mathbb{Z}_p$. Write

$$\varphi_s^{(-1)}(x) = \sum_{n \ge 0} \phi_n \binom{x}{n}$$

and

$$F_{f,a,c}(T) = \sum_{n \geq 0} f_n T^n.$$

Then

$$Z_{f,p}(a,c,s) = \int \varphi_s^{(-1)}(x) \, d\mu_{f,a,c}(x) = \sum_{n\geq 0} \phi_n f_n.$$

Let $s \in \mathbb{Z}_p$. Write

$$\varphi_s^{(-1)}(x) = \sum_{n \ge 0} \phi_n \binom{x}{n}$$

and

$$F_{f,a,c}(T) = \sum_{n \geq 0} f_n T^n.$$

Then

$$Z_{f,p}(a,c,s) = \int \varphi_s^{(-1)}(x) \, d\mu_{f,a,c}(x) = \sum_{n>0} \phi_n f_n.$$

Let χ be a character of conductor δ , and let $s \in \mathbb{Z}_p$. We want to compute $L_p(s,\chi)$ up to a given precision.

Types: *p*-adic numbers will be represented by *p*-adic numbers and power series by power series

For simplicity, assume from now on that $p \neq 2$ and that s = k is an integer.

Let χ be a character of conductor δ , and let $s \in \mathbb{Z}_p$. We want to compute $L_p(s,\chi)$ up to a given precision.

Types: *p*-adic numbers will be represented by *p*-adic numbers and power series by power series

For simplicity, assume from now on that $p \neq 2$ and that s = k is an integer.

Let χ be a character of conductor δ , and let $s \in \mathbb{Z}_p$. We want to compute $L_p(s,\chi)$ up to a given precision.

Types: *p*-adic numbers will be represented by *p*-adic numbers and power series by power series

For simplicity, assume from now on that $p \neq 2$ and that s = k is an integer.

Code: initialization of the roots of unity

Call vp the vector returned by the previous function.

```
Code: computation of \omega(x) return (vp[x\%p]);
```

Code: initialization of the roots of unity

```
\begin{array}{lll} p1 &=& x^{\hat{}}(p-1) - 1; \\ p2 &=& vector(p-1, j, x-j); \\ p1 &=& polhensellift(p1, p2, p, precp); \\ \textbf{return}\big(vector(p-1, j, -polcoeff(p1[j], 0) \\ &+& O(p^precp))\big); \end{array}
```

Call vp the vector returned by the previous function.

```
Code: computation of \omega(x) return (vp[x\%p]);
```

Code: initialization of the roots of unity

```
\begin{array}{lll} p1 &=& x^{(p-1)} - 1; \\ p2 &=& vector(p-1, j, x-j); \\ p1 &=& polhensellift(p1, p2, p, precp); \\ \textbf{return}(vector(p-1, j, -polcoeff(p1[j], 0) \\ &+& O(p^precp))); \end{array}
```

Call vp the vector returned by the previous function.

Code: computation of $\omega(x)$

```
return (vp[x%p]);
```

Call teichm(x) the function computing $\omega(x)$ assuming $x \in \mathbb{Z}_p^{\times}$. Recall that

$$\varphi_k^{(m)}(x) :=
\begin{cases}
0 & \text{if } x \in p\mathbb{Z}_p, \\
\omega(x)^m \langle x \rangle^{-k} & \text{otherwise.}
\end{cases}$$

```
Code: computation of \varphi_k^{(m)}(x)

if (x\%p == 0, return(0));

p1 = teichm(x)^(k + m);

p2 = x^(-k);

return(p1*p2);
```

Call teichm(x) the function computing $\omega(x)$ assuming $x \in \mathbb{Z}_p^{\times}$. Recall that

$$\varphi_k^{(m)}(x) :=
\begin{cases}
0 & \text{if } x \in p\mathbb{Z}_p, \\
\omega(x)^m \langle x \rangle^{-k} & \text{otherwise.}
\end{cases}$$

```
Code: computation of \varphi_k^{(m)}(x)

if (x\%p == 0, return(0));

p1 = teichm(x)^(k + m);

p2 = x^(-k);

return(p1*p2);
```

Recall that

$$\varphi_k^{(m)}(x) = \sum_{n\geq 0} \phi_n \binom{x}{n}.$$

Now, if $A \in \mathbb{N}$, then we have $\binom{A}{n} = 0$ for all n > A.

```
Code: computation of \phi_0, \ldots, \phi_{N-1} v = \text{vector}(N); \textbf{for} \ (A = 1, N, \\ val = \text{phi}_k(A, k, m); v[A] = \text{val} - \text{sum}(j = 1, A - 1, \\ \text{binomial}(A, j)*v[j])); \textbf{return} \ (v);
```

Recall that

$$\varphi_k^{(m)}(x) = \sum_{n \geq 0} \phi_n \binom{x}{n}.$$

Now, if $A \in \mathbb{N}$, then we have $\binom{A}{n} = 0$ for all n > A.

Let e be a root of unity of order c, recall that

$$F_{f,a,e}(T) := rac{\mathrm{e}^a (1+T)^a}{1-\mathrm{e}^f (1+T)^f}$$

```
Code: Compute F_{f,a,\eta}

mon = (1 + O(p^precp))*(1 + X + O(X^precX));

den = 1 - e^f*mon^f;

num = e^a*mon^a;

return (num/den);
```

Let e be a root of unity of order c, recall that

$$F_{f,a,\mathbf{e}}(T) := rac{\mathsf{e}^a(1+T)^a}{1-\mathsf{e}^f(1+T)^f}$$

Code: Compute $F_{f,a,\eta}$

```
\begin{array}{lll} & mon = (1 + O(p^precp))*(1 + X + O(X^precX)); \\ & den = 1 - e^f*mon^f; \\ & num = e^a*mon^a; \\ & \textbf{return} & (num/den); \end{array}
```

Recall that

$$F_{f,a,c}(T) := \sum_{i=1}^{c-1} F_{f,a,\xi_{i/c}}(T) = \sum_{i=1}^{c-1} F_{f,a,\xi^i}(T)$$

where ξ is any primitive c-th root of unity.

```
Code: "formal" c-th root of unity
e = Mod(y, (y^c - 1)/(y - 1));
```

```
Code: compute F_{f,a,c}
F = compute F_{-eta}(N, f, e, a);
return (trace(F));
```

Recall that

$$F_{f,a,c}(T) := \sum_{i=1}^{c-1} F_{f,a,\xi_{i/c}}(T) = \sum_{i=1}^{c-1} F_{f,a,\xi^i}(T)$$

where ξ is any primitive c-th root of unity.

Code: "formal" c-th root of unity

$$e = Mod(y, (y^c - 1)/(y - 1));$$

Code: compute $F_{f,a,c}$

```
F = computeF_eta(N, f, e, a);
return (trace(F));
```

Take $f = \text{lcm}(p, \delta)$, and let c be such that $\chi(c) \neq 1$. Recall that

$$\sum_{\substack{a=1\\(a,f)=1}}^{f-1} \chi(a) Z_f(a,c,s) = (c^{1-s} \chi(c) - 1) (1 - \chi(p) p^{-s}) L(\chi,s).$$

The corresponding *p*-adic *L*-function is defined by

$$L_p(\chi,s) := \left(c \, \varphi_s^{(-1)}(c) \chi(c) - 1\right)^{-1} \sum_{\substack{a=1 \ (a,f)=1}}^{f-1} \chi(a) Z_{f,p}(a,c,s).$$

Take $f = lcm(p, \delta)$, and let c be such that $\chi(c) \neq 1$. Recall that

$$\sum_{\substack{a=1\\(a,f)=1}}^{f-1} \chi(a) Z_f(a,c,s) = (c^{1-s} \chi(c) - 1) (1 - \chi(p) p^{-s}) L(\chi,s).$$

The corresponding p-adic L-function is defined by

$$L_p(\chi,s) := \left(c\,arphi_s^{(-1)}(c)\chi(c) - 1
ight)^{-1} \sum_{\substack{a=1\ (a,f)=1}}^{f-1} \chi(a)Z_{f,p}(a,c,s).$$