

Computation of values of p -adic Dirichlet L -functions using PARI/GP

Xavier-François Roblot

IGD, Université Claude Bernard – Lyon 1

September 14th, 2004

Let $f \geq 2$ and let $a, c \in \mathbb{N}$ such that $(a, f) = (c, f) = 1$ and $c > 1$.
For $s \in \mathbb{C}$ with $\Re(s) > 1$, set

$$Z_f(a, s) := \sum_{\substack{n \equiv a \pmod{f} \\ n \neq 0}} n^{-s} \text{ and } Z_f(a, c, s) := c^{1-s} Z_f(ac^{-1}, s) - Z_f(a, s).$$

Both functions have continuations to \mathbb{C} , with a single pole at $s = 1$ for the first one, and no pole for the second one.

Let χ be a non-trivial Dirichlet character of conductor δ . Let f be a multiple of δ and let c be such that $\chi(c) \neq 1$. Then we have

$$\sum_{\substack{a=1 \\ (a,f)=1}}^{f-1} \chi(a) Z_f(a, c, s) = (c^{1-s} \chi(c) - 1) \prod_{\ell \mid f} (1 - \chi(\ell) \ell^{-s}) L(\chi, s).$$

Let $f \geq 2$ and let $a, c \in \mathbb{N}$ such that $(a, f) = (c, f) = 1$ and $c > 1$.
For $s \in \mathbb{C}$ with $\Re(s) > 1$, set

$$Z_f(a, s) := \sum_{\substack{n \equiv a \pmod{f} \\ n \neq 0}} n^{-s} \text{ and } Z_f(a, c, s) := c^{1-s} Z_f(ac^{-1}, s) - Z_f(a, s).$$

Both functions have continuations to \mathbb{C} , with a single pole at $s = 1$ for the first one, and no pole for the second one.

Let χ be a non-trivial Dirichlet character of conductor δ . Let f be a multiple of δ and let c be such that $\chi(c) \neq 1$. Then we have

$$\sum_{\substack{a=1 \\ (a,f)=1}}^{f-1} \chi(a) Z_f(a, c, s) = (c^{1-s} \chi(c) - 1) \prod_{\ell \mid f} (1 - \chi(\ell) \ell^{-s}) L(\chi, s).$$

Let $f \geq 2$ and let $a, c \in \mathbb{N}$ such that $(a, f) = (c, f) = 1$ and $c > 1$.
 For $s \in \mathbb{C}$ with $\Re(s) > 1$, set

$$Z_f(a, s) := \sum_{\substack{n \equiv a(f) \\ n \in \mathbb{N}}} n^{-s} \text{ and } Z_f(a, c, s) := c^{1-s} Z_f(ac^{-1}, s) - Z_f(a, s).$$

Both functions have continuations to \mathbb{C} , with a single pole at $s = 1$ for the first one, and no pole for the second one.

Let χ be a non-trivial Dirichlet character of conductor δ . Let f be a multiple of δ and let c be such that $\chi(c) \neq 1$. Then we have

$$\sum_{\substack{a=1 \\ (a,f)=1}}^{f-1} \chi(a) Z_f(a, c, s) = (c^{1-s} \chi(c) - 1) \prod_{\ell|f} (1 - \chi(\ell) \ell^{-s}) L(\chi, s).$$

Lemma

For $r \in \mathbb{Q}$, set $\xi_r := \exp(2i\pi r)$. Then

$$Z_f(a, c, s) = \sum_{i=1}^{c-1} \sum_{n \equiv a(f)} \xi_{n/c}^i n^{-s}.$$

Let η be a root of unity such that $\eta^f \neq 1$. Define

$$Z_f(a, \eta, s) := \sum_{n \equiv a(f)} \eta^n n^{-s},$$

then the lemma can be restated as

$$Z_f(a, c, s) = \sum_{i=1}^{c-1} Z_f(a, \xi_{i/c}, s).$$

Lemma

For $r \in \mathbb{Q}$, set $\xi_r := \exp(2i\pi r)$. Then

$$Z_f(a, c, s) = \sum_{i=1}^{c-1} \sum_{n \equiv a(f)} \xi_{n/c}^i n^{-s}.$$

Let η be a root of unity such that $\eta^f \neq 1$. Define

$$Z_f(a, \eta, s) := \sum_{n \equiv a(f)} \eta^n n^{-s},$$

then the lemma can restated as

$$Z_f(a, c, s) = \sum_{i=1}^{c-1} Z_f(a, \xi_{i/c}, s).$$

Define the following power series in T

$$F_{f,a,\eta}(T) := \frac{\eta^a(1+T)^a}{1-\eta^f(1+T)^f}$$

and the operator Δ on power series by

$$\Delta := (1+T) \frac{d}{dT}.$$

Theorem

For any $k \geq 0$, we have

$$Z_f(a, \eta, -k) = \Delta^k F_{f,a,\eta}(T)_{|T=0}.$$

False proof. Expand the power series $F_{f,a,\eta}$ in terms of $(1+T)$ (which of course is not possible)

$$F_{f,a,\eta}(T) = \eta^a(1+T)^a \sum_{n \geq 0} \eta^{nf}(1+T)^{nf} = \sum_{n \equiv a(f)} \eta^n(1+T)^n.$$

Then we have

$$\Delta^k F_{f,a,\eta}(T) = \sum n^n \eta^k (1+T)^{n-k}$$

Define the following power series in T

$$F_{f,a,\eta}(T) := \frac{\eta^a(1+T)^a}{1-\eta^f(1+T)^f}$$

and the operator Δ on power series by

$$\Delta := (1+T) \frac{d}{dT}.$$

Theorem

For any $k \geq 0$, we have

$$Z_f(a, \eta, -k) = \Delta^k F_{f,a,\eta}(T)_{|T=0}.$$

False proof. Expand the power series $F_{f,a,\eta}$ in terms of $(1+T)$ (which of course is not possible)

$$F_{f,a,\eta}(T) = \eta^a(1+T)^a \sum_{n \geq 0} \eta^{nf} (1+T)^{nf} = \sum_{n \equiv a(f)} \eta^n (1+T)^n.$$

Then we have

$$\Delta^k F_{f,a,\eta}(T) = \sum n^n \eta^k (1+T)^n$$

Theorem

For any $k \geq 0$, we have

$$Z_f(a, \eta, -k) = \Delta^k F_{f,a,\eta}(T)|_{T=0}.$$

False proof. Expand the power series $F_{f,a,\eta}$ in terms of $(1 + T)$ (which of course is not possible)

$$F_{f,a,\eta}(T) = \eta^a (1 + T)^a \sum_{n \geq 0} \eta^{nf} (1 + T)^{nf} = \sum_{n \equiv a(f)} \eta^n (1 + T)^n.$$

Then we have

$$\Delta^k F_{f,a,\eta}(T) = \sum_{n \equiv a(f)} \eta^n n^k (1 + T)^n,$$

and so

$$\Delta^k F_{f,a,\eta}(T)|_{T=0} = \sum_{n \equiv a(f)} \eta^n n^k = Z_f(a, \eta, -k). \quad \square$$

Theorem

For any $k \geq 0$, we have

$$Z_f(a, \eta, -k) = \Delta^k F_{f,a,\eta}(T)_{|T=0}.$$

False proof. Expand the power series $F_{f,a,\eta}$ in terms of $(1 + T)$ (which of course is not possible)

$$F_{f,a,\eta}(T) = \eta^a (1 + T)^a \sum_{n \geq 0} \eta^{nf} (1 + T)^{nf} = \sum_{n \equiv a(f)} \eta^n (1 + T)^n.$$

Then we have

$$\Delta^k F_{f,a,\eta}(T) = \sum_{n \equiv a(f)} \eta^n n^k (1 + T)^n,$$

and so

$$\Delta^k F_{f,a,\eta}(T)_{|T=0} = \sum_{n \equiv a(f)} \eta^n n^k = Z_f(a, \eta, -k). \quad \square$$

A measure μ is a linear form on $\mathcal{C} := \mathcal{C}(\mathbb{Z}_p, \mathbb{C}_p)$ such that there exists $B > 0$ with

$$|\mu(f)| \leq B|f|,$$

where $|f| = \sup_{x \in \mathbb{Z}_p} |f(x)|$. We write $\int f d\mu := \mu(f)$.

Any function $f \in \mathcal{C}$ has a unique Mahler expansion

$$f(x) = \sum_{n \geq 0} a_n \binom{x}{n}$$

with $(a_n) \subset \mathbb{C}_p$. Furthermore $\lim a_n = 0$.

Theorem

A linear form μ on \mathcal{C} is a measure iff there exists $B > 0$ such that for all $n \geq 0$

$$\left| \int \binom{x}{n} d\mu(x) \right| \leq B.$$

Furthermore, if μ is a measure

$$\int f d\mu = \sum_{n \geq 0} a_n \int \binom{x}{n} d\mu(x).$$

A measure μ is a linear form on $\mathcal{C} := \mathcal{C}(\mathbb{Z}_p, \mathbb{C}_p)$ such that there exists $B > 0$ with

$$|\mu(f)| \leq B|f|,$$

where $|f| = \sup_{x \in \mathbb{Z}_p} |f(x)|$. We write $\int f d\mu := \mu(f)$.

Any function $f \in \mathcal{C}$ has a unique Mahler expansion

$$f(x) = \sum_{n \geq 0} a_n \binom{x}{n}$$

with $(a_n) \subset \mathbb{C}_p$. Furthermore $\lim a_n = 0$.

Theorem

A linear form μ on \mathcal{C} is a measure iff there exists $B > 0$ such that for all $n \geq 0$

$$\left| \int \binom{x}{n} d\mu(x) \right| \leq B.$$

Furthermore, if μ is a measure

$$\int f d\mu = \sum_{n \geq 0} a_n \int \binom{x}{n} d\mu(x).$$

Any function $f \in \mathcal{C}$ has a unique Mahler expansion

$$f(x) = \sum_{n \geq 0} a_n \binom{x}{n}$$

with $(a_n) \subset \mathbb{C}_p$. Furthermore $\lim a_n = 0$.

Theorem

A linear form μ on \mathcal{C} is a measure iff there exists $B > 0$ such that for all $n \geq 0$

$$\left| \int \binom{x}{n} d\mu(x) \right| \leq B.$$

Furthermore, if μ is a measure

$$\int f d\mu = \sum_{n \geq 0} a_n \int \binom{x}{n} d\mu(x).$$

Any function $f \in \mathcal{C}$ has a unique Mahler expansion

$$f(x) = \sum_{n \geq 0} a_n \binom{x}{n}$$

with $(a_n) \subset \mathbb{C}_p$. Furthermore $\lim a_n = 0$.

Theorem

A linear form μ on \mathcal{C} is a measure iff there exists $B > 0$ such that for all $n \geq 0$

$$\left| \int \binom{x}{n} d\mu(x) \right| \leq B.$$

Furthermore, if μ is a measure

$$\int f d\mu = \sum_{n \geq 0} a_n \int \binom{x}{n} d\mu(x).$$

Measures on \mathcal{C} and power series in $\mathbb{C}_p[[T]]^{bd}$ are in 1-to-1 correspondance by the formula

$$F_\mu(T) := \int (1 + T)^x d\mu(x) = \sum_{n \geq 0} \int \binom{x}{n} d\mu \cdot T^n.$$

Recall that $\Delta := (1 + T) \frac{d}{dT}$.

Theorem

For all $k \geq 0$

$$\Delta^k F_\mu(T)_{|T=0} = \int x^k d\mu(x).$$

Measures on \mathcal{C} and power series in $\mathbb{C}_p[[T]]^{bd}$ are in 1-to-1 correspondance by the formula

$$F_\mu(T) := \int (1 + T)^x d\mu(x) = \sum_{n \geq 0} \int \binom{x}{n} d\mu \cdot T^n.$$

Recall that $\Delta := (1 + T) \frac{d}{dT}$.

Theorem

For all $k \geq 0$

$$\Delta^k F_\mu(T)_{|T=0} = \int x^k d\mu(x).$$

Embed $\overline{\mathbb{Q}} \subset \mathbb{C}_p$, then

$$F_{f,a,c}(T) := \sum_{i=1}^{c-1} F_{f,a,\xi_{i/c}}(T) \in \mathbb{C}_p[[T]]^{bd}.$$

Call $\mu_{f,a,c}$ the measure associated to $F_{f,a,c}$. Then

Theorem

For all $k \geq 0$, we have

$$\int x^k d\mu_{f,a,c}(x) = Z_f(a, c, -k).$$

Embed $\overline{\mathbb{Q}} \subset \mathbb{C}_p$, then

$$F_{f,a,c}(T) := \sum_{i=1}^{c-1} F_{f,a,\xi_{i/c}}(T) \in \mathbb{C}_p[[T]]^{bd}.$$

Call $\mu_{f,a,c}$ the measure associated to $F_{f,a,c}$. Then

Theorem

For all $k \geq 0$, we have

$$\int x^k d\mu_{f,a,c}(x) = Z_f(a, c, -k).$$

Recall that $\mathbb{Z}_p^\times := \mathbb{Z}_p \setminus p\mathbb{Z}_p$ splits as $\mathbb{Z}_p^\times = W_p \times \mathcal{U}_p$ with W_p the torsion part and $\mathcal{U}_p = 1 + q\mathbb{Z}_p$. For $x \in \mathbb{Z}_p^\times$, write $\omega(x)$ (resp. $\langle x \rangle$) the projection of x onto W_p (resp. \mathcal{U}_p).

Fix $s \in \mathbb{Z}_p$ and $m \in \mathbb{Z}$, then the function

$$\begin{aligned}\varphi_s^{(m)} : \mathbb{Z}_p^\times &\rightarrow \mathbb{Z}_p \\ x &\mapsto \omega(x)^m \langle x \rangle^{-s}\end{aligned}$$

is continuous. The function is extended to \mathbb{Z}_p by setting

$\varphi_s^{(m)}(x) := 0$ for $x \in p\mathbb{Z}_p$. The function $\varphi_s^{(m)}$ will serve as the “ p -adic analogue” of x^{-s} .

Recall that $\mathbb{Z}_p^\times := \mathbb{Z}_p \setminus p\mathbb{Z}_p$ splits as $\mathbb{Z}_p^\times = W_p \times \mathcal{U}_p$ with W_p the torsion part and $\mathcal{U}_p = 1 + q\mathbb{Z}_p$. For $x \in \mathbb{Z}_p^\times$, write $\omega(x)$ (resp. $\langle x \rangle$) the projection of x onto W_p (resp. \mathcal{U}_p).

Fix $s \in \mathbb{Z}_p$ and $m \in \mathbb{Z}$, then the function

$$\begin{aligned}\varphi_s^{(m)} : \mathbb{Z}_p^\times &\rightarrow \mathbb{Z}_p \\ x &\mapsto \omega(x)^m \langle x \rangle^{-s}\end{aligned}$$

is continuous. The function is extended to \mathbb{Z}_p by setting

$\varphi_s^{(m)}(x) := 0$ for $x \in p\mathbb{Z}_p$. The function $\varphi_s^{(m)}$ will serve as the “ p -adic analogue” of x^{-s} .

The p -adic twisted partial zeta function (with character ω^m) is defined for $s \in \mathbb{Z}_p$ by

$$Z_{f,p}^{(m)}(a, c, s) := \int \varphi_s^{(m)}(x) d\mu_{f,a,c}(x).$$

This is a continuous function on \mathbb{Z}_p that depends only upon the class of m modulo $\phi(q)$.

The function

$$Z_{f,p}(a, c, s) := Z_{f,p}^{(-1)}(a, c, s)$$

is *the* p -adic twisted partial zeta function.

Theorem

Assume p divides f . Then for all $k \geq 0$ with $k \equiv -1 \pmod{\phi(q)}$

$$Z_{f,p}(a, c, -k) = Z_f(a, c, -k).$$

The p -adic twisted partial zeta function (with character ω^m) is defined for $s \in \mathbb{Z}_p$ by

$$Z_{f,p}^{(m)}(a, c, s) := \int \varphi_s^{(m)}(x) d\mu_{f,a,c}(x).$$

This is a continuous function on \mathbb{Z}_p that depends only upon the class of m modulo $\phi(q)$.

The function

$$Z_{f,p}(a, c, s) := Z_{f,p}^{(-1)}(a, c, s)$$

is *the* p -adic twisted partial zeta function.

Theorem

Assume p divides f . Then for all $k \geq 0$ with $k \equiv -1 \pmod{\phi(q)}$

$$Z_{f,p}(a, c, -k) = Z_f(a, c, -k).$$

The p -adic twisted partial zeta function (with character ω^m) is defined for $s \in \mathbb{Z}_p$ by

$$Z_{f,p}^{(m)}(a, c, s) := \int \varphi_s^{(m)}(x) d\mu_{f,a,c}(x).$$

This is a continuous function on \mathbb{Z}_p that depends only upon the class of m modulo $\phi(q)$.

The function

$$Z_{f,p}(a, c, s) := Z_{f,p}^{(-1)}(a, c, s)$$

is *the* p -adic twisted partial zeta function.

Theorem

Assume p divides f . Then for all $k \geq 0$ with $k \equiv -1 \pmod{\phi(q)}$

$$Z_{f,p}(a, c, -k) = Z_f(a, c, -k).$$

Let $s \in \mathbb{Z}_p$. Write

$$\varphi_s^{(-1)}(x) = \sum_{n \geq 0} \phi_n \binom{x}{n}$$

and

$$F_{f,a,c}(T) = \sum_{n \geq 0} f_n T^n.$$

Then

$$Z_{f,p}(a, c, s) = \int \varphi_s^{(-1)}(x) d\mu_{f,a,c}(x) = \sum_{n \geq 0} \phi_n f_n.$$

Let $s \in \mathbb{Z}_p$. Write

$$\varphi_s^{(-1)}(x) = \sum_{n \geq 0} \phi_n \binom{x}{n}$$

and

$$F_{f,a,c}(T) = \sum_{n \geq 0} f_n T^n.$$

Then

$$Z_{f,p}(a, c, s) = \int \varphi_s^{(-1)}(x) d\mu_{f,a,c}(x) = \sum_{n \geq 0} \phi_n f_n.$$

Let χ be a character of conductor δ , and let $s \in \mathbb{Z}_p$. We want to compute $L_p(s, \chi)$ up to a given precision.

Types: p -adic numbers will be represented by p -adic numbers and power series by power series

For simplicity, assume from now on that $p \neq 2$ and that $s = k$ is an integer.

Let χ be a character of conductor δ , and let $s \in \mathbb{Z}_p$. We want to compute $L_p(s, \chi)$ up to a given precision.

Types: p -adic numbers will be represented by p -adic numbers and power series by power series

For simplicity, assume from now on that $p \neq 2$ and that $s = k$ is an integer.

Let χ be a character of conductor δ , and let $s \in \mathbb{Z}_p$. We want to compute $L_p(s, \chi)$ up to a given precision.

Types: p -adic numbers will be represented by p -adic numbers and power series by power series

For simplicity, assume from now on that $p \neq 2$ and that $s = k$ is an integer.

Code: initialization of the roots of unity

```
p1 = x^(p-1) - 1;  
p2 = vector(p - 1, j , x - j );  
p1 = polhensellift(p1, p2, p, precp );  
return(vector(p - 1, j , -polcoeff(p1[j], 0)  
+ O(p^precp )));
```

Call vp the vector returned by the previous function.

Code: computation of $\omega(x)$

```
return ( vp [ x%p ] );
```

Code: initialization of the roots of unity

```
p1 = x^(p-1) - 1;  
p2 = vector(p - 1, j, x - j);  
p1 = polhensellift(p1, p2, p, precp);  
return(vector(p - 1, j, -polcoeff(p1[j], 0)  
+ O(p^precp)));
```

Call vp the vector returned by the previous function.

Code: computation of $\omega(x)$

```
return (vp[x%p]);
```

Code: initialization of the roots of unity

```
p1 = x^(p-1) - 1;  
p2 = vector(p - 1, j, x - j);  
p1 = polhensellift(p1, p2, p, precp);  
return(vector(p - 1, j, -polcoeff(p1[j], 0)  
+ O(p^precp)));
```

Call vp the vector returned by the previous function.

Code: computation of $\omega(x)$

```
return (vp[x%p]);
```

Call `teichm(x)` the function computing $\omega(x)$ assuming $x \in \mathbb{Z}_p^\times$.
Recall that

$$\varphi_k^{(m)}(x) := \begin{cases} 0 & \text{if } x \in p\mathbb{Z}_p, \\ \omega(x)^m \langle x \rangle^{-k} & \text{otherwise.} \end{cases}$$

Code: computation of $\varphi_k^{(m)}(x)$

```
if (x%p == 0, return (0));
p1 = teichm(x)^(k + m);
p2 = x^(-k);
return (p1*p2);
```

Call `teichm(x)` the function computing $\omega(x)$ assuming $x \in \mathbb{Z}_p^\times$.
Recall that

$$\varphi_k^{(m)}(x) := \begin{cases} 0 & \text{if } x \in p\mathbb{Z}_p, \\ \omega(x)^m \langle x \rangle^{-k} & \text{otherwise.} \end{cases}$$

Code: computation of $\varphi_k^{(m)}(x)$

```
if (x%p == 0, return (0));
p1 = teichm(x)^(k + m);
p2 = x^(-k);
return (p1*p2);
```

Recall that

$$\varphi_k^{(m)}(x) = \sum_{n \geq 0} \phi_n \binom{x}{n}.$$

Now, if $A \in \mathbb{N}$, then we have $\binom{A}{n} = 0$ for all $n > A$.

Code: computation of $\phi_0, \dots, \phi_{N-1}$

```
v = vector(N);
for (A = 1, N,
    val = phi_k(A, k, m);
    v[A] = val - sum(j = 1, A - 1,
                      binomial(A, j)*v[j])
);
return (v);
```

Recall that

$$\varphi_k^{(m)}(x) = \sum_{n \geq 0} \phi_n \binom{x}{n}.$$

Now, if $A \in \mathbb{N}$, then we have $\binom{A}{n} = 0$ for all $n > A$.

Code: computation of $\phi_0, \dots, \phi_{N-1}$

```
v = vector(N);
for (A = 1, N,
    val = phi_k(A, k, m);
    v[A] = val - sum(j = 1, A - 1,
                      binomial(A, j)*v[j])
);
return (v);
```

Let e be a root of unity of order c , recall that

$$F_{f,a,e}(T) := \frac{e^a(1+T)^a}{1-e^f(1+T)^f}$$

Code: Compute $F_{f,a,\eta}$

```
mon = (1 + O(p^precP))*(1 + X + O(X^precX));
den = 1 - e^f*mon^f;
num = e^a*mon^a;
return (num/den);
```

Let e be a root of unity of order c , recall that

$$F_{f,a,e}(T) := \frac{e^a(1+T)^a}{1-e^f(1+T)^f}$$

Code: Compute $F_{f,a,\eta}$

```
mon = (1 + O(p^precP))*(1 + X + O(X^precX));
den = 1 - e^f*mon^f;
num = e^a*mon^a;
return (num/den);
```

Recall that

$$F_{f,a,c}(T) := \sum_{i=1}^{c-1} F_{f,a,\xi_{i/c}}(T) = \sum_{i=1}^{c-1} F_{f,a,\xi^i}(T)$$

where ξ is any primitive c -th root of unity.

Code: “formal” c -th root of unity

```
e = Mod(y, (y^c - 1)/(y - 1));
```

Code: compute $F_{f,a,c}$

```
F = computeF_eta(N, f, e, a);
return (trace(F));
```

Recall that

$$F_{f,a,c}(T) := \sum_{i=1}^{c-1} F_{f,a,\xi_{i/c}}(T) = \sum_{i=1}^{c-1} F_{f,a,\xi^i}(T)$$

where ξ is any primitive c -th root of unity.

Code: “formal” c -th root of unity

```
e = Mod(y, (y^c - 1)/(y - 1));
```

Code: compute $F_{f,a,c}$

```
F = computeF_eta(N, f, e, a);
return (trace(F));
```

Take $f = \text{lcm}(p, \delta)$, and let c be such that $\chi(c) \neq 1$. Recall that

$$\sum_{\substack{a=1 \\ (a,f)=1}}^{f-1} \chi(a) Z_f(a, c, s) = (c^{1-s} \chi(c) - 1)(1 - \chi(p)p^{-s}) L(\chi, s).$$

The corresponding p -adic L -function is defined by

$$L_p(\chi, s) := (c \varphi_s^{(-1)}(c) \chi(c) - 1)^{-1} \sum_{\substack{a=1 \\ (a,f)=1}}^{f-1} \chi(a) Z_{f,p}(a, c, s).$$

Take $f = \text{lcm}(p, \delta)$, and let c be such that $\chi(c) \neq 1$. Recall that

$$\sum_{\substack{a=1 \\ (a,f)=1}}^{f-1} \chi(a) Z_f(a, c, s) = (c^{1-s} \chi(c) - 1)(1 - \chi(p)p^{-s}) L(\chi, s).$$

The corresponding p -adic L -function is defined by

$$L_p(\chi, s) := (c \varphi_s^{(-1)}(c) \chi(c) - 1)^{-1} \sum_{\substack{a=1 \\ (a,f)=1}}^{f-1} \chi(a) Z_{f,p}(a, c, s).$$