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Abstract. Let K/k be an abelian extension of number fields with a distinguished
place of k that splits totally in K. In that situation, the abelian rank one Stark
conjecture predicts the existence of a unit in K, called the Stark unit, constructed
from the values of the L-functions attached to the extension. In this paper, assuming
the Stark unit exists, we prove index formulae for it. In a second part, we study the
solutions of the index formulae and prove that they admit solutions unconditionally
for quadratic, quartic and sextic (with some additional conditions) cyclic extensions.
As a result we deduce a weak version of the conjecture (“up to absolute values”) in
these cases and precise results on when the Stark unit, if it exists, is a square.

1. Introduction

Let K/k be an abelian extension of number fields. Denote by G its Galois group.
Let S∞ and Sram denote respectively the set of infinite places of k and the set of finite
places of k ramified in K/k. Let S(K/k) := S∞ ∪ Sram. Fix a finite set S of places of k
containing S(K/k) and of cardinality at least 2. Assume that there exists at least one
place in S, say v, that splits totally in K/k and fix a place w of K dividing v. Let e
be the order of the group of roots of unity in K. In this setting Stark [14] made the
following conjecture.

Conjecture (Abelian rank one Stark conjecture).
There exists an S-unit εK/k,S in K such that

(1) For all characters χ of G

L′K/k,S(0, χ) =
1

e

∑
g∈G

χ(g) log |εgK/k,S |w

where LK/k,S(s, χ) denotes the L-function associated to χ with Euler factors at
prime ideals in S deleted.

(2) The extension K(ε
1/e
K/k,S)/k is abelian.

(3) If furthermore |S| ≥ 3 then ε is a unit of K.

The unit εK/k,S is called the Stark unit associated to the extension K/k, the set of

places S and the place v.1 It is unique up to multiplication by a root of unity in K. A
good reference for this conjecture is [15, Chap. IV].

The starting point of this research is the conjectural method used in [3] and [10] (and
inspired by [13]) to construct totally real abelian extensions of totally real fields. Let
L/k be such an extension. The idea is to construct a quadratic extension K/L, abelian
over k, satisfying some additional conditions similar to the assumptions (A1), (A2) and

Date: March 24, 2015.
Supported by the JSPS Global COE CompView. This research was conducted while the author was

a member of the Department of Mathematics of the Tokyo Institute of Technology, 2-12-1 Ookayama,
Meguro-ku, Tokyo 152-8550, Japan .

1In fact the place w but changing the place w just amounts to replace the Stark unit by one of its
conjugate.

1



2 XAVIER-FRANÇOIS ROBLOT

(A3) below. Assuming the Stark conjecture for K/k, S(K/k) and a fixed real place v of
k, one can prove that K = k(ε) and L = k(α) where α := ε+ ε−1 and ε := εK/k,S(K/k)

is the corresponding Stark unit. Using part (1) of the conjecture, one computes the
minimal polynomial A(X) of α over k. The final step is to check unconditionally that
the polynomial A(X) does indeed define the extension L.

One notices in that setting that the rank of the units of K is equal to the rank of
units of L plus the rank of the module generated by the Stark unit and its conjugates
over k. A natural question to ask is whether the index of the group generated by the
units of L and the conjugates of the Stark unit has finite index inside the group of units
of K and, if so, if this index can be computed. A positive answer to the first question is
given by Stark in [12, Th. 1]. In [1], Arakawa gives a formula for this index when k is a
quadratic field. Using similar methods, we obtain a general result (Theorem 2.2) in the
next section. Then we derive a “relative” index formula (Theorem 2.3) that relates the
index of the subgroup generated over Z[G] by the Stark unit inside the “minus-part” of
the group of units of K to the cardinality of the “minus-part” of the class group of K.2

In the third section, we use results of Rubin [11] on a form of the Gras conjecture for
Stark units to show that the relative index formula implies local relative index formulae
(Theorem 3.2). Starting with the fourth section, we stop assuming the abelian rank one
Stark conjecture and study directly the solutions to the index formulae. In section 4, we
look at how much these index formulae characterize the Stark unit (Proposition 4.1 and
Corollary 4.5). In the next section, we introduce the algebraic tools that will be needed
to prove the existence of solutions in some cases in the following sections. We also
reprove in that section the abelian rank one Stark conjecture for quadratic extensions
(Theorem 5.5). Finally, sections 6 and 7 are devoted to a proof that solutions to the
index formulae always exist for quartic extensions (Theorem 6.1) and sextic extensions
(Theorem 7.1) with some additional conditions in that case. We show that the existence
of solutions in those cases imply a weak version of the conjecture where part (1) is
satisfied only up to absolute values.3 We also obtain results on when the Stark unit, if
it exists, is a square (Corollary 2.4, Theorem 5.5, Corollary 6.2 and Corollary 7.2).

2. The index formulae

We assume from now on that the place v is infinite4 and that k has at least two infinite
places. Therefore we can always apply the conjecture for any finite set S containing
S(K/k). The cases that we are excluding are k = Q and k a complex quadratic field. In
both cases the conjecture is proved and the Stark unit is strongly related to cyclotomic
units and elliptic units respectively.

Fix a finite set S of places of k containing S(K/k). We make the following additional
assumptions.

(A1) k is totally real and the infinite places of K above v are real, the infinite places
of K not above v are complex.

(A2) The maximal totally real subfield K+ of K satisfies [K : K+] = 2.
(A3) All the finite primes in S are either ramified or inert in K/K+.

2Similar in some way to the index formulae for cyclotomic units, see [17, Chap. 8].
3Unfortunately, in most cases the values are complex and there does not appear to be any obvious

way to remove these absolute values.
4For v a finite place, the abelian rank one Stark conjecture is basically equivalent to the Brumer-

Stark conjecture, see [15, §IV.6]. Recent results of Greither and Popescu [5] imply the validity of the
Brumer-Stark conjecture away from its 2-part and under the hypothesis that an appropriate Iwasawa
µ-invariant vanishes.
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If S contains more than one place that splits totally in K/k then the conjecture is
trivially true with the Stark unit being equal to 1. Therefore the only non trivial case
excluded by (A1) is the case when k has exactly one complex place and K is totally
complex. It is likely that most of the methods and results in this paper can be adapted
to cover also that case. Assumptions (A2) and (A3) are necessary to ensure that the
rank of the group generated by the units of K+ and the conjugate of the Stark unit has
finite index inside the group of units of K. Without these assumptions, global index
formulae for Stark units as they are stated in this article cannot exist although it is still
possible to prove index formulae for some p-adic characters if one takes also into account
Stark units coming from subextensions (see [11] or Section 3).

We assume until further notice that the conjecture is true for the extension
K/k, the set of places S and the distinguished place v.5

Denote by ε := εK/k,S the corresponding Stark unit. From now on, all subfields of K
(including K itself) are identified with their image in R by w. We make the Stark unit
unique by imposing that ε > 0. It follows that εg > 0 for all g ∈ G, see [15, §IV.3.7].
One can also prove under these hypothesis, see [10, Lem. 2.8], that |S(K/k)| ≥ 3 and
therefore ε is a unit of K by part (3) of the Conjecture, and that |ε|w′ = 1 for any place
w′ of K not above v.

Let m be the degree of K+/k and d be the degree of k/Q. Thus we have [K : k] = 2m
and [K : Q] = 2md. Let τ denote the non trivial element of Gal(K/K+). It is the
complex conjugation of the extension K and, by the above remark, we have ετ = ε−1.
Let G+ denote the Galois group of K+/k, thus G+ ∼= G/〈τ〉. It follows from (A1) that
the signatures of K+ and K are respectively (dm, 0) and (2m,m(d − 1)). Therefore
the rank of UK+ and UK , the group of units of K+ and K, are respectively dm − 1
and 2m+m(d− 1)− 1 = (dm− 1) +m. Let UStark be the multiplicative Z[G]-module
generated by ±1, ε and UK+ . Let R := {ρ1, . . . , ρm} be a fixed set of representatives
of G modulo 〈τ〉. Set ε` := ρ−1

` (ε) for ` = 1, . . . ,m. Since τ(ε) = ε−1, the group
UStark is generated over Z by {±1, η1, . . . , ηdm−1, ε1, . . . , εm} where η1, . . . , ηdm−1 is a
system of fundamental units of K+. Let | · |j , 1 ≤ j ≤ (d + 1)m denote the infinite
normalized absolute values of K ordered in the following way. The 2m real absolute
values of K, corresponding to the places over v, are | · |j := |ρj(·)| and | · |j+m := |ρjτ(·)|
for 1 ≤ j ≤ m. The complex absolute values, corresponding to the infinite places not
above v, are | · |j for 2m + 1 ≤ j ≤ (d + 1)m. The regulator of UStark is the absolute
value of the determinant of the following matrix6(

log |ηi|j log |ε`|j
)
j,(i,`)

where 1 ≤ j ≤ (d + 1)m − 1, 1 ≤ i ≤ dm − 1 and 1 ≤ ` ≤ m. For 1 ≤ j ≤ (d + 1)m,
let | · |+j denote the restriction of the absolute value | · |j to K+. For 1 ≤ j ≤ m, the

places corresponding to | · |j and | · |+j are real and log |ηi|+j = log |ηi|j = log |ηi|j+m. For

2m+1 ≤ j ≤ (d+1)m, the places corresponding to |·|j and |·|+j are respectively complex

and real, thus log |ηi|+j = 2 log |ηi|j . Note also that |ε`|j+m = |ε`|−1
j for 1 ≤ j ≤ m and

|ε`|j = 1 for 2m+ 1 ≤ j ≤ (d+ 1)m. Therefore the matrix is equal to
log |ηi|+j log |ε`|j
log |ηi|+j − log |ε`|j

2 log |ηi|+j′ 0


(j,j′),(i,`)

5Since v is the only real place of k that stays real in K, we will usually not specify it.
6We discard the last absolute value | · |(d+1)m.
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where 1 ≤ j ≤ m, 2m+ 1 ≤ j′ ≤ (d+ 1)m− 1, 1 ≤ i ≤ dm− 1 and 1 ≤ ` ≤ m. Now we
add the j-th row to the (m+j)-th row for 1 ≤ j ≤ m and we obtain finally the following
matrix with the same determinant

log |ηi|+j log |ε`|j
2 log |ηi|+j 0

2 log |ηi|+j′ 0


(j,j′),(i,`)

.

Therefore the regulator of UStark is

Reg(UStark) =

∣∣∣∣det(log |ε`|j)j,` det
(

2 log |ηi|+j′
)
j′,i

∣∣∣∣ (2.1)

where 1 ≤ `, j ≤ m, 1 ≤ i ≤ dm − 1 and j′ runs through the set {1, . . . ,m, 2m +
1, . . . , (d+ 1)m−1}. The absolute values | · |+1 , . . . , | · |+m, | · |

+
2m+1, . . . , | · |

+
(d+1)m−1 are the

absolute values corresponding to all the infinite places of K+ but one. Thus the second
term is 2dm−1RK+ . For the first term, we have

|det(log |ε`|j)j,`| = |det(log |ερλ−1 |)ρ,λ∈R|.

We say that a character χ of G is even if χ(τ) = 1, otherwise χ is odd and χ(τ) = −1.
The even characters of G are the inflations of characters of G+. We have the following
modification of the classical determinant group factorization.

Lemma 2.1. Let ag ∈ C, for g ∈ G, be such that aτg = −ag for all g ∈ G. Then

det(aρλ−1)ρ,λ∈R =
∏
χ odd

∑
ρ∈R

χ(ρ)aρ.

Proof. Let E be the C-vector space of functions f : G→ C such that f(τg) = −f(g) for
all g ∈ G. Clearly it has dimension m and admits (χ)χ odd has a basis. Another basis is
given by the functions (δρ)ρ∈R defined by

δρ(ρ) = 1, δρ(τρ) = −1 and δρ(g) = 0 for all g ∈ G with g 6= ρ, τρ.

The group G acts on E by fσ : g 7→ f(gσ) for f ∈ E and σ ∈ G. In particular, we have
f τ = −f . We extend this action linearly to give E a structure of C[G]-module. Now
consider the endomorphism defined by T :=

∑
g∈G

agg. We have

T (δρ) =
∑
g∈G

ρg−1∈R

agδ
g
ρ +

∑
g∈G

ρg−1 6∈R

agδ
g
ρ =

∑
g∈G

ρg−1∈R

agδρg−1 −
∑
g∈G

ρg−1 6∈R

agδτρg−1 .

We write λ = ρg−1 in the first sum and λ = τρg−1 in the second one. We get

T (δρ) =
∑
λ∈R

aρλ−1δλ −
∑
λ∈R

aτρλ−1δλ = 2
∑
λ∈R

aρλ−1δλ.

Therefore the determinant of T is 2m det(aρλ−1)ρ,λ∈R. On the other hand, for χ odd, we
compute

T (χ) =
∑
g∈G

agχ
g =

∑
g∈G

agχ(g)χ.

Thus χ is an eigenvector for T with eigenvalue
∑
g∈G

agχ(g) = 2
∑
ρ∈R

χ(ρ)aρ. Therefore

det(T ) = 2m
∏

χ odd

∑
ρ∈R

χ(ρ)aρ and the result follows. �
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By the lemma, we get

det(log |ερλ−1 |)ρ,λ∈R =
∏
χ odd

∑
ρ∈R

χ(ρ) log |ερ| =
∏
χ odd

1

2

∑
g∈G

χ(g) log |εg|

=
∏
χ odd

L′K/k,S(0, χ) (2.2)

using part (1) for the last equality and the fact that the number of roots of unity in K
is 2 since K is not totally complex by (A1). On the other hand, we have∏

χ odd

LK/k,S(s, χ) =
ζS,K(s)

ζS,K+(s)
(2.3)

where ζS,K(s) := ζSK ,K(s) and ζS,K+(s) := ζSK+ ,K+(s) denote respectively the Dedekind

zeta functions of K and K+ with the Euler factors at primes in SK and SK+ removed.
Here SK and SK+ denote respectively the set of places of K and of K+ above the places
in S. We will often use by abuse the subscript S instead of SK or SK+ to simplify the
notation. Taking the limit when s→ 0 in (2.3) and using the expression for the Taylor
development at s = 0 of Dedekind zeta functions, see [15, Cor. I.1.2], we get∏

χ odd

L′K/k,S(0, χ) = 2tS
hKRK

h+
KR

+
K

(2.4)

where tS is the number of prime ideals in SK+ that are inert in K/K+ and hK , RK ,
hK+ and RK+ are respectively the class numbers and regulators of K and K+. Putting
together equations (2.1), (2.2) and (2.4), we get the following result.

Theorem 2.2. The index of UStark in the group of units of K is

(UK : UStark) = 2tS+dm−1 hK
hK+

where tS is the number of prime ideals in SK+ that are inert in K/K+. �

Let ClK and ClK+ denote respectively the class groups of K and K+. Define Cl−K
and U−K as the kernel of the following maps induced by the norm N := 1 + τ of the
extension K/K+

Cl−K := Ker(N : ClK → ClK+) and U−K := Ker(N : ŪK → ŪK+)

where ŪK and ŪK+ are respectively UK/{±1} and UK+/{±1}. From now on, we use
the additive notation to denote the action of Z[G], and other group rings, on ŪK and
its subgroups U−K , ŪK+ , . . . . For x ∈ UK , we denote by x̄ its class in ŪK and adopt the
following convention: if x̄ ∈ ŪK , we let x denote the unique element in the class x̄ such
that x > 0. Note that N (x) = N (−x) = 1 since K/K+ is ramified at at least one real
place.

Theorem 2.3. We have (
U−K : Z[G] · ε̄

)
= 2e+tS |Cl−K |

where 2e = (ŪK+ : N (ŪK)).

Proof. By class field theory the map N : ClK → ClK+ is surjective. Therefore |Cl−K | =
hK/hK+ . On the other hand, if we let ŪStark := UStark/{±1}, we have

Ker
(
N : ŪStark → ŪK+

)
= Z[G] · ε̄ and Im

(
N : ŪStark → ŪK+

)
= 2 · ŪK+ .

Therefore we get

(ŪK : ŪStark) = (N (ŪK) : 2 · ŪK+)
(
U−K : Z[G] · ε̄

)
.
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Since (ŪK : ŪStark) = (UK : UStark), it follows from Theorem 2.2 that(
U−K : Z[G] · ε̄

)
=

2tS+dm−1|Cl−K |(
N (ŪK) : 2 · ŪK+

) .
We conclude by noting that(

N (ŪK) : 2 · ŪK+

)
=

(
ŪK+ : 2 · ŪK+

)(
ŪK+ : N (ŪK)

) =
2dm−1(

ŪK+ : N (ŪK)
) . �

It has been observed that the Stark unit is quite often a square. The theorem provides
us with a necessary condition for that to happen.

Corollary 2.4. Let c be the 2-valuation of the order of Cl−K . A necessary condition for
the Stark unit ε to be a square in K is

e+ tS + c ≥ m.

Proof. Assume that ε = η2 with η ∈ K. Then it is easy to see that η ∈ U−K and therefore(
Z[G] · η̄ : Z[G] · ε̄

)
= 2m divides 2e+tS |Cl−K |. �

We will see below, see (5.10), that e ≥ (d− 1)m− 2. Therefore the inequality in the
theorem is always satisfied for d ≥ 2 + 2/m. However, this is not enough to ensure that
the Stark unit is a square in general. Indeed at the end of the paper we give an example
of a cyclic sextic extension K/k satisfying (A1), (A2) and (A3), and with k a totally real
cubic field where the Stark unit, assuming it exists, is not a square even though e > m.
But, in all the cases that we study, we can prove that for d sufficiently large the Stark
unit is always a square. Of course these cases are quite specific and it is difficult to draw
from them general conclusions, but still we are lead to ask the following question.

Question. Fix a relative degree m. Does there exist a constant D(m), depending only
on m, such that for any extensions K/k of degree 2m and any finite set of places S con-
taining S(K/k) satisfying (A1), (A2) and (A3), and with d ≥ D(m), the corresponding
Stark unit, assuming that it exists, is always a square in K?

It follows from the result of the next sections that the answer is positive for 1 ≤ m ≤ 3
and that D(1) = D(3) = 4 and D(2) = 3.

3. Rubin’s index formula

In [11], Rubin proves Gras conjecture type results for Stark units using Euler systems.
His results are generalized by Popescu [9]. In this section, we use the results of Rubin
to get a similar result in our setting. To be able to use Rubin’s results we need to make
the following additional assumption:

(A4) K contains the Hilbert Class Field Hk of k.

We assume in this section that the conjecture is true for the extensions and
set of places as described in [11].

We first introduce the results of Rubin. Let f be the conductor of K/k. For any
modulus g dividing f, let Kg = K ∩ k(g) be the intersection of K with the ray class
field of k of conductor g. Since v is totally split in K/k, one can apply the conjecture
to the extension Kg/k, the set of places S(Kg/k) and the place v, and get a Stark unit
that we denote by εg. Let Gg be the Galois group of Kg/k. Note that by (A1) the
group of roots of unity in Kg is {±1}. Part (2) of the conjecture is equivalent to the

fact that εg−1
g ∈ U2

Kg
for all g ∈ Gg, see [15, Prop. IV.1.2]. Define RStark as the following

Z[G]-module

RStark = 〈±1, (εg−1
g )1/2 for g | f and g ∈ Gg〉Z[G].
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Let p be a prime number that does not divide the order of G. In particular, p is an odd
prime. Denote by Ĝp the set of irreducible Zp-characters of G. For ψ ∈ Ĝp and M a
Z[G]-module, we set

Mψ := M ⊗Z[G] Zp[ψ]

where Zp[ψ] is the ring generated over Zp by the values of ψ and G acts on Zp[ψ] via
the character ψ. The following result is a direct consequence of Theorem 4.6 of [11].

Theorem 3.1 (Rubin). If ψ ∈ Ĝp is odd then∣∣∣(UK/RStark)ψ
∣∣∣ =

∣∣∣ClψK

∣∣∣ .
From this we deduce an analogous statement for our case.

Theorem 3.2. For all ψ ∈ Ĝp, we have∣∣∣(U−K/Z[G] · ε̄)ψ
∣∣∣ =

∣∣∣(Cl−K)ψ
∣∣∣ .

Proof. For M a Z[G]-module and ψ ∈ Ĝp, it is direct to see that Mψ = (M1+τ )ψ if ψ is

even and Mψ = (M1−τ )ψ if ψ is odd. In particular, if ψ is even, we get |(U−K/Z[G]·ε̄)ψ| =
|(Cl−K)ψ| = 1 and the result follows trivially in that case. Assume now that ψ is odd.
Let ε0 be the Stark unit corresponding to the extension K/k, the set of places S(K/k)
and the distinguished place v. Assume first that S = S(K/k)∪{p} for some finite prime
ideal p of k not in S(K/k). It follows from [15, Prop. IV.3.4] that ε̄ = (1−Fp(K/k)) · ε̄0

where Fp(K/k) is the Frobenius at p for the extension K/k. By (A3), τ is a power of
Fp(K/k) and thus ψ(Fp(K/k)) is a non trivial root of unity of order dividing |G|. Then
1−ψ(Fp(K/k)) is a p-adic unit and therefore (Z[G] · ε̄)ψ = (Z[G] · ε̄0)ψ. By repeating this
argument if necessary, we see that this last equality also holds in the general case. Now,

by taking g = f and σ = τ in the definition of RStark, we see that ε
(τ−1)/2
0 = ε−1

0 ∈ RStark.

Therefore we have ε
Z[G]
0 ⊂ RStark ⊂ UK , and thus

ε
2Z[G]
0 ⊂ Rτ−1

Stark ⊂ U
τ−1
K .

We take the ψ-component, by the above remarks and the theorem, we get

|(U−K/Z[G] · ε̄)ψ| = |(U−K/Z[G] · ε̄0)ψ| = |(U τ−1
K /ε

2Z[G]
0 )ψ| ≥

|(U τ−1
K /Rτ−1

Stark)ψ| = |(UK/RStark)ψ| = |ClψK | = |(Cl−K)ψ|.
Assume there exists a character ψ for which this is a strict inequality. Multiplying
over all characters in Ĝp, we get |(U−K/Z[G] · ε̄)⊗Zp| > |Cl−K ⊗Zp|, a contradiction with

Theorem 2.3. Therefore the equality holds for all ψ ∈ Ĝp and the theorem is proved. �

4. The index property

From now on, we do not assume any more that the conjecture is true.

From the results of the previous sections, we see that the conjecture implies that there
exists a unit ε̄ ∈ U−K such that7

(P1)
(
U−K : Z[G] · ε̄

)
= 2e+tS |Cl−K |,

(P2)
∣∣(U−K/Z[G] · ε̄)ψ

∣∣ =
∣∣(Cl−K)ψ

∣∣ for all p - [K : k] and ψ ∈ Ĝp.

7Although assumptions (A1) to (A4) are necessary to prove that the Stark unit is a solution of (P2),
it is not necessary to assume (A4) to prove that solutions exist in the cases that we study below. It is
an interesting question whether or not one could prove that the Stark unit is a solution to (P2) without
having first to assume (A4).
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A priori the existence of a solution to (P1) and (P2) does not imply in return the
conjecture (except for quadratic extensions, see Theorem 5.5 below). Indeed, in general,
properties (P1) and (P2) do not even characterize the Stark unit ε. To see that assume
that η̄ is a solution to (P1) and (P2), and let η̄′ := u · η̄ where u ∈ Z[G]× is a unit of
Z[G]. Then η̄′ also satisfies (P1) and (P2). If u belongs to {±γ : γ ∈ G} ⊂ Z[G]×,
the group of trivial units of Z[G], then η̄′ is essentially the same solution since it is a
conjugate of η̄ or the inverse of a conjugate of η̄. However there may be some non trivial
units in Z[G] (see the end of this section) and thus solutions to (P1) and (P2) that are
not related in any obvious way to the Stark unit. In any case, we have the following
result that shows that solutions to (P1) satisfy a very weak version of part (1) of the
conjecture.

Proposition 4.1. Let η̄ be an element of U−K satisfying (P1). Then we have∏
χ odd

1

2

∑
g∈G

χ(g) log |ηg| = ±
∏
χ odd

L′K/k,S(0, χ). (4.5)

Proof. Let x̄ ∈ U−K . Using the notations of Section 2, we have |xτ |j = |x|j for 2m+ 1 ≤
j ≤ (d+ 1)m since these absolute values are complex and τ is the complex conjugation.
Since, by construction, we have xτ = x−1, it follows that |x|2j = |x1+τ |j = 1 and |x|j = 1

for 2m + 1 ≤ j ≤ (d + 1)m. We can therefore reproduce the determinant computation
done in Section 2 replacing ε by η and UStark by the subgroup U0 of UK generated by
UK+ and the conjugates of η. We get

(UK : U0) = ±2dm−1RK+

RK

∏
χ odd

1

2

∑
g∈G

χ(g) log |ηg|.

We then proceed as in Theorem 2.3 by looking at the kernel of the norm map acting on
U0/{±1}. Since η̄ satisfies (P1), it follows that

2dm−1RK+

RK

∏
χ odd

1

2

∑
g∈G

χ(g) log |ηg| = ±2dm−1+tS |Cl−K |.

Then, by (2.4), we get the result∏
χ odd

1

2

∑
g∈G

χ(g) log |ηg| = ±2tS
hKRK
hK+RK+

= ±
∏
χ odd

L′K/k,S(0, χ). �

We now turn to the study of the structure of the Q[G]-module U−K ⊗Q. Since U−K is

killed by 1 + τ , it is a Q[G]−-module where Q[G]− := e−Q[G] and e− := 1
2(1− τ) is the

sum of the idempotents of odd characters of G.8 Since U−K injects into U−K ⊗Q, we will

identify it with its image. The following result describes the structure of U−K ⊗ Q as a
Galois module.

Proposition 4.2. The module U−K ⊗Q is a free Q[G]−-module of rank 1.

Proof. Let YK be the Q-vector space with basis the elements z in the set S∞(K) of
infinite places of K. The group G acts on YK in the following way: zg for g ∈ G and
z ∈ S∞(K) is the infinite place defined by x 7→ z(xg) for all x ∈ K. Denote by XK the
subspace of elements

∑
z az z ∈ YK such that

∑
z az = 0. Then the two Q[G]-modules

XK and UK ⊗ Q are isomorphic by a result of Herbrand and Artin [2]. Fix a Q[G]-
isomorphism f : UK ⊗ Q → XK . A direct computation shows that X−K := f(U−K ⊗ Q)
is spanned by the vectors {wρ − wρτ}ρ∈R where w is the fixed place of K above v. In

8Note that Q[G]− is a ring with identity e−.
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particular, X−K is generated as a Q[G]−-module by the vector w − wτ . This proves the
result. �

Corollary 4.3. There exist θ̄ ∈ Ū−K and q ∈ Q× such that∏
χ odd

1

2

∑
g∈G

χ(g) log |θg| = q
∏
χ odd

L′K/k,S(0, χ).

Proof. From the proposition, there exists u ∈ U−K ⊗ Q such that U−K ⊗ Q = Q[G]− · u.

We let θ̄ := n · u where n ∈ N is large enough so that θ̄ ∈ U−K . Then we set

q :=
(U−K : Z[G] · θ̄)

2e+t|Cl−K |
.

The result follows by the proof of Proposition 4.1 mutatis mutandis and replacing q by
−q if necessary. �

Thanks to Proposition 4.2, it is enough to study the structure of Q[G]− to understand
that of U−K⊗Q. Let X be the set of irreducible Z-characters of G. Each ξ ∈ X is the sum

of the irreducible characters in a conjugacy class Cξ of Ĝ under the action of Gal(Q̄/Q).
For ξ ∈ X, we let eξ :=

∑
χ∈Cξ eχ ∈ Q[G] be the corresponding rational idempotent

where eχ denotes the idempotent associated to the character χ. We have

Q[G] =
⊕
ξ∈X

eξQ[G] '
⊕
ξ∈X

Q(ξ)

where Q(ξ) is the cyclotomic field generated by the values of any character in Cξ. Let
Xodd be the set of Z-characters ξ ∈ X such that one, and thus all, characters in Cξ are
odd. We have e− =

∑
ξ∈Xodd

eξ and from the above decomposition, we get

Q[G]− =
⊕

ξ∈Xodd

eξQ[G] '
⊕

ξ∈Xodd

Q(ξ). (4.6)

We now define Z[G]− := e−Z[G] and let O−G be the maximal order of Q[G]−. We have

O−G =
⊕

ξ∈Xodd

eξZ[G] '
⊕

ξ∈Xodd

Z[ξ]. (4.7)

Now let p be a prime number. By (4.6), we get

Qp[G]− '
⊕

ξ∈Xodd

Q(ξ)⊗Q Qp '
⊕

ξ∈Xodd

⊕
p∈Sξ,p

Q(ξ)p (4.8)

where Sξ,p is the set of prime ideals of Q(ξ) above p and Q(ξ)p is the completion of Q(ξ)
at the prime ideal p. On the other hand, each rational character ξ ∈ X is the sum of
irreducible Zp-characters, say ξ =

∑
ψ∈Cξ,p ψ, and we have

Qp[G]− =
⊕

ξ∈Xodd

⊕
ψ∈Cξ,p

eψQp[G]−.

Therefore there is a bijection between the prime ideals in Sξ,p and the characters in Cξ,p.
For p a prime ideal in Sξ,p, we denote by ψξ,p the corresponding irreducible Zp-character.
Before stating the first result, we need one more notation. Let T be a set of primes. We
say that an element u ∈ Q[G] is a T -unit if u ∈ Zp[G]−,× for all p 6∈ T where Zp[G]−,×

is the group of units of Zp[G]−.
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Proposition 4.4. Let M be a sub-Z[G]−-module of Q[G]− of finite index. Let x be an
element of M such that xZ[G]− has finite index inside M . Assume that y is another
element of M such that

(M : xZ[G]−) = (M : yZ[G]−) and (Mψ : (xZp[G]−)ψ) = (Mψ : (yZp[G]−)ψ)

for all p - |G| and all ψ ∈ Ĝp with ψ odd. Then there exists a unique B-unit u ∈ Q[G]−

such that y = ux where B is the set of primes dividing both |G| and (M : xZ[G]−).

Proof. Since Q[G]− = xQ[G]−, there exists u ∈ Q[G]− such that y = ux. Assume
y = vx for another v ∈ Q[G]−. Then, for all ξ ∈ Xodd, we have ξ(u)ξ(x) = ξ(v)ξ(x).
Since ξ(x) 6= 0, it follows that ξ(u) = ξ(v) and thus by (4.6), we get u = v which proves
that u is unique.

Let p be a prime. Assume first that p does not divide |G|. Let ξ ∈ Xodd and p ∈ Sξ,p.
Write ψ := ψξ,p and denote by Z[ξ]p := ψ(Zp[G]−) the ring of integers of Q(ξ)p. Then

Mψ is an ideal of Z[ξ]p and we have

(Mψ : (xZp[G]−)ψ)

(Mψ : (yZp[G]−)ψ)
=

(Mψ : ψ(y)Z[ξ]p)

(Mψ : ψ(x)Z[ξ]p)
= |ψ(u)|p.

Thus ψξ,p(u) is a unit in Z[ξ]p for all ξ ∈ Xodd and p ∈ Sξ,p and thus u lies in Zp[G]−,×.
Assume now that p does not divide the index (M : xZ[G]−). We have

(M ⊗ Zp : xZp[G]−) = (M ⊗ Zp : yZp[G]−) = 1.

Therefore xZp[G]− = M ⊗ Zp = yZp[G]− and u ∈ Zp[G]−,×. �

By Propositions 4.2 and 4.4, we get the following result.

Corollary 4.5. Let B be the set of primes that divide both |G| and |Cl−K |. Assume there

exist η̄ and η̄′ two elements of U−K satisfying (P1) and (P2). Then there exists a unique
B-unit u ∈ Q[G]− such that η̄′ = u · η̄. �

From this result and the discussion at the beginning of the section, one cannot expect
the properties (P1) and (P2) to characterize the Stark unit if Z[G]− has some non trivial
B-units and a fortiori if Z[G]− has some non trivial units.9 It follows from the methods
of [6] that Z[G]− has some non trivial units if and only if O−G does. By (4.7), this is
the case if and only if there exists an odd character of G whose order divides 6. In
particular, for G a cyclic group, Z[G]− has only trivial units if and only if the order of
G is at most 6. We will prove in the next sections that there exist solutions to (P1)
and (P2) in these cases (with some additional conditions for sextic extensions). From
this we will deduce another proof of the conjecture for quadratic extensions and a weak
version of the conjecture for quartic and sextic extensions.

5. Algebraic tools

In this section we introduce some algebraic tools and results that will be useful in the
next sections. We start with the properties of Fitting ideals. Let R be a commutative
ring with an identity element. Let M be a finitely generated R-module. Therefore there
exists a surjective homomorphism f : Ra →M for some a ≥ 1. The Fitting ideal of M
as an R-module, denoted FittR(M), is the ideal of R generated by det(~v1, . . . , ~va) where
~v1, . . . , ~va run through the elements of the kernel of f . One can prove that it does not
depend on the choice of f . We will use the following properties of Fitting ideals, see [8,
Chap. 3] or [4, Chap. 20].

9If η̄ is a solution to (P1) and (P2) and u is a B-unit then u · η̄ is not necessarily a solution to (P1)
and (P2). A necessary and sufficient condition for that is that the linear map x 7→ ux of Q[G]− has
determinant ±1. This is always true if u is a unit of Z[G]−.
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• If there exist ideals A1, . . . , At of R such that

M ' R/A1 ⊕ · · · ⊕R/At,

then we have

FittR(M) = A1 · · ·At.
• Let T be an R-algebra. We have

FittT (M ⊗R T ) = FittR(M)T.

• Let N be another finitely generated R-module. We have

FittR(M ⊕N) = FittR(M)FittR(N).

Lemma 5.1. Let M be a finite O−G-module. Then

|M | = |(O−G/FittO−G
(M))|.

Proof. We have

(O−G : FittO−G
(M)) =

∏
ξ∈Xodd

(eξZ[G] : eξFittO−G
(M)) =

∏
ξ∈Xodd

(Z[ξ] : FittZ[ξ](eξM)).

Fix ξ ∈ Xodd. Since eξM is a finite Z[ξ]-module, there exist ideals a1, . . . , ar such that

eξM = Z[ξ]/a1 ⊕ · · · ⊕ Z[ξ]/ar.

Therefore FittZ[ξ](eξM) = a1 · · · ar and

(Z[ξ] : FittZ[ξ](eξM)) = NQ(ξ)/Q(a1 · · · ar) = |eξM |.

It follows that (O−G : FittO−G
(M)) =

∏
ξ∈Xodd

|eξM | = |M |. �

Lemma 5.2. Let M be a finite Z[G]−-module. Let p be a prime number not dividing
|G| and let ψ be an odd irreducible Zp-character. Then

|Mψ| = |(Z[G]−/FittZ[G]−(M))ψ| = |(O−G/FittO−G
(M))ψ|.

Proof. We have (FittZ[G]−(M))ψ = FittZp[ψ](M
ψ). Since Mψ is a finite Zp[ψ]-module,

there exist integers c1, . . . , cr ≥ 1 such that

Mψ '
r⊕
i=1

Zp[ψ]/pci

where p is the prime ideal of Zp[ψ]. Then FittZ[G]−(M)ψ = pc with c := c1 + · · · + cr
and therefore |(Z[G]−/FittZ[G]−(M))ψ| = (Zp[ξ] : pc) = |Mψ|. The last equality is clear

since (O−G)ψ = Zp[ψ]. �

In what follows we will also use repeatedly the Tate cohomology of finite cyclic groups,
see [7, §IX.1]. Let A be a finite cyclic group with generator a and let M be a Z[A]-
module. The zero-th and first group of cohomology are defined by

Ĥ0(A,M) := MA/NA(M) and Ĥ1(A,M) := Ker(NA : M →M)/(1− a)M

where NA :=
∑

b∈A b and MA is the submodule of elements in M fixed by A. Let N
and P be two other Z[A]-modules such that the following short sequence is exact:

1 // M // N // P // 1.
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Then the hexagon below is also exact.

Ĥ0(A,M)

&&

Ĥ1(A,P )

88

Ĥ0(A,N)

��

Ĥ1(A,N)

OO

Ĥ0(A,P )

xx

Ĥ1(A,M)

ff

(5.9)

The Herbrand quotient of M is defined by

Q(A,M) :=
|Ĥ0(A,M)|
|Ĥ1(A,M)|

.

The Herbrand quotient is multiplicative, that is for an exact short sequence as above,
we have Q(A,N) = Q(A,M)Q(A,P ). The following result plays a crucial rôle in the
next sections. It is a direct consequence of [7, Cor. IX.4.2].

Lemma 5.3. Let E/F be a quadratic extension with Galois group T . Let R ≥ 0 be the
number of real places in F that becomes complex in E. Then we have

Q(T,UE) = 2R−1. �

We use this result in the following way. Assume that R ≥ 1. Write ŪF and ŪE for
the group of units of F and E respectively modulo {±1}. Then we have

Ĥ0(T,UE) =
UF

NE/F (UE)
= {±1} × ŪF

NE/F (ŪE)

since −1 cannot be a norm in E/F . It follows from the lemma that |Ĥ0(T,UE)| is
divisible by 2R−1 and therefore

2R−2 | (ŪF : NE/F (ŪF )). (5.10)

In some cases we will not be able to get non trivial lower bounds with that method,
but still be able to deduce that Ĥ1(T,UE) is trivial. In this situation, we have the
following lemma.

Lemma 5.4. Let E/F be a quadratic extension with Galois group T . Assume that

Ĥ1(T,UE) is trivial. Then either E/F is unramified at finite places or there exists an
element of order 2 in the kernel of the norm map from ClE to ClF .

Proof. Consider the submodules of elements fixed by T in the short exact sequence

1 // UE // E× // PE // 1.

We get

1 // UF // F× // P TE
// Ĥ1(T,UE) // · · · .

Since Ĥ1(T,UE) = 1 by hypothesis, it follows that the groups PF and P TE are isomorphic.
The isomorphism is the natural map that sends a ∈ PF to aZE ∈ P TE , where ZE is the
ring of integers of E. Assume that there is a prime ideal p of F that ramifies in E/F .
Let P be the unique prime ideal of E above p and let h ≥ 1 be the order of P in ClE .
Since Ph ∈ P TE , there exists a principal ideal a ∈ PF such that Ph = aZE . Clearly a is
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a power of p. Looking at valuations at P, it follows that h is even. We set C := Ph/2.
Its class is an element of order 2 in ClE . But NE/F (C) = ph/2 = a is a principal ideal.
This concludes the proof. �

To conclude this section we prove the conjecture in our settings when K/k is a qua-
dratic extension. This result is proved in full generality in [15, Th. IV.5.4].

Theorem 5.5. Let K/k be a quadratic extension and S ⊃ S(K/k) be a finite set of
places of k satisfying (A1), (A2) and (A3). Then the abelian rank one Stark conjecture
is satisfied for the extension K/k and the set S with the Stark unit being the unique
solution, up to trivial units, of (P1) and (P2). Moreover the Stark unit is a square
in K if and only if e + tS + c ≥ 1 where c is the 2-valuation of the order of Cl−K . In

particular, if d ≥ 4 then it always a square and, in fact, it is a 2d−3-th power. It is also
a square if d = 3 and the extension K/k is ramified at some finite prime.

Proof. The only non trivial element of G is τ . Let χ be the character that sends τ to
−1. It is the only non trivial character of G and also the only odd character. We have
Z[G]− = O−G = e−Z ' Z. In particular, using Proposition 4.2, it is direct to see that

there exists θ̄ ∈ U−K such that U−K = Z · θ̄. Define

η̄ := 2e+tS |Cl−K | · θ̄.
From its construction, it is clear that η̄ satisfies (P1) and (P2). It follows from Propo-
sition 4.1, and replacing η by η−1 if necessary, that

1

2

∑
g∈G

χ(g) log |ηg| = L′K/k(0, χ).

This proves part (1) of the conjecture. Part (3) is direct by construction. It remains to
prove part (2). But (τ − 1) · η̄ = −2 · η̄ so part (2) follows and the conjecture is proved
in this case. Finally, from its definition, it is clear that η is a 2r-th power in K× if and
only if e+ tS + c ≥ r. Now, by (5.10), we have e ≥ d− 3 and therefore the Stark unit is
always a square if d ≥ 4. Assume that d = 3 and that η is not a square. Then e = 0 and
|Ĥ0(G,UK)| = 2. From Lemma 5.3, we get Ĥ1(G,UK) = 1 and therefore, since c = 0,
the extension K/k is unramified at finite places by Lemma 5.4 �

When d = 2, there exist extensions for which the Stark unit is a square and extensions
for which it is not a square. Using the PARI/GP system [16], we find the following
examples.10 Let k := Q(

√
5) and let v1, v2 denote the two infinite places of k with

v1(
√

5) < 0 and v2(
√

5) > 0. Let K be the ray class field modulo p11v2 where p11 :=
(1/2 + 3

√
5/2) is one of the two prime ideals above 11. Then K/k is a quadratic

extension that satisfies (A1), (A2) and (A3) with S := S(K/k), and one can prove that
the corresponding Stark unit is not a square. Now, on the other hand, let K be the ray
class field modulo

√
5q11v1, where q11 := (1/2−3

√
5/2) is the other prime ideal above 11.

Then K/k is a quadratic extension that satisfies (A1), (A2) and (A3) with S := S(K/k)
and, in this case, the Stark unit is a square. When d = 3 and K/k is unramified both
cases are possible. Indeed, let k := Q(α) where α3 − α2 − 13α + 1 = 0. It is a totally
real cubic field. Let v1, v2, v3 be the three infinite places of k with v1(α) ≈ −3.1829,
v2(α) ≈ 0.0765 and v3(α) ≈ 4.1064. Let K be the ray class field of k of conductor Zkv2v3.
Then K/k is a quadratic extension that satisfies (A1), (A2) and (A3) with S := S(K/k),
and that is unramified at finite places. One can prove in this setting that the Stark unit is
not a square. On the other hand, let k := Q(β) with β3−β2−24β−35 = 0. It is a totally
real cubic field. Let v1, v2, v3 be the three infinite places of k with v1(α) ≈ −3.0999,

10PARI/GP was also used to find the examples given in the next two sections.
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v2(α) ≈ −1.8861, and v3(α) ≈ 5.9860. Let K be the unique quadratic extension k of
conductor Zkv2v3. Then K/k satisfies (A1), (A2) and (A3) with S := S(K/k) and is
unramified at finite places. One can prove that k is principal and the class number of
K is 2. Therefore the Stark unit in this case is a square.

6. Cyclic quartic extensions

The goal of this section is to prove the following result.

Theorem 6.1. Let K/k be a cyclic quartic extension and S ⊃ S(K/k) be a finite set of
places of k satisfying (A1), (A2) and (A3). Then there exists η̄ ∈ U−K satisfying (P1)

and (P2). Furthermore, η̄ is unique up to the action of ±G, satisfies for all χ ∈ Ĝ

∣∣∣L′K/k,S(0, χ)
∣∣∣ =

1

2

∣∣∣∣∣∣
∑
g∈G

χ(g) log |ηg|

∣∣∣∣∣∣
and the extension K(

√
η)/k is abelian.

Proof. Denote by γ a generator of G, therefore τ = γ2. Let χ be the character of G
such that χ(γ) = i and let ξ := χ+χ3 be the only element in Xodd. From the results of
Section 4, we have

Q[G]− = e−Q[G] ' Q(i)

where the ring isomorphism sends any element of x ∈ Q[G]−, written uniquely as x =
e−(a + bγ) for a, b ∈ Q, to χ(x) = a + bi. In particular, we have Z[G]− = O−G ' Z[i]

and Z[G]− is a principal ring. By Proposition 4.2, this implies that there exists θ̄ ∈ U−K
such that U−K = Z[G]− · θ̄.

We now prove the unicity of the solution. Assume that η̄ and η̄′ are two solutions
to (P1) and (P2). By Corollary 4.5, there exists a unique 2-unit u in Q[G]− such
that η̄′ = u · η̄. Let p2 := (i + 1)Z[i] be the unique prime ideal above 2 in Z[i]. Let
n := vp2(χ(u)). Assume, without loss of generality, that n ≥ 0 (otherwise, exchange η̄
and η̄′ and replace u by u−1) and therefore η̄′ ∈ Z[G]− · η̄. Let x ∈ Z[G]− be such that
η̄ = x · θ̄. We have

(Z[G]− · η̄ : Z[G]− · η̄′) = (xZ[G]− : uxZ[G]−)

= (χ(x)Z[i] : χ(u)χ(x)Z[i])

= |χ(u)| = 2n.

Therefore n = 0 and u is a unit. Since the only units of Z[i] are ±1 and ±i, it follows
that u = ±e−g with g ∈ G. This proves the unicity statement.

Next we prove that there exist solutions to (P1) and (P2). Let F := FittZ[G]−(Cl−K)

be the Fitting ideal of Cl−K as a Z[G]−-module. Let f be a generator of F . We set
η̄ := f (γ + 1)e+tS · θ̄. We have by Lemma 5.1

(U−K : Z[G] · η̄) = 2e+tS (Z[G]− : F) = 2e+tS |Cl−K |.

Thus η̄ is a solution to (P1). In the same way it follows directly from Lemma 5.2 that
it is a solution to (P2).

Now, since η̄ ∈ U−K , we have for ν = χ0, the trivial character, or ν = χ2 that

1

2

∑
g∈G

ν(g) log |ηg| = 0.
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On the other hand, L′K/k,S(ν, 0) = 0 follows directly from [15, Prop. I.3.4]. From Propo-

sition 4.1, using the fact that χ3 = χ̄, we get11∣∣∣L′K/k,S(0, χ)
∣∣∣2 = L′K/k,S(0, χ)L′K/k,S(0, χ3)

=

1

2

∑
g∈G

χ(g) log |ηg|

1

2

∑
g∈G

χ3(g) log |ηg|


=

∣∣∣∣∣∣12
∑
g∈G

χ(g) log |ηg|

∣∣∣∣∣∣
2

and the equality to be proved follows by taking square-roots.
Finally, to prove that K(

√
η)/k is abelian, we need to prove that (γ − 1) · η̄ ∈ 2 · U−K

by [15, Prop. IV.1.2]. This is equivalent to proving that

(i− 1)(i+ 1)e+tSχ(f) ⊂ 2Z[i],

that is one of the following assertions is satisfied: e ≥ 1, tS ≥ 1 or 2 divides |Cl−K |. We
have e ≥ 2d− 4 by (5.10) and therefore the result is proved if d ≥ 3. Assume that d = 2

and e = 0. Then it follows by Lemma 5.3 that Ĥ1(T,UK) = 1 where T := 〈τ〉. By
Lemma 5.4 this implies that either 2 divides |Cl−K | and the result is proved, or K/K+

is unramified at finite places. Assume the latter. At least one prime ideal of k ramifies
in K by the proof of [10, Lem. 2.8] since k is a quadratic field. By (A3) this prime ideal
is inert in K/K+, thus tS ≥ 1. This concludes the proof. �

A consequence of this result is that we can say quite precisely when the Stark unit,
it it exists, is a square in that case. The result is very similar to the situation in the
quadratic case (see Theorem 5.5).

Corollary 6.2. Under the hypothesis of the theorem and assuming that the Stark unit
exists, then it is a square in K if and only if e + tS + c ≥ 2 where c is the 2-valuation
of |Cl−K |. In particular, if d ≥ 3 then it is always a square and, in fact, it is a 2d−2-th
power.

Proof. We prove the equivalence. The inequality is satisfied when the Stark unit ε
is a square by Corollary 2.4. Now assume that the inequality is satisfied. By the
unicity statement of the theorem, we have ε̄ = η̄ (replacing η by one of its conjugate if
necessary). From the proof of the theorem, we see that η̄ belongs to 2r ·U−K if and only
if (i+ 1)e+tSχ(f) ∈ 2rZ[i]. Taking valuation at p2, the only prime ideal above 2, we see
that it is equivalent to e + tS + c ≥ 2r. This proves the first assertion. Now, to prove
the second assertion, we see that e ≥ 2d − 4 by (5.10). Therefore η̄ lies in 2d−2 · U−K .
This proves the result. �

When d = 2 it is possible to find examples for which the Stark unit, if it exists, is a
square and examples for which it is not a square. For example, let k := Q(

√
5) and let

v1, v2 denote the two infinite places of k with v1(
√

5) < 0 and v2(
√

5) > 0. Let K be the
ray class field modulo p29v1 where p29 := (11/2 −

√
5/2) is one of the two prime ideals

above 29. Then K/k is a cyclic quartic extension that satisfies (A1), (A2) and (A3) with
S := S(K/k) and one can prove that, if it exists, the Stark unit is not a square. Now, on
the other hand, let K be the ray class field modulo

√
5p41v1 where p41 := (13/2−

√
5/2)

is one of the two prime ideals above 41. Then K/k is a cyclic quartic extension that

11Note that is easy to see that both sides of (4.5) are positive in this case.
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satisfies (A1), (A2) and (A3) with S := S(K/k), but one can prove that, in this case,
the Stark unit, if it exists, is a square.

7. Cyclic sextic extensions

In this final section we study the case when K/k is a cyclic sextic extension. We will
need some additional assumptions to be able to prove that there exists solutions to (P1)
and (P2).

Theorem 7.1. Let K/k be a cyclic sextic extension such that (A1), (A2) and (A3) are
satisfied with S := S(K/k) . Assume also that 3 does not divide the order of ClK and
that no prime ideal above 3 is wildly ramified in K/k. Let F be the quadratic extension
of k contained in K. Then there exists η̄ ∈ U−K satisfying (P1) and (P2) and such that
NK/F (η) is the Stark unit for the extension F/k and the set of places S. Furthermore,

η̄ is unique up to the action of an element of Gal(K/F ), satisfies for all χ ∈ Ĝ∣∣∣L′K/k,S(0, χ)
∣∣∣ =

1

2

∣∣∣∣∣∣
∑
g∈G

χ(g) log |ηg|

∣∣∣∣∣∣ ,
and the extension K(

√
η)/k is abelian.

Proof. Let γ be a generator of the Galois group G, thus τ = γ3. Let χ be the character
that sends γ to −ω where ω is a fixed primitive third root of unity. It is a generator of
the group of characters of G. We have Xodd = {ξ2, ξ6} where ξ2 := χ3 and ξ6 := χ+χ5.
The corresponding idempotents are

eξ2 =
1

6
(1− γ3)(1 + γ2 + γ4) and eξ6 =

1

6
(1− γ3)(2− γ2 − γ4).

We have the ring isomorphism

Q[G]− = eξ2Q[G] + eξ6Q[G] ∼= Q⊕Q(ω). (7.11)

Let σ := γ2 and let H be the subgroup of order 3 generated by σ. Any element g ∈ Q[G]−

can be written uniquely as g = e−h where h is an element of Q[H]. The map g 7→ h is a
ring isomorphism between Q[G]− and Q[H], that restricts to an isomorphism between
Z[G]− and Z[H]. From now on, we will identify Q[G]− and Q[H]. Note that, with that
identification, both act in the same way on U−K , U−K ⊗Q, Cl−K , etc. Let e0 and e1 be the

image by the projection map of eξ2 and eξ6 . Then e0 = 1
3(1 + σ+ σ2) is the idempotent

of the trivial character of H and e1 = 1
3(2−σ−σ2) is the sum of the idempotents of the

two non trivial characters of H. The main difference between this case and the quartic
case is the fact that the isomorphism between Q[H] and Q⊕Q(ω) does not restrict to
an isomorphism between Z[G]− and Z ⊕ Z[ω]. In particular, Z[G]− is not a principal
ring. Because of that the proof is somewhat more intricate than in the quartic case. We
will therefore proceed by proving a series of different claims. First, we define

O := e0Z[H] + e1Z[H] ' Z⊕ Z[ω]. (7.12)

Note that, by the above identification, we have O−G ∼= O.

Claim 1. The ring O is principal and contains Z[H] with index 3.

Let I be an ideal of O. Then e0I is an ideal of e0Z ' Z. Thus there exists a ∈ Z
such that e0I = ae0Z[H]. In the same way, e1I is an ideal of e1Z ' Z[ω]. Since Z[ω] is
a principal ring, there exists b, c ∈ Z such that e1I = e1(b+ cσ)Z[H]. One verify readily
that e0a+ e1(b+ cσ) is a generator of I. To conclude the proof of Claim 1, we note that
O/Z[H] = 〈e0 + Z[H]〉 = 〈e1 + Z[H]〉 clearly has order 3.
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Claim 2. Let A be an ideal of Z[H] of finite index. Then there exists g ∈ A such that

(O : AO) = (Z[H] : gZ[H]). (7.13)

Furthermore, A = gZ[H] if A is a principal ideal. Otherwise (A : gZ[H]) = 3.

We prove this claim by considering the two cases: AO 6= A and AO = A.

Claim 2.1. Assume that AO 6= A. Then A is a principal ideal.

Let g′ = e0a+e1(b+cσ) be a generator of the principal idealAO ofO. If e1(b+cσ) ∈ A,
then e1A = e1(b+ cσ)Z[H] ⊂ A and it follows that A = AO, a contradiction. Therefore
AO/A = 〈e1(b+ cσ) +A〉 has order 3. Thus one of the three elements: e0a+ e1(b+ cσ),
e0a− e1(b+ cσ) or e0a belongs to A. It cannot be e0a since that would imply, as above,
that A = AO. Denote by g the one element between e0a ± e1(b + cσ) that lies in A.
Clearly we still have gO = AO. Now, g is not a zero divisor since A has finite index in
Z[H], so we have (gO : gZ[H]) = (O : Z[H]) = 3. Therefore we get

(A : gZ[H]) =
(gO : gZ[H])

(AO : A)
= 1

and A = gZ[H]. Equation (7.13) follows in that case from the equality

(O : AO)(AO : A) = (O : Z[H])(Z[H] : A) (7.14)

and the fact that (AO : A) = (O : Z[H]) by the above.

Claim 2.2. Assume that AO = A. Then A is not a principal ideal, but there exists
g ∈ A such that (A : gZ[H]) = 3.

Let g be a generator of the principal ideal AO of O. Since AO = A, g lies in A and
we compute as above

(A : gZ[H]) = (AO : gO)(gO : gZ[H]) = 3.

Since (O : Z[H])(Z[H] : A) = 3(Z[H] : A) = (A : gZ[H])(Z[H] : A) = (Z[H] : gZ[H])
and (AO : A) = 1, Equation (7.13) follows from (7.14). It remains to prove that A
cannot be principal in that case. In order to prove this, we need another result. Let
x ∈ O. By the isomorphism in (7.12), it corresponds to a pair (x0, x1) in Z⊕ Z[ω]. We
define the norm of x as the following quantity

Norm(x) := |x0|NQ(ω)/Q(x1).

Note that we recover the usual definition of the norm of Q[H] as a Q-algebra. The proof
of the following claim is straightforward and is left to the reader.

Claim 3. Let x ∈ O with Norm(x) 6= 0. Then (O : xO) = Norm(x). If furthermore
x ∈ Z[H] then (Z[H] : xZ[H]) = Norm(x).

We now finish the proof of Claim 2.2. Assume that A is principal, say A = hZ[H]. Then
there exists z ∈ Z[H] such that g = hz and we have (O : zO) = 3. Thanks to the above
claim, we can explicitly compute all the elements z ∈ O such that (O : zO) = 3. There
are the elements z = e0a+e1(b+cσ) with a = ±1 and b+cσ ∈ {±(1+2σ),±(2+σ),±(1−
σ)}, or a = ±3 and b+ cσ ∈ {±1,±σ,±(1 + σ)}. One can compute all possibilities and
check that none of those belong to Z[H]. This gives a contradiction and concludes the
proof of Claim 2.2 and of Claim 2.

We now turn to the Z[H]-structure of U−K . The principal result is the following claim
that we will prove in several steps.

Claim 4. There exists θ̄ ∈ U−K such that U−K = Z[H] · θ̄.
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Let θ̄′ ∈ U−K be such that U−K ⊗ Q = Q[H] · θ̄′. Note that the existence of θ̄′ follows
from Proposition 4.2. We define

Λ :=
{
x ∈ Q[H] : x · θ̄′ ∈ U−K

}
.

It is a fractional ideal of Z[H]. The above claim is satisfied if and only if it is a principal
ideal. Assume that this is not the case. Then, by the above, we have12 ΛO = Λ.
Recall that F denotes the subfield of K fixed by H. It is a quadratic extension of k
and Gal(F/k) = 〈τ〉. We define U−F as the kernel of the norm map from UF /〈±1〉 to

Uk/〈±1〉. We have also U−F = U−K ∩ (F×/〈±1〉). Let NH := 1 + σ + σ2. It is the group
ring element corresponding to the norm of the extensions K/F and K+/k.

Claim 4.1. ΛO = Λ if and only if NH · U−K = 3 · U−F . If ΛO 6= Λ, then NH · U−K = U−F .

We have ΛO = Λ if and only if e0Λ ⊂ Λ, that is NH · U−K ⊂ 3 · U−K . Assume that it is

the case. Let δ̄ ∈ U−K and set κ := NK/F (δ) ∈ UF . Then the polynomial X3 − κ has a

root, say ν, in UK . If ν does not belong to F then all the roots of X3 − κ belongs to K
since K/F is a Galois extension. It follows that K contains the third roots of unity, a
contradiction. Therefore ν̄ ∈ U−F and NH · U−K ⊂ 3 · U−F . The other inclusion is trivial

and the first assertion of the claim is proved. If ΛO 6= Λ then 3 · U−F  NH · U−K ⊂ U
−
F .

Since U−F is a Z-module of rank 1, it follows that NH · U−K = U−F . The claim is proved.

Let S be the set of prime ideals of K that are totally split in K/k. Denote by IK,S
the subgroup of IK , the group of ideals of K, generated by the prime ideals in S. Then,
by Chebotarev’s theorem, the following short sequence is exact

1 // PK ∩ I1−τ
K,S

// I1−τ
K,S

// Cl1−τK
// 1

where PK is the group of principal ideals of K. We take the Tate cohomology of this
sequence for the action of H. Since 3 does not divide the order of ClK , it does not divide
the order of Cl1−τK and Ĥ0(Cl1−τK ) = Ĥ1(Cl1−τK ) = 1. Note that here and in what follows,
to simplify the presentation, we drop the group H in the notation of the cohomology
groups and write Ĥ i(M) instead of Ĥ i(H,M) for M a Z[H]-module. It follows from

the exact hexagon (5.9) for the above exact sequence that Ĥ i(PK ∩ I1−τ
K,S ) ' Ĥ i(I1−τ

K,S )

for i = 0, 1. Let A ∈ PK ∩ I1−τ
K,S . There exist α ∈ K×S , the subgroup of elements of K×

supported only by prime ideals in S, and B ∈ IK,S such that

A = (α) = B1−τ .

We apply 1− τ to this equation

A1−τ = (α)1−τ = B(1−τ)2 = (B1−τ )2 = A2.

Therefore we have (PK ∩ I1−τ
K,S )2 ⊂ P 1−τ

K,S where PK,S is the subgroup of principal ideals

generated by the elements of K×S . It follows that the quotient (PK ∩ I1−τ
K,S )/P 1−τ

K,S is

killed by 2 and therefore Ĥ i(PK ∩ I1−τ
K,S ) = Ĥ i(P 1−τ

K,S ) for i = 0 or 1. We have proved the
following claim.

Claim 4.2. Ĥ0(P 1−τ
K,S ) ' Ĥ0(I1−τ

K,S ) and Ĥ1(P 1−τ
K,S ) ' Ĥ1(I1−τ

K,S ).

Let u ∈ UK ∩ (K×S )1−τ . There exists α ∈ K×S such that u = α1−τ . Therefore we get

u1−τ = α(1−τ)2 = (α1−τ )2 = u2.

12Strictly speaking, the claims above are only for integral ideals of Z[H] but they admit obvious and
direct generalizations to fractional ideals.
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Reasoning as above, this implies that Ĥ i(UK ∩ (K×S )1−τ ) = Ĥ i(U1−τ
K ) = Ĥ i(U−K) for

i = 0, 1. We now consider the short exact sequence

1 // UK ∩ (K×S )1−τ // (K×S )1−τ // P 1−τ
K,S

// 1.

Taking the Tate cohomology and using the above equalities, we extract the following
exact sequence from the exact hexagon (5.9) corresponding to this exact sequence

· · · // Ĥ1(P 1−τ
K,S ) // Ĥ0(U−K) // Ĥ0((K×S )1−τ ) // · · · (7.15)

The next claim is just a reformulation of the first part of Claim 4.1.

Claim 4.3. ΛO = Λ if and only if Ĥ0(U−K) ' Z/3Z.

Assume the two followings claims for the moment.

Claim 4.4. Ĥ1(P 1−τ
K,S ) is trivial.

Claim 4.5. Ĥ0((K×S )1−τ ) is trivial.

By (7.15) we get that Ĥ0(U−K) = 1. Thus ΛO 6= O by Claim 4.3 and therefore Λ is
principal by Claim 2.1, and Claim 4 follows. It remains to prove Claims 4.4 and 4.5.
We start with the proof of Claim 4.4. By Claim 4.2, this is equivalent to prove that
Ĥ1(I1−τ

K,S ) is trivial. We have as Z[H]-modules

I1−τ
K,S =

∏
p0∈S0

′
( ∏

P|p0

PZ
)1−τ

'
∏

p0∈S0

′
(1− τ)Z[G]

where S0 is the set of prime ideals of k that splits completely in K/k, P runs through a
set of representative of the prime ideals of K dividing p0 under the action of τ and the
′ indicates that it is a restricted product, that is the exponent of P is zero for all but
finitely many prime ideals. The isomorphism comes from fixing a prime ideal above p0

and the fact that p0 is totally split in K/k. Therefore we have

Ĥ1(I1−τ
K,S ) =

∏
p0∈S0

′
Ĥ1((1− τ)Z[G]) '

∏
p0∈S0

′
Ĥ1(Z[H]).

It is well-known that Ĥ1(Z[H]) = 1, thus Claim 4.4 is proved.
To prove Claim 4.5, we prove that the norm from (K×S )1−τ to (F×S )1−τ is surjective.

Let α1−τ ∈ (F×S )1−τ . By the Hasse Norm Principle, α1−τ is a norm in K/F if and only
if it is a norm in KP/Fp for all prime ideals P of K where p denotes the prime ideal
of F below P. If p splits in K/F , then α1−τ is trivially a norm in KP/Fp. Assume
now that p is inert. It follows from the theory of local fields, see [7, §XI.4], that the
norm of KP/Fp is surjective on the group of units of Fp. But α1−τ is a unit at P since
P 6∈ S, and therefore it is a norm also in this case. Finally we assume that P is ramified
in K/F . Let p be the rational prime below P. By hypothesis, p 6= 3 since 3 is not
wildly ramified in K/k. Write µP, UP, µp and Up for the group of roots of unity of
order prime to p and the group of principal units of KP and Fp respectively. We have
µP = µp and therefore NKP/Fp

(µP) = µ3
p. On the other hand NKP/Fp

(Up) = U3
p = Up

and the norm is surjective on principal units. Since P 6∈ S, vp(α) = 0 and α = ζu with
ζ ∈ µp and u ∈ Up. It follows from the above discussion that α1−τ is a norm in KP/Fp

if and only if ζ1−τ ∈ µ3
p. Let p0 be the prime ideal of k below p. Assume first that

p0 is ramified in F/k. Then µp ⊂ kp0 and ζ1−τ = 1, thus α1−τ is a norm in KP/Fp.
Assume now that p0 is inert13 in F/k. Denote by f the residual degree of p0. The group

13By (A3), it cannot be split in F/k.
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µp0 of roots of unity in kp0 of order prime to p has order pf − 1. Let P+ := P ∩K+.
The extension K+

P+/kp0 is a tamely ramified cyclic cubic extension. Therefore it is a

Kummer extension by [7, Prop. II.5.12] and kp0 contains the third roots of unity, that is
3 divides pf − 1. Since τ is the Frobenius element at p0 of the extension F/k, we have

ζ1−τ = ζ1−pf = (ζ(1−pf )/3)3 ∈ µ3
p and therefore α1−τ is a norm in KP/Fp. We have

proved that α1−τ is a norm everywhere locally. It follows by the Hasse Norm Principle
that there exists β ∈ K× such that NK/F (β) = α1−τ . Let P be a prime ideal of K
not in S and, as above, let p be the prime ideal of F below P. Assume first that P
is ramified or inert in K/F , then vP(β) = vp(α

1−τ ) or 1
3vp(α

1−τ ) respectively. In both

cases we get vP(β) = 0 since α ∈ K×S . If P is split in K/F then it must be inert or

ramified in K/K+ by (A3). It follows that vP(β1−τ ) = 0. Therefore δ := β1−τ ∈ K×S .
We now compute

NK/F (δ1−τ ) = NK/F (β)(1−τ)2 = (α1−τ )2(1−τ) = (α1−τ )4.

Thus α1−τ is the norm of (δ/α)1−τ ∈ (K×S )1−τ . This concludes the proof of Claim 4.5
and therefore also the proof of Claim 4. The next claim follows from Claim 4.1 and the
fact, seen in the proof of Claim 4, that ΛO 6= Λ.

Claim 5. NH · U−K = U−F .

Let F := FittZ[H](Cl−K) be the Fitting ideal of Cl−K as a Z[H]-module. Apply Claim 2

to the ideal F and call f the element of F such thatO/FO ' Z[H]/fZ[H]. Set η̄′ := f ·θ̄.
Thanks to Claim 4, we find that

(U−K : Z[H] · η̄′) = (Z[H] : fZ[H]) = (O : FO) = |Cl−K |. (7.16)

For this last equality, we first use the fact that, since 3 does not divide the order of Cl−K ,
we can make e0 and e1 act on it and see it therefore as an O-module. By the properties
of the Fitting ideal, FO is the Fitting ideal of Cl−K as an O-module and the equality
follows from Lemma 5.1.

Claim 6. Let n,m ≥ 0 be two integers. Then there exists κn,m ∈ Z[H], unique up to a
trivial unit, such that

Norm(κn,m) = 2n+2m and e0κn,m = e02n. (7.17)

We define

κn,m := 2ne0 + (−1)n+m2me1.

It is clear from its construction that κn,m satisfies (7.17). One can see also directly that
κn,m ∈ Z[H] since 2 ≡ −1 (mod 3). It remains to prove the unicity statement. Clearly
e0κn,m is fixed by construction. On the other hand e1κn,m is an element of norm 22m in
e1Z[H] ' Z[ω]. Since 2 is inert in Z[ω], there exists only one element in Z[ω] of norm
22m up to units. This concludes the proof of the claim.

Let e′ ∈ N be such that 2e
′

= (Ūk : N (ŪF )). We now prove the following claim.

Claim 7. The integer e− e′ is non-negative and even.

We consider the natural map Ūk → ŪK+/N (ŪK) that comes from the inclusion Uk ⊂
UK+ . Let ū ∈ Ūk be in the kernel of this map. Thus there exists x̄ ∈ ŪK such that
ū = N (x̄). Set ȳ := NH · x̄− ū ∈ ŪF . We have

N (ȳ) = NH · N (x̄)−N (ū) = 3 · ū− 2 · ū = ū.
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Therefore the kernel of the above map is N (ŪF ) and there is a well-defined injective
group homomorphism from Ūk/N (ŪF ) to ŪK+/N (ŪK). This proves that14 e ≥ e′. The
cokernel of this map is

ŪK+/N (ŪK)

Ūk/N (ŪF )
' ŪK+/(Ūk +N (ŪK)). (7.18)

It is a finite Z[H]-module of order 2e−e
′
. In particular, the idempotents e0 and e1 act

on it. We have e0 · ŪK+/(Ūk +N (ŪK)) = NH · ŪK+/(Ūk +N (ŪF )) = 1. It follows that
ŪK+/(Ūk+N (ŪK)) = e1 · ŪK+/(Ūk+N (ŪK)) is a Z[ω]-module. Since 2 is inert in Z[ω],
the order of ŪK+/(Ūk +N (ŪK)) is an even power of 2. This concludes the proof of the
claim.

Let κ := κe′+tS ,(e−e′)/2. We define

η̄ := ±κ · η̄′. (7.19)

The choice of the sign will be done during the proof of the next claim. We have

(U−K : Z[H] · η̄) = (U−K : Z[H] · η̄′)(Z[H] · η̄′ : Z[H]κ · η̄′)
= |Cl−K |Norm(κ) = 2e+tS |Cl−K |

using (7.16), Claim 3 and the definition and properties of κ. Therefore, η̄ satisfies (P1).
Let p be a prime not dividing [K : k] and let ψ be an odd irreducible Zp-character. By
the construction of η′, the fact that p is odd and κ is a 2-unit, we find that

|(U−K/Z[H] · η̄)ψ| = |(U−K/Z[H] · η̄′)ψ| = |(O/F)ψ| = |(Cl−K)ψ|.

The last equality comes from Lemma 5.2. This proves that η̄ is also a solution to (P2).

The next step is to prove the following result.

Claim 8. Up to the right choice of sign in (7.19), we have

1

2

∑
g∈G

χ3(g) log |ηg|w = L′K/k,S(0, χ3).

The Z[H]-module U−K/(Z[H] · η̄) has order not divisible by 3 since η̄ satisfies (P1). Thus
it is a O-module and we can split it into two parts corresponding to the two idempotents
e0 and e1. On one side, using Claim 5, we have

e0 ·
(
U−K/Z[H] · η̄

)
= NH ·

(
U−K/Z[H] · η̄

)
' U−F /Z · η̄F

where η̄F := NH · η̄ ∈ U−F . On the other side, we compute

e1 ·
(
U−K/Z[H] · η̄

)
' e1

(
Z[H]/κfZ[H]

)
' Z[ω]/2(e−e′)/2F1

where F1 is the Fitting ideal of (Cl−K)e1 viewed as an Z[ω]-module. Indeed, we have by
construction

e1fZ[H] = e1FO ' FittZ[ω]((Cl−K)e1).

Since Cl−K = (Cl−K)e0 ⊕ (Cl−K)e1 and (Cl−K)e0 ' NK/F (Cl−K), we have

(Z[ω] : F1) = |(Cl−K)e1 | =
|Cl−K |

|NK/F (Cl−K)|
.

Claim 8.1. NK/F (Cl−K) = Cl−F .

14This inequality follows also from Claim 10 below.



22 XAVIER-FRANÇOIS ROBLOT

Consider the composition of maps Cl−F → Cl−K → Cl−F where the first map is the map
induced by the lifting of ideals from F to K and the second map is the norm NK/F .
The map constructed in that way is the multiplication by 3 and therefore, if the order
of Cl−F is not divisible by 3, it is a bijection and the claim is proved. Assume that 3

divides the order of Cl−F . Let hE denote the class number of a number field E. Thus

h−K := |Cl−K | = hK/hK+ and h−F := |Cl−F | = hF /hk. If K/F is ramified at some finite

prime then hF divides hK . As h−F divides hF , it follows that 3 | hK , a contradiction.
Assume now that K/F is unramified at finite primes. Therefore 3 divides hF and hF /3
divides hK . In the same way, K+/k is unramified and therefore 3 divides hk. Since
3 | h−F , this implies that 9 divides hF and therefore 3 divides hK , a contradiction. It

follows that 3 does not divide |Cl−F | and the claim is proved.

Putting together the claim and the computation that precedes it, we find that

(U−F : Z · η̄F ) =
(U−K : Z · η̄)

2e−e′
|Cl−F |
|Cl−K |

= 2e
′+tS |Cl−F |. (7.20)

Let P+ ∈ SK+ and denote by p0 the prime ideal of k below P+. Then P+ is inert
in K/K+ if and only if p0 is inert in F/k. Furthermore, if P+ is inert in K/K+, then
it is ramified15 in K+/k and it is the only prime ideal in SK+ above p0. It follows that
the number tS of prime ideals in SK+ that are inert in K/K+ is equal to the number
of prime ideals in S that are inert in F/k. Therefore η̄F satisfy the properties (P1) and
(P2) for the extension F/k and the set of primes S. As a consequence of Theorem 5.5,
we see that either ηF or η−1

F is the Stark unit for the extension K/F and the set of
places S. By choosing the right sign in (7.19), we can assume that ηF is the Stark unit.
Therefore we have

1

2
(log |ηF |w + ν(τ) log |ητF |w) = L′F/k,S(0, ν)

where ν is the non trivial character of F/k. It follows from the functorial properties of
L-functions that LF/k,S(s, ν) = LK/k,S(s, χ3), and from the definition of ηF that

log |ηF |w + ν(τ) log |ητF |w =
∑
g∈G

χ3(g) log |ηg|w.

This completes the proof of the claim.

Now, by Proposition 4.1, we know that1

2

∑
g∈G

χ(g) log |ηg|

1

2

∑
g∈G

χ3(g) log |ηg|

1

2

∑
g∈G

χ5(g) log |ηg|


= ±L′K/k,S(0, χ)L′K/k,S(0, χ3)L′K/k,S(0, χ5).

We cancel the non zero terms corresponding to χ3 using Claim 8 and, since χ and χ5

are conjugate, we get∣∣∣∣∣∣12
∑
g∈G

χ(g) log |ηg|

∣∣∣∣∣∣
2

=

1

2

∑
g∈G

χ(g) log |ηg|

1

2

∑
g∈G

χ5(g) log |ηg|


= L′K/k,S(0, χ)L′K/k,S(0, χ5) = |L′K/k,S(0, χ)|2.

15Recall that S = S(K/k).
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Taking square-roots, we get∣∣∣∣∣∣12
∑
g∈G

χ(g) log |ηg|

∣∣∣∣∣∣ =

∣∣∣∣∣∣12
∑
g∈G

χ5(g) log |ηg|

∣∣∣∣∣∣ = |L′K/k,S(0, χ)| = |L′K/k,S(0, χ5)|.

Note that we have directly using [15, Prop. I.3.4]

1

2

∑
g∈G

χ0(g) log |ηg| = 1

2

∑
g∈G

χ2(g) log |ηg| = 1

2

∑
g∈G

χ4(g) log |ηg|

= L′K/k,S(0, χ0) = L′K/k,S(0, χ2) = L′K/k,S(0, χ4) = 0.

We now prove that η̄ is unique up to multiplication by an element of H. Assume that
η̄′ is another element of U−K satisfying (P1), (P2) and such that NH · η̄′ is the Stark unit
for the extension F/k and the set of places S. Let u ∈ Q[H] be such that η̄′ = u · η̄. By
Corollary 4.5, u is a 2-unit. Now, by hypothesis, η̄F = NH · (u · η̄) = u · (NH · η̄) = u · η̄F
and thus e0u = e0. Write u1 for the element of Q(ω) such that (1, u1) corresponds to u
by the isomorphism in (7.11). Since both η̄ and η̄′ satisfy (P1), we have Norm(u) = 1
and thus NQ(ω)/Q(u1) = 1. But u1 is a 2-unit in Q(ω) and there is only prime ideal
above 2 in Q(ω). Therefore u1 is in fact a unit and u ∈ H.

Finally, it remains to prove that K(
√
η)/k is an abelian extension. As noted before

this is equivalent to prove that (γ − 1) · η̄ ∈ 2 · Ū−K by [15, Prop. IV.1.2]. Now γ acts on

U−K as −σ2. Thus, by the definition of η̄ and the isomorphism between U−K and Z[H],
this is equivalent to prove that

(σ2 + 1)κf ∈ 2Z[H]. (7.21)

Claim 9. Let x ∈ Z[H]. Then x ∈ 2Z[H] if and only if xe0 ∈ 2e0Z[H] and xe1 ∈
2e1Z[H].

If x ∈ 2Z[H] then clearly xe0 ∈ 2e0Z[H] and xe1 ∈ 2e1Z[H]. Reciprocally, assume that
xe0 = 2e0a0 and xe1 = 2e1a1 with a0, a1 ∈ Z[H]. Let a := e0a0 + e1a1. We have by
construction 2a = x ∈ Z[H] and 3a = (3e0)a0 + (3e1)a1 ∈ Z[H]. Therefore a belongs to
Z[H] and the claim is proved.

We prove (7.21) using the claim. On one hand, we have

e0(σ2 + 1)κf = 2e
′+tS+1e0f ∈ 2e0Z[H].

On the other hand, we have

e1(σ2 + 1)κf = 2(e−e′)/2e1(σ2 + 1)f.

The proof will be complete if we prove that e − e′ > 0. For that we use the following
claim.

Claim 10. |Ĥ0(T,UK/UF )| = 2e−e
′
.

Let U◦K be the subgroup of elements u ∈ UK such that u1−τ ∈ UF . We have

Ĥ0(T,UK/UF ) =
(UK/UF )T

N (UK/UF )
=

U◦K/UF
(N (UK)UF )/UF

'
U◦K

N (UK)UF
'

Ū◦K
N (ŪK) + ŪF

.

By (7.18), it is enough to prove the following group isomorphism

ŪK+/(N (ŪK) + Ūk) ' Ū◦K/(N (ŪK) + ŪF ). (7.22)
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Since ŪK+ ∩ (N (ŪK) + ŪF ) = N (ŪK) + Ūk, there is a natural injection of the LHS of
(7.22) in the RHS induced by the inclusion ŪK+ ⊂ Ū◦K . We prove now that this map is
surjective. Let ū ∈ Ū◦K . Thus x̄ := (1− τ) · ū ∈ ŪF . Note that (1− τ) · x̄ = 2 · x̄. Define
ȳ := NH · ū− x̄ ∈ ŪF and z̄ := ū− ȳ. We have

(1− τ) · z̄ = (1− τ) · ū− (1− τ)NH · ū+ (1− τ) · x̄ = x̄−NH · x̄+ 2 · x̄ = 0.

Thus z̄ ∈ ŪK+ . This proves that ū = z̄ + ȳ ∈ ŪK+ + ŪF . Equation (7.22) follows and
the proof of the claim is finished.

Now by the multiplicativity of the Herbrand quotient and Lemma 5.3, we find that

Q(T,UK/UF ) =
Q(T,UK)

Q(T,UF )
= 22d−2. (7.23)

Therefore e − e′ ≥ 2d − 2 ≥ 2. This concludes the proof that K(
√
η) is abelian over k

and the proof of the theorem. �

Corollary 7.2. Under the hypothesis of the theorem and assuming that the Stark unit
exists, then it is a square in K if and only if the Stark unit for the extension F/k and
the set S is a square and (e − e′)/2 + c − c′ ≥ 1 where c is the 2-valuation of |Cl−K |, c′
is the 2-valuation of |Cl−F | and (Ūk : N (ŪF )) = 2e

′
. In particular, if d ≥ 4 then it is

always a square and, in fact, it is a 2d−3-th power. It is also a square if d = 3 and the
extension K/k is ramified at some finite prime.

Proof. We use the notations and results of the proof of the theorem. By the unicity
statement, the Stark unit, if it exists, is equal to η or one of this conjugate over F . In
particular, the Stark unit is a 2r-th power in K if and only if η̄ ∈ 2r · U−K . By Claim 9
and the construction of η̄, this is equivalent to

2e
′+tSe0f ∈ 2re0Z and 2(e−e′)/2e1f ∈ 2re1Z[H].

Now e0fZ = e0|Cl−F |Z by the definition of f , Claim 8.1 and the discussion that precedes
it. Thus the first condition is equivalent to e′+ tS + c′ ≥ r. For r = 1, this is equivalent
to the fact that the Stark unit for F/k and the set S is a square by Theorem 5.5 and the
discussion that follows (7.20) on the number of primes in S that are inert in F/k. For the
second condition, recall that e1fZ[H] ' FittZ[ω]((Cl−K)e1) and therefore e1f ∈ 2vZ[H]

where v is the 2-valuation of the index (Z[ω] : FittZ[ω]((Cl−K)e1)). By Claim 8.1 and the

computation before it, this index is equal to |Cl−K |/|Cl−F |. Therefore the second condition
is equivalent to (e − e′)/2 + c − c′ ≥ r. This proves the first assertion: the Stark unit
for K/k and S = S(K/k) is a square if and only if the Stark unit for the extension F/k
and the set S is a square and (e− e′)/2 + c− c′ ≥ 1. For the second assertion, we have
e′ ≥ d− 3 by (5.10) and (e− e′)/2 ≥ d− 1 by Claim 10 and (7.23). Thus η̄ ∈ 2d−3 · U−K
for d ≥ 4 and we have that the Stark unit is a 2d−3-th power if d ≥ 4. Finally, for d = 3,
the condition 2(e−e′)/2e1f ∈ 2e1Z[H] is always satisfied. Assume that the extension K/k
is ramified at some finite prime. If F/k is also ramified at some finite prime then the
Stark unit for the extension F/k and the set S is a square by Theorem 5.5. If F/k is
unramified at finite primes then any prime ideal that ramifies in K/k is inert in F/k by
(A3). Therefore tS ≥ 1 and the Stark unit for the extension F/k and the set S is a also
square by Theorem 5.5. It follows that the Stark unit for K/k is a square by the first
part. This concludes the proof. �

Note that the condition in the case d = 3 is sharp. Indeed let k := Q(α), where
α3 + α2 − 9α − 8 = 0, be the smallest totally real cubic field of class number 3. Let
v1, v2, v3 be the three infinite places of k with v1(α) ≈ −3.0791, v2(α) ≈ −0.8785 and
v3(α) ≈ 2.9576. Let K be the ray class field of k of modulus Zkv2v3. The extension K/k
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is cyclic of order 6, satisfies (A1), (A2) and (A3) with S := (S/k), and is unramified
at finite places. One can check that, if it exists, the corresponding Stark unit is not a
square in K.
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