NUMERICAL EVIDENCE TOWARD A 2-ADIC EQUIVARIANT "MAIN CONJECTURE"

XAVIER-FRANÇOIS ROBLOT* AND ALFRED WEISS ${ }^{\dagger}$

1. The conjecture

Let K be a totally real finite Galois extension of \mathbb{Q} with Galois group G dihedral of order 8 , and suppose that $\sqrt{2}$ is not in K. Fix a finite set S of primes of \mathbb{Q} including $2, \infty$ and all primes that ramify in K. Let C be the cyclic subgroup of G of order 4 and F the fixed field of C acting on K. Fix a 2 -adic unit $u \equiv 5 \bmod 8 \mathbb{Z}_{2}$.

Write $L_{F}(s, \chi)$ for the 2 -adic L-functions, normalized as in [W], of the 2 -adic characters χ of C or, equivalently by class field theory, of the corresponding 2 -adic primitive ray class characters. We always work with their S-truncated forms

$$
L_{F, S}(s, \chi)=L_{F}(s, \chi) \prod_{\mathfrak{p}}\left(1-\frac{\chi(\mathfrak{p})}{N(\mathfrak{p})}\langle N(\mathfrak{p})\rangle^{1-s}\right)
$$

where \mathfrak{p} runs through all primes of F above $S \backslash\{2, \infty\}$, and $\left\rangle: \mathbb{Z}_{2}^{\times} \rightarrow 1+4 \mathbb{Z}_{2}\right.$ is the unique function with $\langle x\rangle x^{-1} \in\{-1,1\}$ for all x. Now our interest is in the 2-adic function

$$
f_{1}(s)=\frac{\rho_{F, S} \log (u)}{8\left(u^{1-s}-1\right)}+\frac{1}{8}\left(L_{F, S}(s, 1)+L_{F, S}\left(s, \beta^{2}\right)-2 L_{F, S}(s, \beta)\right)
$$

where β is a faithful irreducible 2-adic character of C and

$$
\rho_{F, S}=\lim _{s \rightarrow 1}(s-1) L_{F, S}(s, 1) .
$$

It follows from known results that $\frac{1}{2} \rho_{F, S} \in \mathbb{Z}_{2}$ and that $f_{1}(s)$ is an Iwasawa analytic function of $s \in \mathbb{Z}_{2}$, in the sense of $[\mathrm{R}]$. This means that there is a unique power series $F_{1}(T) \in \mathbb{Z}_{2}[[T]]$ so that

$$
F_{1}\left(u^{n}-1\right)=f_{1}(1-n) \quad \text { for } \quad n=1,2,3, \ldots
$$

The conjecture we want to test is

Conjecture 1.

$$
\frac{1}{2} \rho_{F, S} \in 4 \mathbb{Z}_{2} \quad \text { and } \quad F_{1}(T) \in 4 \mathbb{Z}_{2}[[T]]
$$

[^0]Testing the conjecture amounts to calculating $\frac{1}{2} \rho_{F, S}$ and (many of) the power series coefficients of

$$
F_{1}(T)=\sum_{j=1}^{\infty} x_{j} T^{j-1}
$$

modulo $4 \mathbb{Z}_{2}$. Were the conjecture false we would expect to find a counterexample in this way.

The idea of the calculation is, roughly, to express the coefficients of the power series $F_{1}(T)$ as integrals over suitable 2 -adic continuous functions with respect to the measures used to construct the 2 -adic L-functions.

The conjecture has been tested for 60 fields K determined by the size of their discriminant and the splitting of 2 in the field F. For this purpose, it is convenient to replace the datum K by F together with the ray class characters of F which determine $K(\operatorname{cf} \S 5)$. A description of the results is in $\S 6$: they are affirmative.

Where does $f_{1}(s)$ come from? It is an example which arises by attempting to refine the Main Conjecture of Iwasawa theory. This connection will be discussed next in order to prove that $F_{1}(T)$ is in $\mathbb{Z}_{2}[[T]]$.

2. The motivation

The Main Conjecture of classical Iwasawa theory was proved by Wiles [W] for odd prime numbers ℓ. More recently [RW2], an equivariant "main conjecture" has been proposed, which would both generalize and refine the classical one for the same ℓ. When a certain μ-invariant vanishes, as is expected for odd ℓ (by a conjecture of Iwasawa), this equivariant "main conjecture", up to its uniqueness assertion, depends only on properties of ℓ-adic L-functions, by Theorem A of [RW3].

The point is that it is possible to numerically test this Theorem A property of ℓ-adic L-functions, at least in simple special cases when it may be expressed in terms of congruences and the special values of these L-functions can be computed. The conjecture of $\S 1$ is perhaps the simplest non-abelian example when this happens, but with the price of taking $\ell=2$. Although there are some uncertainties about the formulation of the "main conjecture" for $\ell=2$, partly because [W] applies only in the cyclotomic case, it seems clearer what the 2 -adic analogue of the Theorem A properties of L-functions should be, in view of their "extra" 2-power divisibilities [DR].

More precisely, let $L_{k, S} \in \operatorname{Hom}^{*}\left(R_{\ell}\left(G_{\infty}\right), \mathcal{Q}^{c}\left(\Gamma_{k}\right)^{\times}\right)$be the "power series" valued function of ℓ-adic characters χ of $G_{\infty}=\operatorname{Gal}\left(K_{\infty} / k\right)$ defined in $\S 4$ of [RW2]. This is made from the values of ℓ-adic L-functions by viewing them as a quotient of Iwasawa analytic functions, by the proof of Proposition 11 in [RW2]. When $\ell \neq 2$, the vanishing of the μ-invariant mentioned above means precisely that the coefficients of these power series have no nontrivial common divisor; and the Theorem A property of L-functions is that then $L_{k, S}$ is in $\operatorname{Det}\left(K_{1}\left(\Lambda\left(G_{\infty}\right) \bullet\right)\right.$) (see next section for precise definitions).

When $\ell=2$, we can still form $L_{k, S}$, but now its values at characters χ of degree 1 have numerators divisible by $2^{[k: \mathbb{Q}]}$, because of (4.8), (4.9) of $[R]$. Define

$$
\widetilde{L}_{k, S}(\chi)=2^{-[k: \mathbb{Q}] \chi(1)} L_{k, S}(\chi)
$$

for all 2-adic characters χ of G_{∞}, so that the deflation and restriction properties of Proposition 12 of [RW2] are maintained. Then the analogous coprimality condition on coefficients of numerator, denominator of the values $\widetilde{L}_{k, S}(\chi)$ will be referred to as vanishing of the $\widetilde{\mu}$-invariant of K_{∞} / k : the Theorem A property we want to test is therefore

Conjecture 2.

$$
\widetilde{L}_{k, S} \text { is in } \operatorname{Det}\left(K_{1}\left(\Lambda\left(G_{\infty}\right) \bullet\right)\right) .
$$

Remark 2.1. a) When Conjecture 2 holds, then $\widetilde{L}_{k, S}(\chi)$ is in $\Lambda^{c}\left(\Gamma_{k}\right)_{\bullet}^{\times}$for all $\chi \in R_{2}\left(G_{\infty}\right)$, implying the vanishing of the $\widetilde{\mu}$-invariant of K_{∞} / k.
b) For $\ell \neq 2$, some cases of the equivariant "main conjecture" have recently been proved ([RW]).

3. Interpreting Conjecture 2 as a congruence

We now specialize to the situation of $\S 1$, so use the notation of its first paragraph, in order to exhibit a congruence equivalent to Conjecture 2 (see Figure 1).

Figure 1
Let \mathbb{Q}_{∞} be the cyclotomic \mathbb{Z}_{2}-extension of \mathbb{Q}, i.e. the maximal totally real subfield of the field obtained from \mathbb{Q} by adjoining all 2-power roots of unity, and set $\Gamma_{\mathbb{Q}}=\operatorname{Gal}\left(\mathbb{Q}_{\infty} / \mathbb{Q}\right) \simeq \mathbb{Z}_{2}$. Let $K_{\infty}=K \mathbb{Q}_{\infty}$, noting that $K \cap \mathbb{Q}_{\infty}=\mathbb{Q}$ follows from $\sqrt{2} \notin K$, and set $G_{\infty}=\operatorname{Gal}\left(K_{\infty} / \mathbb{Q}\right)$. Defining $\Gamma=\operatorname{ker}\left(G_{\infty} \rightarrow G\right), H=\operatorname{ker}\left(G_{\infty} \rightarrow \Gamma_{\mathbb{Q}}\right)$, we now have $H \hookrightarrow G_{\infty} \rightarrow \Gamma_{\mathbb{Q}}$ in the notation of [RW2].

Since $G_{\infty}=\Gamma \times H$ with $\Gamma \simeq \Gamma_{\mathbb{Q}}$ and $H \simeq G$ dihedral of order 8 we can understand the structure of

$$
\Lambda\left(G_{\infty}\right) \bullet=\Lambda(\Gamma) \bullet \otimes_{\mathbb{Z}_{2}} \mathbb{Z}_{2}[H]=\Lambda(\Gamma) \bullet[H]
$$

where • means "invert all elements of $\Lambda(\Gamma) \backslash 2 \Lambda(\Gamma)$."
Namely, choose σ, τ in G so that $C=\langle\tau\rangle$ with $\sigma^{2}=1, \sigma \tau \sigma^{-1}=\tau^{-1}$ and extend them to K_{∞}, with trivial action on \mathbb{Q}_{∞}, to get s, t respectively. Then the abelianization of H is $H^{a b}=H /\left\langle t^{2}\right\rangle$ and we get a pullback diagram

where the upper right term is the crossed product order with $\Lambda(\Gamma) \bullet$-basis $1, \zeta_{4}, \widetilde{s}, \zeta_{4} \widetilde{s}$ with $\zeta_{4}^{2}=-1, \widetilde{s}^{2}=1, \widetilde{s} \zeta_{4}=\zeta_{4}^{-1} \widetilde{s}=-\zeta_{4} \widetilde{s}$ and the top map takes t, s to ζ_{4}, \widetilde{s} respectively, the right map takes ζ_{4}, \widetilde{s} to $t^{a b}, s^{a b}$. This diagram originates in the pullback diagram for the cyclic group $\langle t\rangle$ of order 4 , then going to the dihedral group ring $\mathbb{Z}_{2}[H]$ by incorporating the action of s, and finally applying $\Lambda(\Gamma) \bullet \otimes_{\mathbb{Z}_{2}}$.

We now turn to getting the first version of our congruence in terms of the pullback diagram above. This is possible since $R^{\times} \rightarrow K_{1}(R)$ is surjective for all the rings considered there. We also simplify notation a little by setting $\mathfrak{A}=\left(\Lambda(\Gamma) \bullet\left(\zeta_{4}\right)\right) *\langle s\rangle$ and writing $\widetilde{L}_{k, S}$ as $\widetilde{L}_{K_{\infty} / k}$, because we will now have to vary the fields and S is fixed anyway. The dihedral group G has 4 degree 1 irreducible characters $1, \eta, \nu, \eta \nu$ with $\eta(\tau)=1, \nu(\sigma)=1$ and a unique degree 2 irreducible α, which we view as characters of G_{∞} by inflation.

Proposition 3.1. Let $K_{\infty}^{a b}$ be the fixed field of $\left\langle t^{2}\right\rangle$, hence $\operatorname{Gal}\left(K_{\infty}^{a b} / \mathbb{Q}\right)=$ $G_{\infty}^{a b}$. Then
a) $\widetilde{L}_{K_{\infty}^{a b} / \mathbb{Q}}=\operatorname{Det}\left(\widetilde{\Theta}^{a b}\right)$ for some $\widetilde{\Theta}^{a b} \in \Lambda\left(G_{\infty}^{a b}\right)_{\bullet}^{\times}$
b) $\widetilde{L}_{K_{\infty} / \mathbb{Q}} \in \operatorname{Det}\left(K_{1}\left(\Lambda\left(G_{\infty}\right) \bullet\right)\right.$) if, and only if, any $y \in \mathfrak{A}$ mapping to $\widetilde{\Theta}^{a b} \bmod 2$ in $\Lambda\left(G_{\infty}^{a b}\right) \bullet / 2 \Lambda\left(G_{\infty}^{a b}\right) \cdot$ has

$$
n r(y) \equiv \widetilde{L}_{K_{\infty} / \mathbb{Q}}(\alpha) \quad \bmod 4 \Lambda\left(\Gamma_{\mathbb{Q}}\right)
$$

where $n r$ is the reduced norm of (the total ring of fractions of) \mathfrak{A} to its centre $\Lambda(\Gamma) \bullet$ and we identify $\Lambda(\Gamma) \bullet$ with $\Lambda\left(\Gamma_{\mathbb{Q}}\right) \bullet$ via $\Gamma \stackrel{\simeq}{\leftrightharpoons} \Gamma_{\mathbb{Q}}$.

Proof. a) The vanishing of $\widetilde{\mu}$ for K_{∞} / \mathbb{Q}, in the sense of $\S 2$, is known by [FW], i.e. $\widetilde{L}_{K_{\infty}^{a b} / \mathbb{Q}}(\chi)$ is a unit in $\Lambda\left(\Gamma_{\mathbb{Q}}\right)$ • for all 2-adic characters χ of $G_{\infty}^{a b}$. By the proof of Theorem 9 in [RW3] we have $L_{K_{\infty}^{a b} / \mathbb{Q}}=\operatorname{Det}(\lambda)$ with $\lambda \in \Lambda\left(G_{\infty}^{a b}\right)$ • the pseudomeasure of Serre. The point is then that $\lambda=2 \widetilde{\Theta}^{a b}$ with $\widetilde{\Theta}^{a b} \in \Lambda\left(G_{\infty}^{a b}\right) \bullet$, which follows from Theorem 3.1 b) of $[\mathrm{R}]$, because of Theorem 4.1 (loc.cit.) and the relation between λ and μ_{c} discussed just after it. Then $\widetilde{L}_{K_{\infty}^{a b} / \mathbb{Q}}=\operatorname{Det}\left(\widetilde{\Theta}^{a b}\right)$ and now the proof of the Corollary to Theorem 9 in [RW3] shows that $\widetilde{\Theta}^{a b}$ is a unit of $\Lambda\left(G_{\infty}^{a b}\right)$.
b) Claim: $\operatorname{nr}(1+2 \mathfrak{A})=1+4 \Lambda(\Gamma)$ 。

Proof of the claim. If $x=a 1+b \zeta_{4}+c \widetilde{s}+d \zeta_{4} \widetilde{s}$ with $a, b, c, d \in \Lambda(\Gamma)$ e, one computes $n r(x)=\left(a^{2}+b^{2}\right)-\left(c^{2}+d^{2}\right)$ from which $n r(1+2 \mathfrak{A}) \subseteq 1+4 \Lambda(\Gamma)$.; equality follows from $\operatorname{nr}((1+2 a)+2 a \widetilde{s})=(1+2 a)^{2}-(2 a)^{2}=1+4 a$ for $a \in \Lambda(\Gamma)$.

Suppose first that the congruence for $\widetilde{L}_{K_{\infty} / \mathbb{Q}}(\alpha)$ holds. Start with $\widetilde{\Theta}^{a b}$ from a) in the lower left corner of the pullback square and map it to $\widetilde{\Theta}^{a b}$ $\bmod 2$ in the lower right corner. Choosing any $y_{0} \in \mathfrak{A}$ mapping to $\widetilde{\Theta}^{a b}$ $\bmod 2$, we note that $y_{0} \in \mathfrak{A}^{\times}$because the maps in the pullback diagram are ring homomorphisms and the kernel $2 \mathfrak{A}$ of the right one is contained in the radical of \mathfrak{A}. Thus $n r\left(y_{0}\right) \in \Lambda(\Gamma)_{\bullet}^{\times}$has $n r\left(y_{0}\right)^{-1} \widetilde{L}_{K_{\infty} / \mathbb{Q}}(\alpha) \in 1+4 \Lambda\left(\Gamma_{\mathbb{Q}}\right)$ • by the congruence, hence, by the Claim, $n r\left(y_{0}\right)^{-1} \widetilde{L}_{K_{\infty} / \mathbb{Q}}(\alpha)=n r(z), z \in$ $1+2 \mathfrak{A}$. So $y_{1}=y_{0} z$ is another lift of $\widetilde{\Theta}^{a b} \bmod 2$ and $n r\left(y_{1}\right)=\widetilde{L}_{K_{\infty} / \mathbb{Q}}(\alpha)$. By the pullback diagram we get $Y \in \Lambda\left(G_{\infty}\right)_{\bullet}^{\times}$which maps to $\widetilde{\Theta}^{a b}$ and y_{1}, where $n r\left(y_{1}\right)=\widetilde{L}_{K_{\infty} / \mathbb{Q}}(\alpha)$.

It follows that $\operatorname{Det} Y=\widetilde{L}_{K_{\infty} / \mathbb{Q}}$. To see this we check that their values agree at every irreducible character χ of G_{∞}; it even suffices to check it on the characters $1, \eta, \nu, \eta \nu, \alpha$ of G by Theorem 8 and Proposition 11 of [RW2], because every irreducible character of G_{∞} is obtained from these by multiplying by a character of type W. It works for the characters $1, \eta, \nu, \eta \nu$ of $G_{\infty}^{a b}$ by Proposition 12, 1b) (loc.cit.) since the deflation of Y equals $\widetilde{\Theta}^{a b}$ and Det $\widetilde{\Theta}^{a b}=\widetilde{L}_{K_{\infty}^{a b} / \mathbb{Q}}$ by a). Finally, (Det $\left.Y\right)(\alpha)=j_{\alpha}(n r(Y))=$ $n r\left(y_{1}\right)=\widetilde{L}_{K_{\infty} / \mathbb{Q}}(\alpha)$ by the commutative triangle before Theorem 8 (loc.cit.), the definition of j_{α}, and $G_{\infty}=\Gamma \times H$.

The converse depends on related ingredients. More precisely, $\widetilde{L}_{K_{\infty} / \mathbb{Q}} \in$ Det $K_{1}\left(\left(\Lambda G_{\infty}\right) \bullet\right)$ implies $\widetilde{L}_{K_{\infty} / \mathbb{Q}}=\operatorname{Det} Y$ with $Y \in\left(\Lambda G_{\infty}\right)_{\bullet}^{\times}$by surjectivity of $\left(\Lambda G_{\infty}\right)_{\bullet}^{\times} \rightarrow K_{1}\left(\left(\Lambda G_{\infty}\right)_{\bullet}\right)$. Since $\left(\Lambda G_{\infty}^{a b}\right)_{\bullet}^{\times} \rightarrow K_{1}\left(\left(\Lambda G_{\infty}^{a b}\right) \bullet\right)$ is an isomorphism, we get that the deflation of Y equals $\widetilde{\Theta}^{a b}$ in $\Lambda\left(G_{\infty}^{a b}\right)^{\times}$. Letting $y_{1} \in \mathfrak{A}^{\times}$be the image of Y in the pullback diagram, it follows that $n r\left(y_{1}\right)=\widetilde{L}_{K_{\infty} / \mathbb{Q}}(\alpha)$ and that y_{1} maps to $\widetilde{\Theta}^{a b} \bmod 2$ in $\Lambda\left(G_{\infty}^{a b}\right) \bullet / 2 \Lambda\left(G_{\infty}^{a b}\right)$ • Given any y as in b), then $y_{1}^{-1} y$ maps to 1 hence is in $1+2 \mathfrak{A}$ and our congruence follows from the Claim on applying $n r$.

4. Rewriting the congruence in testable form

Set $F_{0}=\frac{\widetilde{L}_{K_{\infty} / F, S}(1)+\widetilde{L}_{K_{\infty} / F, S}\left(\beta^{2}\right)}{2}-\widetilde{L}_{K_{\infty} / F, S}(\beta)$.
Proposition 4.1. a) F_{0} is in $\Lambda\left(\Gamma_{\mathbb{Q}}\right)$.
b) $\widetilde{L}_{K_{\infty} / \mathbb{Q}} \in \operatorname{Det} K_{1}\left(\Lambda\left(G_{\infty}\right) \bullet\right)$ if, and only if, $F_{0} \in 4 \Lambda\left(\Gamma_{\mathbb{Q}}\right)$ •

Proof. Note that $\operatorname{ind}_{C}^{G} 1_{C}=1_{G}+\eta, \quad \operatorname{ind}_{C}^{G} \beta^{2}=\nu+\eta \nu, \quad \operatorname{ind}_{C}^{G} \beta=\alpha$. When we inflate β to a character of $\operatorname{Gal}\left(K_{\infty} / F\right)$ then $\operatorname{ind}_{\operatorname{Gal}\left(K_{\infty} / F\right)}^{G_{\infty}} \beta=\alpha$ with α inflated to G_{∞}, etc.

By Proposition 3.1 of the previous section we can write $\widetilde{L}_{K_{\infty}^{a b} / \mathbb{Q}}=\operatorname{Det}\left(\widetilde{\Theta}^{a b}\right)$ with

$$
\widetilde{\Theta}^{a b}=a+b t^{a b}+c s^{a b}+d s^{a b} t^{a b}
$$

for some a, b, c, d in $\Lambda(\Gamma)$. . It follows that

$$
\begin{aligned}
\widetilde{L}_{K_{\infty} / \mathbb{Q}}(1) & =a+b+c+d \\
\widetilde{L}_{K_{\infty} / \mathbb{Q}}(\eta) & =a+b-c-d \\
\widetilde{L}_{K_{\infty} / \mathbb{Q}}(\nu) & =a-b+c-d \\
\widetilde{L}_{K_{\infty} / \mathbb{Q}}(\eta \nu) & =a-b-c+d .
\end{aligned}
$$

Form $y=a+b \zeta_{4}+c \widetilde{s}+d \zeta_{4} \widetilde{s}$ in $\left(\Lambda(\Gamma) \bullet\left(\zeta_{4}\right)\right) *\langle s\rangle$. By the computation in the Claim in the proof of Proposition 3.1, we have

$$
\begin{aligned}
n r(y)= & (a+c)(a-c)+(b+d)(b-d) \\
= & \frac{\widetilde{L}_{\mathbb{Q}}(1)+\widetilde{L}_{\mathbb{Q}}(\nu)}{2} \frac{\widetilde{L}_{\mathbb{Q}}(\eta)+\widetilde{L}_{\mathbb{Q}}(\eta \nu)}{2}+\frac{\widetilde{L}_{\mathbb{Q}}(1)-\widetilde{L}_{\mathbb{Q}}(\nu)}{2} \frac{\widetilde{L}_{\mathbb{Q}}(\eta)-\widetilde{L}_{\mathbb{Q}}(\eta \nu)}{2} \\
= & \frac{1}{4}\left(\widetilde{L}_{\mathbb{Q}}(1+\eta)+\widetilde{L}_{\mathbb{Q}}(1+\eta \nu)+\widetilde{L}_{\mathbb{Q}}(\nu+\eta)+\widetilde{L}_{\mathbb{Q}}(\nu+\eta \nu)\right) \\
& +\frac{1}{4}\left(\widetilde{L}_{\mathbb{Q}}(1+\eta)-\widetilde{L}_{\mathbb{Q}}(1+\eta \nu)-\widetilde{L}_{\mathbb{Q}}(\nu+\eta)+\widetilde{L}_{\mathbb{Q}}(\nu+\eta \nu)\right) \\
= & \frac{\widetilde{L}_{\mathbb{Q}}(1+\eta)+\widetilde{L}_{\mathbb{Q}}(\nu+\eta \nu)}{2}=\frac{\widetilde{L}_{F}(1)+\widetilde{L}_{F}\left(\beta^{2}\right)}{2},
\end{aligned}
$$

because

$$
\widetilde{L}_{K_{\infty} / \mathbb{Q}}\left(\operatorname{ind}_{\operatorname{Gal(K_{\infty }/F)}}^{G_{\infty}} \chi\right)=\widetilde{L}_{K_{\infty} / F}(\chi)
$$

for all characters χ of $\operatorname{Gal}\left(K_{\infty} / F\right)$. Thus also $\widetilde{L}_{K_{\infty} / \mathbb{Q}}(\alpha)=\widetilde{L}_{K_{\infty} / F}(\beta)$, so we now have shown that

$$
F_{0}=n r(y)-\widetilde{L}_{K_{\infty} / \mathbb{Q}}(\alpha)
$$

proving a), since $\widetilde{L}_{K_{\infty} / F}(\beta) \in\left(\Lambda \Gamma_{F}\right) \bullet$ by $\S 2$, as β has degree 1 .
Moreover, the image of y under the right arrow of the pullback diagram of $\S 3$ equals $\widetilde{\Theta}^{a b} \bmod 2$, by construction, hence b) follows directly from Proposition 3.1b).

Remark 4.2. Considering F_{0} in $\Lambda\left(\Gamma_{\mathbb{Q}}\right)_{\bullet}$, instead of its natural home $\Lambda\left(\Gamma_{F}\right)_{\bullet}$, is done to be consistent with the identification in b) of Proposition 3.1, via the natural isomorphisms $\Gamma \rightarrow \Gamma_{F} \rightarrow \Gamma_{\mathbb{Q}}$: this is the sense in which $L_{K_{\infty} / \mathbb{Q}}(\alpha)=$ $L_{K_{\infty} / F}(\beta)$.

The congruence $F_{0} \equiv 0 \bmod 4 \Lambda\left(\Gamma_{\mathbb{Q}}\right)$. can now be put in the more testable form of Conjecture 1 . Let $\gamma_{\mathbb{Q}}$ be the generator of $\Gamma_{\mathbb{Q}}$ which, when extended to $\mathbb{Q}(\sqrt{-1})$ as the identity, acts on all 2-power roots of unity in $\mathbb{Q}_{\infty}(\sqrt{-1})$ by raising them to the $u^{\text {th }}$ power, where $u \equiv 5 \bmod 8 \mathbb{Z}_{2}$ as fixed before. Then the Iwasawa isomorphism $\Lambda\left(\Gamma_{\mathbb{Q}}\right) \simeq \mathbb{Z}_{2}[[T]]$, under which $\gamma_{\mathbb{Q}}-1$
corresponds to T, makes $F_{0} \in \Lambda\left(\Gamma_{\mathbb{Q}}\right)$. correspond to some $F_{0}(T) \in \mathbb{Z}_{1}[[T]]$. and the congruence of Proposition 4.1b) to

$$
F_{0}(T) \equiv 0 \quad \bmod 4 \mathbb{Z}_{2}[[T]] .
$$

Since β is an abelian character, we know that $\widetilde{L}_{F, S}\left(\beta^{2}\right), \widetilde{L}_{F, S}(\beta)$ correspond to elements of $\mathbb{Z}_{2}[[T]]$, not just $\mathbb{Z}_{2}[[T]]$. (cf. $\S 4$ of $[R W 2]$), and $\widetilde{L}_{F}(1)$ to one of $T^{-1} \mathbb{Z}_{2}[[T]]$. We thus have

$$
F_{0}(T)=\frac{x_{0}}{T}+\sum_{j=1}^{\infty} x_{j} T^{j-1}
$$

with $x_{j} \in \mathbb{Z}_{2}$ for all $j \geq 0$.
By the interpolation definition of $\left(\widetilde{L}_{F, S}\left(\beta^{i}\right)\right)(T)$ (cf $\S 4$ of $\left.[\mathrm{R}]\right)$, it follows that

$$
F_{0}\left(u^{s}-1\right)=\frac{1}{2}\left(\frac{L_{F, S}(1-s, 1)}{4}+\frac{L_{F, S}\left(1-s, \beta^{2}\right)}{4}-2 \frac{L_{F, S}(1-s, \beta)}{4}\right)
$$

We abbreviate the right hand side of the equality as $f_{0}(1-s)$. This implies

$$
x_{0}=-\frac{\rho_{F, S} \log (u)}{8}
$$

because the left side is

$$
\lim _{T \rightarrow 0} T F_{0}(T)=\lim _{s \rightarrow 1} \frac{u^{1-s}-1}{s-1}(s-1) f_{0}(s)=-\log (u) \lim _{s \rightarrow 1}(s-1) \frac{L_{F, S}(s, 1)}{8}
$$

as required. Note that $u \equiv 5 \bmod 8$ implies that $\frac{\log (u)}{4}$ is a 2 -adic unit, hence $\frac{1}{2} \rho_{F, S} \in \mathbb{Z}_{2}$ is in $4 \mathbb{Z}_{2}$ if, and only if, $x_{0} \in 4 \mathbb{Z}_{2}$.

Define $F_{1}(T)=F_{0}(T)-x_{0} T^{-1}=\sum_{j=1}^{\infty} x_{j} T^{j-1} \in \mathbb{Z}_{2}[[T]]$. It follows that

$$
F_{1}\left(u^{s}-1\right)=-\frac{x_{0}}{u^{s}-1}+F_{0}\left(u^{s}-1\right)=\frac{\rho_{F, S} \log (u)}{8\left(u^{s}-1\right)}+f_{0}(1-s)
$$

which is $f_{1}(1-s)$, with f_{1} as in $\S 1$, hence our present $F_{1}(T)$ is also the same as in $\S 1$. Thus Conjecture 1 of $\S 1$ is equivalent to Conjecture 2 of $\S 2$ for the special case K_{∞} / \mathbb{Q} of $\S 1$.

5. Testing Conjecture 1

Let χ be a 2 -adic character of the Galois group C of K / F and let \mathfrak{f} be the conductor of K / F. By class field theory, we view χ as a map on the group of ideals relatively prime to \mathfrak{f}. Fix a prime ideal \mathfrak{c} not dividing \mathfrak{f}. For \mathfrak{a}, a fractional ideal relatively prime to \mathfrak{c} and \mathfrak{f}, let $\mathcal{Z}_{\mathfrak{f}}(\mathfrak{a}, \mathfrak{c} ; s)$ denote the associated 2-adic twisted partial zeta function [CN]. Thus, we have
$L_{F, S}(s, \chi)=\frac{1}{\chi(\mathfrak{c})\langle N \mathfrak{c}\rangle^{1-s}-1} \prod_{\mathfrak{p}}\left(1-\frac{\chi(\mathfrak{p})}{N \mathfrak{p}}\langle N \mathfrak{p}\rangle^{1-s}\right) \sum_{\sigma \in G} \chi(\sigma)^{-1} \mathcal{Z}_{\mathfrak{f}}\left(\mathfrak{a}_{\sigma}^{-1}, \mathfrak{c} ; s\right)$
where \mathfrak{p} runs through the prime ideals of F in S not dividing $2 \mathfrak{f}, \mathfrak{a}_{\sigma}$ is a (fixed) integral ideal coprime with $2 \mathfrak{f c}$ whose Artin symbol is σ

Denote the ring of integers of F by \mathcal{O}_{F} and let $\gamma \in \mathcal{O}_{F}$ be such that $\mathcal{O}_{F}=\mathbb{Z}+\gamma \mathbb{Z}$. In [Rob] (see also [BBJR] for a slightly different presentation), it is shown that the function $\mathcal{Z}_{\mathfrak{f}}(\mathfrak{a}, \mathfrak{c} ; s)$ is defined by the following integral

$$
\mathcal{Z}_{\mathfrak{f}}(\mathfrak{a}, \mathfrak{c} ; s)=\int \frac{\left\langle N \mathfrak{a} N\left(x_{1}+x_{2} \gamma\right)\right\rangle^{1-s}}{N \mathfrak{a} N\left(x_{1}+x_{2} \gamma\right)} d \mu_{\mathfrak{a}}\left(x_{1}, x_{2}\right)
$$

where the integration domain is $\mathbb{Z}_{2}^{2},\langle \rangle$ is extended to \mathbb{Z}_{2} by $\langle x\rangle=0$ if $x \in 2 \mathbb{Z}_{2}$, and the measure $\mu_{\mathfrak{a}}$ is a measure of norm 1 (depending also on γ, \mathfrak{f} and \mathfrak{c}).

Assume now, as we can do without loss of generality, that the ideal \mathfrak{c} is such that $\langle N \mathfrak{c}\rangle \equiv 5\left(\bmod 8 \mathbb{Z}_{2}\right)$ and take $u=\langle N \mathfrak{c}\rangle$. For $s \in \mathbb{Z}_{2}$, we let $t=t(s)=u^{s}-1 \in 4 \mathbb{Z}_{2}$, so that $s=\log (1+t) / \log (u)$. For $x \in \mathbb{Z}_{2}^{\times}$, one can check readily that

$$
\langle x\rangle^{s}=\left(u^{\mathcal{L}(x)}\right)^{s}=\left(1+u^{s}-1\right)^{\mathcal{L}(x)}=\sum_{n \geq 0}\binom{\mathcal{L}(x)}{n} t^{n}
$$

where $\mathcal{L}(x)=\log \langle x\rangle / \log u \in \mathbb{Z}_{2}$. For $x \in \mathbb{Z}_{2}^{\times}$, we set

$$
L(x ; T)=\sum_{n \geq 0}\binom{\mathcal{L}(x)}{n} T^{n} \in \mathbb{Z}_{2}[[T]]
$$

and $L(x ; T)=0$ if $x \in 2 \mathbb{Z}_{2}$. Now, we define

$$
\begin{aligned}
R(\mathfrak{a}, \mathfrak{c} ; T) & =\int \frac{L\left(N \mathfrak{a} N\left(x_{1}+x_{2} \gamma\right) ; T\right)}{N \mathfrak{a} N\left(x_{1}+x_{2} \gamma\right)} d \mu_{\mathfrak{a}}\left(x_{1}, x_{2}\right) \in \mathbb{Z}_{2}[[T]] \\
B(\chi ; T) & =\chi(\mathfrak{c})(T+1)-1 \in \mathbb{Z}_{2}[\chi][T], \\
A(\chi ; T) & =\prod_{\mathfrak{p}}\left(1-\frac{\chi(\mathfrak{p})}{N \mathfrak{p}} L(N \mathfrak{p} ; T)\right) \sum_{\sigma \in G} \chi(\sigma)^{-1} R\left(\mathfrak{a}_{\sigma}^{-1}, \mathfrak{c} ; T\right) \in \mathbb{Z}_{2}[\chi][[T]]
\end{aligned}
$$

where \mathfrak{p} runs through the prime ideals of F in S not dividing $2 \mathfrak{f}$.
Proposition 5.1. We have, for all $s \in \mathbb{Z}_{2}$

$$
L_{F, S}(1-s, \chi)=\frac{A\left(\chi ; u^{s}-1\right)}{B\left(\chi ; u^{s}-1\right)}
$$

We now specialize to our situation. For that, we need to make the additional assumption that $\beta^{2}(\mathfrak{c})=-1$, so $\beta(\mathfrak{c})$ is a fourth root of unity in \mathbb{Q}_{2}^{c} that we will denote by i. Thus, we have

$$
\begin{aligned}
& B(1 ; T)=T, B(\beta ; T)=i(T+1)-1 \\
& B\left(\beta^{2} ; T\right)=-T-2, B\left(\beta^{3} ; T\right)=-i(T+1)-1
\end{aligned}
$$

Let $x \mapsto \bar{x}$ be the \mathbb{Q}_{2}-automorphism of $\mathbb{Q}_{2}(i)$ sending i to $-i$. Then we have $\overline{L_{F, S}(1-s, \beta)}=L_{F, S}\left(1-s, \beta^{3}\right)$ by the expression of $L_{F, S}(s, \chi)$ given at the
beginning of the section since the twisted partial zeta functions have values in \mathbb{Q}_{2} and $\bar{\beta}=\beta^{3}$. And furthermore,

$$
L_{F, S}\left(s, \beta^{3}\right)=L_{\mathbb{Q}, S}\left(s, \operatorname{Ind}_{C}^{G}\left(\beta^{3}\right)\right)=L_{\mathbb{Q}, S}\left(s, \operatorname{Ind}_{C}^{G}(\beta)\right)=L_{F, S}(s, \beta)
$$

Therefore, by Prop. 5.1, we deduce that

$$
\begin{aligned}
A\left(\beta ; u^{s}-1\right)+\bar{A}\left(\beta ; u^{s}-1\right) & =\left(B(\beta ; T)+B\left(\beta^{3} ; T\right)\right) L_{F, S}(1-s, \beta) \\
& =-2 L_{F, S}(1-s, \beta)
\end{aligned}
$$

Since

$$
f_{1}(s)=\frac{\rho_{F, S} \log u}{8\left(u^{1-s}-1\right)}+\frac{1}{8}\left(L_{F, S}(s, 1)+L_{F, S}\left(s, \beta^{2}\right)-2 L_{F, S}(s, \beta)\right)
$$

we find that

$$
F_{1}(T)=\frac{\rho_{F, S} \log u}{8 T}+\frac{1}{8}\left(\frac{A(1 ; T)}{T}-\frac{A\left(\beta^{2} ; T\right)}{T+2}+A(\beta ; T)+\bar{A}(\beta, T)\right)
$$

is such that $F_{1}\left(u^{n}-1\right)=f_{1}(1-n)$ for $n=1,2,3, \ldots$
The conjecture that we wish to check states that

$$
\frac{1}{2} \rho_{F, S} \in 4 \mathbb{Z}_{2} \quad \text { and } \quad F_{1}(T) \in 4 \mathbb{Z}_{2}[[T]]
$$

Now define $D(T)=8 T(T+2) F_{1}(T)$, so that

$$
\begin{aligned}
D(T)=(T+2)\left(\rho_{F, S} \log u\right. & +A(1 ; T)) \\
& -T A\left(\beta^{2} ; T\right)+T(T+2)(A(\beta ; T)+\bar{A}(\beta, T))
\end{aligned}
$$

We can now give a final reformulation of the conjecture which is the one that we actually tested.

Conjecture 3.

$$
\rho_{F, S} \in 8 \mathbb{Z}_{2} \quad \text { and } \quad D(T) \in 32 \mathbb{Z}_{2}[[T]]
$$

The computation of $\rho_{F, S}$ is done using the following formula [Col$]$

$$
\rho_{F, S}=2 h_{F} R_{F} d_{F}^{-1 / 2} \prod_{\mathfrak{p}}(1-1 / N(\mathfrak{p}))
$$

where h_{F}, R_{F}, d_{F} are respectively the class number, 2-adic regulator and discriminant of F and \mathfrak{p} runs through all primes of F above 2. Note that although R_{F} and $d_{F}^{-1 / 2}$ are only defined up to sign, the quantity $R_{F} d_{F}^{-1 / 2}$ is uniquely determined in the following way: Let ι be the embedding of F into \mathbb{R} for which $\sqrt{d_{F}}$ is positive and let ε be the fundamental unit of F such that $\iota(\varepsilon)>1$. Then for any embedding g of F into \mathbb{Q}_{2}^{c}, we have

$$
R_{F} d_{F}^{-1 / 2}=\frac{\log _{2} g(\varepsilon)}{g(\sqrt{d})}
$$

Now, for the computation of $D(T)$, the only difficult part is the computations of the $R(\mathfrak{a}, \mathfrak{c} ; T)$. The measures $\mu_{\mathfrak{a}}$ are computed explicitly using
the methods of [Rob] (see also [BBJR]), that is we construct a power series $M_{\mathfrak{a}}\left(X_{1}, X_{2}\right)$ in $\mathbb{Q}_{2}\left[X_{1}, X_{2}\right]$ with integral coefficients, such that

$$
\int\left(1+t_{1}\right)^{x_{1}}\left(1+t_{2}\right)^{x_{2}} d \mu_{\mathfrak{A}}\left(x_{1}, x_{2}\right)=M_{\mathfrak{A}}\left(t_{1}, t_{2}\right) \quad \text { for all } t_{1}, t_{2} \in 2 \mathbb{Z}_{2} .
$$

In particular, if f is a continuous function on \mathbb{Z}_{2}^{2} with values in \mathbb{C}_{2} and Mahler expansion

$$
f\left(x_{1}, x_{2}\right)=\sum_{n_{1}, n_{2} \geq 0} f_{n_{1}, n_{2}}\binom{x_{1}}{n_{1}}\binom{x_{2}}{n_{2}}
$$

then we have

$$
\int f\left(x_{1}, x_{2}\right) d \mu_{\mathfrak{A}}\left(x_{1}, x_{2}\right)=\sum_{n_{1}, n_{2} \geq 0} f_{n_{1}, n_{2}} m_{n_{1}, n 2}
$$

where $M_{\mathfrak{A}}\left(X_{1}, X_{2}\right)=\sum_{n_{1}, n_{2} \geq 0} m_{n_{1}, n_{2}} X_{1}^{n_{1}} X_{2}^{n_{2}}$.
We compute this way the first few coefficients of the power series $A(\chi ; T)$, for $\chi=\beta^{j}, j=0,1,2,3$, and then deduce the first coefficients of $D(T)$ to see if they do indeed belong to $32 \mathbb{Z}_{2}[[T]]$. We found that this was indeed always the case; see next section for more details.

To conclude this section, we remark that, in fact, we do not need the above formula to compute $\rho_{F, S}$ since the constant coefficient of $A(1 ; T)$ is $-\rho_{F, S} \log u$. (This can be seen directly from the expression of x_{0} given at the end of Section 4 or using the fact that $D(T)$ has zero constant coefficient since $F_{1}(T) \in \mathbb{Z}_{2}[[T]]$.) However, we did compute it using this formula since it then provides a neat way to check that (at least one coefficient of) $A(1 ; T)$ is correct.

6. The numerical verifications

We have tested the conjecture in 60 examples. The examples are separated in three subcases of 20 examples according to the way 2 decomposes in the quadratic subfield F : ramified, split or inert. In each subcase, the examples are actually the first 20 extensions K / \mathbb{Q} of the suitable form of the smallest discriminant. These are given in the following three tables of Figure 2 where the entries are: the discriminant d_{F} of F, the conductor \mathfrak{f} of K / F (which is always a rational integer) and the discriminant d_{K} of K. In each example, we have computed $\rho_{F, S}$ and the first 30 coefficients of $D(T)$ to a precision of at least 2^{8} and checked that they satisfy the conjecture.

We now give an example, namely the smallest example for the discriminant of K. We have $F=\mathbb{Q}(\sqrt{145})$ and K is the Hilbert class field of F. The prime 2 is split in F / \mathbb{Q} and the primes above 2 in F are inert in K / F. We compute $\rho_{F, S}$ and find that

$$
\rho_{F, S} \equiv 2^{7} \quad\left(\bmod 2^{8}\right)
$$

2 ramified in F		
d_{F}	\mathfrak{f}	d_{K}
44	3	2732361984
156	2	9475854336
220	2	37480960000
12	14	39033114624
156	4	151613669376
380	2	333621760000
152	3	389136420864
24	11	587761422336
876	1	588865925376
220	4	599695360000
444	2	621801639936
12	28	624529833984
44	12	699484667904
92	6	835600748544
60	8	849346560000
44	10	937024000000
12	19	975543388416
12	26	1601419382784
44	15	1707726240000
1164	1	1835743170816

2 inert in F		
d_{F}	f	d_{K}
445	1	39213900625
5	21	53603825625
205	3	143054150625
221	3	193220905761
61	5	216341265625
205	4	452121760000
221	4	610673479936
901	1	659020863601
29	15	895152515625
1045	1	1192518600625
5	16	1911029760000
109	5	2205596265625
1221	1	2222606887281
29	20	2829124000000
29	13	3413910296329
205	7	4240407600625
149	5	7701318765625
1677	1	7909194404241
21	19	9149529982761
341	3	9857006530569

2 split in F		
d_{F}	\mathfrak{f}	d_{K}
145	1	442050625
41	5	44152515625
505	1	65037750625
689	1	225360027841
777	1	364488705441
793	1	395451064801
17	13	403139914489
897	1	647395642881
905	1	670801950625
305	3	700945700625
377	3	1636252863921
1145	1	1718786550625
145	8	1810639360000
305	4	2215334560000
1313	1	2972069112961
377	4	5171367076096
545	3	7146131900625
17	21	7163272192041
1705	1	8450794350625
329	3	8541047165049

Figure 2

Using the method of the previous section, we compute the first 30 coefficients of the power series $A(\cdot ; T)$ to a 2 -adic precision of 2^{8}. We get

$$
\begin{aligned}
A(1 ; T) \equiv 2^{2} & \left(16 T+57 T^{3}+44 T^{4}+8 T^{5}+40 T^{6}+21 T^{7}+40 T^{8}+30 T^{9}\right. \\
& +16 T^{10}+49 T^{11}+56 T^{12}+29 T^{13}+32 T^{14}+50 T^{15} \\
& +62 T^{16}+47 T^{17}+48 T^{18}+60 T^{19}+32 T^{20}+16 T^{21} \\
& +8 T^{22}+21 T^{23}+30 T^{24}+26 T^{25}+2 T^{26}+9 T^{27} \\
& \left.+56 T^{28}+34 T^{29}\right)+O\left(T^{30}\right)\left(\bmod 2^{8}\right)
\end{aligned}
$$

$$
\begin{aligned}
A(\beta ; T) \equiv 2^{2} & \left((28+1124 i)+(36+1728 i) T+(47+45 i) T^{2}+(56+153 i) T^{3}\right. \\
& +(46+154 i) T^{4}+(56+282 i) T^{5}+(55+433 i) T^{6} \\
& +(54+435 i) T^{7}+(40+386 i) T^{8}+(48+392 i) T^{9} \\
& +(63+65 i) T^{10}+(48+257 i) T^{11}+(63+161 i) T^{12} \\
& +(20+477 i) T^{13}+(38+182 i) T^{14}+(56+66 i) T^{15} \\
& +(37+35 i) T^{16}+(6+341 i) T^{17}+(20+446 i) T^{18} \\
& +(40+412 i) T^{19}+368 i T^{20}+(56+336 i) T^{21} \\
& +(61+291 i) T^{22}+(40+427 i) T^{23}+(34+38 i) T^{24} \\
& +(48+94 i) T^{25}+(9+47 i) T^{26}+(6+497 i) T^{27} \\
& \left.+(40+42 i) T^{28}+(44+52 i) T^{29}\right)+O\left(T^{30}\right)\left(\bmod 2^{8}\right)
\end{aligned}
$$

$$
\begin{aligned}
A\left(\beta^{2} ; T\right) \equiv 2^{2} & \left(32+32 T+22 T^{2}+39 T^{3}+36 T^{4}+20 T^{5}+62 T^{6}+27 T^{7}\right. \\
& +16 T^{8}+62 T^{9}+46 T^{10}+23 T^{11}+30 T^{12}+51 T^{13} \\
& +4 T^{14}+2 T^{15}+56 T^{16}+33 T^{17}+44 T^{18}+12 T^{19} \\
& +40 T^{20}+8 T^{21}+54 T^{22}+11 T^{23}+34 T^{24}+42 T^{25} \\
& \left.+43 T^{27}+56 T^{28}+46 T^{29}\right)+O\left(T^{30}\right)\left(\bmod 2^{8}\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
D(T) \equiv 2^{5} & \left(6 T+7 T^{2}+4 T^{3}+5 T^{4}+4 T^{7}+2 T^{8}+4 T^{9}+2 T^{10}+4 T^{11}\right. \\
& +T^{12}+6 T^{13}+7 T^{14}+3 T^{16}+5 T^{17}+2 T^{18}+3 T^{19} \\
& +7 T^{20}+5 T^{21}+7 T^{22}+4 T^{23}+4 T^{24}+T^{25}+7 T^{26} \\
& \left.+3 T^{27}+7 T^{28}+6 T^{29}\right)+O\left(T^{30}\right)\left(\bmod 2^{8}\right)
\end{aligned}
$$

and the conjecture is satisfied by the first 30 coefficients of the series D associated to the extension.

Note, as a final remark, that we have tested the conjecture in the same way for 30 additional examples where F is real quadratic, K / F is cyclic of order 4 but K is not a dihedral extension of \mathbb{Q} (either K / \mathbb{Q} is not Galois or its Galois group is not the dihedral group of order 8). In all of these examples, we found that the conjecture was not satisfied, that is either $\rho_{F, S}$ did not belong to $8 \mathbb{Z}_{2}$ or one of the first 30 coefficients of the associated power series D did not belong to $32 \mathbb{Z}_{2}$.

References

[BBJR] A. Besser, P. Buckingham, R. de Jeu and X.-F. Roblot, On the p-adic Beilinson conjecture for number fields, Pure Appl. Math. Q. 5 (2009), 375-434.
[CN] P. Cassou-Noguès, Valeurs aux entiers négatifs des fonctions zêta p-adiques, Invent. Math. 51 (1979), 29-59.
[Col] P. Colmez, Résidu en $s=1$ des fonctions zêta p-adiques, Invent. Math. 91 (1988), 371-389.
[DR] P. Deligne and K.A. Ribet, Values of abelian L-functions at negative integers over totally real fields, Invent. Math. 59 (1980), 227-286.
[FW] B. Ferrero and L. Washington, The Iwasawa invariant μ_{p} vanishes for abelian fields, Annals of Math. 109 (1979), 377-395.
[R] K.A. Ribet, Report on p-adic L-functions over totally real fields, Société Mathém. de France, Astérisque 61 (1979), 177-192.
[Rob] X.-F. Roblot, Computing p-adic L-functions of totally real number fields, in preparation
[RW2] J. Ritter and A. Weiss, Toward equivariant Iwasawa theorem, II, Indag. Mathem. N.S. 15 (2004), 549-572.
[RW3] J. Ritter and A. Weiss, Toward equivariant Iwasawa theorem, III, Math. Ann. 336 (2006), 27-49.
[RW] J. Ritter and A. Weiss, Equivariant Iwasawa theory: an example, Documenta Math. 13 (2008), 117-129.
[W] A. Wiles, The Iwasawa conjecture for totally real fields, Annals of Math. 131 (1990), 493-540.

Université de Lyon, CNRS, Université Lyon 1, Institut Camille Jordan, 43 blvd du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France

Department of Mathematics, University of Alberta, Edmonton, AB T6G 2G1, Canada

[^0]: *supported by the projet AlgoL (ANR-07-BLAN-0248).
 ${ }^{\dagger}$ financial support from the NSERC is gratefully aknowledged.

