Computing values of p-adic L-functions of real quadratic fields

X.-F. Roblot

Institut Camille Jordan Université Claude Bernard – Lyon 1

- *p*-adic zeta function of number fields first constructed by Serre using Hilbert modular forms (1972).
- Construction of *p*-adic *L*-functions by Deligne-Ribet using algebraic geometry (1980).
- Construction of *p*-adic *L*-functions by Cassou-Noguès (1979) and Barsky (1978) using Shintani's methods, reformulated in terms of *p*-adic measures by Katz (1981). Also nice constructions of Colmez (1988) and Barsky (2004).
- Method generalizes previous work (2004) with D. Solomon (values at s = 1, conductor relatively prime with p, p split in quadratic field).
- Method (almost) works for higher degree totally real number fields.
- Method used in joint work with A. Besser, P. Buckingham and R. de Jeu (and a current work with A. Weiss).

Computing values of p-adic L-functions of real quadratic fields $\sqsubseteq \text{The interpolation problem}$

Hecke *L*-function. Let χ be a character of the ray class group $Cl_{\mathfrak{f}}(E)$ modulo \mathfrak{f} of a real quadratic field E. We define for $\Re e(s) > 1$

$$L(s,\chi) := \prod_{\mathfrak{q} \nmid \mathfrak{f}} \left(1 - \chi(\mathfrak{q}) \mathcal{N} \mathfrak{q}^{-s} \right)^{-1}$$

This function has an analytic continuation to \mathbb{C} and its values at integers have *special arithmetical meaning*.

Problem. Construct a continuous function on \mathbb{Z}_p interpolating the values at negative integers of this function.

For simplicity, assume p is odd and $p \mid \mathfrak{f}$.

And, for technical reason, assume the infinite part \mathfrak{f}_{∞} contains the two infinite places of E.

Computing values of p-adic L-functions of real quadratic fields \Box The interpolation problem

Partial zeta functions. Fix a class C in $Cl_f(E)$, and define

$$\zeta(s,\mathcal{C}) := \sum_{\substack{\mathfrak{a} \in \mathcal{C} \\ \mathfrak{a} \subset \mathbb{Z}_E}} \mathcal{N}\mathfrak{a}^{-s}$$

Then

$$L(s,\chi) = \sum_{\mathcal{C} \in \mathsf{Cl}_{\mathfrak{f}}(E)} \chi(\mathcal{C})\zeta(s,\mathcal{C})$$

and (Klingen-Siegel)

$$\zeta(-k,\mathcal{C}) \in \mathbb{Q}$$
 for all $k \ge 0$.

So better to interpolate the partial zeta functions!

Computing values of $p\text{-adic }L\text{-functions of real quadratic fields} \ {\sqsubseteq} \mathsf{Measures on } \mathbb{Z}_p^2$

A continous p-adic function $f:\mathbb{Z}_p^2\to\mathbb{C}_p$ has a unique Mahler expansion

$$f(x_1, x_2) = \sum_{n_1, n_2 \ge 0} a_{n_1, n_2} \binom{x_1}{n_1} \binom{x_2}{n_2}$$

with
$$a_{n_1,n_2} \rightarrow_p 0$$
 as $n_1 + n_2 \rightarrow \infty$ and $\begin{pmatrix} x \\ n \end{pmatrix} := \frac{x(x-1)\cdots(x-(n-1))}{n!}$

A measure on \mathbb{Z}_p^2 is a linear form μ on the \mathbb{C}_p -vector space $\mathcal{C}(\mathbb{Z}_p^2, \mathbb{C}_p)$ of continuous functions such that there exists a constant C > 0 with

$$\left|\underbrace{\int f \, d\mu}_{\mu(f)}\right| \le C \max_{\substack{(x_1, x_2) \in \mathbb{Z}_p^2 \\ \|f\|}} |f(x_1, x_2)| \quad \text{for all } f \in \mathcal{C}(\mathbb{Z}_p^2, \mathbb{C}_p)$$

Computing values of $p\text{-adic }L\text{-functions of real quadratic fields} \ {\sqsubseteq} \operatorname{Measures}$ on \mathbb{Z}_p^2

We have

$$\int f \, d\mu = \sum_{n_1, n_2 \ge 0} a_{n_1, n_2} \int \binom{x_1}{n_1} \binom{x_2}{n_2} \, d\mu$$

and so we can associate to μ a power series with bounded coefficients

$$F_{\mu}(T_1, T_2) := \sum_{n_1, n_2 \ge 0} \int \binom{x_1}{n_1} \binom{x_2}{n_2} d\mu \cdot T_1^{n_1} T_2^{n_2} = \int (1+T_1)^{x_1} (1+T_2)^{x_2} d\mu.$$

In the same way, we can associate a measure μ_F to such a power series F.

The
$$\Delta$$
 operator is $\Delta := (1+T_1)(1+T_2)\frac{\partial^2}{\partial T_1\partial T_2}$ and
 $\Delta F_\mu(T_1,T_2) = \int x_1x_2(1+T_1)^{x_1}(1+T_2)^{x_2} d\mu$

and therefore for all $k\geq 0$

$$\int (x_1 x_2)^k d\mu = \left[\Delta^k F_\mu(T_1, T_2) \right]_{T_1 = T_2 = 0}$$

Computing values of p-adic L-functions of real quadratic fields \Box Interpolation using measures

Method of interpolation. Given a sequence $(a_k)_{k\geq 0}$ of rational numbers. Find a power series F with bounded coefficients such that for all $k\geq 0$

$$a_k = \left[\Delta^k F_{\mu}(T_1, T_2)\right]_{T_1 = T_2 = 0} = \int (x_1 x_2)^k \, d\mu_F$$

For $s \in \mathbb{Z}_p$, let ψ_s be a continuous *p*-adic function such that for $k \ge 0$

$$\psi_k(x) = x^k$$

then we can replace $(x_1x_2)^k$ by $\psi_s(x_1x_2)$ and get a *p*-adic function.

Unfortunately, one can only find a function $\psi_{s,m}$ such that $\psi_{k,m}(x) = x^k$ for $x \in \mathbb{Z}_p^{\times}$ and $k \ge 0$ is such that $k \equiv m \pmod{\phi(p)}$.

Theorem.

$$\mathcal{F}_m(s) := \int \psi_{s,m}(x_1x_2) \, d\mu$$

is a continuous function of $s \in \mathbb{Z}_p$. Furthermore, if $\text{Supp}(\mu) \subset (\mathbb{Z}_p^{\times})^2$, then

$$\mathcal{F}_m(k) = a_k, \quad \forall k \geq \mathsf{0} \text{ with } k \equiv m \pmod{\phi(p)}$$

Computing values of p-adic L-functions of real quadratic fields $\hfill \mathsf{Twisted}$ partial zeta functions

Remove the pole. Let $\mathfrak{c} \neq \mathcal{O}_E$ be an integral ideal relatively prime to \mathfrak{f} , then

$$\zeta(s,\mathfrak{c},\mathcal{C}) := \mathcal{N}\mathfrak{c}^{1-s}\zeta(s,\mathfrak{c}^{-1}\cdot\mathcal{C}) - \zeta(s,\mathcal{C})$$

has no pole at s = 1 and still takes values in \mathbb{Q} at negative integers. Furthermore

$$L(s,\chi) = \left(\mathcal{N}\mathfrak{c}^{1-s}\chi(\mathfrak{c}) - 1\right)^{-1} \sum_{\mathcal{C}\in\mathsf{Cl}_{\mathfrak{f}}(E)} \bar{\chi}(\mathcal{C})\zeta(s,\mathfrak{c},\mathcal{C})$$

So we need to take \mathfrak{c} such that $\chi(\mathfrak{c}) \neq 1$.

Switch to elements. Let $C = [\mathfrak{a}^{-1}]$ (\mathfrak{a} integral ideal). Then integral ideals $\mathfrak{b} = \alpha \mathfrak{a}^{-1}$ in C are in bijection with α such that $\alpha \in \mathfrak{a}$, $\alpha \equiv 1 \pmod{\mathfrak{f}_0}$, $\alpha \gg 0$ modulo the multiplicative action of $U_{\mathfrak{f}}(E)$, the group of units u such $u \gg 0$ and $u \equiv 1 \pmod{\mathfrak{f}_0}$. Call $R(\mathfrak{a})$ a set of representatives. So

$$\zeta(s,\mathcal{C}) = \sum_{\alpha \in R(\mathfrak{a})} \mathcal{N}(\alpha \mathfrak{a}^{-1})^{-s} = \mathcal{N}\mathfrak{a}^s \sum_{\alpha \in R(\mathfrak{a})} \mathcal{N}(\alpha)^{-s}$$

Computing values of p-adic L-functions of real quadratic fields $\hfill \mathsf{Twisted}$ partial zeta functions

Recall that.
$$\zeta(s, \mathcal{C}) = \mathcal{N}\mathfrak{a}^s \sum_{\alpha \in R(\mathfrak{a})} \mathcal{N}(\alpha)^{-s}$$
 with $\mathcal{C} = [\mathfrak{a}^{-1}]$
so $\zeta(s, \mathfrak{c}, \mathcal{C}) = \mathcal{N}\mathfrak{c}^{1-s} \zeta(s, \mathfrak{c}^{-1} \cdot \mathcal{C}) - \zeta(s, \mathcal{C})$
$$= \mathcal{N}\mathfrak{a}^s (\mathcal{N}\mathfrak{c} \sum_{\alpha \in R(\mathfrak{a}) \cap \mathfrak{c}} \mathcal{N}(\alpha)^{-s} - \sum_{\alpha \in R(\mathfrak{a})} \mathcal{N}(\alpha)^{-s})$$

Let $\mathcal X$ be the set of additive characters of $\mathcal O_E$ of annihilator $\mathfrak c$ then

$$\sum_{\xi \in \mathcal{X}} \xi(\theta) = \begin{cases} 0 & \text{if } \theta \notin \mathfrak{c} \\ \mathcal{N}\mathfrak{c} & \text{otherwise} \end{cases}$$

and

$$\zeta(s, \mathfrak{c}, \mathcal{C}) = \mathcal{N}\mathfrak{a}^s \sum_{\substack{\xi \in \mathcal{X} \\ \xi \neq 1}} \underbrace{\sum_{\substack{\alpha \in R(\mathfrak{a}) \\ =: \zeta(s, \mathfrak{a}, \xi)}} \xi(\alpha) \mathcal{N}(\alpha)^{-s}}_{=: \zeta(s, \mathfrak{a}, \xi)}$$

Computing values of p-adic L-functions of real quadratic fields \square Shintani cone decomposition

Let $\sigma \in \mathfrak{af}_0$, $\sigma \notin \mathfrak{c}$ and $\sigma \gg 0$ and let ε a generator of $U_{\mathfrak{f}}(E)$. Take $R(\mathfrak{a}) := \mathfrak{a} \cap (1 + \mathfrak{f}_0) \cap C(\sigma, \varepsilon)$, where

$$C(\sigma, \varepsilon \sigma) := \{ s\sigma + t \varepsilon \sigma \text{ with } 0 < s \text{ and } 0 \le t \}$$

Let $P(\sigma, \varepsilon) := \{s\sigma + t\varepsilon\sigma \text{ with } 0 < s \le 1 \text{ and } 0 \le t < 1\}$ then $R(\mathfrak{a}) = \bigcup_{n,m \ge 0} \left\{ \underbrace{(\mathfrak{a} \cap (1 + \mathfrak{f}_0) \cap P(\sigma, \varepsilon))}_{=:P(\mathfrak{a}, \sigma, \varepsilon)} + n\sigma + m\varepsilon\sigma \right\}$ Computing values of *p*-adic *L*-functions of real quadratic fields \Box Power series and twisted partial zeta functions

We define

$$F(T_1, T_2, \mathfrak{a}, \xi) := \frac{\sum\limits_{\alpha \in P(\mathfrak{a}, \sigma, \varepsilon)} \xi(\alpha) (1 + \mathbf{T})^{\alpha}}{\left(1 - \xi(\sigma)(1 + \mathbf{T})^{\sigma}\right) \left(1 - \xi(\varepsilon\sigma)(1 + \mathbf{T})^{\varepsilon\sigma}\right)}$$

where, for $\beta \in \mathcal{O}_E$

$$(1+\mathbf{T})^{\beta} := (1+T_1)^{\beta^{(1)}} (1+T_2)^{\beta^{(2)}} = \sum_{n_1, n_2 \ge 0} {\binom{\beta^{(1)}}{n_1} \binom{\beta^{(2)}}{n_2}} T_1^{n_1} T_2^{n_2}$$

Theorem. For all $k \ge 0$

$$\left[\Delta^k F(T_1, T_2, \mathfrak{a})\right]_{T_1 = T_2 = 0} = \zeta(-k, \mathfrak{a}, \xi)$$

Heuristic proof. Expand everything in terms of $(1 + T_1)$ and $(1 + T_2)$, apply Δ^k and take $T_1 = T_2 = 0$. We get

$$\ll \sum_{\substack{n,m \ge \mathbf{0}\\ \alpha \in P(\mathfrak{a},\sigma,\varepsilon)}} \xi(\alpha + n\sigma + m\varepsilon\sigma) \mathcal{N}(\alpha + n\sigma + m\varepsilon\sigma)^k = \zeta(-k,\mathfrak{a},\xi) \quad \text{we set } \mathbf{1} = \zeta(-k,\mathfrak{a},\xi)$$

Problem. When p is not split, the power series $(1 + T)^{\beta}$ may have unbounded coefficients!

Change of variables. Let $\gamma \in \mathcal{O}_E$ such that $\mathcal{O}_E = \mathbb{Z} + \gamma \mathbb{Z}$. Define the operator \mathcal{A} by

$$\mathcal{A}(T_1) = (1+T_1)(1+T_2) - 1 ext{ and } \mathcal{A}(T_2) = (1+T_1)^{\gamma^{(1)}}(1+T_2)^{\gamma^{(2)}} - 1$$

Then, for $\alpha = a + b\gamma \in \mathcal{O}_E^+$, we have $\mathcal{A}((1+T_1)^a(1+T_2)^b) = (1+T_1)^{a+b\gamma^{(1)}}(1+T_2)^{a+b\gamma^{(2)}} = (1+\mathbf{T})^{\alpha}$ So $G(T_1, T_2, \mathfrak{a}, \xi) = \mathcal{A}^{-1}(F(T_1, T_2, \mathfrak{a}, \xi))$ has coefficients in $\mathbb{Z}[\xi]$.

Theorem. Let $\mu_{\mathfrak{a},\xi}$ the measure on \mathbb{Z}_p^2 associated to $G(T_1, T_2, \mathfrak{a}, \xi)$. Then for all $k \ge 0$

$$\zeta(-k,\mathfrak{a},\xi) = \int \mathcal{N}(x_1 + x_2\gamma)^k \, d\mu_{\mathfrak{a},\xi}.$$

Computing values of p-adic L-functions of real quadratic fields \Box Construction of the interpolating function

Interpolation. Write
$$G(T_1, T_2, \mathfrak{a}, \xi) = \sum_{n_1, n_2 \ge 0} g(\mathfrak{a}, \xi)_{n_1, n_2} T^{n_1} T^{n_2}$$
 and
 $(x_1, x_2) \mapsto \psi_{s,m}(\mathcal{N}(x_1 + x_2\gamma)) = \sum_{n_1, n_2 \ge 0} c(s, m)_{n_1, n_2} \binom{x_1}{x_1} \binom{x_2}{x_2}$

$$(x_1, x_2) \mapsto \psi_{s,m}(\mathcal{N}(x_1 + x_2\gamma)) = \sum_{n_1, n_2 \ge 0} c(s, m)_{n_1, n_2} {\binom{n_1}{n_1}} {\binom{n_2}{n_2}}$$

Define for all $s \in \mathbb{Z}_p$

$$\begin{aligned} \zeta_p^{(m)}(s,\mathfrak{a},\xi) &= \int \psi_{s,m}(\mathcal{N}(x_1+x_2\gamma)) \, d\mu_{\mathfrak{a},\xi} \\ &= \sum_{n_1,n_2 \ge 0} g(\mathfrak{a},\xi)_{n_1,n_2} \, c(s,m)_{n_1,n_2} \end{aligned}$$

Then $\zeta_p^{(m)}(s, \mathfrak{a}, \xi)$ is a continuous function on \mathbb{Z}_p interpolating $\zeta(s, \mathfrak{a}, \xi)$ at negative integers k congruent to m modulo $\phi(p)$.

The natural choice is m = -1 for which the corresponding *p*-adic zeta function has a simple pole at s = 1.

Computing values of *p*-adic *L*-functions of real quadratic fields \sqcup Interpolation of $x \mapsto x^k$

Construction of $\psi_{s,m}(x)$. \mathbb{Z}_p^{\times} has the natural decomposition

$$\begin{array}{rcl} \mathbb{Z}_p^{\times} &=& W_p \times (1 + p \mathbb{Z}_p) \\ x &\mapsto & \omega(x) \cdot \langle x \rangle \end{array}$$

so that $x \equiv \omega(x) \pmod{p\mathbb{Z}_p}$ and $\langle x \rangle \in 1 + p\mathbb{Z}_p$.

Power of principal units. For $s \in \mathbb{Z}_p$ and $\langle x \rangle = 1 + py$, we have

$$\langle x \rangle^s = \sum_{n \ge 0} {s \choose n} p^n y^n \in 1 + p\mathbb{Z}_p$$

Therefore the function

$$\psi_{s,m}(x) = egin{cases} \omega(x)^m \langle x
angle^s & ext{if } x \in \mathbb{Z}_p^{ imes} \ 0 & ext{if } x \in p\mathbb{Z}_p \end{cases}$$

interpolates x^k on \mathbb{Z}_p^{\times} for $k \ge 0$, $k \equiv m \pmod{\phi(p)}$.

Computation of the measures. Assume $p \neq 2$, then it takes

$$ilde{O}(f\,R_E\,M^{\sf 6}\,p^{\sf 4}\,c^2)$$
 operations and $ilde{O}(M^2\,p^2)$ memory

to compute the measure $\mu_{\mathfrak{a},\xi}$ to a precision p^M with $c = \mathcal{N}\mathfrak{c}$, $f\mathbb{Z} = \mathfrak{f} \cap \mathbb{Z}$ and R_E the regulator of E.

Computation of values. Once the measure $\mu_{\mathfrak{a},\xi}$ has been computed, it takes

 $\tilde{O}(M^4 \, p^3)$ operations

to compute $\zeta_p(s, \mathfrak{a}, \xi)$, for some $s \in \mathbb{Z}_p$, to a precision of p^M .

It is possible to compute other expressions of the functions $\zeta_p(s, \mathfrak{a}, \xi)$, and thus of *p*-adic *L*-functions, using this method.

Computing values of $p\text{-adic }L\text{-functions of real quadratic fields} \ \ \ \ \ Complexity results$

Mahler expansion. One can also compute the coefficients a_n of

$$\zeta_p(s, \mathfrak{a}, \xi) = \sum_{n \ge 0} a_n {s \choose n}$$
 with $a_n \in \mathbb{Q}_p$

with

$$a_n = \int_{\mathcal{U}} \omega(\mathcal{N}(x_1 + x_2\gamma))^{-1} \left(\langle \mathcal{N}(x_1 + x_2\gamma) \rangle - 1 \right)^n d\mu_{\mathfrak{a},\xi}$$

Once the measure $\mu_{a,\xi}$ has been computed (to a precision p^M), it takes

$$\tilde{O}(NM^4p^3)$$
 operations

to compute the first N coefficients a_n to a precision p^M ($N \leq M$). And then it takes only $\tilde{O}(M^3)$ operations to compute $\zeta_p(s, \mathfrak{a}, \xi)$ to a precision of p^M , for some $s \in \mathbb{Z}_p$. Computing values of $p\text{-adic }L\text{-functions of real quadratic fields} \ \ \ \ \ Complexity results$

Analytic function. One can also compute the coefficients c_n of

$$\zeta_p(s,\mathfrak{a},\xi) = \sum_{n\geq 0} c_n \, s^n \quad ext{ with } c_n \in \mathbb{Q}_p$$

with

$$c_n = \frac{1}{n!} \int_{\mathcal{U}} \omega(\mathcal{N}(x_1 + x_2\gamma))^{-1} \log_p \left(\langle \mathcal{N}(x_1 + x_2\gamma) \rangle \right)^n \, d\mu_{\mathfrak{a},\xi}$$

or in a simpler way

$$a_0 + a_1 \binom{X}{1} + a_2 \binom{X}{2} + \dots = c_0 + c_1 X + c_2 X^2 + \dots$$

Once the measure $\mu_{\mathfrak{a}}$ has been computed (to a precision p^M), it takes $\tilde{O}(N\,M^4\,p^3) \text{ operations}$

to compute the first N coefficients c_n to a precision p^M ($N \le M$). It is better not to use this expression to compute values of $\zeta_p(s, \mathfrak{a}, \xi)$. Iwasawa function. Let u be a topologic generator of $1+p\mathbb{Z}_p,$ then there exists

$$F_p(T,\mathfrak{a},\xi) = f_0 + f_1T + f_2T^2 + \cdots \in \mathbb{Q}_p[[T]]$$

with

$$\zeta_p(s,\mathfrak{a},\xi) = F_p(u^s - 1,\mathfrak{a},\xi)$$

We have

$$f_n = \int_{\mathcal{U}} \mathcal{N}(x_1 + x_2 \gamma)^{-1} \binom{\log_p \langle \mathcal{N}(x_1 + x_2 \gamma) \rangle / \log_p u}{n} d\mu_{\mathfrak{a},\xi}$$

But it is not really clear how much it costs to compute the f_n ...

Compute values of $\zeta_{E,p}(5)$ for $E = \mathbb{Q}(\sqrt{3})$ and p = 3, 11 and 23

```
gp > data = init_data(12, 3, 10);
time = 4 \text{ ms}.
gp > twz = init_twistzeta(data);
time = 604 \text{ ms}.
gp > zetap_E(data, 5, twz)
time = 28 \text{ ms}.
3 = 2*3^{-1} + 1 + 3 + 2*3^{4} + 2*3^{5} + 2*3^{6} + 2*3^{7} + 2*3^{8} + 0(3^{9})
gp > data = init_data(12, 11, 7);
time = 0 \text{ ms}.
gp > twz = init_twistzeta(data);
time = 3mn, 29,221 ms.
gp > zetap_E(data, 5, twz)
time = 1.417 ms.
\%6 = 4*11^{-1} + 3*11 + 7*11^{2} + 9*11^{3} + 10*11^{4} + 4*11^{5} + 0(11^{6})
gp > data = init_data(12, 23, 5);
time = 4 \text{ ms}.
gp > twz = init_twistzeta(data);
time = 18mn, 45,670 ms.
gp > zetap_E(data, 5, twz)
time = 6,441 ms.
\%9 = 17*23^{-1} + 21 + 4*23 + 19*23^{2} + 7*23^{3} + 0(23^{4})
```

Computing values of p-adic L-functions of real quadratic fields $\sqsubseteq \text{Mahler coefficients of }\psi_{s,m}$

Write the Mahler expansion $\psi_{s,m}(x) = \sum_{n \ge 0} z_n {x \choose n}$ with $z_n \to_p 0$.

Problem. We need to estimate $v_p(z_n)$.

Locally analytic functions. A \mathbb{Z}_p -continuous function f is analytic of order $h \ge 0$ if for all $a \in \mathbb{Z}_p$

$$f(x) = f_{a,0} + f_{a,1}(x-a) + f_{a,2}(x-a)^2 + \cdots$$
 for $|x-a| \le p^{-h}$

Theorem. Let $f(x) = \sum_{n \ge 0} a_n \begin{pmatrix} x \\ n \end{pmatrix}$ then $v_p(a_n) \ge v_p(\lfloor n/p^h \rfloor !) + C(f)$

Application. Let $a \in \mathbb{Z}_p^{\times}$. For $x \in a + p\mathbb{Z}_p$

$$\langle x \rangle^s = \langle a \rangle \sum_{n \ge 0} {s \choose n} \left(\frac{x-a}{a} \right)^n$$

so $\psi_{s,m}$ is analytic of order 1 and $v_p(z_n) \gtrsim n/p^2$.

But, we can do better easily.

Close functions. Let f and g be two continuous functions such that

$$v_p(f(x) - g(x)) \ge M$$
 for all $x \in \mathbb{Z}_p$

Then $v_p(a_n - b_n) \ge M$ for all $n \ge 0$ where $g(x) = \sum_{n \ge 0} b_n \binom{x}{n}$.

Application. Let M > 0 and let $t \in \mathbb{Z}_{\geq 0}$ such that

$$t\equiv s \pmod{p^M}, \quad t\equiv m \pmod{p-1} \text{ and } t>M$$

Then for all $x \in \mathbb{Z}_p$, we have

$$v_p(\psi_{s,m}(x) - x^t) \ge M$$

Therefore $v_p(z_n) \gtrsim n/p$.