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Computing values of p-adic L-functions of real quadratic fields

Context

p-adic zeta function of number fields first constructed by Serre using
Hilbert modular forms (1972).

Construction of p-adic L-functions by Deligne-Ribet using algebraic
geometry (1980).

Construction of p-adic L-functions by Cassou-Noguès (1979) and
Barsky (1978) using Shintani’s methods, reformulated in terms of
p-adic measures by Katz (1981). Also nice constructions of Colmez
(1988) and Barsky (2004).

Method generalizes previous work (2004) with D. Solomon (values at
s = 1, conductor relatively prime with p, p split in quadratic field).

Method (almost) works for higher degree totally real number fields.

Method used in joint work with A. Besser, P. Buckingham and R. de
Jeu (and a current work with A. Weiss).
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The interpolation problem

Hecke L-function. Let χ be a character of the ray class group Clf(E)
modulo f of a real quadratic field E. We define for <e(s) > 1

L(s, χ) :=
∏
q-f

(
1− χ(q)N q−s

)−1

This function has an analytic continuation to C and its values at integers
have special arithmetical meaning.

Problem. Construct a continuous function on Zp interpolating the values
at negative integers of this function.

For simplicity, assume p is odd and p | f.

And, for technical reason, assume the infinite part f∞ contains the two
infinite places of E.
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The interpolation problem

Partial zeta functions. Fix a class C in Clf(E), and define

ζ(s, C) :=
∑
a∈C

a⊂ZE

Na−s

Then
L(s, χ) =

∑
C∈Clf(E)

χ(C)ζ(s, C)

and (Klingen-Siegel)

ζ(−k, C) ∈ Q for all k ≥ 0.

So better to interpolate the partial zeta functions!
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Measures on Z2
p

A continous p-adic function f : Z2
p → Cp has a unique Mahler expansion

f(x1, x2) =
∑

n1,n2≥0

an1,n2

(
x1

n1

)(
x2

n2

)

with an1,n2 →p 0 as n1 +n2 →∞ and

(
x

n

)
:=

x(x− 1) · · · (x− (n− 1))

n!
.

A measure on Z2
p is a linear form µ on the Cp-vector space C(Z2

p,Cp) of
continuous functions such that there exists a constant C > 0 with∣∣∣ ∫

f dµ︸ ︷︷ ︸
µ(f)

∣∣∣ ≤ C max
(x1,x2)∈Z2

p

|f(x1, x2)|︸ ︷︷ ︸
‖f‖

for all f ∈ C(Z2
p,Cp)
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Measures on Z2
p

We have ∫
f dµ =

∑
n1,n2≥0

an1,n2

∫ (
x1

n1

)(
x2

n2

)
dµ

and so we can associate to µ a power series with bounded coefficients

Fµ(T1, T2) :=
∑

n1,n2≥0

∫ (
x1

n1

)(
x2

n2

)
dµ·Tn1

1 Tn2
2 =

∫
(1+T1)

x1(1+T2)
x2 dµ.

In the same way, we can associate a measure µF to such a power series F .

The ∆ operator is ∆ := (1 + T1)(1 + T2)
∂2

∂T1∂T2
and

∆Fµ(T1, T2) =

∫
x1x2(1 + T1)

x1(1 + T2)
x2 dµ

and therefore for all k ≥ 0∫
(x1x2)

k dµ =
[
∆kFµ(T1, T2)

]
T1=T2=0
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Interpolation using measures

Method of interpolation. Given a sequence (ak)k≥0 of rational numbers.
Find a power series F with bounded coefficients such that for all k ≥ 0

ak =
[
∆kFµ(T1, T2)

]
T1=T2=0

=

∫
(x1x2)

k dµF

For s ∈ Zp, let ψs be a continuous p-adic function such that for k ≥ 0

ψk(x) = xk

then we can replace (x1x2)
k by ψs(x1x2) and get a p-adic function.

Unfortunately, one can only find a function ψs,m such that ψk,m(x) = xk

for x ∈ Z×p and k ≥ 0 is such that k ≡ m (mod φ(p)).

Theorem.
Fm(s) :=

∫
ψs,m(x1x2) dµ

is a continuous function of s ∈ Zp. Furthermore, if Supp(µ) ⊂ (Z×p )2, then

Fm(k) = ak, ∀k ≥ 0 with k ≡ m (mod φ(p))
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Twisted partial zeta functions

Remove the pole. Let c 6= OE be an integral ideal relatively prime to f,
then

ζ(s, c, C) := N c 1−sζ(s, c−1 · C)− ζ(s, C)

has no pole at s = 1 and still takes values in Q at negative integers.

Furthermore

L(s, χ) =
(
N c 1−s χ(c)− 1

)−1 ∑
C∈Clf(E)

χ̄(C) ζ(s, c, C)

So we need to take c such that χ(c) 6= 1.

Switch to elements. Let C = [a−1] (a integral ideal). Then integral ideals
b = αa−1 in C are in bijection with α such that α ∈ a, α ≡ 1 (mod f0),
α� 0 modulo the multiplicative action of Uf(E), the group of units u
such u� 0 and u ≡ 1 (mod f0). Call R(a) a set of representatives. So

ζ(s, C) =
∑

α∈R(a)

N (αa−1)−s = Nas
∑

α∈R(a)

N (α)−s
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Twisted partial zeta functions

Recall that. ζ(s, C) = Nas
∑

α∈R(a)

N (α)−s with C = [a−1]

so ζ(s, c, C) = N c 1−s ζ(s, c−1 · C)− ζ(s, C)

= Nas
(
N c

∑
α∈R(a)∩c

N (α)−s −
∑

α∈R(a)

N (α)−s
)

Let X be the set of additive characters of OE of annihilator c then

∑
ξ∈X

ξ(θ) =

{
0 if θ 6∈ c

N c otherwise

and
ζ(s, c, C) = Nas

∑
ξ∈X
ξ 6=1

∑
α∈R(a)

ξ(α)N (α)−s

︸ ︷︷ ︸
=: ζ(s, a, ξ)
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Shintani cone decomposition

lattice
a

σ

εσ

Let σ ∈ af0, σ 6∈ c and σ � 0 and let ε a generator of Uf(E).

Take R(a) := a ∩ (1 + f0) ∩ C(σ, ε), where

C(σ, εσ) := {sσ + tεσ with 0 < s and 0 ≤ t}

Let P (σ, ε) := {sσ + tεσ with 0 < s ≤ 1 and 0 ≤ t < 1} then

R(a) =
⋃

n,m≥0

{(
a ∩ (1 + f0) ∩ P (σ, ε)

)︸ ︷︷ ︸
=: P (a, σ, ε)

+nσ +mεσ
}
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Power series and twisted partial zeta functions

We define

F (T1, T2, a, ξ) :=

∑
α∈P (a,σ,ε)

ξ(α)(1 + T)α

(
1− ξ(σ)(1 + T)σ

)(
1− ξ(εσ)(1 + T)εσ

)
where, for β ∈ OE

(1 + T)β := (1 + T1)
β(1)

(1 + T2)
β(2)

=
∑

n1,n2≥0

(
β(1)

n1

)(
β(2)

n2

)
Tn1

1 Tn2
2

Theorem. For all k ≥ 0[
∆kF (T1, T2, a)

]
T1=T2=0

= ζ(−k, a, ξ)

Heuristic proof. Expand everything in terms of (1 + T1) and (1 + T2),
apply ∆k and take T1 = T2 = 0. We get

〈〈

∑
n,m≥0

α∈P (a,σ,ε)

ξ(α+ nσ +mεσ)N (α+ nσ +mεσ)k = ζ(−k, a, ξ) 〉〉
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Change of variables

Problem. When p is not split, the power series (1 + T)β may have
unbounded coefficients!

Change of variables. Let γ ∈ OE such that OE = Z + γZ. Define the
operator A by

A(T1) = (1 + T1)(1 + T2)− 1 and A(T2) = (1 + T1)
γ(1)

(1 + T2)
γ(2)

− 1

Then, for α = a+ bγ ∈ O+
E , we have

A
(
(1 + T1)

a(1 + T2)
b
)

= (1 + T1)
a+bγ(1)

(1 + T2)
a+bγ(2)

= (1 + T)α

So G(T1, T2, a, ξ) = A−1(F (T1, T2, a, ξ)) has coefficients in Z[ξ].

Theorem. Let µa,ξ the measure on Z2
p associated to G(T1, T2, a, ξ).

Then for all k ≥ 0

ζ(−k, a, ξ) =

∫
N (x1 + x2γ)

k dµa,ξ.
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Construction of the interpolating function

Interpolation. Write G(T1, T2, a, ξ) =
∑

n1,n2≥0

g(a, ξ)n1,n2T
n1Tn2 and

(x1, x2) 7→ ψs,m(N (x1 + x2γ)) =
∑

n1,n2≥0

c(s,m)n1,n2

(
x1

n1

)(
x2

n2

)
.

Define for all s ∈ Zp

ζ(m)
p (s, a, ξ) =

∫
ψs,m(N (x1 + x2γ)) dµa,ξ

=
∑

n1,n2≥0

g(a, ξ)n1,n2 c(s,m)n1,n2

Then ζ
(m)
p (s, a, ξ) is a continuous function on Zp interpolating ζ(s, a, ξ) at

negative integers k congruent to m modulo φ(p).

The natural choice is m = −1 for which the corresponding p-adic zeta
function has a simple pole at s = 1.
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Interpolation of x 7→ xk

Construction of ψs,m(x). Z×p has the natural decomposition

Z×p = Wp × (1 + pZp)
x 7→ ω(x) · 〈x〉

so that x ≡ ω(x) (mod pZp) and 〈x〉 ∈ 1 + pZp.

Power of principal units. For s ∈ Zp and 〈x〉 = 1 + py, we have

〈x〉s =
∑
n≥0

(
s

n

)
pnyn ∈ 1 + pZp

Therefore the function

ψs,m(x) =

{
ω(x)m〈x〉s if x ∈ Z×p
0 if x ∈ pZp

interpolates xk on Z×p for k ≥ 0, k ≡ m (mod φ(p)).
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Complexity results

Computation of the measures. Assume p 6= 2, then it takes

Õ(f RE M
6 p4 c2) operations and Õ(M2 p2) memory

to compute the measure µa,ξ to a precision pM with c = N c, fZ = f ∩ Z
and RE the regulator of E.

Computation of values. Once the measure µa,ξ has been computed, it
takes

Õ(M4 p3) operations

to compute ζp(s, a, ξ), for some s ∈ Zp, to a precision of pM .

It is possible to compute other expressions of the functions ζp(s, a, ξ), and
thus of p-adic L-functions, using this method.
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Complexity results

Mahler expansion. One can also compute the coefficients an of

ζp(s, a, ξ) =
∑
n≥0

an

(
s

n

)
with an ∈ Qp

with

an =

∫
U
ω(N (x1 + x2γ))

−1 (〈N (x1 + x2γ)〉 − 1)n
dµa,ξ

Once the measure µa,ξ has been computed (to a precision pM ), it takes

Õ(N M4 p3) operations

to compute the first N coefficients an to a precision pM (N ≤M).

And then it takes only Õ(M3) operations to compute ζp(s, a, ξ) to a
precision of pM , for some s ∈ Zp.
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Complexity results

Analytic function. One can also compute the coefficients cn of

ζp(s, a, ξ) =
∑
n≥0

cn s
n with cn ∈ Qp

with

cn =
1

n!

∫
U
ω(N (x1 + x2γ))

−1 logp (〈N (x1 + x2γ)〉)n
dµa,ξ

or in a simpler way

a0 + a1

(
X

1

)
+ a2

(
X

2

)
+ · · · = c0 + c1X + c2X

2 + · · ·

Once the measure µa has been computed (to a precision pM ), it takes

Õ(N M4 p3) operations

to compute the first N coefficients cn to a precision pM (N ≤M).

It is better not to use this expression to compute values of ζp(s, a, ξ).
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Complexity results

Iwasawa function. Let u be a topologic generator of 1 + pZp, then there
exists

Fp(T, a, ξ) = f0 + f1T + f2T
2 + · · · ∈ Qp[[T ]]

with
ζp(s, a, ξ) = Fp(u

s − 1, a, ξ)

We have

fn =

∫
U
N (x1 + x2γ)

−1

(
logp〈N (x1 + x2γ)〉/ logp u

n

)
dµa,ξ

But it is not really clear how much it costs to compute the fn...
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Examples

Compute values of ζE,p(5) for E = Q(
√

3) and p = 3, 11 and 23

gp > data = init_data(12, 3, 10);

time = 4 ms.

gp > twz = init_twistzeta(data);

time = 604 ms.

gp > zetap_E(data, 5, twz)

time = 28 ms.

%3 = 2*3^-1 + 1 + 3 + 2*3^4 + 2*3^5 + 2*3^6 + 2*3^7 + 2*3^8 + O(3^9)

gp > data = init_data(12, 11, 7);

time = 0 ms.

gp > twz = init_twistzeta(data);

time = 3mn, 29,221 ms.

gp > zetap_E(data, 5, twz)

time = 1,417 ms.

%6 = 4*11^-1 + 3*11 + 7*11^2 + 9*11^3 + 10*11^4 + 4*11^5 + O(11^6)

gp > data = init_data(12, 23, 5);

time = 4 ms.

gp > twz = init_twistzeta(data);

time = 18mn, 45,670 ms.

gp > zetap_E(data, 5, twz)

time = 6,441 ms.

%9 = 17*23^-1 + 21 + 4*23 + 19*23^2 + 7*23^3 + O(23^4)
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Mahler coefficients of ψs,m

Write the Mahler expansion ψs,m(x) =
∑
n≥0

zn

(
x

n

)
with zn →p 0.

Problem. We need to estimate vp(zn).

Locally analytic functions. A Zp-continuous function f is analytic of order
h ≥ 0 if for all a ∈ Zp

f(x) = fa,0 + fa,1(x− a) + fa,2(x− a)2 + · · · for |x− a| ≤ p−h

Theorem. Let f(x) =
∑
n≥0

an

(
x

n

)
then vp(an) ≥ vp

(
bn/phc!

)
+ C(f)

Application. Let a ∈ Z×p . For x ∈ a+ pZp

〈x〉s = 〈a〉
∑
n≥0

(
s

n

) (
x− a

a

)n

so ψs,m is analytic of order 1 and vp(zn) & n/p2.
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Mahler coefficients of ψs,m

But, we can do better easily.

Close functions. Let f and g be two continuous functions such that

vp

(
f(x)− g(x)

)
≥M for all x ∈ Zp

Then vp(an − bn) ≥M for all n ≥ 0 where g(x) =
∑
n≥0

bn

(
x

n

)
.

Application. Let M > 0 and let t ∈ Z≥0 such that

t ≡ s (mod pM ), t ≡ m (mod p− 1) and t > M

Then for all x ∈ Zp, we have

vp(ψs,m(x)− xt) ≥M

Therefore vp(zn) & n/p.
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