Computing values of p-ADic L-Functions OF REAL QUADRATIC FIELDS

X.-F. Roblot
Institut Camille Jordan
Université Claude Bernard - Lyon 1

Computing values of p-adic L-functions of real quadratic fields

- p-adic zeta function of number fields first constructed by Serre using Hilbert modular forms (1972).
- Construction of p-adic L-functions by Deligne-Ribet using algebraic geometry (1980).
- Construction of p-adic L-functions by Cassou-Noguès (1979) and Barsky (1978) using Shintani's methods, reformulated in terms of p-adic measures by Katz (1981). Also nice constructions of Colmez (1988) and Barsky (2004).
- Method generalizes previous work (2004) with D. Solomon (values at $s=1$, conductor relatively prime with p, p split in quadratic field).
- Method (almost) works for higher degree totally real number fields.
- Method used in joint work with A. Besser, P. Buckingham and R. de Jeu (and a current work with A. Weiss).

Computing values of p-adic L-functions of real quadratic fields

Hecke L-function. Let χ be a character of the ray class group $\mathrm{Cl}_{\mathrm{f}}(E)$ modulo \mathfrak{f} of a real quadratic field E. We define for $\Re e(s)>1$

$$
L(s, \chi):=\prod_{\mathfrak{q} \nmid f}\left(1-\chi(\mathfrak{q}) \mathcal{N q}^{-s}\right)^{-1}
$$

This function has an analytic continuation to \mathbb{C} and its values at integers have special arithmetical meaning.

Problem. Construct a continuous function on \mathbb{Z}_{p} interpolating the values at negative integers of this function.

For simplicity, assume p is odd and $p \mid \mathfrak{f}$.

And, for technical reason, assume the infinite part \mathfrak{f}_{∞} contains the two infinite places of E.

Computing values of p-adic L-functions of real quadratic fields \llcorner The interpolation problem

Partial zeta functions. Fix a class \mathcal{C} in $\mathrm{Cl}_{\mathrm{f}}(E)$, and define

$$
\zeta(s, \mathcal{C}):=\sum_{\substack{\mathfrak{a} \in \mathcal{C} \\ \mathfrak{a} \subset \mathbb{Z}_{E}}} \mathcal{N} \mathfrak{a}^{-s}
$$

Then

$$
L(s, \chi)=\sum_{\mathcal{C} \in \mathrm{Cl}_{\mathfrak{f}}(E)} \chi(\mathcal{C}) \zeta(s, \mathcal{C})
$$

and (Klingen-Siegel)

$$
\zeta(-k, \mathcal{C}) \in \mathbb{Q} \quad \text { for all } k \geq 0 .
$$

So better to interpolate the partial zeta functions!

Computing values of p-adic L-functions of real quadratic fields $\left\llcorner\right.$ Measures on \mathbb{Z}_{p}^{2}

A continous p-adic function $f: \mathbb{Z}_{p}^{2} \rightarrow \mathbb{C}_{p}$ has a unique Mahler expansion

$$
f\left(x_{1}, x_{2}\right)=\sum_{n_{1}, n_{2} \geq 0} a_{n_{1}, n_{2}}\binom{x_{1}}{n_{1}}\binom{x_{2}}{n_{2}}
$$

with $a_{n_{1}, n_{2}} \rightarrow p 0$ as $n_{1}+n_{2} \rightarrow \infty$ and $\binom{x}{n}:=\frac{x(x-1) \cdots(x-(n-1))}{n!}$.

A measure on \mathbb{Z}_{p}^{2} is a linear form μ on the \mathbb{C}_{p}-vector space $\mathcal{C}\left(\mathbb{Z}_{p}^{2}, \mathbb{C}_{p}\right)$ of continuous functions such that there exists a constant $C>0$ with

$$
|\underbrace{\int f d \mu}_{\mu(f)}| \leq C \underbrace{\max _{\left(x_{1}, x_{2}\right) \in \mathbb{Z}_{p}^{2}}\left|f\left(x_{1}, x_{2}\right)\right|}_{\|f\|} \quad \text { for all } f \in \mathcal{C}\left(\mathbb{Z}_{p}^{2}, \mathbb{C}_{p}\right)
$$

Computing values of p-adic L-functions of real quadratic fields $\left\llcorner\right.$ Measures on \mathbb{Z}_{p}^{2}

We have

$$
\int f d \mu=\sum_{n_{1}, n_{2} \geq 0} a_{n_{1}, n_{2}} \int\binom{x_{1}}{n_{1}}\binom{x_{2}}{n_{2}} d \mu
$$

and so we can associate to μ a power series with bounded coefficients
$F_{\mu}\left(T_{1}, T_{2}\right):=\sum_{n_{1}, n_{2} \geq 0} \int\binom{x_{1}}{n_{1}}\binom{x_{2}}{n_{2}} d \mu \cdot T_{1}^{n_{1}} T_{2}^{n_{2}}=\int\left(1+T_{1}\right)^{x_{1}}\left(1+T_{2}\right)^{x_{2}} d \mu$.
In the same way, we can associate a measure μ_{F} to such a power series F.
The Δ operator is $\Delta:=\left(1+T_{1}\right)\left(1+T_{2}\right) \frac{\partial^{2}}{\partial T_{1} \partial T_{2}} \quad$ and

$$
\Delta F_{\mu}\left(T_{1}, T_{2}\right)=\int x_{1} x_{2}\left(1+T_{1}\right)^{x_{1}}\left(1+T_{2}\right)^{x_{2}} d \mu
$$

and therefore for all $k \geq 0$

$$
\int\left(x_{1} x_{2}\right)^{k} d \mu=\left[\Delta^{k} F_{\mu}\left(T_{1}, T_{2}\right)\right]_{T_{1}=T_{2}=0}
$$

Computing values of p-adic L-functions of real quadratic fields \llcorner Interpolation using measures

Method of interpolation. Given a sequence $\left(a_{k}\right)_{k \geq 0}$ of rational numbers. Find a power series F with bounded coefficients such that for all $k \geq 0$

$$
a_{k}=\left[\Delta^{k} F_{\mu}\left(T_{1}, T_{2}\right)\right]_{T_{1}=T_{2}=0}=\int\left(x_{1} x_{2}\right)^{k} d \mu_{F}
$$

For $s \in \mathbb{Z}_{p}$, let ψ_{s} be a continuous p-adic function such that for $k \geq 0$

$$
\psi_{k}(x)=x^{k}
$$

then we can replace $\left(x_{1} x_{2}\right)^{k}$ by $\psi_{s}\left(x_{1} x_{2}\right)$ and get a p-adic function.
Unfortunately, one can only find a function $\psi_{s, m}$ such that $\psi_{k, m}(x)=x^{k}$ for $x \in \mathbb{Z}_{p}^{\times}$and $k \geq 0$ is such that $k \equiv m(\bmod \phi(p))$.

Theorem.

$$
\mathcal{F}_{m}(s):=\int \psi_{s, m}\left(x_{1} x_{2}\right) d \mu
$$

is a continuous function of $s \in \mathbb{Z}_{p}$. Furthermore, if $\operatorname{Supp}(\mu) \subset\left(\mathbb{Z}_{p}^{\times}\right)^{2}$, then

$$
\mathcal{F}_{m}(k)=a_{k}, \quad \forall k \geq 0 \text { with } k \equiv m(\bmod \phi(p))
$$

Computing values of p-adic L-functions of real quadratic fields \llcorner Twisted partial zeta functions

Remove the pole. Let $\mathfrak{c} \neq \mathcal{O}_{E}$ be an integral ideal relatively prime to \mathfrak{f}, then

$$
\zeta(s, \mathfrak{c}, \mathcal{C}):=\mathcal{N} \mathfrak{c}^{1-s} \zeta\left(s, \mathfrak{c}^{-1} \cdot \mathcal{C}\right)-\zeta(s, \mathcal{C})
$$

has no pole at $s=1$ and still takes values in \mathbb{Q} at negative integers.
Furthermore

$$
L(s, \chi)=\left(\mathcal{N} \mathfrak{c}^{1-s} \chi(\mathfrak{c})-1\right)^{-1} \sum_{\mathcal{C} \in \mathrm{Cl}_{\mathfrak{f}}(E)} \bar{\chi}(\mathcal{C}) \zeta(s, \mathfrak{c}, \mathcal{C})
$$

So we need to take \mathfrak{c} such that $\chi(\mathfrak{c}) \neq 1$.
Switch to elements. Let $\mathcal{C}=\left[\mathfrak{a}^{-1}\right]$ (\mathfrak{a} integral ideal). Then integral ideals $\mathfrak{b}=\alpha \mathfrak{a}^{-1}$ in \mathcal{C} are in bijection with α such that $\alpha \in \mathfrak{a}, \alpha \equiv 1\left(\bmod \mathfrak{f}_{0}\right)$, $\alpha \gg 0$ modulo the multiplicative action of $U_{\mathfrak{f}}(E)$, the group of units u such $u \gg 0$ and $u \equiv 1\left(\bmod \mathfrak{f}_{0}\right)$. Call $R(\mathfrak{a})$ a set of representatives. So

$$
\zeta(s, \mathcal{C})=\sum_{\alpha \in R(\mathfrak{a})} \mathcal{N}\left(\alpha \mathfrak{a}^{-1}\right)^{-s}=\mathcal{N} \mathfrak{a}^{s} \sum_{\alpha \in R(\mathfrak{a})} \mathcal{N}(\alpha)^{-s}
$$

Computing values of p-adic L-functions of real quadratic fields \llcorner Twisted partial zeta functions

Recall that. $\zeta(s, \mathcal{C})=\mathcal{N a}^{s} \sum_{\alpha \in R(\mathfrak{a})} \mathcal{N}(\alpha)^{-s}$ with $\mathcal{C}=\left[\mathfrak{a}^{-1}\right]$

$$
\text { so } \begin{aligned}
\zeta(s, \mathfrak{c}, \mathcal{C}) & =\mathcal{N} \mathfrak{c}^{1-s} \zeta\left(s, \mathfrak{c}^{-1} \cdot \mathcal{C}\right)-\zeta(s, \mathcal{C}) \\
& =\mathcal{N} \mathfrak{a}^{s}\left(\mathcal{N} \mathfrak{c} \sum_{\alpha \in R(\mathfrak{a}) \cap \mathfrak{c}} \mathcal{N}(\alpha)^{-s}-\sum_{\alpha \in R(\mathfrak{a})} \mathcal{N}(\alpha)^{-s}\right)
\end{aligned}
$$

Let \mathcal{X} be the set of additive characters of \mathcal{O}_{E} of annihilator \mathfrak{c} then

$$
\sum_{\xi \in \mathcal{X}} \xi(\theta)= \begin{cases}0 & \text { if } \theta \notin \mathfrak{c} \\ \mathcal{N} \mathfrak{c} & \text { otherwise }\end{cases}
$$

and

$$
\zeta(s, \mathfrak{c}, \mathcal{C})=\mathcal{N a}^{s} \sum_{\substack{\xi \in \mathcal{X} \\ \xi \neq 1}}^{\underbrace{}_{=: \zeta(s, \mathfrak{a}, \xi)} \xi(\alpha) \mathcal{N}(\alpha)^{-s}}
$$

Computing values of p-adic L-functions of real quadratic fields \llcorner Shintani cone decomposition

Let $\sigma \in \mathfrak{a} f_{0}, \sigma \notin \mathfrak{c}$ and $\sigma \gg 0$ and let ε a generator of $U_{\mathfrak{f}}(E)$.
Take $R(\mathfrak{a}):=\mathfrak{a} \cap\left(1+\mathfrak{f}_{0}\right) \cap C(\sigma, \varepsilon)$, where

$$
C(\sigma, \varepsilon \sigma):=\{s \sigma+t \varepsilon \sigma \text { with } 0<s \text { and } 0 \leq t\}
$$

Let $P(\sigma, \varepsilon):=\{s \sigma+t \varepsilon \sigma$ with $0<s \leq 1$ and $0 \leq t<1\}$ then

$$
R(\mathfrak{a})=\bigcup_{n, m \geq 0}\{\underbrace{\left(\mathfrak{a} \cap\left(1+\mathfrak{f}_{0}\right) \cap P(\sigma, \varepsilon)\right)}_{=: P(\mathfrak{a}, \sigma, \varepsilon)}+n \sigma+m \varepsilon \sigma\}
$$

Computing values of p-adic L-functions of real quadratic fields \llcorner Power series and twisted partial zeta functions

We define

$$
F\left(T_{1}, T_{2}, \mathfrak{a}, \xi\right):=\frac{\sum_{\alpha \in P(\mathfrak{a}, \sigma, \varepsilon)} \xi(\alpha)(1+\mathbf{T})^{\alpha}}{\left(1-\xi(\sigma)(1+\mathbf{T})^{\sigma}\right)\left(1-\xi(\varepsilon \sigma)(1+\mathbf{T})^{\varepsilon \sigma}\right)}
$$

where, for $\beta \in \mathcal{O}_{E}$

$$
(1+\mathbf{T})^{\beta}:=\left(1+T_{1}\right)^{\beta^{(1)}}\left(1+T_{2}\right)^{\beta^{(2)}}=\sum_{n_{1}, n_{2} \geq 0}\binom{\beta^{(1)}}{n_{1}}\binom{\beta^{(2)}}{n_{2}} T_{1}^{n_{1}} T_{2}^{n_{2}}
$$

Theorem. For all $k \geq 0$

$$
\left[\Delta^{k} F\left(T_{1}, T_{2}, \mathfrak{a}\right)\right]_{T_{1}=T_{2}=0}=\zeta(-k, \mathfrak{a}, \xi)
$$

Heuristic proof. Expand everything in terms of $\left(1+T_{1}\right)$ and $\left(1+T_{2}\right)$, apply Δ^{k} and take $T_{1}=T_{2}=0$. We get

$$
\text { 《 } \sum_{\substack{n, m \geq 0 \\ \alpha \in P(\mathfrak{a}, \sigma, \varepsilon)}} \xi(\alpha+n \sigma+m \varepsilon \sigma) \mathcal{N}(\alpha+n \sigma+m \varepsilon \sigma)^{k}=\zeta(-k, \mathfrak{a}, \xi) \text { 》 }
$$

Computing values of p-adic L-functions of real quadratic fields \llcorner Change of variables

Problem. When p is not split, the power series $(1+\mathbf{T})^{\beta}$ may have unbounded coefficients!

Change of variables. Let $\gamma \in \mathcal{O}_{E}$ such that $\mathcal{O}_{E}=\mathbb{Z}+\gamma \mathbb{Z}$. Define the operator \mathcal{A} by

$$
\mathcal{A}\left(T_{1}\right)=\left(1+T_{1}\right)\left(1+T_{2}\right)-1 \text { and } \mathcal{A}\left(T_{2}\right)=\left(1+T_{1}\right)^{\gamma^{(1)}}\left(1+T_{2}\right)^{\gamma^{(2)}}-1
$$

Then, for $\alpha=a+b \gamma \in \mathcal{O}_{E}^{+}$, we have

$$
\mathcal{A}\left(\left(1+T_{1}\right)^{a}\left(1+T_{2}\right)^{b}\right)=\left(1+T_{1}\right)^{a+b \gamma^{(1)}}\left(1+T_{2}\right)^{a+b \gamma^{(2)}}=(1+\mathbf{T})^{\alpha}
$$

So $G\left(T_{1}, T_{2}, \mathfrak{a}, \xi\right)=\mathcal{A}^{-1}\left(F\left(T_{1}, T_{2}, \mathfrak{a}, \xi\right)\right)$ has coefficients in $\mathbb{Z}[\xi]$.
Theorem. Let $\mu_{\mathfrak{a}, \xi}$ the measure on \mathbb{Z}_{p}^{2} associated to $G\left(T_{1}, T_{2}, \mathfrak{a}, \xi\right)$.
Then for all $k \geq 0$

$$
\zeta(-k, \mathfrak{a}, \xi)=\int \mathcal{N}\left(x_{1}+x_{2} \gamma\right)^{k} d \mu_{\mathfrak{a}, \xi}
$$

Computing values of p-adic L-functions of real quadratic fields \llcorner Construction of the interpolating function

Interpolation. Write $G\left(T_{1}, T_{2}, \mathfrak{a}, \xi\right)=\sum_{n_{1}, n_{2} \geq 0} g(\mathfrak{a}, \xi)_{n_{1}, n_{2}} T^{n_{1}} T^{n_{2}}$ and

$$
\left(x_{1}, x_{2}\right) \mapsto \psi_{s, m}\left(\mathcal{N}\left(x_{1}+x_{2} \gamma\right)\right)=\sum_{n_{1}, n_{2} \geq 0} c(s, m)_{n_{1}, n_{2}}\binom{x_{1}}{n_{1}}\binom{x_{2}}{n_{2}} .
$$

Define for all $s \in \mathbb{Z}_{p}$

$$
\begin{aligned}
\zeta_{p}^{(m)}(s, \mathfrak{a}, \xi) & =\int \psi_{s, m}\left(\mathcal{N}\left(x_{1}+x_{2} \gamma\right)\right) d \mu_{\mathfrak{a}, \xi} \\
& =\sum_{n_{1}, n_{2} \geq 0} g(\mathfrak{a}, \xi)_{n_{1}, n_{2}} c(s, m)_{n_{1}, n_{2}}
\end{aligned}
$$

Then $\zeta_{p}^{(m)}(s, \mathfrak{a}, \xi)$ is a continuous function on \mathbb{Z}_{p} interpolating $\zeta(s, \mathfrak{a}, \xi)$ at negative integers k congruent to m modulo $\phi(p)$.

The natural choice is $m=-1$ for which the corresponding p-adic zeta function has a simple pole at $s=1$.

Computing values of p-adic L-functions of real quadratic fields $\left\llcorner\right.$ Interpolation of $x \mapsto x^{k}$

Construction of $\psi_{s, m}(x) . \mathbb{Z}_{p}^{\times}$has the natural decomposition

$$
\begin{aligned}
\mathbb{Z}_{p}^{\times} & =W_{p} \times\left(1+p \mathbb{Z}_{p}\right) \\
x & \mapsto \omega(x) \cdot\langle x\rangle
\end{aligned}
$$

so that $x \equiv \omega(x)\left(\bmod p \mathbb{Z}_{p}\right)$ and $\langle x\rangle \in 1+p \mathbb{Z}_{p}$.
Power of principal units. For $s \in \mathbb{Z}_{p}$ and $\langle x\rangle=1+p y$, we have

$$
\langle x\rangle^{s}=\sum_{n \geq 0}\binom{s}{n} p^{n} y^{n} \in 1+p \mathbb{Z}_{p}
$$

Therefore the function

$$
\psi_{s, m}(x)= \begin{cases}\omega(x)^{m}\langle x\rangle^{s} & \text { if } x \in \mathbb{Z}_{p}^{\times} \\ 0 & \text { if } x \in p \mathbb{Z}_{p}\end{cases}
$$

interpolates x^{k} on \mathbb{Z}_{p}^{\times}for $k \geq 0, k \equiv m(\bmod \phi(p))$.

Computing values of p-adic L-functions of real quadratic fields

Computation of the measures. Assume $p \neq 2$, then it takes

$$
\tilde{O}\left(f R_{E} M^{6} p^{4} c^{2}\right) \text { operations and } \tilde{O}\left(M^{2} p^{2}\right) \text { memory }
$$

to compute the measure $\mu_{\mathfrak{a}, \xi}$ to a precision p^{M} with $c=\mathcal{N} \mathfrak{c}, f \mathbb{Z}=\mathfrak{f} \cap \mathbb{Z}$ and R_{E} the regulator of E.

Computation of values. Once the measure $\mu_{\mathfrak{a}, \xi}$ has been computed, it takes

$$
\tilde{O}\left(M^{4} p^{3}\right) \text { operations }
$$

to compute $\zeta_{p}(s, \mathfrak{a}, \xi)$, for some $s \in \mathbb{Z}_{p}$, to a precision of p^{M}.

It is possible to compute other expressions of the functions $\zeta_{p}(s, \mathfrak{a}, \xi)$, and thus of p-adic L-functions, using this method.

Computing values of p-adic L-functions of real quadratic fields

Mahler expansion. One can also compute the coefficients a_{n} of

$$
\zeta_{p}(s, \mathfrak{a}, \xi)=\sum_{n \geq 0} a_{n}\binom{s}{n} \quad \text { with } a_{n} \in \mathbb{Q}_{p}
$$

with

$$
a_{n}=\int_{\mathcal{U}} \omega\left(\mathcal{N}\left(x_{1}+x_{2} \gamma\right)\right)^{-1}\left(\left\langle\mathcal{N}\left(x_{1}+x_{2} \gamma\right)\right\rangle-1\right)^{n} d \mu_{\mathfrak{a}, \xi}
$$

Once the measure $\mu_{\mathfrak{a}, \xi}$ has been computed (to a precision p^{M}), it takes

$$
\tilde{O}\left(N M^{4} p^{3}\right) \text { operations }
$$

to compute the first N coefficients a_{n} to a precision $p^{M}(N \leq M)$.
And then it takes only $\tilde{O}\left(M^{3}\right)$ operations to compute $\zeta_{p}(s, \mathfrak{a}, \xi)$ to a precision of p^{M}, for some $s \in \mathbb{Z}_{p}$.

Computing values of p-adic L-functions of real quadratic fields

Analytic function. One can also compute the coefficients c_{n} of
with

$$
\zeta_{p}(s, \mathfrak{a}, \xi)=\sum_{n \geq 0} c_{n} s^{n} \quad \text { with } c_{n} \in \mathbb{Q}_{p}
$$

$$
c_{n}=\frac{1}{n!} \int_{\mathcal{U}} \omega\left(\mathcal{N}\left(x_{1}+x_{2} \gamma\right)\right)^{-1} \log _{p}\left(\left\langle\mathcal{N}\left(x_{1}+x_{2} \gamma\right)\right\rangle\right)^{n} d \mu_{\mathfrak{a}, \xi}
$$

or in a simpler way

$$
a_{0}+a_{1}\binom{X}{1}+a_{2}\binom{X}{2}+\cdots=c_{0}+c_{1} X+c_{2} X^{2}+\cdots
$$

Once the measure $\mu_{\mathfrak{a}}$ has been computed (to a precision p^{M}), it takes

$$
\tilde{O}\left(N M^{4} p^{3}\right) \text { operations }
$$

to compute the first N coefficients c_{n} to a precision $p^{M}(N \leq M)$.
It is better not to use this expression to compute values of $\zeta_{p}(s, \mathfrak{a}, \xi)$.

Computing values of p-adic L-functions of real quadratic fields

Iwasawa function. Let u be a topologic generator of $1+p \mathbb{Z}_{p}$, then there exists

$$
F_{p}(T, \mathfrak{a}, \xi)=f_{0}+f_{1} T+f_{2} T^{2}+\cdots \in \mathbb{Q}_{p}[[T]]
$$

with

$$
\zeta_{p}(s, \mathfrak{a}, \xi)=F_{p}\left(u^{s}-1, \mathfrak{a}, \xi\right)
$$

We have

$$
f_{n}=\int_{\mathcal{U}} \mathcal{N}\left(x_{1}+x_{2} \gamma\right)^{-1}\binom{\log _{p}\left\langle\mathcal{N}\left(x_{1}+x_{2} \gamma\right)\right\rangle / \log _{p} u}{n} d \mu_{\mathfrak{a}, \xi}
$$

But it is not really clear how much it costs to compute the $f_{n} \ldots$

Computing values of p-adic L-functions of real quadratic fields

 ExamplesCompute values of $\zeta_{E, p}(5)$ for $E=\mathbb{Q}(\sqrt{3})$ and $p=3,11$ and 23

```
gp > data = init_data(12, 3, 10);
time = 4 ms.
gp > twz = init_twistzeta(data);
time = 604 ms.
gp > zetap_E(data, 5, twz)
time = 28 ms.
%3 = 2*3^-1 + 1 + 3 + 2*3^4 + 2*3^5 + 2*3^6 + 2*3^7 + 2*3^8 + O(3^9)
gp > data = init_data(12, 11, 7);
time = 0 ms.
gp > twz = init_twistzeta(data);
time = 3mn, 29,221 ms.
gp > zetap_E(data, 5, twz)
time = 1,417 ms.
%6 = 4*11^-1 + 3*11 + 7*11^2 + 9*11^3 + 10*11^4 + 4*11^5 + 0(11^6)
gp > data = init_data(12, 23, 5);
time = 4 ms.
gp > twz = init_twistzeta(data);
time = 18mn, 45,670 ms.
gp > zetap_E(data, 5, twz)
time = 6,441 ms.
%9 = 17*23^-1 + 21 + 4*23 + 19*23^2 + 7*23^3 + O(23^4)
```

Computing values of p-adic L-functions of real quadratic fields

Write the Mahler expansion $\psi_{s, m}(x)=\sum_{n \geq 0} z_{n}\binom{x}{n}$ with $z_{n} \rightarrow{ }_{p} 0$.
Problem. We need to estimate $v_{p}\left(z_{n}\right)$.
Locally analytic functions. A \mathbb{Z}_{p}-continuous function f is analytic of order $h \geq 0$ if for all $a \in \mathbb{Z}_{p}$

$$
f(x)=f_{a, 0}+f_{a, 1}(x-a)+f_{a, 2}(x-a)^{2}+\cdots \quad \text { for }|x-a| \leq p^{-h}
$$

Theorem. Let $f(x)=\sum_{n \geq 0} a_{n}\binom{x}{n}$ then $v_{p}\left(a_{n}\right) \geq v_{p}\left(\left\lfloor n / p^{h}\right\rfloor!\right)+C(f)$
Application. Let $a \in \mathbb{Z}_{p}^{\times}$. For $x \in a+p \mathbb{Z}_{p}$

$$
\langle x\rangle^{s}=\langle a\rangle \sum_{n \geq 0}\binom{s}{n}\left(\frac{x-a}{a}\right)^{n}
$$

so $\psi_{s, m}$ is analytic of order 1 and $v_{p}\left(z_{n}\right) \gtrsim n / p^{2}$.

Computing values of p-adic L-functions of real quadratic fields $\left\llcorner\right.$ Mahler coefficients of $\psi_{s, m}$

But, we can do better easily.
Close functions. Let f and g be two continuous functions such that

$$
v_{p}(f(x)-g(x)) \geq M \quad \text { for all } x \in \mathbb{Z}_{p}
$$

Then $v_{p}\left(a_{n}-b_{n}\right) \geq M$ for all $n \geq 0$ where $g(x)=\sum_{n \geq 0} b_{n}\binom{x}{n}$.
Application. Let $M>0$ and let $t \in \mathbb{Z}_{\geq 0}$ such that

$$
t \equiv s \quad\left(\bmod p^{M}\right), \quad t \equiv m \quad(\bmod p-1) \quad \text { and } \quad t>M
$$

Then for all $x \in \mathbb{Z}_{p}$, we have

$$
v_{p}\left(\psi_{s, m}(x)-x^{t}\right) \geq M
$$

Therefore $v_{p}\left(z_{n}\right) \gtrsim n / p$.

