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Abstract. Partial differential equations endowed with a Hamiltonian structure, like the
Korteweg–de Vries equation and many other more or less classical models, are known to
admit rich families of periodic travelling waves. The stability theory for these waves is
still in its infancy though. The issue has been tackled by various means. Of course, it is al-
ways possible to address stability from the spectral point of view. However, the link with
nonlinear stability - in fact, orbital stability, since we are dealing with space-invariant
problems - , is far from being straightforward when the best spectral stability we can
expect is a neutral one. Indeed, because of the Hamiltonian structure, the spectrum of
the linearized equations cannot be bounded away from the imaginary axis, even if we
manage to deal with the point zero, which is always present because of space invariance.
Some other means make a crucial use of the underlying structure. This is clearly the case
for the variational approach, which basically uses the Hamiltonian - or more precisely, a
constrained functional associated with the Hamiltonian and with other conserved quanti-
ties - as a Lyapunov function. When it works, it is very powerful, since it gives a straight
path to orbital stability. An alternative is the modulational approach, following the ideas
developed by Whitham almost fifty years ago. The main purpose here is to point out
a few results, for KdV-like equations and systems, that make the connection between
these three approaches: spectral, variational, and modulational.

Stabilité d’ondes périodiques dans des EDP hamiltonniennes

Résumé. Les équations aux dérivées partielles munies d’une structure hamiltonnienne
sont connues pour admettre des familles entières d’ondes progressives périodiques. C’est
le cas pour l’équation de Korteweg–de Vries et de nombreux autres modèles plus ou
moins classiques. L’étude de la stabilité de ces ondes en est cependant encore à ses
balbutiements. Plusieurs approches sont possibles. L’une d’elles est bien sûr l’analyse
spectrale des équations linéarisées. Toutefois, le lien avec la stabilité non-linéaire, et en
fait la stabilité orbitale puisque ce sont des problèmes invariants par translation, est
loin d’être clair. Car on ne peut espérer qu’une stabilité spectrale neutre, étant donné
que la structure hamiltonnienne exclut l’existence d’un trou spectral, et ce même en
faisant abstraction de la valeur propre nulle, liée à l’invariance par translation. D’autres
méthodes pour étudier la stabilité des ondes progressives périodiques consistent à tirer
parti de la structure sous-jacente. C’est naturellement le cas de l’approche variationnelle.
Celle-ci consiste à utiliser le hamiltonnien, ou plus précisément une fonctionnelle mod-
ifiée pour tenir compte des autres quantités conservées, comme fonction de Lyapunov.
Lorsqu’elle s’applique, cette méthode est très efficace et donne directement accès à la
stabilité orbitale. Une troisième voie est la théorie de la modulation, dont les fonde-
ments ont été posés par Whitham à l’orée des années 1970. L’objectif est ici de présenter
quelques résultats récents, valant pour des équations et systèmes du type de l’équation
Korteweg–de Vries, qui mettent en relation les approches spectrale, variationnelle et
modulationnelle.

1. Introduction

Sound and light are manifestations of periodic waves, even though they are hardly per-
ceived as waves in daily life. Perhaps the most famous, clearly visible periodic waves are
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those propagating at the surface of water, named after George Gabriel Stokes. In real-
world situations, periodic water waves can be formed for instance by ships. Their two
main features are non-linearity and dispersion, which imply that their velocity depends
on both their amplitude and their wavelength. However, it was observed in a celebrated
work [3] that the so-called Stokes waves were not so easy to create in lab experiments.
At first puzzled by this problem, Benjamin and Feir exhibited a threshold for the ratio of
depth over wave length above which small amplitude Stokes waves become unstable.

If the Stokes waves are an archetype of nonlinear dispersive waves, the underlying - water
wave - equations are quite complicated. The purpose of this talk was to give an overview
of stability theory for a wide range of nonlinear dispersive waves, of possibly arbitrary
amplitude, arising as solutions of PDEs endowed with a ‘nice’ algebraic structure. This
has been a renewed, active field in the last decade, with still a number of open questions
even in one space dimension. By contrast, the theory is much more advanced regarding
solitary waves, which may be viewed as a limiting case of periodic waves - namely, when
their wavelength goes to infinity.

We restrict to one-dimensional issues in what follows. In mathematical physics, there
are a number of model equations supporting nonlinear dispersive waves. The most classical
ones are known as the Non-Linear Wave equation

(NLW) ∂2
t χ− ∂2

xχ+ v(χ) = 0 ,

the (generalized) Boussinesq equation

(B) ∂2
t φ− ∂2

x(w(φ)∓ ∂2
xφ) = 0 ,

the (generalized) Korteweg-de Vries equation

(KdV) ∂tv + ∂xp(v) = −∂3
xv ,

and the Non-Linear Schrödinger equation

(NLS) i∂tψ + 1
2∂

2
xψ = ψ g(|ψ|2) .

It is on purpose that we have chosen to write non-linear terms in their most general form
here above - observe that nonlinearities are written as v(χ) in (NLW), w(φ) in (B), p(v)
in (KdV), and ψ g(|ψ|2) in (NLS). As a matter of fact, we shall refrain from invoking
integrability arguments, which only work for some specific nonlinearities. Nevertheless, a
common feature of these equations is that they are endowed with a Hamiltonian structure.
Indeed, they can all be written in the abstract form

∂tU = J (EH [U]) , (1.1)

where the unknown U takes values in RN (N = 1 for (KdV), N = 2 for (B), (NLS), N = 3
for (NLW)), J is a skew-adjoint differential operator, and EH denotes the variational
derivative of H , whose α-th component (α ∈ {1, . . . , N}) merely reads as follows when
H = H (U,Ux),

(EH [U])α :=
∂H

∂Uα
(U,Ux) − Dx

(
∂H

∂Uα,x
(U,Ux)

)
.

Here above, Dx stands for the total derivative. More explicitly, this means that

Dx

(
∂H

∂Uα,x
(U,Ux)

)
=

∂2H (U,Ux)

∂Uβ∂Uα,x
Uβ,x +

∂2H (U,Ux)

∂Uβ,x∂Uα,x
Uβ,xx ,

where we have used Einstein’s convention of summation over repeated indices. Another
convention is that square brackets [·] signal a function of not only the dependent variable
U but also of its derivatives Ux, Uxx, . . . (For instance, we shall either write H (U,Ux)
or H [U].) A motivation for addressing the stability of periodic waves in such an abstract
setting is to make the most of algebra, irrespective of the model under consideration.
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However, we do have a specific model in mind, namely the Euler–Korteweg system, which
admits two different formulations depending on whether we choose Eulerian coordinates,

(EKE)

{
∂tρ+ ∂x(ρu) = 0 ,

∂tu+ u∂xu + ∂x(EρE ) = 0 , E = E (ρ, ρx) ,

or Lagrangian coordinates,

(EKL)

{
∂tv = ∂yu ,

∂tu = ∂y(Ev �e) , �e = �e(v, vy) ,

both fitting the abstract framework in (1.1). (For details on all these equations, see Table
in Appendix.) This is not that a specific model though. What we call the Euler–Korteweg
system comprises many models of mathematical physics, including the Boussinesq equa-
tion for water waves, as well as (NLS) after Madelung’s transformation, see for instance
[4] for more details.

In the literature on Hamiltonian PDEs, the distinction is often made between ‘NLS-like
equations’, in which J is merely a real skew-symmetric matrix, and ‘KdV-like equations’,
in which J = B∂x with B a real symmetric matrix. This distinction is to some extent
artificial, since for instance (NLS) can be written as a special case of the KdV-like system
(EKE), and on the contrary (EKE) can take the form of a NLS-like system if the hydro-
dynamic potential is to replace the velocity u as a dependent variable. However, there
should be a most ‘natural’ formulation for each equation or system.

From now on, we concentrate on KdV-like equations, and assume that J = B∂x with
B a nonsingular, symmetric matrix. In this case, (1.1) is itself a system of conservation
laws, which reads

∂tU = ∂x(BEH [U]) , (1.2)

and turns out to admit the additional, scalar conservation law

∂tQ(U) = ∂x(S [U]) (1.3)

with

Q(U) := 1
2 U ·B−1U , S [U] := U · EH [U] + LH [U] ,

LH [U] := Uα,x
∂H

∂Uα,x
(U,Ux)−H (U,Ux) .

The dots · in the definitions of Q and S are for the ‘canonical’ inner product U·V = UαVα
in RN . The letter L stands for the ‘Legendre transform’ (even though it is considered in
the original variables (U,Ux)). Equation (1.3) is satisfied along any smooth solution of
(1.1). Notice that for any (smooth) function U,

∂xU = ∂x(BEQ[U]) . (1.4)

Viewed as ∂xU = J (EQ[U]), this relation reveals that the (local) conservation law (1.3)
for Q(U) is associated with the invariance of (1.2) under spatial translations. Any such
quantity1 has been called an impulse by Benjamin [2]. Of course there is also a conservation
law associated with the invariance of (1.1) under time translations, which is nothing but
the (local) conservation law for the Hamiltonian

∂tH (U,Ux) = ∂x

(
1
2EH [U] ·BEH [U] +∇UxH [U] ·Dx(EH [U])

)
. (1.5)

However, this rather complicated conservation law will play a much less prominent role
than (1.3) in what follows.

1which also exist for NLS-like equations, but are no longer algebraic and depend on Ux, see Table in
Appendix.
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For a travelling wave U = U(x− ct) of speed c to be solution to (1.1), one must have
by (1.4) that

∂x(E(H + cQ)[U]) = 0 ,

or equivalently, there must exist λ ∈ RN such that

E(H + cQ)[U] + λ = 0 . (1.6)

This is nothing but the Euler-Lagrange equation associated with the Lagrangian

L = L (U,Ux; c,λ) := H (U,Ux) + cQ(U) + λ ·U .

As is well-known, an Euler-Lagrange equation for a Lagrangian L admits LL - the
‘Legendre transform’ of L - as a first integral. Unsurprisingly, this first integral coincides
here with S + cQ, a quantity that is clearly constant along the travelling wave, thanks
to (1.3). The reader may easily check indeed that

LL [U] = S [U] + cQ[U]

as soon as (1.6) holds true. Therefore, a full set of equations for the travelling profile U
consists of (1.6) together with

LL [U] = µ , (1.7)

where µ is a constant of integration. Recalling that L depends on (c,λ), we see that
a travelling profile U depends on (c,λ, µ) ∈ RN+2, which ‘generically’ makes the set of
profiles an (N +2)-dimensional manifold. This is up to translations of course, because any
translated version x 7→ U(x+ s) (for an arbitrary s ∈ R) of U still solves (1.6)-(1.7).

In practice, the existence of periodic waves is not straightforward. However, it almost
becomes so if N = 1 or 2, under a few assumptions that are met by all our KdV-like
equations (namely, (KdV) itself, (EKE), and (EKL)). The simplest case is N = 1, with
the dependent variable U being reduced to a scalar variable v, and

H = E (v, vx) ,
∂2H

∂v2
x

=
∂2E

∂v2
x

=: κ(v) > 0 .

(This is a slight generalization of what happens with the usual KdV-equation, in which κ
is constant.) A little more complicated case is with N = 2, with the dependent variable
U = (v, u), and

H = H (v, u, vx) = E (v, vx) + T (v, u) , (1.8)

such that
∂2H

∂v2
x

=
∂2E

∂v2
x

=: κ(v) > 0 ,
∂2H

∂u2
=
∂2T

∂u2
=: T (v) > 0 . (1.9)

B−1 =

(
a b
b 0

)
, b 6= 0 . (1.10)

(These assumptions are met by both (EKE) and (EKL).) In this way, we may eliminate
u from the profile equations (1.6) and receive a single, second order ODE in v, which also
inherits a Hamiltonian structure, and is therefore completely integrable. The reader might
want to see this equation. Otherwise, they may skip what follows and go straight to the
end of this section.

The second component in (1.6) reads indeed

T (v)u+ ∂uT (v, 0) + c v b+ λ2 = 0 ,

where λ2 is the second component of λ. Since T (v) is nonzero, this gives

u = f(v; c, λ2) := −T (v)−1 (∂uT (v, 0) + c v b+ λ2) .

By plugging this expression in (1.7), we arrive at

LE [v] −T (v, f(v; c, λ2)) − c
(

1
2av

2 + vbf(v; c, λ2)
)
− λ1 v − λ2 f(v; c, λ2) = µ .

4
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Despite its terrible aspect, this equation is merely of the form

1

2
κ(v)v2

x + W (v; c,λ) = µ , (1.11)

if E is really quadratic in vx (i.e. if ∂vxE (v, 0) = 0). We obtain a similar one in the case
N = 1 with H = E (v, vx). Eq. (1.11) can be viewed as an integrated version of the
Euler–Lagrange ODE, E` = 0, associated with the ‘reduced’ Lagrangian

` :=
1

2
κ(v)v2

x − W (v; c,λ) .

Incidentally, E` = 0 admits as a first integral the ‘reduced’ Hamiltonian

h :=
1

2
κ(v)v2

x + W (v; c,λ) .

We thus find families of periodic orbits parametrized by µ around any local minimum of
the potential W (·; c,λ). In case W (·; c,λ) is a double-well potential, which is what happens
with the famous van der Waals/Cahn–Hilliard/Wilson energies, a same parameter µ can
clearly be associated with two different orbits. In other words, the whole set of periodic
orbits is not made of a single graph over the set of parameters (µ,λ, c). Nevertheless, each
family of periodic orbits can be parametrized by (µ, c,λ), as long as the wells of W (·; c,λ)
remain distinct.

Going back to the more comfortable general setting, let us just assume that there exist
open sets of parameters (µ,λ, c) for which (1.6)-(1.7) have a unique periodic solution up to
translations. Note that the set of solitary wave profiles may be viewed as a co-dimension
one boundary of periodic profiles. Indeed, for a solitary wave profile, once λ has been
prescribed by the endstate U∞ = (v∞, u∞),

λ = −∇U(H + cQ)(U∞, 0) ,

the constant of integration µ is given by

µ = −H (v∞, u∞, 0) − cQ(U∞) − λ ·U∞ .

We now aim at investigating the stability of periodic travelling waves U = U(x − ct).
For this purpose, some global, stringent assumptions — for instance quadraticity in vx
and u — may often be relaxed to suitable, local invertibility assumptions.

2. Various types of stability

Let us consider a periodic travelling wave U = U(x− ct) solution to (1.1). In other words,
we assume that U is a periodic solution to (1.6)-(1.7), and denote by Ξ its period2. The
latter is supposed to be uniquely determined, say in the vicinity of a reference profile, by
the parameters (µ,λ, c). As to the profile U, it can only be unique up to translations.
Thus, we may assume without loss of generality that vx(0) = 0. This choice will play a
role in subsequent calculations. Let us now review a series of related notions and tools.

2.1. Variational point of view

By the Euler–Lagrange equation in (1.6), U is a critical point of the functional

F (c,λ,µ) : U 7→
∫ Ξ

0
(H (U,Ux) + cQ(U) + λ ·U + µ) dx .

2Please note that this is a spatial period. We refrain from using the word ‘wavelength’ here in order to
prevent the reader from thinking U as a harmonic wave. It can be a cnoidal wave, or any kind of periodic
wave.
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(At this point, the µ term does not play any role but it will come into play later on.)
Would in addition

Θ(µ,λ, c) := F (c,λ,µ)[U] =

∫ Ξ

0
(H (U,Ux) + cQ(U) + λ ·U + µ) dx

be a (locally) minimal value of F (c,λ,µ), it would be natural to use this functional as a
Lyapunov function in order to show the stability of U. This would require, though, that
its Hessian,

A := Hess(H + cQ)[U]

be a positive differential operator. (Of course A depends on the parameters (µ,λ, c)
but we omit to write them in order to keep the notation simple.) This we would call
variational stability. However, there is no hope that it be the case. A first reason is, by
differentiating (1.6) with respect to c, we readily see that A Ux = 0. Hence A has a
nontrivial kernel on L2(R/ΞZ), containing at least Ux, as is always the case with space-
invariant problems. An even worse observation is that, by a Sturm–Liouville argument
applied to the second order ODE satisfied by v, the equality A Ux = 0 certainly implies
that A has a negative eigenvalue (see Appendix for more details). Nevertheless, what we
can hope for is constrained variational stability. Indeed, knowing that U and Q(U) are

conserved quantities, it can be that the values of F (c,λ,µ) which are lower than Θ(µ,λ, c)
are not seen on the manifold

C := {U ;
∫ Ξ

0 Q(U) dx =
∫ Ξ

0 Q(U) dx ,
∫ Ξ

0 U dx =
∫ Ξ

0 U dx} .
By ‘not seen’ we mean an infinite-dimensional analogue of what happens for instance with
the indefinite function (x, y) 7→ y2 − x2, which does have a (local) minimum along any
curve lying in {(0, 0)}∪{(x, y) ; |x| < |y|}. Determining whether C is located in the ‘good’
region amounts to identifying suitable inequalities, which may be viewed as generalizations
of the Grillakis-Shatah-Strauss criterion known for solitary waves [13], as we shall explain
in Section 4.1. These inequalities should ensure that A is nonnegative on the tangent space
TUC , a necessary condition for the functional F (c,λ,µ) to be minimized at U along C .
Then we may speak of constrained variational stability despite the translation-invariance
problem, that is, even though U is not a strict minimizer. Indeed, as observed in earlier
work on solitary waves [13, Lemma 3.2], any U close to U admits by the implicit function
theorem a translate x 7→ U(x + s(U)) such that U(· + s(U)) − U is orthogonal to Ux

with respect to the L2 inner product. This argument clearly paves the way towards orbital
stability. As a matter of fact, by reasoning as in [13, Theorem 3.5] with an appropriate
choice of a function space H ⊂ L2(R/ΞZ) in which we would have a flow map U(0) 7→ U(t)
for (1.1), we might prove that

∀ε > 0, ∃δ > 0 ; ‖U(0) − U‖H ≤ δ ⇒ ∀t ≥ 0 , inf
s∈R
‖U(t) − U(·+ s)‖H ≤ ε .

This would mean orbital stability of U with respect to co-periodic perturbations (H being

made of Ξ-periodic functions). Possibly redefining F (c,λ,µ) as an integral over an interval
of length nΞ for an integer n ≥ 2, we might also prove orbital stability with respect
to multiply periodic perturbations, that is in L2(R/nΞZ). Note however that this would
require a more delicate count of signatures [11], because the negative spectrum of A
grows bigger when n increases (again by a Sturm–Liouville argument). As to ‘localized’
perturbations, there is no obvious definition of a functional that would play the role of
F (c,λ,µ). This differs from the case of solitary waves, for which

M (U∞,c) : U 7→
∫ ∞
−∞

(H (U,Ux) + cQ(U) + λ ·U + µ) dx

does the job. If U = U(x − ct) is a solitary wave homoclinic to U∞, the integral

M(U∞, c) := M (U∞,c)(U) has been known as the Boussinesq moment of instability, and
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the Grillakis-Shatah-Strauss criterion requires that

∂2M

∂c2
=: Mcc > 0

for this wave to be stable [9, 1, 7, 4]. The reason why it is the sign of Mcc that plays a
role in the solitary wave stability is not difficult to see, as soon as we have in mind the
following crucial relations,

A Uc = ∇Q(U∞)−∇Q(U) =: q , Mcc = −〈q ·Uc〉L2 ,

obtained by differentiating the profile equation (1.6) with respect to c at fixed U∞, and
of course also M. Assuming that Mcc is nonzero, we thus see that any U ∈ D(A ) can be
decomposed in a unique way as U = aUc + V with 〈q ·V〉L2 = 0, and

〈A U ·U〉L2 = − a2 Mcc + 〈A V ·V〉L2 .

On this identity we see that the negative signature n(A ) of A equals the one n(A|q⊥)

of A|q⊥ if Mcc < 0, whereas

n(A ) = n(A|q⊥) + 1

if Mcc > 0. In the latter situation, if it is true that A has a single negative eigenvalue,
we find that A|q⊥ has no negative spectrum, hence constrained variational stability. (The

proof of orbital stability then follows by a contradiction argument [13, 8].) On the other
hand, A|q⊥ does have negative spectrum if Mcc < 0, hence constrained variational insta-

bility. (The proof in [13] that this implies orbital instability is trickier, and does not work
if we cannot assure that there is a negative direction y of A|q⊥ in the range of J , which

is equivalent to requiring that
∫ +∞
−∞ ydx = 0 if J = B∂x. This issue was fixed in [8] for

(KdV).)

Let us go back to periodic waves. The functional F (c,λ,µ) defined at the beginning of
this section turns out to be a ubiquitous tool for the stability analysis of the periodic
travelling waves U = U(x−ct) defined by (1.6)-(1.7). We shall repeatedly meet its second
variational derivative, A = Hess(H + cQ)[U], which depends not only on c but also
on (λ, µ) through the profile U and whose spectrum undoubtedly plays a crucial role in

the stability or instability of U. In addition, the value of F (c,λ,µ) at U, which we have
denoted by Θ(µ,λ, c), and the variations of Θ with respect to (c,λ, µ) show up in stability
conditions from both the spectral and modulational points of view.

2.2. Spectral point of view

A widely used approach to stability of equilibria consists in linearizing about these equi-
libria. Even though periodic waves U = U(x− ct) are not genuine equilibria, they can be
changed into stationary solutions by making a change of frame. Indeed, in a frame moving
with speed c, Eq. (1.2) becomes

∂tU− c∂xU = ∂x(BEH [U]) ,

or equivalently,
∂tU = B∂x(E(H + cQ)[U]) ,

which admits U = U(x) as special solutions. Linearizing about U we receive the system

∂tU = B∂x( A U) ,

where we recognize A = Hess(H +cQ)[U]. Therefore, the linearized stability of U should
be encoded by the spectrum of A = J A with J = B∂x. By definition, U will be said
to be spectrally stable if the operator A has no spectrum in the right-half plane. Note
that, since J is skew-adjoint and A is self-adjoint - and both are real-valued -, possible
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eigenvalues of A arise as quadruplets (τ, τ ,−τ,−τ). This means that any eigenvalue outside
the imaginary axis would imply instability. Furthermore, according to [17, Theorem 3.1],
the number of eigenvalues of A in the left-half plane controls, in some sense, the number
of unstable eigenvalues of A. Recalling that A has at least one negative eigenvalue, there
is room for (at least) one unstable eigenvalue of A.

These considerations are rather loose actually, because the spectrum of a differential
operator depends on the chosen functional framework. We may look at the differential op-
erator A as an unbounded operator on L2(R/ΞZ), in which case its spectrum is entirely
made of isolated eigenvalues. These concern what is usually called co-periodic spectral sta-
bility. We may widen the class of possible perturbations and consider A as an unbounded
operator on L2(R/nΞZ) with n any integer greater than one. Finally, we may consider
‘localized’ perturbations by looking at A as an unbounded operator on L2(R). As was
shown by Gardner [12], the spectrum of A on L2(R) is made of a collection of closed
curves of so-called ν-eigenvalues. For any ν ∈ R/2πZ, a ν-eigenvalue is an eigenvalue of
the operator Aν := A(∂x + iν/Ξ) on L2(R/ΞZ). These definitions are motivated by the
equivalence, which holds for all τ ∈ C,

(AU = τU , U(·+ Ξ) = eiνU) ⇔ (AνUν = τUν , Uν(·+ Ξ) = Uν) ,

where we have introduced the additional notation

Uν : x 7→ Uν(x) = e−iνx/Ξ U(x) .

All this is linked to the Floquet theory of ODEs with periodic coefficients, and we shall
refer to ν as a Floquet exponent. Furthermore, there is a tool encoding all kinds of spectral
stability, with respect to either square integrable, or multiply-periodic, or just co-periodic
perturbations. Indeed, under the assumption made earlier in (1.8)-(1.9)-(1.10) that

H = H (v, u, vx) with
∂2H

∂v2
x

= κ(v) > 0 and ∇2
uH = T (v) > 0 ,

the eigenvalue equation AU = τU is equivalent to a system of (N + 3) ODEs (because it
involves three derivatives of v). If F(·; τ) denotes its fundamental solution, the existence
of a nontrivial U such that

AU = τU , U(·+ Ξ) = eiνU ,

is equivalent to D(τ, ν) = 0, where

D(τ, ν) := det(F(Ξ; τ) − eiν) .

This D = D(τ, ν) has been called an Evans function. According to its definition, D(τ, 0) =
0 means that τ is an eigenvalue of A on L2(R/ΞZ). In other words, if D(·; 0) vanishes
somewhere outside the imaginary axis, the wave U is unstable with respect to co-periodic
perturbations. Similarly, if for any n ∈ N∗ there is a zero of D(·, 2π/n) outside the imag-
inary axis, the wave U is unstable with respect to perturbations of period nΞ. If for any
ν ∈ R/2πZ, D(·, ν) has a zero outside the imaginary axis, then this zero is an eigenvalue
of A on L∞(R), and also belongs to the spectrum of A on L2(R),

σ(A) =
⋃

ν∈R/2πZ

σ(Aν) ,

which means that the wave U is unstable with respect to both bounded and square
integrable perturbations.

Therefore, locating the zeroes of D(·, ν) when ν varies over R/2πZ provides valuable
information on the stability of the wave U. The ‘only’ problem with D is that it is not
known explicitly in general. If we are not to rely on numerical computations, we can only
determine some of its asymptotic behaviors. This is often sufficient to prove instability
results. A most elementary way concerns co-periodic instability. Indeed, since the operator
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A 0 is real-valued, the function D(·, 0) can be constructed so as to be real-valued too. In
this case, finding a zero of D(·, 0) on (0,+∞) may just be a matter of applying the mean
value theorem, once we know the behavior of D(τ, 0) for |τ | � 1 and for τ � 1, τ ∈ R.
Another possibility is to detect side-band instability, which occurs when a zero of D(·, ν)
bifurcates from 0 into the right half-plane for |ν| � 1.

Let us mention that alternative approaches to locate unstable eigenvalues have been
proposed that use, for instance, the Krein signature. See [15] for new insight on these
distinct tools that are the Evans function and the Krein signature, and for the definition of
an Evans-Krein function, which carries more information regarding the eigenvalue count
than the original Evans function. However, the approach in [15] does not apply here
because our operator J is not onto. This is a recurrent difficulty with KdV-like PDEs.

2.3. Modulational point of view

We consider an open set Ω of (µ,λ, c) and assume that we have a smooth mapping
(µ,λ, c) ∈ Ω 7→ (U,Ξ) such that (1.6)-(1.7) hold true with U(0) = U(Ξ), and vx(0) =
vx(Ξ) = 0. We are interested in mild modulations of the wave U = U(x − ct), in which
(µ,λ, c) will vary according to a slow time T = εt and on a small length X = εx, with
ε � 1. The so-called modulated equations will consist of conservation laws in the (X,T )
variables for

• the wave number, k = 1/Ξ,

• the mean value of the wave, M := k
∫ Ξ

0 U dx,

• the mean value of the impulse, P := k
∫ Ξ

0 Q(U) dx.

Before writing down these equations, let us see whether the mapping (µ,λ, c) 7→
(k,M, P ) has any chance to be a diffeomorphism. A ‘natural’ condition for this to oc-
cur turns out to depend on the Hessian of

Θ(µ,λ, c) :=

∫ Ξ

0
(H (U, vx) + cQ(U) + λ ·U + µ) dx , (2.1)

as a function of its (N + 2) variables. This is because Θ(µ,λ, c) coincides with the action
of the profile ODEs (1.6), when viewed as a Hamiltonian system associated with the
Hamiltonian LL . Indeed, by (1.7), we have

vx
∂H

∂vx
(U, vx) − H [U] − cQ(U)− λ ·U = µ ,

hence by change of variable

Θ(µ,λ, c) =

∮
∂H

∂vx
(U, vx) dv ,

where the symbol
∮

stands for the integral in the (v, vx)-plane along the orbit described
by v.

Proposition 1. Assume that H = H (U, vx) is smooth, and that we have a smooth
mapping

(µ,λ, c) ∈ Ω 7→ (U,Ξ) s.t. (1.6)-(1.7) hold true, and U(0) = U(Ξ), vx(0) = vx(Ξ) = 0 .

Then the function Θ defined in (2.1) is also smooth, and we have

∂Θ

∂µ
= Ξ ,

∂Θ

∂c
=

∫ Ξ

0
Q(U) dx , ∇λΘ =

∫ Ξ

0
U dx . (2.2)

9



S. Benzoni-Gavage, P. Noble, L.M. Rodrigues

Proof. This is a calculus exercise. Denoting for simplicity by m the function

m(U, vx; c,λ, µ) := L (U, vx; c,λ) + µ = H (U, vx) + cQ(U) + λ ·U + µ ,

if a is any of the parameters c, λα, µ, and if we denote by a subscript derivation with
respect to a, we have

Θa =

∫ Ξ

0
ma(U, vx; c,λ, µ) dx + Ξam(U(Ξ), vx(Ξ); c,λ, µ)

+

∫ Ξ

0

(
Ua · ∇Um(U, vx; c,λ, µ) + vx,a

∂H

∂vx
(U, vx)

))
dx.

The announced formulas rely on the observation that all but the first term in the right-
hand side here above equal zero. To show this, let us insist on the fact that, by (1.7),

m(U, vx; c,λ, µ) = vx
∂H

∂vx
(U, vx) .

Since vx(Ξ) = 0, we thus readily see that m(U(Ξ), vx(Ξ); c,λ, µ) = 0. In order to deal
with the last, integral term in Θa, we observe that vx,a = ∂xva, and make an integration
by parts, in which the boundary terms cancel out, again because vx(0) = vx(Ξ) = 0. This
yields∫ Ξ

0

(
Ua · ∇Um(U, vx; c,λ, µ) + vx,a

∂H

∂vx
(U, vx)

))
dx =

∫ Ξ

0
Ua · EL [U] dx ,

which is equal to zero because of (1.6). �

Corollary 1. Under the assumptions of Proposition 1, the mapping (µ,λ, c) ∈ Ω 7→
(k,M, P ) is a diffeomorphism if and only if it is one-to-one and

det
(
HessΘ(µ,λ, c)

)
6= 0 , ∀(µ,λ, c) ∈ Ω .

Proof. The mapping (µ,λ, c) ∈ Ω 7→ (k = 1/Ξ,M = k
∫ Ξ

0 Udx, P = k
∫ Ξ

0 Q(U)dx) is
clearly a diffeomorphism if and only if

(µ,λ, c) ∈ Ω 7→ (Ξ,
∫ Ξ

0 U dx,
∫ Ξ

0 Q(U) dx)

is so. By Proposition 1, we have that

(Ξ,
∫ Ξ

0 U1 dx , . . . ,
∫ Ξ

0 UN dx ,
∫ Ξ

0 Q(U) dx)T = ∇Θ(µ,λ, c) ,

and the Jacobian matrix of (µ,λ, c) 7→ ∇Θ(µ,λ, c) is by definition the Hessian of Θ. �

Let us assume that (µ,λ, c) ∈ Ω 7→ (k,M, P ) is indeed a diffeomorphism. Then periodic
wave profiles may be parametrized by (k,M, P ) instead of (µ,λ, c). In what follows, we

make the dependence on (k,M, P ) explicit by denoting such profiles by U(k,M,P ), which
in addition we rescale so that they all have the same period, say one. Then each of them
is associated with a travelling wave solution to (1.1) by setting

U(t, x) = U(k,M,P )(kx+ ω(k,M, P )t) ,

of speed c = c(k,M, P ), and time frequency ω = ω(k,M, P ) := −k c(k,M, P ).
We are interested in solutions to (1.1) taking the form of slowly modulated wave trains

U(t, x) = U(k,M,P )(εt,εx)
(

1
ε φ(εt, εx)

)
+ O(ε) ,

with φ = φ(T,X) such that φX = k and φT = ω. (Note that when (k,M, P ) is independent
of (T,X), we just recover exact, periodic travelling wave solutions.) Whitham’s averaged
equations consist of conservation laws for (k,M, P ) = (k,M, P )(T,X) obtained by formal
asymptotic expansions. In fact, the equation on k is just obtained by the Schwarz lemma
applied to the phase φ,

∂Tk + ∂X(ck) = 0 . (2.3)

10
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The equations on M and P are derived by plugging the more precise ansatz

U(t, x) = U0(εt, εx, φ(εt, εx)/ε) + εU1(εt, εx, φ(εt, εx)/ε, ε) + o(ε) ,

in (1.1) and (1.3) respectively, assuming that U0 and U1 are 1-periodic in their third
variable θ (the rescaled phase). The O(1) terms vanish provided that

U0(T,X, θ) = U(k,M,P )(T,X)(θ) .

With this choice, the O(ε) terms involving U1 cancel out when averaging, and we receive
the equations

∂TM = B∂X〈EHk[U
(k,M,P )]〉 , (2.4)

∂TP = ∂X〈U · EHk[U
(k,M,P )] + LHk[U

(k,M,P )]〉 . (2.5)

Here above, we have used the shortcut Hk := H (U, kUθ), and the Euler operator E and
Legendre transform L act as operators on functions of the rescaled variable θ. Of course
we may simplify and write 〈EHk[U]〉 = 〈∇UHk(U, kUθ)〉 in (2.4). However, this is not
as nice a simplification as the reformulation of the averaged equations given below.

Proposition 2. Under the assumptions of Proposition 1, the system of equations in (2.3)-
(2.4)-(2.5) equivalently reads, as far as smooth solutions are concerned,

∂T

(∂Θ

∂µ

)
+ c ∂X

(∂Θ

∂µ

)
−

(∂Θ

∂µ

)
∂Xc = 0 ,

∂T
(
∇λΘ

)
+ c ∂X

(
∇λΘ

)
+

(∂Θ

∂µ

)
B ∂Xλ = 0 ,

∂T

(∂Θ

∂c

)
+ c ∂X

(∂Θ

∂c

)
−

(∂Θ

∂µ

)
∂Xµ = 0 .

(2.6)

or in quasilinear form,

Σ ∂TW + (cΣ + ΘµS)∂XW = 0 (2.7)

with WT := (µ,λT, c), Σ := HessΘ, Θµ =
∂Θ

∂µ
(at constant λ, c),

S :=


0 0 · · · 0 −1
0 0
... B

...
0 0
−1 0 · · · 0 0

 .

Proof. Recalling that
∂Θ

∂µ
= Ξ = 1/k ,

and multiplying Eq. (2.3) by −Ξ2, we readily obtain the first equation in (2.6). The other
ones require a little more manipulations. Regarding (2.4), we use that

M = k∇λΘ ,

that by the profile equation (1.6) (after rescaling),

EHk[U
(k,M,P )] = −cB−1U(k,M,P ) − λ ,

hence

B 〈EHk[U
(k,M,P )]〉 = −cM − Bλ ,

and we eliminate the factor k by using again (2.3). We proceed in a similar manner for
(2.5), using that

P = k
(∂Θ

∂c

)
,

11
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and that by the profile equations in (1.6)-(1.7),

U · EHk[U
(k,M,P )] + LHk[U

(k,M,P )] = µ − cQ[U(k,M,P )] .

�

Remark 1. Would Σ = HessΘ be positive definite, (2.6) would automatically belong to
the class of symmetrizable hyperbolic systems, in view of its quasilinear form of (2.7).
However, as we shall see in Section 3 (Theorem 1), the definiteness of HessΘ is often in-
compatible with co-periodic stability. In other words, despite the nice, ‘symmetric’ form of
the modulated equations (2.6), their well-posedness is far from being automatic, especially
in case of co-periodic stability. The simultaneous occurrence of modulational stability and
co-periodic stability remains possible though. This is in contrast with the framework of
‘quasi-gradient systems’ considered in [18], for which it has been shown that co-periodic
and modulational stability are indeed incompatible.

3. Necessary conditions for stability

3.1. Co-periodic instability criteria

Theorem 1. Under the structural conditions in (1.8)-(1.9)-(1.10), and the assumptions
of Proposition 1,

• for N = 1, if det(HessΘ) > 0 then the wave is spectrally unstable with respect to
co-periodic perturbations;

• for N = 2, if det(HessΘ) < 0 then the wave is spectrally unstable with respect to
co-periodic perturbations.

The first point is a slight generalization - with variable κ(v) - of what was shown by
Bronski and Johnson [10]. The second point has been shown in [6] by means of an Evans
function computation.

In both cases, the detected instability corresponds to a real positive unstable eigenvalue.
Indeed, the sign criteria here above stem from a mod 2 count of such eigenvalues.

3.2. Modulational instability implies side-band instability

A necessary condition for spectral stability is modulational stability. This was shown by
Serre [19], and by Oh and Zumbrun [16] for viscous periodic waves. In our framework, we
have the following

Theorem 2. Assume that U is a periodic travelling wave profile, that the set of nearby
profiles is, up to translations, an (N + 2)-dimensional manifold parametrized by (µ, c,λ),
and that the generalized kernel of A in the space of Ξ-periodic functions is of dimension
N + 2. Then the system of modulated equations in (2.3)-(2.4)-(2.5), or equivalently (2.6),
is indeed an evolution system (in other words, HessΘ is nonsingular), and if it admits a
nonreal characteristic speed then for any small enough Floquet exponent ν, the operator
Aν admits a (small) unstable eigenvalue.

This is a concatenation of results shown in [5].
If Ξ = Θµ 6= 0 (which we have implicitly assumed up to now), the hyperbolicity of (2.7)

is equivalent, by change of frame and rescaling, to that of

Σ ∂TW + S ∂XW = 0 .

Assuming that Σ = HessΘ is nonsingular and noting that S is always nonsingular (because
we have assumed that B is so), we thus see that the local well-posedness of the averaged

12
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equations in (2.6) is equivalent to the fact that S−1Σ is diagonalizable on R. Theorem 2
here above shows that spectral stability implies at least that the eigenvalues of S−1Σ are
real.

Case N = 1. (KdV). We have S−1 = S ∈ R3×3, and

S−1Σ =

 −Θcµ −Θcλ −Θcc

Θλµ Θλλ Θλc

−Θµµ −Θµλ −Θµc

 .

Then a necessary criterion for spectral stability is that the discriminant of the charac-
teristic polynomial of this matrix be nonnegative. This criterion depends only on the
second-order derivatives of the action Θ.

For the case N = 2 (EK), a 4 × 4 matrix is be to analyzed, and a similar necessary
criterion can be explicitly obtained in terms of second-order derivatives of the action Θ.

Small-amplitude limit. A necessary condition for modulational stability of small-
amplitude waves is two-fold and requires: 1) the hyperbolicity of the reduced system
obtained in the zero-dispersion limit; 2) the so-called Benjamin–Feir–Lighthill criterion.
We refer to [5] for more details. Observe in particular that the first condition is trivial in
the case N = 1 (because all scalar, first order conservation laws are hyperbolic), and has
hardly ever been noticed. In the case N = 2, and in particular for the Euler–Korteweg
system, it requires that the Euler system be hyperbolic at the mean value of the wave.
This is a nontrivial condition, which rules out some of the periodic waves in the Euler–
Korteweg system when it is endowed with, for instance, the van der Waals pressure law.
As to the Benjamin–Feir–Lighthill criterion, it is famous for characterizing the unstable
Stokes waves.

4. Sufficient conditions for stability

4.1. Grillakis–Shatah–Strauss criteria

We assume as before that H = H (v, u, vx), and use the short notation Hs forHs(R/ΞZ)×
(L2(R/ΞZ))N−1. Observe in particular that the functional

F (c,λ,µ) : U 7→
∫ Ξ

0
(H (U,Ux) + cQ(U) + λ ·U + µ) dx

is well-defined on H1. What we call a Grillakis–Shatah–Strauss (GSS) criterion is a set

of inequalities regarding the second derivatives of Θ ensuring that the functional F (c,λ,µ)

admits a local minimum at U (and any one of its translates) on H1 ∩ C with

C = {U ∈ H0 ;
∫ Ξ

0 Q(U) dx =
∫ Ξ

0 Q(U) dx ,
∫ Ξ

0 U dx =
∫ Ξ

0 U dx} .
By a Taylor expansion argument, seeking a GSS criterion amounts to finding conditions

under which the operator A = Hess(H + cQ)[U] is nonnegative on H2 ∩ TUC with

TUC := {U ∈ H0 ;
∫ Ξ

0 U · ∇UQ(U) dx = 0 ,
∫ Ξ

0 U dx = 0} .
Even though it might not be clear at once that such criteria exist, they do. As we have
recalled above (in §2.1), for solitary waves a now well-known GSS criterion [13] is Mcc > 0,
where M is to solitary waves what our Θ is to periodic waves. Behind this criterion is a
rather general result, pointed out at various places and shown in most generality by Pogan,
Scheel, and Zumbrun [18], which makes the connection between the negative signatures
of the unconstrained version of the Hessian of the functional we are trying to minimize,
of its constrained version, and of the Jacobian matrix of the values of the constraints in
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terms of the Lagrange multipliers. More explicitly, in our framework with our notations,
and under some ‘generic’ assumptions, the negative signature n(A ) of the operator A is
found to be equal to the negative signature n(A|TUC ) of its restriction to TUC plus the

negative signature n(−C) of −C, where C is the Jacobian matrix of the values of the

constraints,
∫ Ξ

0 U,
∫ Ξ

0 Q(U), in terms of the Lagrange multipliers (λ, c) when the period
Ξ is fixed. The counterpart of this matrix C for solitary waves is just the scalar Mcc,
in which case we readily see that Mcc > 0 is equivalent to n(−C) = 1. We now give a
version of the Pogan–Scheel–Zumbrun theorem adapted to our framework and notations
for periodic waves.

Theorem 3. Under the hypotheses of Proposition 1, we assume moreover that Ξµ 6= 0,
and that

C := ∇̌2Θ − ∇̌Ξ⊗ ∇̌Ξ

Ξµ

takes nonsingular values, with Θ defined as in (2.1) by

Θ(µ,λ, c) :=

∫ Ξ

0
(H (U,Ux) + cQ(U) + λ ·U + µ) dx ,

and ∇̌ being a shortcut for the gradient with respect to (λ, c) at fixed µ. Then, denoting
A := Hess(H + cQ)[U], we have

n(A ) = n(A|TUC ) + n(−C) .

Proof. By assumption, the period Ξ of a given profile U is a smooth function of the N + 2
parameters (µ,λ, c). The fact that Ξµ 6= 0 implies by the implicit function theorem that
µ can be viewed as a smooth function µ = µ(Ξ,λ, c), and that

∂µ

∂λα
= − Ξλα

Ξµ
,
∂µ

∂c
= − Ξc

Ξµ
. (4.1)

Since we are interested in the signature of A on H0 = (L2(R/ΞZ))N , we shall mostly
concentrate on travelling profiles of fixed period Ξ, which are solution to (1.6)-(1.7) with
µ = µ(Ξ,λ, c). For such profiles, let us denote by q the constraints mapping

q : (λ, c) 7→ (
∫ Ξ

0 U dx,
∫ Ξ

0 Q(U) dx) ,

and qα its components, α ∈ {1, . . . , N + 1},

qα(λ, c) :=

∫ Ξ

0
Uα dx , α ∈ {1, . . . , N} , qN+1(λ, c) :=

∫ Ξ

0
Q(U) dx .

From Eqs (2.2) in Proposition 1 and Eqs in (4.1), we infer that for α , β ≤ N ,

∂qβ
∂λα

= Θλαλβ −
ΞλαΞλβ

Ξµ
,
∂qβ
∂c

= Θcλβ −
ΞcΞλβ

Ξµ
,

∂qN+1

∂λα
= Θλαc −

ΞλαΞc
Ξµ

,
∂qN+1

∂c
= Θcc −

ΞcΞc
Ξµ

.

In other words, the Jacobian matrix of q is indeed

C = ∇̌2Θ − ∇̌Ξ⊗ ∇̌Ξ

Ξµ
= ∇̌2Θ − ∇̌Θµ ⊗ ∇̌Θµ

Θµµ
.

Now, by differentiating (1.6) with respect to µ, λ or c, we see that

A
(
Uλα −

Ξλα
Ξµ

Uµ

)
= − eα , A

(
Uc − Ξc

Ξµ
Uµ

)
= −∇UQ(U) , (4.2)

14



STABILITY OF PERIODIC WAVES IN HAMILTONIAN PDES

where eα denotes the α-th vector of the ‘canonical’ basis of RN , hence the alternative
expression for α , β ≤ N ,

Cα,β = −
〈(

Uλβ
−

Ξλβ
Ξµ

Uµ

)
·A

(
Uλα −

Ξλα
Ξµ

Uµ

)〉
Cα,N+1 = −

〈(
Uc − Ξc

Ξµ
Uµ

)
·A

(
Uλα −

Ξλα
Ξµ

Uµ

)〉
CN+1,β = −

〈(
Uλβ

−
Ξλβ
Ξµ

Uµ

)
·A

(
Uc − Ξc

Ξµ
Uµ

)〉
CN+1,N+1 = −

〈(
Uc − Ξc

Ξµ
Uµ

)
·A

(
Uc − Ξc

Ξµ
Uµ

)〉
(4.3)

where 〈 · 〉 denotes the inner product in L2(R/ΞZ;RN ). This implies, if C is nonsingular,
that

H0 = Span(Uλ1 −
Ξλ1
Ξµ

Uµ, . . . ,UλN
− ΞλN

Ξµ
Uµ,Uc − Ξc

Ξµ
Uµ) ⊕ TUC ,

TUC = {U ∈ H0 ; 〈U · ∇UQ(U)〉 = 0 , 〈U〉 = 0} .
As a matter of fact, Equations in (4.2)-(4.3) imply that for any V ∈ H0, there is one and
only one (a1, . . . , aN+1,U) ∈ RN+1 × TUC such that

V = a1

(
Uλ1 −

Ξλ1
Ξµ

Uµ

)
+ · · · + aN

(
UλN

− ΞλN
Ξµ

Uµ

)
+ aN+1

(
Uc − Ξc

Ξµ
Uµ

)
+ U ,

which can be computed by solving the (N + 1)× (N + 1) system
∫ Ξ

0 V1 dx
...∫ Ξ

0 VN dx∫ Ξ
0 V · ∇UQ(U) dx

 = C


a1
...
aN
aN+1

 .

In order to conclude, let us denote by Π0 the orthogonal projection onto the space

Span(Uλ1 −
Ξλ1
Ξµ

Uµ, . . . ,UλN
− ΞλN

Ξµ
Uµ,Uc − Ξc

Ξµ
Uµ) ,

and by Π1 the orthogonal projection onto TUC . We readily see that for all U ∈ TUC and

V0 ∈ Span(Uλ1 −
Ξλ1
Ξµ

Uµ, . . . ,UλN
− ΞλN

Ξµ
Uµ,Uc − Ξc

Ξµ
Uµ),

〈U ·A V0〉 = 0 ,

hence
Π1A Π0 = 0 , Π0A Π1 = 0 .

Therefore, for all V ∈ D(A ) = H2,

〈V ·A V〉 = 〈V ·Π0A Π0V〉 + 〈V ·Π1A Π1V〉 .
From this relation we see that the negative signature of A is the sum of those of Π0A Π0

and Π1A Π1. The latter is the negative signature of A|TUC , by definition of the projection
Π1, while the former coincides with the negative signature of −C by definition of the
projection Π0 and by the expression of C in (4.3). �

Note that C is a codimension (N+1) manifold of H0. As a matter of fact, the constraints
defining C are ‘full rank’, in the sense that for all (m, q) ∈ RN+1, there exists U ∈ H0

such that ∫ Ξ

0
U dx = m ,

∫ Ξ

0
U · ∇UQ(U) dx = q .

Recalling that ∇UQ(U) = B−1U, we may take for instance U = m
Ξ + aB−1Uxx with

a =
m ·B−1M− q∫ Ξ
0 ‖B−1Ux‖2 dx

.
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Corollary 2. If the negative signatures of the operator A and of the matrix C defined in
Theorem 3 are equal, then the periodic travelling wave (x, t) 7→ U(x−ct) is (conditionally)
orbitally stable to co-periodic perturbations.

Proof. From Theorem 3 we infer that the negative signature of A|TUC is zero. In other

words, the functional F (c,λ,µ) does have a local minimum at U on H1 ∩ C . (This follows
from a Taylor expansion and the density of D(A ) in H1.) The fact that it is not a strict
minimum can be coped with by ‘factoring out’ the translation-invariance problem in the
usual way. Namely, by the implicit function theorem, there exists a tubular neighborhood
N in L2(R/ΞZ) of U and all its translates U(· + ξ) for ξ ∈ R, and a smooth mapping
s : N → R such that for all U ∈ N , U(· − s(U)) − U is orthogonal to Ux. As a
consequence, up to diminishing N , we can find an α > 0 so that for all U ∈ N ∩H1 ∩C ,

F (c,λ,µ)[U]−F (c,λ,µ)[U] =

∫ Ξ

0
(H (U,Ux)−H (U,Ux)) dx ≥ α ‖U−U(·+ s(U))‖2H1 .

This enables us to show the following, conditional stability result. If H ⊂ H1 is such that
the Cauchy problem associated with (1.1) is locally well-posed in H, if we denote by T (U0)
the maximal time of existence of the solution U of (1.1) in H with initial data U0 ∈ H,

∀ε > 0, ∃δ > 0 ; ∀U0 ∈ H ; ‖U0 − U‖H1 ≤ δ ⇒ ∀t ∈ [0, T (U0)) ,

inf
s∈R
‖U(t, ·) − U(·+ s)‖H1 ≤ ε .

The proof works by contradiction, as in [13, 8], even though an alternative, direct proof as
in [14] is also possible. Assume there exist ε > 0, and a sequence of initial data U0,n ∈ H
such that infs∈R ‖U0,n − U(·+ s)‖H1 goes to zero while

sup
t∈[0,T (U0))

inf
s∈R
‖Un(t, ·) − U(·+ s)‖H1 > ε .

Without loss of generality, we can assume that the tubular neighborhood of U of radius
2ε is contained in N . We choose tn to be the least value such that

inf
s∈R
‖Un(tn, ·) − U(·+ s)‖H1 = ε .

By invariance of
∫ Ξ

0 H [U] dx,
∫ Ξ

0 Q[U] dx, and
∫ Ξ

0 U dx, with respect to time evolution
and spatial translations, we have∫ Ξ

0
H [Un(tn)] dx =

∫ Ξ

0
H [U0,n] dx →

∫ Ξ

0
H [U] dx ,∫ Ξ

0
Q(Un(tn)) dx =

∫ Ξ

0
Q(U0,n) dx →

∫ Ξ

0
Q(U) dx ,∫ Ξ

0
Un(tn) dx =

∫ Ξ

0
U0,n dx →

∫ Ξ

0
U dx .

This implies, by using the full-rank property mentioned above and the submersion theorem
that we can pick for all n some Vn ∈ N ∩ H1 ∩ C such that ‖Vn −Un(tn)‖H1 goes to
zero, as well as ∫ Ξ

0
(H [Vn]−H [U]) dx → 0 .

Therefore,

‖Vn(·)−U(·+ s(Vn))‖2H1 ≤
1

α

∫ Ξ

0
(H [Vn]−H [U]) dx → 0 ,

hence
‖Un(tn, ·)−U(·+ s(Vn))‖ → 0
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by the triangular inequality. This is a contradiction of the definition of tn. �

Remark 2. For (KdV), a case in which N = 1, it has been shown by Johnson [14] that
a periodic wave is orbitally stable to co-periodic perturbations under the two conditions

Θµµ > 0 , det(HessΘ) < 0 . (4.4)

It is not difficult to see that these assumptions imply that the constraints matrix C has
signature (−,+). Indeed, for N = 1 we have

C =
1

Θµµ

(
ΘµµΘλλ −ΘµλΘλµ ΘµµΘcλ −ΘµcΘλµ

ΘµµΘλc −ΘµλΘcµ ΘµµΘcc −ΘµcΘcµ

)
,

and a bit of algebra shows that

Θµµ det C = det(HessΘ) ,

so that if (4.4) hold true, det(−C) = det C < 0 thus n(−C) = 1. The result then follows
from [14, Lemma 4.2], which proves that Θµµ > 0 implies n(A ) = 1.

Appendix

Table of examples.

N U J H Q

(KdV) 1 v ∂x
1
2v

2
x + f(v) 1

2 v
2

(EKL) 2

(
v
w

) (
0 ∂y
∂y 0

)
1
2u

2 + �e(v, vy) vw

(EKE) 2

(
ρ
u

)
−
(

0 ∂x
∂x 0

)
1
2ρu

2 + E (ρ, ρx) −ρu

(B) 2

(
χ
χt

) (
0 1
−1 0

)
1
2χ

2
t + W (χx) ± 1

2χ
2
xx χtχx

(NLW) 2

(
χ
χt

) (
0 1
−1 0

)
1
2χ

2
t + 1

2χ
2
x + V (χ) χtχx

(NLS) 2

(
Reψ
Imψ

) (
0 1
−1 0

)
1
2 |ψx|

2 + F (|ψ|2) −Im(ψ ψx)

Sturm–Liouville argument. Assume that

H = H (v, u, vx) = E (v, vx) + T (v, u) ,
∂2E

∂v2
x

=: κ(v) > 0 , ∇2
uT =: T (v) > 0 ,

Q = Q(U) = 1
2 U ·B−1U , UT = (v, uT) , B−1 =

(
a bT

b 0N−1

)
,

17
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with κ(v) > 0 and T (v) symmetric definite positive for all v, and b 6= 0. The profile
equations E(H + cQ)[U] + λ = 0 equivalently read{

EE [v] + ∂vT (v, u) + c (a v + b · u) + λ1 = 0 ,

∇uT (v, u) + c v b + λ̌ = 0 ,

and their integrated version

L(H + cQ + λ ·U)[U] = µ

reads L`[v] = µ, where ` = `(v, vx; c,λ) is defined by

` = E (v, vx) + T (v, f(v; c, λ̌)) + c (1
2av

2 + v b · f(v; c, λ̌)) + λ1 v + λ̌ · f(v; c, λ̌) ,

f(v; c, λ̌) := −T (v)−1 (∇uT (v, 0) + c v b+ λ̌) .

Defining

A := Hess(H + cQ)(U) =

(
HessE [v] + ∂2

vT (v, u) + ca (∂v∇uT (v, u) + cb)T

∂v∇uT (v, u) + cb T (v)

)
,

we see by differentiating with respect to x in the profile equations that A Ux = 0, or
equivalently{

HessE [v]vx + vx∂
2
vT (v, u) + ux · ∂v∇uT (v, u) + c (avx + b · ux) = 0 ,

vx∂v∇uT (v, u) + T (v)ux + c vx b = 0 .

This can be shown to imply that a vx = 0 with a := Hess`[v]. A simpler alternative to show
that a vx = 0 consists in differentiating with respect to x in the Euler–Lagrange equation
E`[v] = 0. If in addition E depends quadratically on vx, then a is of the form −∂xκ(v)∂x +
q(x), where q(x) depends on the profile v - which depends itself on (c,λ, µ) - and on the
parameters c,λ. Hence a is a Sturm–Liouville operator with Ξ-periodic coefficients. The
fact that a vx = 0 and v is Ξ-periodic (and not constant) implies that a has at least one,
and at most two negative eigenvalues (see for instance [20, Theorem 5.37]).
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