INVARIANT MEASURES FOR A STOCHASTIC FOKKER-PLANCK
EQUATION

SYLVAIN DE MOOR, L. MIGUEL RODRIGUES, AND JULIEN VOVELLE

ABSTRACT. We study the kinetic Fokker-Planck equation perturbed by a stochastic Vlasov
force term. When the noise intensity is not too large, we solve the Cauchy Problem in a
class of well-localized (in velocity) functions. We also show that, when the noise intensity is
sufficiently small, the system with prescribed mass admits a unique invariant measure which
is exponentially mixing. The proof uses hypocoercive decay estimates and hypoelliptic gains
of regularity. At last we also exhibit an explicit example showing that some restriction on
the noise intensity is indeed required.

CONTENTS
1. Introduction 1
2. Existence and uniqueness of solutions 4
2.1. Preliminaries 4
2.2. The Galerkin scheme 7
2.3. Proof of Theorem 2.1 8
3. Regularization and decay 9
3.1. Termwise estimates 10
3.2. Hypocoercive estimates 13
3.3. Hypoelliptic estimates 15
4. Invariant measure 15
References 19

1. INTRODUCTION

In this paper, we are interested in studying the invariant measures of the following stochastic
Fokker-Planck equation

(1.1) Af + v-Vof dt + AV, fodW, = O(f) dt.

The unknown f depends on the variables t € [0,00), 2 € TV and v € RY. The operator Q is
the Fokker-Planck operator whose expression is given by

Q(f) = Auf + divy(vf).
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The noise term in (1.1) is white in time, coloured in space: we let T" be a self-adjoint and non-
negative operator on L?(TY;RY) with Tr(T') < co. Let (G;)jen be a complete orthonormal
system in L(TN;RY) of eigenvectors of I' with associated non-negative eigenvalues (v;);jen:

LGy =7,Gj, jelN.

The random perturbation dW; is a T-Wiener process on L%(T™;RY) (see for instance [1,
Section 4.1] for the complete definition). It can be written as

AW, (@ ZF G;(x) dB;(t) Z ) dB;(t)

where (f;)jen is a family of real independent Brownian motions. In what follows, we set
F; = F%G] and write the noise under the form

AW (2 Z Fj(x) dB;(t)

The notation ® in (1.1) emphasizes the scalar product in RV and the fact that we consider
the stochastic term in the Stratonovich sense. The parameter A > 0 represents the size of the
random perturbation. We assume the following additional regularity in space of the noise:

(1.2) DOIE R + IV Fyl% < 1.
J
Since we fix the intensity of the noise as defined by the sum in (1.2) to the value 1, it is the

parameter A that will measure the strength of the noise term in (1.1) (see Remark 2.3 for an
insight of the role of A in our work).

From a physical point of view, this kind of equation can describe the evolution of the dis-
tribution function f(¢,z,v) of a cloud of particles which, at a time ¢, are at position x and
have velocity v. The transport term v -V, f corresponds to the free flow of particles while the
Fokker-Planck operator @ models interactions between particles and the surrounding medium.
The noisy term AV, f ©dW, describes the effect of a random force AW; acting on the particles.

The operator Q is self-adjoint in the weighted space L?(RY, M~1dv), M being the Maxwellian
distribution on RY, which is defined by

M) = (2m) N2~ 10F2 4 e RV,
We will study Equation (1.1) in the state space L2(RY, M~!dv). Equivalently, considering the
new unknown g = M2 f instead of f, we will try to solve the following problem in L2(R¥, dv):
13) { dg+v-VIgdt+/\(Vv—g)g ©dW, = Lg dt
9(0) = gin

N |v]?
Lg = A, X
g 9+(2 4>g

being a self-adjoint operator' on L?(RY).

with

IThis operator is essentially the well-known Hamiltonian of quantum harmonic oscillators, and operators
D* and D below are associated creation and annihilation operators. However, since we have derived it from
Q, hereafter we shall abuse terminology and call L itself a Fokker-Planck operator.
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The aim of this paper is twofold. First of all, we want to study existence, uniqueness and qua-
litative properties of solutions to problem (1.3). Then, we investigate existence and uniqueness
of an invariant measure for this problem. We hope that the present contribution will participate
to a growing effort to trigger a lasting interest on qualitative behaviour of solutions to kinetic
equations under perturbations by random forces. With this respect, the present paper is the
first of a planned series of papers on the long-time behaviour of Vlasov-Poisson-Fokker-Planck
equations with stochastic force term. We wish to study the existence of invariant measure
in the case of repulsive (Coulomb) forces for such equations. We also would like to show
the uniqueness, ergodicity and the potential mixing properties of the invariant measure of
the Vlasov-Poisson-Fokker-Planck equations with stochastic force term in the case where the
Poisson kernel is regularized and small, and the noise is also small enough. The deterministic
framework behind this second type of problem is the one of Section 17 in [5]: weakly self-
consistent Vlasov-Fokker-Planck equations. With regard to this last problematic, the present
paper deals with the linear case: except for the noise term, there is no (weakly self-consistent)
Vlasov force term. We prove that, indeed, for a noise intensity small enough, there is a unique,
ergodic invariant measure that is exponentially mixing: see Theorem 4.1.

We obtain the existence of the solutions to Equation (1.3) through a standard Galerkin scheme.
Precisely, we project Equation (1.3) on some finite dimensional space. Doing so, we construct
a sequence (g, )m of approximate solutions to our problem. Then, one has to derive energy
estimates on the sequence (g, )n, in order to pass to the limit in the approximate problem. Note
that, to ensure existence, we need that the coefficient X in front of the noise is small enough so
that the random perturbation does not affect too much the dissipation of the operator L (see
Remark 2.3 on that subject).

In the sequel, we also derive both hypocoercive and hypoelliptic estimates on solutions. Some
possibly growing-in-time uniform energy estimates are sufficient to prove existence and unique-
ness of solutions to (1.3). The refined hypocoercive and hypoelliptic estimates will be our main
tool to prove existence and uniqueness of an invariant measure for problem (1.3). Therefore
let us say a few words about the theory of hypocoercivity as introduced by Villani [5] in a
simple context. It is particularly well-suited to providing rates of convergence to equilibrium
of solutions to kinetic collisional models. For instance, consider the following class of kinetic
models

(1.4) of+v-Vaof =QFf,
where @ is a linear collisional operator which acts on the velocity variable only, and choose
some weighted-L? space H,, such that @ is symmetric on L2 ® H,. Also suppose that, denoting
by I, the orthogonal projection on ker(Q), the following (local-in-space) weak coercivity
assumption holds

(Qh,h) < —c|lh — Thoch]?
for some ¢ > 0. This implies that ) has a spectral gap when considered as acting on H,,
that is on functions homogeneous in space. The class of operators we have just introduced
includes, among others, the cases of linearized Boltzmann, classical relaxation, Landau and
Fokker-Planck equations. Note that while the global steady states of these models do belong
to ker(Q), the foregoing kernel is not reduced to Maxwellians so that the above weak coercivity
fails to yield convergence to equilibrium. Introducing the global projection II on ker(—v-V,+Q)
defined by

Ih = Moch(z, - )d.
’]I‘N
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we first remark that, if f is a solution to Equation (1.4), IIf(¢) = IIf(0) is independent of
time. Then the piece of information that stems from hypocoercivity theory is the exponential
damping of the solution f to equilibrium IIf(0):

[£(t) = TLf(0)|ln < Ke™™, t >0,

in some Sobolev space H built on L2 ® H,. The key-point is that (local-in-velocity) weak
coercivity estimates afforded by commutators of —v - V, and @) may be incorporated in an
energy estimate so as to ensure a full control of || f(t) — ILf(t)|l3. We refer the reader to the
memoir of Villani [5] and references therein and also to the paper of Mouhot and Neumann
[3] where the hypocoercivity is used to study the convergence to equilibrium for many kinetic
models including Fokker-Planck equations. Our approach to hypoellipticity is global and mimic
hypocoercive estimates as in [5].

In the case of the deterministic Fokker-Planck equation (1.3) where A = 0, the kernel of
—v -V, + L is spanned by the function Mz and

Mg = poo(9)M?,

where pao(g) :== [[ g(t)M2 dzdv = [[ g(0)M? dzdv (this quantity being time independent).
And one can prove (see [3, Section 5.3]) an exponential damping for the quantity g(t) —
Poo(9)M? in a weighted H(TV x RY) norm.

In the present paper, we prove hypocoercive estimates on the Fokker-Planck model (1.3) which
has been perturbed by a random force. To handle the stochastic term we need to incorporate
accommodation of corrections from Ité formula in the roadmap of the proof of Mouhot and
Neumann [3]. By doing so we achieve the following hypocoercitive estimate:

(15) Elg(t)l32 , < CeElgnlls  + KElpx(@). >0,

where L% ,, is a suitable weighted version of H!(TY x R") Sobolev space (see below (2.5) for
the precise definition). In particular, any two solutions of the problem (1.3) g; and go with
respective initial conditions gi, 1 and gin2 such that peo(gin,1) = Poo(gin,1) meet exponentially
fast. A priori the latter is only guaranteed when g, belongs to L2v, p- However following the
same lines we also prove a hypoelliptic regularizing effect showing that the flow instantaneously
send L2 , to L p.

Concerning the proof of existence, uniqueness and mixing of the invariant measure for prob-
lem (1.3), we make the most of both hypoellipticity and hypocoercivity. Indeed existence
follows from compactness of time-averages that stems from compact embedding of Lg 5, in
L, instantaneous regularization and uniform-in-time bounds in L2v7 p» while mixing follows
from exponential convergence of stochastic trajectories.

2. EXISTENCE AND UNIQUENESS OF SOLUTIONS

2.1. Preliminaries. Let (Q, F, (Fi)t>0,P) be a probability space equipped with a filtration
(Ft)1>0 which is supposed to be right continuous and such that Fj contains all the P-null sets
of F. We study the following stochastic equation in TV x RV

1) { dg+vongdt+)\(Vv
g(O) = YGin-

v

2)9 ©dW, = Lg dt,
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Note that, writing the Stratonovich correction explicitly, the first equation then reads in It6
form

dg+v-Vag dt+/\(V@—g)g-th—Lg dt
(2:2) A2 v v
=525 (Ve=g) (B (Ve g)g)ar
J
Functional Spaces. In the following, we denote by (-,-) and || - || respectively the scalar

product and the norm of L2 , := L?(TY x RY). For any Hilbert space H and any T > 0, we
denote by C\,([0,T], H) the space of functions on [0, 7] with values in H that are continuous
for the weak topology of H. Let us introduce the differential operators

D:VU—F%, D*:—VU—F;,

where D* is the formal adjoint of D component-wise, i.e. Dj = (Dg)*, k = 1,...,N. Note
that, for f sufficiently smooth and localized,

N
(23) IDAIE = I9ufIP+ 3 s = SI12
and
1 N
(24) ID* AP = I9ufIP + 5 lefI? + 171

We introduce the space

Lh ={f € L*(RY);Df € L*R™)} = {f € L*(R"); D" f € L*(RY)}
and then define the spaces
(2.5) Ly p=L*(TY;L}), Ly p={f€Lip;Vaf €L},
equipped respectively with norms

2 _ * 2 2 _ * 2 2
1712, = 10" 1% 11, = 10" FI + IV

Fokker-Planck Operator. For the sake of writing convenience, we define the transport
operator A = v -V, which is skew-adjoint, that is which satisfies A* = —A. Concerning the
Fokker-Planck operator L, we gather hereafter some of its properties. First, we recall the

expression
N 2
Lf = Aof + (—'”' >f.

Alternatively L is also given by
Lf = =) DiDif = Nf—=) DyDif,
k k

which hereafter we denote L = —D*D = NId — DD* for short. Note in particular that this
implies the following dissipative bound

(26) —(f;Lf) = DI
The formal adjoint of Q on L?(RY) is
Q" : f= Ayf—v-V,f.
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The operator Q* is self-adjoint on L2(RY,~), where v is the Gaussian measure with density
M with respect to the Lebesgue measure on RY. The Hermite Polynomials

(-

where
form a Hilbertian basis of L2(RY ) of eigenvectors of Q*:

Q"Hj = —|j|H;.
The operator L is related to the operator Q* by the formula Lf = MQ*(M~1f). It follows
that, setting q; = MH;, we obtain a Hilbertian basis of L?(RY) constituted of eigenvectors
of L associated with eigenvalues —|j|. There is a compact expression of ¢;: using the formula
DI(Mf) = (=1)VIM [D*})’ f (which can be proved by recursion on |j|), and the definition (2.7)
of the Hermite Polynomial, we obtain

(2.8) g = —= D M
TVt
The formula (2.8) gives in particular
(2.9) Dyg; = ckjGiters  Drgs = dijlj>0q5—eps

for some given coeflicients cy, j, di ;. The formula for Dyg; is obtained by computing the {-th
coefficient (Drq;,q1) = (g5, Djqr).

Eigenspaces. Let (p;);czv denote the standard trigonometric Hilbertian basis of L?(T™) —
in particular it is formed by normalized eigenfunctions for the Laplacian —A, — and recall
that (g;)jen~ is the spectral Hilbertian basis for the Fokker-Planck operator L in L?(R")
introduced above. We define the Hilbertian basis (ex,1)(x,ez~ xnv of L3, by

ek 1(x,v) == pr Q@ q(z,v) = pp(z)q(v), (k1) € ZN x NN zeTV, veRVN.
For any (ko,lp) € (NU {o0})?, we set
Eiy 1 = ClosureLgu(Span { ekt ;lk| < koand |I| <l })

and introduce Iy, , the L2 , orthogonal projection on Ej,;,. When ko = ly, we simplify

notation to Ej, and Ij,. In particular IT = Tlp and Id = Iy . By (2.9), we have the
commutation rules

(2.10) I,,D* = DI, m_1, DI, =1y 1D

for all m > 1 (these identities will be used to derive the hypocoercive estimates on the ap-
proximate Galerkin solution to (2.1)).

Let us also introduce the orthogonal projector Il = Il o on L2 ® Span{qo}:
Moc(f)(,0) = (M2, f(x, )z vy M (v), Tige =1 — Hige.

Then, we have

(2.11) —(f,Lf) > |Wige fI.

Using (2.6), we then deduce from (2.11) that

(2.12) £ < IMoc 1 + 1D £
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Finally, in the sequel, we denote by {T,7"} := TT' — T'T the commutator of two operators T
and T”. We point out that one readily shows the following algebraic identities

{D,A} =V,, {D,D*} = NId,

and stress that the former identity is the cornerstone of both our hypocoercive and hypoelliptic
estimates.

We are now ready to state our main result concerning existence and uniqueness of solutions to
problem (2.1). The question of qualitative properties of solutions and existence and uniqueness
of invariant measures will be studied later.

Theorem 2.1. Suppose that hypothesis (1.2) holds and let g, € L*(Q; L2 ). For any A <1,
there exists a unique adapted process {g(t), t > 0} on L*($; Li,v) which satisfies:
(i) for all T >0, g € Cou([0,T); L*(Q; L2 ) and Dg € L*(Q x (0,T); L2 ,);
(i5i) for allm € N, for all ¢ in Ep, and allt >0,

(@ 0) = (G o) + / (9(5), 0+ Vag)ds + A3 / (9(5). F; - Dg) dB;(s)
(2.13) . 0 \2 . 5>070
+/0<9(5)aL90>d3+2j§/0 <g(3),(Fj'D>2(P>dS, a.s.

Moreover for this solution the quantity pso(g) := [ g/\/l% 18 a.s. constant in time.

Note that every ¢ € E,, is smooth in x,v and exponentially decreasing at infinity in v. In
particular, all terms in (2.13) makes sense.

To prove the existence part of Theorem 2.1, we use a Galerkin projection method, that is first
we project Equation (2.1) onto the finite dimensional space spanned by some finite subset of
vectors from a Hilbertian basis of L2 ,, and look for a solution valued in this finite-dimensional
subspace, then we pass to the limit when this finite subset increases up to the whole Hilbertian
basis.

2.2. The Galerkin scheme. Looking for an approximate solution g, : [0,7] X Q = E,, to
(2.1) we prove the following result.

Proposition 2.2. Suppose that hypothesis (1.2) holds and let g, € L*(; L2 ). For allm >0
and any T > 0, there exists a unique adapted process g,, € C(0,T; L*(Q; Ey)) satisfying, for
allt € 10,7, for all ¢ € Ey,

0n0:) =l )+ [ 060 Vaphds AT [ o). 5 Do) (o)
(2.14) 720

+/Ot<g(s),L<p>ds+>‘22Z/0t <g(3),(Fj.D)2<p>ds, a.s.

>0

Moreover, if A < 1, then

1 r 1
(215) 3 max Vg + 1= [ P EDg O d < 5Elgl.
2 te[0,T] 0 2
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Proof. For g,, € C(0,T;L*(Q; E,,)), Equations (2.14) are equivalently written — in terms of
the coefficients di; = (gm,ex1), |k] < m and |l|] < m, of g, — as a finite-dimensional It6
system with globally Lipschitz coefficients. It follows then from standard arguments that there
exists a unique adapted and continuous process g, € C(0,T;L*(Q; E,,)) satisfying (2.14).
Assume now A < 1. To derive the uniform bound we multiply (2.14) by di; and sum over k
and [ to obtain

1d 1 N " N
5 < Ellgm 2+ Bl Dgnl[* = X2 SE S ((F; - D" gms gm) + (Fy - D7)gs (Fy - D )gin)
J
§ D + D*
= NEYU(E - D), (B 25 )gm)
J
(2.16) < NE|D gul? < NE|Dgnl® + NAE|gn?,

from which the bound follows since (2.14) implies g, (0) = IL,, gin hence E||g,, (0)||* < E||gin (0)]|%.
Here above we have used both | Df|| < |[D*f| and ||D* f||> = |Df||*> + N| f||*. O

Obviously, alternatively we may view g,, as belonging to C(0,T; L%(£; Liv)) and satisfying
(2.17) dgpm + I (v - Vaogm)dt — ML, (D* gy © dW:) = Lgy,dt,

with initial condition
9m (O) = ngin-
This does imply that for any ¢, a.s. I1,,g:,(t) = gm(t) hence g,,,(t) € E,,.

2.3. Proof of Theorem 2.1. In this section, we prove Theorem 2.1.

Ezistence. Let T > 0. We use estimate (2.15) to obtain uniform bounds on g,, in
L>°(0,T; L*(% L2 ) and on Dg,, in L*( x (0,T); L2 ) by some quantities depending on
N, T, X and the norm E||g;,||?. As a consequence, (g, ). admits a subsequence (still denoted
(gm)m) such that

gm — g in L2(Q x (0,T); L7 )

where g, Dg € L*(2x (0,T); L2 ,). From (2.14) and the uniform estimates on the approximate
solutions gy, in L>(0,T; L*(€; L2 ), we can deduce (using Ascoli’s Theorem and a diagonal
argument) that there is a further subsequence of (g, )m converging to g in Cy ([0, T]; L*(Q; L2 ).
We now have all in hands to pass to the limit m — oo in (2.14). We deduce the existence of a
solution g satisfying the points (¢), (i¢) and (iéi) of Theorem 2.1.

Uniqueness. If g € Cy([0,T]); L*(Q; L2 ,)) is solution to (2.1) in the sense of (i), (i) and
(#it) of Theorem 2.1, then g satisfies the energy estimate

218) Elo(Ol*+ | BIDg(s)|Pds <3 [ BIDg(s)+Vla(s) s+ 5E IO, ¢ >0

Since A < 1, (2.18) immediately gives, with Gronwall’s lemma, that a solution with initial
condition gi, = 0 is zero in L>(0,T; L*(; L2 ) for every T' > 0. Hence the uniqueness by
linearity of the problem. To prove (2.18), on the basis of (i), (i4) and (zi¢) of Theorem 2.1, we
apply the weak formulation (2.13) with ¢ = ey, ; and use It6 Formula. Note that the differential
of g+ [{g,ex)[* at g is

[ 2R€((97 ex1)(fs 6k,z>)-
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Since g(t) is real-valued and ey (z,v) = e 2" %g, (v) where ¢;(v) is real-valued, the term

Re((9(@), er) (9(8), v - Vaer))

vanishes and we obtain

FEl0(0). e =3E0(0)ex) P~ B [ Hllia(s)ex)fds

)\2 t
+% SoRe B [ [T ena(e). (7 DPews) + als). (Fy - Dyen) s

We sum the result over k, [l and use Property (i) of Theorem 2.1 and Bessel Identity to obtain
1 t 1 t
FEH0(0. ) + [ EIDg(s)ds =3Bl g0). )+ T E [ I(F; - Dygts)Pas
J

The estimate (2.18) then follows from Hypothesis (1.2) on the size of the coefficients of the
noise.

Properties of the solution g. The fact that the quantity po(g) is constant in time follows
from taking (k,1) = (0,0) in (2.14) and passing to the limit m — oc. a

Remark 2.3. With essentially the same proof one may obtain existence and uniqueness of
solutions to the original formulation (1.1) when fi, € Lz(Q;Liw) without any restriction on
A since contribution of the noise to the corresponding L? estimate vanishes in the underlying
estimate. Yet some piece of information concerning extra localization property in the v variable
of fin, here expressed as g, = M 1fiy, € LQ(Q;L%U), is indeed required to derive decay
rates even for the evolution generated by Q on (space) homogeneous functions ; see e.g. [2,
Appendix A]. The constraint A < 1 then arises to ensure that the localization property is
not altered by the stochastic force term of Equation (1.1). See also Remark 4.3 on that size
condition.

3. REGULARIZATION AND DECAY

We prove now extra properties for solutions provided by Theorem 2.1 summarized in the
following theorem.

Theorem 3.1. Suppose that hypothesis (1.2) holds. There exists 0 < A\g(N) < 1 such that,
for all X < Ao and any gy, € LQ(Q;Li,v), the solution g given by Theorem 2.1 satisfies the
following properties. The solution g gains regularity instantaneously : for any to > 0, there
exists a constant C'(N,tg) > 0 such that

(3.) Elg(to)l2s , < CEllginll®

Moreover, for any tog > 0, there exist positive constants ¢, C' and K depending on N only such
that g satisfies, for t > tg, the bound

t
Blo(t)l3s, + <& [ lo)lEy i+ IDVag(s)|P +1D%0(s) Pds

< CE|lg(to) |3+ CElpocl*(t — to),

(3.2)

and the hypocoercive estimate
(3.3) Elg(t)l3s < Ce “C"Elg(to) 2 , + KElos (o)
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3.1. Termwise estimates. In this subsection, we derive some estimates on various functionals
of the approximate solutions (g, )m. Next, we shall combine these termwise bounds to deduce
hypocoercive estimates (see Section 3.2) and follow a similar strategy to obtain regularization
properties through hypoelliptic estimates (see Section 3.3).

3.1.1. Heuristics. Our aim will be to evaluate E®(g) where ® is a quadratic functional of the
form
®(g) = (59, Tg),

where S and T are operators in the variables x or v of order at most one. In particular, S and T
are linear. The rigorous procedure that we follow hereafter is to bound E®(g,,) and pass to the
limit, since all computations are readily fully justified when applied to the finite-dimensional
system satisfied by gp,.

However, for exposition purpose, proceeding in a formal way, we first explain the spirit of
our computations on Equation (2.1) satisfied by g. Apply S to (2.1) and then test against T'g,
and do the same with the roles of S and T exchanged, to obtain

(34) d®(g) = —(SAg,Tg)dt + XY (S(Fj - D*)g,Tg) o dB;(t) + (SLg,Tg)dt + sym,

J
where by “B(S,T)+sym” in the right-hand side of (3.4), we mean B(S,T)+B(T, S). Switching
to Itd form and taking expectation in (3.4) gives

d %
(3.5) EEcp(g) = —E(SAg,Tg) +E(SLg,Tg) + ?]ENS,T(Q) + sym.

where we have introduced the piece of notation
Nsr(g) ==Y (S(F;- D*)?g,Tg) + (S(F; - D*)g,T(F; - D*)g).
J
Note also, in the case S = T, that, by (2.6),
(3.6) E(SLg,Sg) = E(LSg, Sg) +E({S, L}g, Sg) = —E||DSg|* + E({S, L}g,Sg),

thus, modulo a commutator, the term E(SLg, Sg) in (3.5) provides the part —E|DSg||? whose
contribution helps to set up our hypocoercive estimates. In contrast control on space derivatives
is gained by examining the case S = V,, T'= D and noticing that

—E(DAg,Vag9) = —E({D,A}g,V.g) — E(ADg,V.g) = —E|V.g|* — E(ADg, V.g)

provides the missing E|V.g|*.
To proceed with the actual proof we modify the definition of Ngr to

N7 (9) = Y (S (F) - D*))’g, Tg) + (ST (E} - D*)g, TT(F - D*)g)
J
so as to accommodate the presence of a projector in (2.17).

3.1.2. First estimate: E|gm||?. We have already showed along the proof of Proposition 2.2
that by taking S =T = Id, one obtains
1d

(3'7) 5&]1‘3”97””2 + ]E”ngH2 < >\2E||D*gm”2 :
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3.1.3. Second estimate: E||V.gml||?>. By choosing S =T = V., we obtain, due to the fact that
A is skew-symmetric,

3 S EIVagnl? + Bl DV.gn” < EN‘"” (gm),

where Ng:_)vm (gm) is also written as

1. .om " «
SN (gn) = Y (B - D) Vg, (Fy - Z525) V)
J
+ Z<Hm(vz(F]) ' D*)gma (Fj ! D+2D* )Vzgm>
J
+ Z<H (F . D*)gmv (vz(Fj) ' D+2D* )vmgm>

+ *Z [T ( ) D) gml|* .

As a result, using (2.10), we obtain
3. 8)

2 thHvacgm”2 + E||Dvx9m||2

)‘2 * * * *
< SE[ID g + CID* gl + 1 D" W im—1Vagml)) (IDV gl + 1D* -1V g )]

3.1.4. Third estimate: E|Dgy,||?. Recalling {4, D} = -V, and {D,L} = —ND, by choosing
S =T =D, we derive
1d
2dt
Furthermore, we have

NS (gm) = Y IDILu(E) - D) gl
7
+ ) {(Fj - D)Ly (F; - D*)gym, D* D)
J

| Dgl2 = “E(Vsgum, D) — ElD*gull” — NE| Dgm]® + EN“”)( m)-

and, by (2.10), (Vagm, Dgm) = M m—1VaGm, Dgm,). It follows then (using some inequalities

like ||[D*Dh|| < [[(D*)?h|| and ||ITh|| < ||k|| with IT = I1,, or II = I, ,,—1) that

(3.9)
1d
2dt

3.1.5. Fourth estimate: B(V gm, Dgm). We apply (3.5) with S =V, and T = D. It yields

A2 .
G ENIPGm* + EID?gn* < BT 1 Vagn [ Dgml + ZE[I(D*)2 g |1* + DD gon |

d
+ E<V1Lgm7 ng> + E<DLgma vmgm>

A2 m m
+ SENG 5 (gm) + NB. ().

For the total equation, i.e. when there is no projector II,,, one would use
(3.10) — (V4 Ag, Dg) — (DAg,V.g) = —|Vag|*.
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A way to derive? (3.10) is to write

—(VaAg, Dg) — (DAg,Vag) = (D" — D)Ag, Vag)
and to use the identity A = (D + D*) - V. This gives

—(VaAg, Dg) — (DAg,Vag) = ({D", D}VagVag),

and one concludes by use of the identity {D*, D} = —Id. For the terms with projectors, the
same kind of computations gives

~(VoIly Agm, Dgim) — (DI Agm, Vagm) = ({ DIy, DI} Vg Vag).
By (2.10) and the identity II,,II,, ;—1 = Iy m—1, it follows that
—(VaIl Agim, Dgm)— (DI Agin, Vagm) = — M m—1Vagml> + (DVagm, D~ m—1)Vagim)
Besides, identity L = —D*D = NId — DD* provides
E(VaeLgm, Dgm) + E(DLgm, Vagm) = —E(D*DVygm, Dgm) — E(DD*Dgpm, Vs gm)
= —E(DV.gm, D*gm) — E(D*DDgm, Vegm) — NE(Dgm, Vagm)
= —2E(DV 1gm, D*gm) — NE(Dgpn, -1V Gm)-

Concerning terms NgZ)D (gm) and Nz()mv)T (gm), we write them as

N (gm) + NSD (gm) = =Y AL Fy - D)2, D - Vgi) + (VoIl(Fj - D*) gy, DIl (Fj - D*)gi)
J
+ Z«Hij - D*)2 g, D* - Vgm) + (DL (F - D*) g, Vallin (Fj - D*)gm)
J

to bound them proceeding as before by
H(D*)zgm””Dvx.‘]m||+2(||D*Hm,m—1vxgmH"’”D*QMH)HDD*gmH"'H(D*)zgm””D*Hm,m—lvamH .

As a result, we finally obtain
(3.11)

<vzgmv ng> + ]E||Hm,mflvzgm||2
S EHDvmgmHQ + 2E”szgm” ||D29m|| + NE”ngH HHm,mflvmgmH

—E
dt

)‘2 * *
+ ?E[H(D )29m” (HDvam” + ||D Hm,m—lvwgm“)
+ 2| DD* g | (ID* Wy im—1 Vgl + [1D* gimll) ] -

3.1.6. Closed form of the estimates. In this section, we gather estimates (3.7), (3.8), (3.9) and
(3.11) — derived above — in a closed form with respect to gm, Vagm, Dgm, DV.gm and
D2g,,. Note in particular that we need to replace all occurrences of the operator D* using
formula

(3.12) ID* fII* = IIDFII® + N fII?
proved by (2.3) and (2.4). In what follows C' denotes a positive constant that depends only on

the dimension N.

2Obviously one may also use concrete definitions of differential operators but the abstract way shown here
has a clearer counterpart at the Galerkin level.
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First estimate. The first bound (3.7) can now be written as

1d

(3.13) 5 33 Elml* + ElDgm|* < CNE[| Dgm|* + llgm ]

Second estimate. The second one (3.8) becomes

1d
= —E|Vagml|l? + E[[DV 4 gm|I?
(3.14) 5% [Vegm|l® +E| Gm||

< CNE[llgml* + 1Dgml* + 1M m-1Vegmll* + IDVagm|?].

Third estimate. Concerning the third one (3.9), we obtain

(3.15)

1d
5 G ENPgm* +EID?*gml|* < Bl Dgm [ [Tln,im—1 Vgl +C NE[[|gml|* + [ Dgm[* + 1 D> g |I°] -

Fourth estimate. Finally, likewise, the fourth bound (3.11) writes

d
aE<vrgm, ng> + IEHI_Im,m—lvzgm||2

(316) < E|DV,gm |2 + 2B DV gl D9l + NE| Dgonl[| T im—1 Vg |
+ CNE[|lgm]> + [Dgmll> + M- 1Vagml® + [DVagml? + ID*Vagm|?].

3.2. Hypocoercive estimates. In this section, we derive hypocoercive estimates (3.2) and
(3.3). Without loss of generality we assume to = 0 and gi, € L*(Q; L3, ). Our strategy is to
prove uniform bounds on the approximate solutions (gy,)m and pass to the limit.

3.2.1. Balance of the estimates. To prove an exponential damping we shall combine (3.13),
(3.14), (3.15) and (3.16) of Section 3.1 to identify a functional bounded by its own dissipation.
The first step is to explain how to bound ||g,,|. Mark that when m > 1

lgml® =D~ Hews gl

[k|<m
[1|<m
(3.17) < DY WPKerngm)® + >0 @alkD*ewo gm)® + (€00, 9m)]?
|k|<m 0<|k|<m
o<|i[<m
< ||ng||2 + ”Hm,M—lvxgm”2 + |p<>0(gm)|2-

Now we look for a suitable functional in the form
F(9) = llgll?* + allVegll* + B Dgll* + 27(V.g, Dg).
where o, 3, v are some positive coefficients. First we require v2 < af so as to ensure

(3.18) Cillglgs, , < Flg) < CallgliZs |,

for some positive constants Cy, Cs.
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Now by adding (3.13), (3.14), (3.15) and (3.16), we have

1d
5 EF () + E[IDgl2 + ol DVagunll® + 81 DGl + YITon,m-1 Vi

< (1+a+ B+47) CNE|pes(gin)|?
+ (B4 NVE|Dgmll| M, m-1Vagm| + VEIDVagm|l* + 2vE| DV o g ||| D? g
+ (L4+a+B+7)2CNE[||Dgm|? + | Mmnm-1Vegml?® + [DVaegml®* + |D*Vagml?]

from which follows

(3.19)

1d
5 EF(gm) + KE[|Dgull* + 1DV aginl* + D26 + [T m -1 Vg

< K/)‘2E|P00(9in)|2 + K')\2]E[\\ng||2 + ”Hﬂ%mflvrgm||2 + HDvmgmHz + |‘D2Vzgm”2]
for some positive K, K’ depending only on N, «, 8 and ~, provided that v < a/2 and both
(B84 Nv)/+/1x v and v/+/a x B are sufficiently small. The latter constraints may be satisfied
jointly with v2 < af by setting® a = 1, 8 = v and choosing ~ sufficiently small.

Having picked suitable parameters «, 5, v, we now require A to be sufficiently small — in

a way that depends only on N — to derive
(3.20)

1d
STEF ) + K"E[lgnl? + [Dgunll* + 1 DVagn> + 1D2gm]l* + [ W1 Vo

< K"E|poo(gin)|?

for some positive constants K", K" depending only on N.

3.2.2. Ezxponential damping. Integrating (3.20) from 0 to ¢ and passing to the limit m — oo
yields (3.2) (for ¢ty = 0).
To prove (3.3) we first stress that proceeding as in the proof of (3.17) gives
||ngm||2 < ||Hm,m—1vxgm||2 + ||Dv:c9m||2
and conclude then from (3.20) and (3.18) that

1d
5&Ef(gm) + C]E]:(gm) < CE|poo(gin)|2

for some positive constants ¢ and C'. This yields

e C
>0, EF(gm)(t) < EF(gm)e™™ " + o~ Elpoc(gm)l”

through a multiplication by e=2¢ and an integration in time. Using again (3.18) and passing

to the limit m — oo achieves the proof of (3.3) (for to = 0).

3There is of course no uniqueness in this choice. For instance setting o = 1, 8 = ~?, any % < 6 < 2 would
work provided + is small enough.
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3.3. Hypoelliptic estimates. In this part, we conclude the proof of Theorem 3.1 by showing
that the solution g to Equation (2.1) with initial condition gy, in L?(£); Liv) gains regularity
instantaneously. Precisely, we prove the following result.

Proposition 3.2. Let to > 0. There exist positive constants X\* and C such that for any
gin € L*(Q; L2 ) and X < X*, the corresponding solution g satisfies for any t € (0, to]

c C
(3:21)  Elg(®)|* < CEllginl®, E[Dg(t)|* < ?Ellgmllz, E[[Vag(t)[* < th\\ginIIQ-

By a simple approximation argument one may reduce the proof of the proposition to the proof
of estimates (3.21) starting from ¢, € LQV’D. For writing convenience, we assume ty = 1,
modifications to obtain the proof of the general case being mostly notational.

Though the proof of Proposition 3.2 has some similarities with the proof of exponential
damping, constraints on functionals leading to global hypoelliptic estimates are a lot more
stringent* and we have not been able to produce them entirely at the level of the Galerkin
approximation. Instead we directly derive estimates on g by examining the equations satisfied
by II,,,g and passing to the limit m — oo using the already established propagation of regularity.
The key gain is that terms analogous to E|DV,g,,||? in (3.16) that arises from failure of
commutativity of II,, and D* disappear when applied to g in the limit m — oo because
{II,,, D*} = =D*(IL,;, — Uy im—1)-

We introduce the family of functionals parametrized by ¢ € [0, 1],

Ke(g) = llg* + at®|Vag* + bt|| Dg||* + 2¢t*(Vag, D)

where a, b and ¢ are some positive constants to be chosen later on. By requiring ¢? < ab, we
ensure

(3.22) gl + CL(t* [ Vogll® + t|Dgll*) < Kilg) < llgll?* + Ca(t?|Vagll* + t]| Dgll?)

for some positive C, Cy. Proceeding as explained above we derive® for any 0 < t < 1
t

Ki(g(t)) + C/ (Ellg(s)|1* + s’El[ DV.g(s)[|* + sE[ D?*g(s)|I” + 5°[[Vag(s)|*)ds < Ko(gin)
0

for some positive C, provided first that a, b and ¢ are chosen such that both (b+ ¢)/v/1 X ¢
and ¢/v/a x b are sufficiently small and then that X is sufficiently small. As above constraints
on a, b, ¢ may be fulfilled by choosing a = 1, b = ¢ and ¢ small enough. By appealing to (3.22)
we achieve the proofs.

4. INVARIANT MEASURE

In this section, we prove the following result about existence, uniqueness and mixing properties
of the invariant measure to problem (2.1).

Theorem 4.1. Suppose that hypothesis (1.2) is satisfied and A < Ao where Ao is as in Theo-
rem 3.1. Let m € R and introduce the space

Xm = {géLi,u; <97M%>=m}-

4This may be seen on the fact that in the strategy hereafter estimates should be compatible with chosen
powers of t.

5The reader is referred to the treatment of a similar case in [5, Appendix A.21] for omitted details concerning
algebraic manipulations.
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Then the problem
v
d - Vg dit AV, —= dW, = Lgdt
(P,) { g + v-Vygdt + (V 2)9@ t g
g(O) = (Jin € Xm

admits a unique invariant measure [, on X,,. Besides, there exists some constants C' > 0,
Kk > 0, such that

(4.1) [EQ(g(t)) — (¥, )| < Ce™"|ginl,
for every ¥: X,,, — R which is 1-Lipschitz continuous.

Proof. We fix m € R and assume A < Ag.

Proof of existence. Let gin € L2, be a deterministic initial data in X,,. We consider the
unique solution g to problem (P,,,) given by Theorem 2.1. First of all, using regularizing bound
(3.1) of Theorem 3.1, we deduce that there exists a positive constant C' such that

(4.2) Elg(U; < CEllgnll>
We also recall damping estimate (3.3) of Theorem 2.1: for ¢t > 1,
Elg(t)]2, , < Ce " VE|g(1)|2 | + KE|poc(9)]*

It implies, with (4.2),

(4.3) supEllg(t)1Z2, | < CEllgu|* + Km?.
>1 v.D
We introduce the family (p7)rso of probability measures on X,,, defined by
1 1+T
pro=5 | L) dt,
1

where .Z(g(t)) denotes the law of ¢(t), and show that the family (ur)rso is tight. Since the
embedding L2V7 p C Li’v is compact, balls of radius R > 0

Kr=1{f € Xui Ifl1z,, < R}

are compact in X,,. Furthermore, thanks to Markov’s inequality and (4.3),

1 14T
pr(K5) = 7 [ Pllalze,, > R

1 14T ,
< 77 ) Elsliy ,ar
1

T2
This readily implies tightness of (ur)rso. By Prohorov’s Theorem, we obtain that (ur)rso
admits a subsequence (still denoted (ur)) such that ur converges to some probability measure
pon X,, as T — oco. Furthermore, it is classical to show that this limit measure p is indeed
an invariant measure for problem (P,,), see for instance [1, Proposition 11.3].

Proof of the mizing property. Let gin1 and gin 2 € X, and denote by g; and g, the solutions
to (P,,) with respective initial conditions giy,1 and gin 2. For ¢t > 0 we set r(t) := g1(t) — g2(t)
and remark that r solves (Pg) on Xy. Combining again (3.2) and (3.3) and recalling that (2.4)

< 25 (CEllgu|® + Km?).
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yields Z[fI> < || fI?. , we deduce that there exists positive constants ¢ and C such that,
v,D
fort > 1,

(4.4) E[r(®)]?* < Ce " VEllgin1 — gin

Let ¥ : X,, — R be 1-Lipschitz continuous, let g, € X,,, and s > 0. We apply (4.4) with
gin,1 = gin and gin 2 = g(s) to obtain

2

1 T+1 1 T+1
BV)— 7 [ BWt+ )i <5 [ Bla) - at+)Pds
1 T+1
(1.5) <ce 0L [T Blg, - g(s) s
1

By (3.1), we have supycpy 7y [l9(s)|| < Cl|gin|| and we deduce from (4.5) (for possibly different
values of the constants) that

2
1 T+1
BUG) - 7 [ BW(g(e+s)ds| < Ce D g,
1
Taking the limit [T — +o00] gives the mixing estimate (4.1). O

If m = 0, then g is the Dirac mass on the solution 0. There is another — nontrivial —
case in which we can explicitly compute the invariant measure u,, and in particular check that
some smallness condition on A is indeed necessary.

Proposition 4.2. Assume m # 0. Assume that Wy is an N-dimensional Brownian motion,
i.e. Fj =0 for j > N and F; = cst, F; being the j-th vector of the canonical basis of RN for
j=1,...,N. Let Vs*3t(¢), normally distributed with variance 1, denote the stationary solution
to the Langevin equation

AV (t) = =V (t)dt + V2dW,.

Then py, is the law of the function (x,v) — m 52 (¢, z,v), where

(4.6) otz v) = M (v — \%V““(t)) ,

and where M is the Gaussian on RY .

Proof. Tt is clear that f5%3t defined by (4.6) is a stationary solution to (1.1) when W; is an
N-dimensional Brownian motion. Let us develop the proof here to show how f5%2* arises in the
resolution of (1.1) and that exponential convergence occurs. Let ¢ty € R. Let (Bt)tZto be an
N-dimensional Brownian motion on a probability space (Q,]:' , f’) Let E(t), t > to be a given
force term that we will not specify for the moment. The law fi; of the process (X, Vi)i>t,
defined by the stochastic differential system

{dX(t) = V(t)dt,

(4.7) AV (t) = =V (t)dt — AE(t)dt + v/2dB,

satisfies the (forward Kolmogorov equation) O¢fis + div,(viiy) = Qfiy — div, (AE(t)fir). If, at
t > to, fiz has a density f; with respect to the Lebesgue measure on TV x R, then f; solves
the equation

atft—f—?)vzf—‘r)\E(t) 'vat = th, t > ty.
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We can compute explicitly f; thanks to this probabilistic interpretation (see [4] for an analogous
result). Let us now take E(t) = 9;(Wy — Wy,). This means that we consider now W, as a
Brownian motion on R, obtained by gluing two independent Brownian motions, one being run
backward, at time ¢ = 0. Then Wy, ; := W; — Wto is a Brownian motion started at ¢y. Similarly,
we will assume that Bt is actually Bto L= Bt Bto for a given Brownian motion defined on
R. One can solve (4.7) with initial condition (Xg, Vo) to obtain

A

Vi () = e~V 4 T (£) + ﬁvf; (t),

where ,
V() = V3 / By VA =VE [ e,
to
and ,
_ - A
Xio(®) = Xo+ [ V(s)ds = Xo + (1= CONVa 4 Xy (0) + X (1),
to \/i
where

t
Xiy(t) = V2 <1—e CNdBy, s, X5 (6 =V2 [ (1—e T)dW,, s,
to tO

and where (Xo, Vo) is Q-random. With respect to the alea & € Q, the process (X, (t), Vi, (t))
is a Gaussian process with covariance matrix

_(EIX,OF IR, (0T, (0)
Prat = (EM( DV BV, (1) ) |

More precisely, using the It6 Isometry, we compute Qy,+ = Qo+—+,, Where

t t
/ (1—e*)%ds / e *(1—e"%)ds
Qo =2 0 0 ® In,

t t
/ e *(1—e"%)ds / e %ds
0 0

where Iy is the N x N identity matrix. It follows that, for ¢ € Cy(TN x RY),

Bop(Xoy (1), Vi (¢ / / oy, w) fuo (4, w)dycw,

where the density f, (¢, y,w) is given by

(4.8) fio(t,y,w) = Eexp [—; <Qto11t (5;%%%?)) ’ <I§;:0((t£,g§z))) >}

where

A
V2

Yio (t,y,w) = y — Xo — (1 — el — 2o XE (1),

(- A
Wto(tvva) =w-—e€ (t tO)VO - ﬁ‘/;?)(t)

We compute

Qo = (2t1_3 }) ®In+0(e™), Q= (8 (1)> ®In+ 0.
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We have also, in probability, with exponential convergence,

: i _ sta
limVE(H) = Vo)

By taking the limit {y — —oo in (4.8), we obtain the stationary density f5'*' defined by (4.6)
and exponential convergence. O

Remark 4.3. Note that the corresponding invariant solution g***'(t) to (2.1) is g°**(t) =
M2 %1y We compute

||9(t)H%2 = (QW)N/zeglV“at(t)\?.
In particular, we have
2
Bl = [ ¥ Helan,
v RN

This is finite if, and only if, A < 1: we recover the necessity of this restriction on the size of the
noise made in the statement of Theorem 2.1. Note however that, here, no further restriction
of the type A < Ao as in the statement of Theorem 4.1 is mecessary to obtain an invariant
measure with mizing properties.
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