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STABILITY OF VISCOUS ST. VENANT ROLL-WAVES: FROM ONSET TO
INFINITE-FROUDE NUMBER LIMIT

BLAKE BARKER, MATHEW A. JOHNSON, PASCAL NOBLE, L.MIGUEL RODRIGUES, AND KEVIN ZUMBRUN

ABSTRACT. We study the spectral stability of roll-wave solutions of the viscous St. Venant equations
modeling inclined shallow-water flow, both at onset in the small-Froude number or “weakly unstable”
limit F — 27 and for general values of the Froude number F, including the limit F' — +oco. In the former,
F — 2% limit, the shallow water equations are formally approximated by a Korteweg de Vries/Kuramoto-
Sivashinsky (KdV-KS) equation that is a singular perturbation of the standard Korteweg de Vries (KdV)
equation modeling horizontal shallow water flow. Our main analytical result is to rigorously validate this
formal limit, showing that stability as F — 2% is equivalent to stability of the corresponding KdV-KS
waves in the KdV limit. Together with recent results obtained for KdV-KS by Johnson—Noble-Rodrigues—
Zumbrun and Barker, this gives not only the first rigorous verification of stability for any single viscous St.
Venant roll wave, but a complete classification of stability in the weakly unstable limit. In the remainder
of the paper, we investigate numerically and analytically the evolution of the stability diagram as Froude
number increases to infinity. Notably, we find transition at around F' = 2.3 from weakly unstable to
different, large-F' behavior, with stability determined by simple power law relations. The latter stability
criteria are potentially useful in hydraulic engineering applications, for which typically 2.5 < F' < 6.0.

1. INTRODUCTION

In this paper, we investigate the stability of periodic wavetrain, or roll-wave, solutions of the inclined
viscous shallow-water equations of St. Venant, appearing in nondimensional Eulerian form as

2
(1.1) O+ Oy (h) = 0, Oy(hus) + O <hu2 + ;}2) — h— [ulu + v0u(hDuu),
where F' is a Froude number, given by the ratio between (a chosen reference) speed of t]rslgeﬂuid and speed
of gravity waves, and v = R;!, with R. the Reynolds number of the fluid. System (h—T) describes the
motion of a thin layer of fluid flowing down an inclined plane, with A denoting fluid height, u fluid velocity
averaged with respect to height, = longitudinal distance along the plane, and ¢ time. The terms A and
|u| u on the righthand side of the second equation model, respectively, gravitational force and turbulent
friction along the bottom.! swe

Roll-waves are well-known hydrodynamic instabilities of (h_f), arising in the region F > 2 for which
constant solutions, corresponding to parallel flow, are unstable. They appear in the modeling of such
diverse ihlemolgmenau as landslides, river and spillway flow, and fti‘he to ography of sand dunes and sea bs%%s;
see Figﬁﬂ%&@é) for physical examples of roll waves and Fig. ﬁ@)gfg a typical wavetrain solution of (I.T).
As motivated by these applications, their stability properties have been studied formally, numerically,
and experimentally in various physically interesting regimes; see, for example, [BM04] for a useful survey
of this literature. However, up until now, there has been no complete rigorous stability analysis of viscous
St. Venant roll-waves either at the linear (spectral) or nonlinear level.

Recently, the authors, in various combinations, have developed a theoretical framework for the study of
nonlinear stability of these and related periodic waves. Specifically, for the model at hand, it was shown
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d
in %’ZNH that, under standard diffusive spectral stability assumptions (conditions (D1)—(D3) in §Sl I ) Heiens
(T3] et

together with a technical “slope condition” ( e ow) satisfied for “moderate” values 2 < F 5 3.5 of
F and a genericity assumption ((H1) below) satisfied almost everywhere in parameter space, 2 roll-waves
are nonlinearly stable in the sense that loc ljﬁggf pgﬁﬁlﬂ;atwns converge to localized spatial modulations
of the background periodic wave. Se alsal N*13] for discussions in the related context of
the Kuramoto—Sivashinsky equation E‘KWMW5 Siv77, Siv83]. More recently, for general (partially)
parabolic systems, detailgd nonlinear asymptotic behavior under localized and nonlocalized perturbations
has been established in FJ\%'RZM] in terms of certain formal modulation, or “Whitham,” equations.?

This reduces the study of stability and asymptotic behavior, at least for moderate values of F', to
verification of the spectral stability conditions (D1)—(D3), concerning Floquet spectrum of the associated
eigenvalue ODE. However, it is in general a hard problem to verify such spectral assumptions analytically.
Indeed, up to now, spectral stsav;)eility has not been rigorously verified for any roll wave solution of the
viscous St. Venant equations (II.T)

(a) Urstable flow (b} Detail (o) Mergers

()

FIGURE 1. Roll waves (a) on a spillway and (b) in the lab: pictures courtesy of Neil
Balmforth, UBC. (c) Periodic profile of (h), F=+6,v=01, q¢= 15745 X = 17.15.
For better comparison to experiment, we extended the profile here as constant in transverse
direction.

In some particular situations, for example, at the onset of hydrodynamical instability, analytical proof of
spectral stability may be possible using perturbation techniques. However, most of the known examples
concern reaction diffusion equations and related models like the Swift Hohenberg equations, Rayleigh
Bénard convection or Taylor Couette flows that are all described, near the instability thresh of a
background constant solution, by a Ginzburg-Landau equation derived as an amplitude equation [Mie02].
Associated with classical Hopf bifurcation, this normal form may be rigorously validated in terms of

Xistence and stability by Lyapunov-Schmidt reduction about a limiting constant-coefficient operator
FCE’gﬁ_MieWa, Mie97b). e

By contrast, the corresponding model for onset of hydrodynamic (roll-wave) instability in (h) is, at

least formally, the Korteweg—de Vries/Kuramoto—Sivashinsky equation (KdV-KS)

(1.2) Dsv + vOyv + v + 5(852/1} + 8;1/1)) =0, VS>0,VY eR,

< 0 < 1, £ > 0, a singular perturbation of the Korteweg-de Vries (KdV) equation®. Equation
m derived as an amplitude equation for the shallow water system (h) near the critical value F' = 2
above which steady constant-height flows are unstable, in the small-amplitude limit A = A + §%v and in
the KdV time and space scaling (Es,zé’giﬁe@(ex — cot), 83t) with 6 = /F — 2, where cg is an appropriate
reference wave speed: see Section 2.1 below for details in the Lagrangian formulation. Alternatively, it
may be derived from the full Navier-Stokes equations with free boundary from which (h) is derived in

4

2Ind QB this appears numerically to be satisfied for all profiles.
3See 10] for the easier multidimensional case, in which behavior is asymptotically linear due to faster decay of the
linearized propagator. INRZ2
4Without loss of generality, one can assume that €2 4+ 6% = 1. See FBU’NZ"‘I3]
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the shallow-water limi if% Reynolds number R near the critical value R, above which steady Nusselt
flows are unstable; see [Win93, YY03].

In this case, neither existence nor stability reduce to computations involving constant-coefficient op-
erators; rather, the reference states are arbitrary-amplitude periodic solutions of KdV, and the relevant
operators (variable-coefficient) linearizations thereof. This makes behavior considerably richer, and both
analysis and validation of the amplitude equations considerably more complicated than in the Ginzburg—

Swe
Landau case mentioned above. Likewise, onset occurs for (h) not through Hopf bifurcation from a single
equilibrium, but through ch%(g%nevaakens, or saddle-node bifurcation involving collision of two equilib-
ria, as discussed, e.g., in g'( 87, BJRZ11], with limiting period thus +o00, consistent with the 1/d spatial
scaling of the formal model. (The standard unfolding of a Bogda ey _Takens bifurcation as a perturbed
Hamiltonian system is also consistent with KdV-KS; se Reark 2.T.

Nevertheless, similarly as in previous works by Mielke [Mie97a, Mie97b] in the reaction diffusion setting,
where the stability of periodic waves for the amplitude (Ginzburg-Landau) equation provides a stability
result for periodic waves of the full system (Swift Hohenberg equation or Rayleight Bé ag‘gi_ Lgsonvection),
we may expect that stability for the amplitude equation, here the KdV-KS equation EP(EZ%EV%HI provide
some information on the stability of periodic waves for the viscous St. Venant system (I[.T), at least
in the weakly-unstable limit ' — 27. Our first main goal is to rigorously validate this conjecture,
showing that stability of rol)!-—gs{,@}é%s in the weakly unstable limit ' — 27 is determined by stability of

Rrgﬁﬁggrﬁding solutions of (II.2) under t gvgggcaling described above. Together with previous results
FBNUBﬁNRZlSE‘)’J,eBarM] on stability for (T.2), this gives the first complete nonlinear stability results for
roll waves of (h_[) more, it gives a complete classification of stability in the weakly unstable limit.

This gives at the same time Ligorous justification in a particular instance of the much more generally

applicable and better-s E‘dec LS a canonical model for weak hydrodynamic instability in incligweed
thin-film flow; see, e.g., g%ﬂ 95, CD02, CDK93, P Igigﬁ(.s Looked at from this opposite point of view, (h—T)
gives an interesting extension in a specific case of (i .2) into the large-amplitude, strongly-unstable regime.
Our second main goal is, by a combination of rigorous analysis and (nonrigorous but numerically well-
conditioned) numerical experiment, to continue our analysis into this large-amplitude regime, performing
a systematic stability analysis for ' on the entire range of existence F' > 2 of periodic roll-wave solutions
of (I.T). Our main finding here is a remarkably simple power-law description of curves bounding the
region of stability in parameter space from above and below, across which particular high-frequency
and low-frequency stability transitions occur. These curves eventually meet, yielding instability for F
sufficiently large. The large-F' description is quite different from the small-F' description of weakly
unstable theory; indeed, there is a dramatic transition from small- to large-F behavior at F' = 2.3, with
behavior governed thereafter by the large-F' version. This distinction appears important geo%rl}ygll@%liﬁc 1 RG2FS
engineering applications, where F' is typically 2.5 — 6.0 and sometimes 10 — 20 or higher [Jef25; Bro69,
Bro70, AeM91, RG12, RG13, FSMAO03]. Far from the onset, nonlinear stability for spectrally stable waves
remains an interesting open question due to failure of the technical (slope) condition (I[.4); as discussed
below, there is reason to think this may be dropped.
1.1. Summary of previous work. We begin by recalling some known results that will be relied upon
throughout our analysis. In particular, we begin by recalling how spectral stability (in a suitable diffusive
sense) may provide a detailed nonlinear stability result, a fact that strongly underpins and motivates our
spectral studies. We then recall the relevant numerical and analytical results for the amplitude equation
%Wpon which our entire weakly-unstable analysis for 0 < F' — 2 < 1 hinges.

1.1.1. Diffusive spectral stability conditions. We fir rgga}%hﬁgtﬁﬁﬁi%ﬁﬁ%ﬁg spectral stability condi-
tions as defined in various contexts in, for example, %0598, Sch96, JZ11, JZ10, JZN11, BJN*13, JNRZ14].

Let u(x,t) = a(x —ct) define a spatially periodic traveling-wave solution of a general partial differential
equation Jyu = F(u) with period (without loss of generality) one, or, equivalently, 4 be a stationary
solution of dyu = F + cO,u with period one, and let L := (dF/du)(u) + ¢0, denote the associated
linearized operator about . As L is a linear differential operator with 1-periodic coefficients, standard

results from Floquet theory dictate that non-trivial solutions of Lv = Av can not be integrable on R,
3
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more generally they can not have finite norm in LP(R) for any 1 < p < co. Indeed, it follows by standard
arguments that the L?(IR)-spectrum of L is purely continuous and that \ € O'LQ(R)<L) if and only if the
spectral problem Lv = Av has an L*°(R)-eigenfunction of the form

(@ A, €) = e w(; A, €)
for some ¢ € [r,7) and w € L2,.([0,1]); see fGarQ?:] or %{odl& p.30-31] for details. In particular,
A € op2(w)(L) if and only if there exists a § € [, 7) such that there is a non-trivial 1-periodic solution

of the equation
Lew = Aw, where (Lew) (z) := e 8T [eif'w(')} (z).

and
oremy(L) = opemy(L) = | o2, (0.1 (Le)-
e[—mm)
The parameter ¢ is referred to as the Bloch or Floquet frequency and the operators L¢ are the Bloch
operators associated to L. Since the Bloch operators have compactly embedded domains in L%er([O, T))
their spectrum consists entirely of discrete eigenvalues that depend continuously on the Bloch parameter
€. Thus, the spectrum of L consists entirely of L>°(R)-eigenvalues and may be decomposed into countably

many curves A(§) such that A\(§) € or2_(j0,1))(Le) for € € [-m, 7).

Ber

Suppose, further, that % is a transversal® orbit of the traveling-wave ODE F(u) + cdzu = 0. Then
near 4, the Implicit Function Theorem guarantees a smooth manifold of nearby 1-periodic traveling-wave
solutions of (possibly) different speeds, with some dimension N € N,® not accounting for invariance under
translations. Then, the diffusive spectral stability conditions are:

(D2) There exists a # > 0 such that for all { € [—m, 7) we have o2, (0,1))(Le) C ] RA < —0I€%}.
(D3) A = 0 is an eigenvalue of Ly with generalized eigenspace ¥y C L2,.([0,1]) of dimension N.

per

Under mild additional technical hypotheses to do with regularity of the coefficients of F, hyperbolic-
parabolic structure, etc., conditions (D1)—~(D3) have %g‘e’pksshown in all of the above-mentioned settings
— in particular for periodic waves of either (h—I) or — to imply nonlinear modulation stability, at
Gaussian rate: more precisely, provided ||(@—)|i=o || 11 (r)n s (r) 18 sufficiently small for some s sufficiently
large, there exists a function ¥(x,t) with ¥ (x,0) = 0 such that the solution satisfies

(13)  [a(6) = a(- = ¢(t) = b)) + I Vart( Ollmom < CL+47207WP, 2 <p <o,

71,372, JZN,BINRZ2, INRZ2 dv-k
valid for all ¢ > 0; see ElZl [, JZ10, JZNTIT, BJNT13, JNRZ14]. In the case of (S?e), (i.ZV), For which

coefficients depend analytically on the solution, essentially there suffices the single technical hypothesis:

(H1) The N zero eigenvalues of Lg split linearly as ¢ is varied with |£| sufficiently small, in the sense
that they may be expanded as \;(&) = a;& + o(§) for some constants a; € C distinct.

We note that, since the existence of the expansion \;(§) = o;§ + o(§) in (H1) may be proved indepen-
dently, the hypothesis (H1) really concerns distinctness of the o, which is equivalent to the condition that
the characteristics of a (formally) related first-order Whitham modulation system be distinct, a condition
that, in the case of analytic dependence of the underlying equations, as here, either holds generically with
respect to nondegenerate parametrizations of the manifold of periodic traveling waves, or else uniformly
fails. For (II.T), there is an additional slope condition

(1.4) he/h < (cvF)72,

used to obtain hyperbolic-parabolic damping and high-frequency resolvent estimates by Kawashima-type
energy estimates, necessary o gbtain the desired nonlinear modulational stability result; see N11,
Section 4.3]. Condition (i.ZH is known to be sufficient but a priori not necessary. As discussed in Section

5 . . .
6In a sense (S:ompatlb dvvl_t'lglsthe alge.bralc .structure of t.he system. 7N BIVRZ3
For both (I.T) and (II.2); an easy dimensional count gives N = 2 ; 10] because of the presence of one local
conservation law in the respective sets of equations.
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s:discussion _9 -
e helieve that this can be replaced by its average, 0 < (cvF')™“, hence dropped’. However condition
(IT. olds evidently in the small-amplitude limit ' — 27, and is observed numerically for moderate

values 2 < F'  3.5.

The above nonlinear stability results motivate a detailed analytical inspection of the conditions (Dl
(D3) and (H1), which is precisely the intent of the weakly nonlinear analysis presented in Section
below. We note that these conditions may be readily checked numerically, in a well-conditioned way, using

either Hill’s method ( Ga%%@ %Hﬁ%ﬂgﬁﬁ%n , or numerical Evans function analysis (shooting/continuous

orthogonalization); see BJINT10].

1.1.2. Numerical evaluation for viscous St. Venant and KdV-KS. The diffusive Spectrale%tabil't% di-
tions (D1)-(D3) have been studied numerically for the viscous St. Venant equations (II.T) in 10]
for certain “typical” waves and Froude numbers F', with results indicating existence of both stable and
unstable waves: more precisely, the existence of a single “band” of stable waves as period is varied for
fixed F'. This echoes the ch earljer numerical study of roll-waves of the classical Kuramoto—Sivashinsky
equation (KS formﬁlg—zy)— ‘%‘ST% and elsewhere, that obtained sunllar results.

Equations (h)_ﬁave received substantially more attention, as canguical models for hydrodynamical
instability in a variety 0£ d%l_l}(%—ﬁlm settings; as derived formally in K93], see also R?Rodl& p.16,
footnote 10], the model (mith the addition of a further term D(v)y, D constant, gives a general
form for such instabilities in th gyeakly unstable regime. A systematic numerical study of this more
general model was carrie K93], across all values of ¢, 8, D, anﬂ | the period X of t Suaye, and,
by different methods in B;l N 13 for the value D = 0 only; seg Figure 2, reprinted from 13] (in
close agreement also with the results of K93]). As noted in K93, it may be observed from Figure
2 that the small stable band for €/ < 1 enlarges with addition of dispersion/decrease in J, reaching its
largest size at 6/ = 0 (corresponding to the singular KdV) limit. For intermediate ratios of § /e, behavior
can be considerably more complicated, with bifurcation to multiple stable bands as this ratio is varied.

KdV-KS stability boundaries
30

25

20

0 0.2 0.4 0.6 0.8
€

IGURE 2. Stablhty boundaries (in period X) vs. parameter ¢ for the KdV-KS equation
(T:2) with €2 + 62 = 1.

kdv-ks
1.1.3. The KAV limit § — % ﬁfme(jﬁ]zénﬁerest for us is the KAV limit § — 0% for (T.2), freated with

varying degrees of rigor in R13, JNRZ14, Barl4]: a singularly perturbed Ha grjan
— indeed, completely integrable — System. We cite briefly the relevant results; for details, see
Barl4].

i

MR
Proposition 1.1 (Existence FHHR93 Given any posztwe integer r > her’e exists 69 > 0 such that
there exist periodic traveling wave solutions vs(0), 0 =Y — 055, of ( wzth e = 1) that are analytic

7 s:discussion . o .
See the Authors Note at the end of Sectlon or recent progress in this direction.
5
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functions of 6 € R and C" functions of § € [0,00). When r > 3, profiles vs expand as 6 — 0 as a
2-parameter family

w5) { vs(0; ap, k) = To(0; ao, k, k) + 6T1(0) 4+ 6*To(0) + O(83),

o5 = oo(ag, k, k) + 0209 + O(8°),
where
To(0; a0, k, k) = ag+ 12k*s%cn® (k0,k), o0 = ag+ 4k* (2k* — 1),
comprise the 3-parameter family (up to translation) of periodic KdV profiles and their speeds; cn(-, k) is

the Jacobi elliptic cosine function with elliptic modulus k € (0,1); ag is a parameter related to Galilean
invariance; and k = G(k) is determined via the selection principle

K(k)Gk)\* 7 2k — K2+ 1)E(k) — (1 — k%) (2 — k2K (k)
20 (—2 + 3k2 + 3k4 — 2k6)E(k) 4 (kS 4 k* — 4k2 + 2)K (k)
where K (k) and E(k) are the complete elliptic integrals of the first and second kind. The period X (k) =

K(k)/G(k) is in one-to-one correspondence with k. Moreover the functions (T;)i=12 are (respectively
odd and even) solutions of the linear equations

™

T2 !
(1.6) Lo[ToTy = Ty + Ty",  Lo[To]Tz = (21 - 02T0> + 17 + 17",

n (0,2K(k)/G(k)) with periodic boundary conditions, where Lo[To] := —93 — 9y (Tp — 00) denotes the
linearized KdV operator about Tj.

Throughout this manuscript, we let vs(-; ag, k) and og(ag k@ note the periodic traveling wave profiles
and wave speeds, respectively, as described in Proposition T.5.

Remark 1.2. The additional parameter x for periodic KdV waves as compared to KdV-KS waves reflects
the existence of the additional conserved quantity of the Hamiltonian at § = 0. The selection principle
k = G(k) is precisely the condition that the periodic Hamiltonian orbits at 6 = 0 persist, to first order,

for 0 < § <« 1. Alternatively, this condition can be written explicitly as fOQK(k)/R To (T + 1" )dx = 0.

By Galilean invariance of the underling equation (%)%%he stability properties of the above-described
X = X (k)-periodic solutions are independent of the parameter ag. Hence, for stability purposes one may
identify waveswigh a common period, fixing ag and studying stability of a one-parameter family in k. Tt
is known F%SFPST,SpeS& BDO09] that the spectra of the linearized operator L[Tp], considered on L?(R),
about a periodic KdV wave Tj is spectrally stable in the neutral, Hamiltonian, sense, i.e., all eigenvalues
of the Bloch operators

Le[To] == (8y +i€) (—(0y +i€)* — Ty + 00) : L2.,.(0,X) — L2,.(0,X),

per

considered with compactly embedded domain H, Ser(O, X), are purel Dlmaginary foreach ¢ € [—n/X,7/X).

Moreover, the explicit description of the spectrum obtained in [BD09] also yields® that A = 0 is an
eigenvalue of Ly[Tp] of algebraic multiplicity three, that A\ = 0 is an eigenvalue of L¢[Tp] only if £ = 0,
and that the three zero eigenvalues of Ly[Ty(+; ao, k,G(k))] expand about for |[¢| < 1 as

(1.7) Aj(€) =i (6)¢ = i€a; + O(£%), j =1,2,3 with a; € R distinct.
We introduce one final technical condition, first obserV%(éVt_% Baysdy numerically to hold, at least for

KdV waves that are limits as 6 — 0 of stable waves of (1. +13, Bar14]:°

(A) A given parameter k € (0,1) is said to satisfy condition (A) if the non-zero eigenvalues of the lin-
earized (Bloch) KdV operator L¢[Ty] about Ty(+; a, k, G(k)) are simple for each { € [-7/X,7/X).

S B . . . . [BJNRZ2 .
In , Barl4], some of these facts remained unnoticed to the authors. In particular, in 3], the condition
that only & = 0 yields A = 0 was gathered to condition (A) below to form condition (A1) and distinctness of the «; was
1degmﬁed as condition @AZ): N -blake . . .
In fact (A) has been verified (see Proposition i -4 below) on essentially the entire range k € (0, 1); we know of no instance
where it fails.
6



Note that the set of k € (0,1) for which property (A) holds is open.

Given a periodic traveling wave solution Ty(+; ap, k,G(k)) of the KdV equation with elliptic modulus
k € (0,1) satisfying condition (A) above, we now consider the spectral stability of the associated family
of periodic traveling wave solutionsk%(-lé 40, k), defined for ¢ € [0,dp), with dy as in Proposition W
solutions of the KdV-KS equation (b).—To this end, notice that, assuming k € (0, 1) satisfies condition
(A), the non-zero Bloch-eigenvalues A(£) of the linearized KdV-KS operator

Le[vs]) = e7% [—6 (aé + 032/) -3 — 0y (vs — 0s)] e Lger(O,X) — Lger(O,X)

admit a smooth'” expansion in § for 0 < § < 1. In particular, for each pair (£, o) with Ao € o(L¢[To])\{0}
and £ € [-7/X,7/X) there is a unique spectral curve A(, Ao, ) bifurcating from A9 smoothly in ¢, and
it takes the form

ks-evexpand| (1.8) A5, 00) = Ao+ M€, ho) + O(5?)

for some A1(&, Ag). It is then natural to expect that the signs of the real parts of the first order correctors
A1(€, Ao) in the above expansion be indicative of stability or instability of the near-KdV profiles ug for
0 < § < 1. With this motivation in mind, for any k¥ € (0,1) that satisfies condition (A) above!!, we
define

(1.9) Ind(k) := sup R(A(& M) -
Ao€a(Le[To(5a0,k,G(k))])\{0}
gel—m/X(k),m/X (k)
Evidently, Ind(k) > 0 is a sufficient condition for the spectral instability for 0 < § < 1 of the near-KdV
waves vs bifurcating from Ty. The next proposition states that the condition Ind(k) < 0 is also sufficient
for the diffusive spectral stability of the vy, for 0 < § < 1. Define the open set

P = { ke (0,1) | condition (A) holds for k¥ and Ind(k) <0 }.

Proposition 1.3 (Limiting stability conditions H%%Zlf)]). For each k € P there exists a neighborhood
Qr C (0,1) of k and do(k) > 0 such that Q, C P and for any (ap, k,d) € R x Qi x (0,00(k)) the non-
degeneracy and spectral stability conditions (H1) and (D1)-(D38) hold for vs(-;ao, k). In particular, P is
open and 6o(-) can be chosen uniformly on compact subsets of P.

. Fﬁkdvstab . o . : e .
Proposition [I.3 Teduces the question of diffusive spectral stability and nonlinea. stability — in the sense
s:conditions vsoline and
[.1 il i D to th

defined in Section [I.T.T — of tThe near-KdV profiles constructed in Proposition . e verification of
the structural condition (A) and the evaluation of the function Ind(k). Note condition (A) is concerned
only with the spectru Q£2the linearized KdV operator about the limiting KdV profile vg; its validity is
discussed in detail in 714, Section 1]. Further, note that due to the triple eigenvalue of the KdV
linearized operator at the origin, the fact that Ind(k) i ysyflicient for stability is far from a foregone
conclusion, and this represents the main contribution of %‘N’F{ZB}.

To evaluate Ind(k), using the complete integrability of t g KdV equation to find an explicit parametriza-
tion of the KdV spectrum and eigenfunctions about vy [BD09], one can construct a continuous multi-
valued mapping!?

[_W/XJT/X) xRi> (‘Sa )\0) = §R()\l(év )\0)) eR

that is explicitly computable in terms of Jacobi elliptic functions; see %N%] or %ﬁé@% Appendix A.1].
This mapping may then be analyzed numerically. Numerical investigations of , BJNT13] suggest
stability for limiting periods X = X (k) in an open interval (X,,, Xjs) and instability for X outside
[Xm, Xn], with X,,, = 8.45 and X); ~ 26.1, thus completely classifying stability for 0 < 6 < 1. The
following result of Barker ?Barlél], established by numerical proof using interval arithmetic, gives rigorous

10 . E:kdvsolnexpand . . .
In the sense of Proposition IT. at one can reach arbitrary prescribed regularity.

Heondition (A) is independent of ag, holding for every ag or for none. Likewise, Ind(k) is independent of aq.
12While Ay (&, Ao) is defined above only when Aq is a simple eigenvalue of the limiting linearized KdV operator L¢[vo] , it
possesses an explicit expression in terms of k and an auxiliary Lax spectral parameter that extend this function to points
where simplicity fails. Note in particular that this extension is triple-valued at (0, 0).
7
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validation of these observations for all limiting periods X (k) except for a set near the boundaries of the
domain of existence X (k) € (27, +00) &~ (6.2832, +00) corresponding to the limits k — 0, 1.

Proposition 1.4 (Numerical proof %Barlll]). With kmin = 0.199910210210210 and kyax = 0.999999999997,
corresponding to Xmin =~ 6.284 and Xpnax =~ 48.3, condition (A) holds on [kmin, kmax|.- Moreover, there
are k; € [0.9421,0.9426] and k, € [0.99999838520,0.99999838527], corresponding to X; € [8.43,8.45]
and X, € [26.0573,26.0575], such that P N [kmin, kmax] = (ki,kr) and Ind takes positive values on
[kmina kmax] \ [kh k ]

:blake .

As noted in %?mrlll the limits £k — 0 and £ — 1 not treated in Proposition ] 4, corresponding to Hopf
and homoclinic limits, though inaccessible by the Me&ﬁﬁ%gnethods of [Bar14], should be treatable by
asymptotics relating spectra to those of (unstable FBTHZTI_BJ N*10]) limiting constant and homoclinic
profiles.

1.2. Description of main results. As mentioned previously, the ngect that the KdV-KS equation (Pﬁg’)ﬁ
serves as an amphtude equation for the Shallovs‘({ JWater system ( .:glcj&ethe weakly nonlinear regime
0 < =+F —2< 1 suggests that A4 roposition and Proposition [I[.4 shou ﬁ%ﬁ%‘ﬁﬁ%l counterparts
for the stablhty of roll-waves in (h) To explore this connection, following ?iZN [T, JNRZ14, BJRZ11],
we find it convenient to rewrite the viscous St. Venant equations (h_f) in their equivalent Lagrangian

form:

—2

(1.10) Ot — Oyu =0, Ou-+ 0y (T

2F2> =1—7u® 409, (t720,u),

where 7 := 1/h and x denotes now a Lagrangian marker rather than a physical location Z, satisfying the
relations dt/dz = u(Z,t) and dx/dZ = 7(Z,t). In these coordinates, slope condition (I.4) takes the form

(1.11) 2w, < F2,
Hereafter, we will work exclusively with the formulation (EEI())

Remark 1.5. Though nontrivial, the one-to-one correspondence between periodic waves of the Eulerian
and Lagrangian forms is a well-known fact. A fact that seems to have remained unnoticed until very
recently is that this correspondence extends to the spectral level even in its Floquet-by-Floquet descrip-
tion. In particul l¥vithout loss of generality one may safely study spectral stability in either formulation.
See for instance NR14] for an explicit description of the former correspondence and MR] for the
spectral connection, both in the closely related context of the Euler-Korteweg system.

1.2.1. The weakly unstable limit F — 2%. Our first three results, and the main analytical results of this
paper, comprise a rigorous validation of KdV-KS as a description of roll-wave behavior in the weakly

1 —
unstable limit F' — 2%. Let (79,u0), uo = 70~ /2, be a constant solution of (sw 0), and ¢y := 7, 3/2/2.
Setting 6 = v/ F — 2, we introduce the rescaled dependent and independent variables

5/4 3
0(x — cot 0°t
(1.12) %zwd(fg,a:@4(ug,yz%fg%2 §=—01
v/ 47'0/ v1/2
Our first result concerns existence of small amplitude periodic traveling wave solutions in the limit § — 0.

%J]Porem 1.6 (Existence). There e zsts d> 0 such that there exist periodic traveling wave solutions of
(L.10), in the rescaled coordinates i %) E =Y — ¢s(ap, k)S, that are analytic functions of
0 €R, (ap,k) € Rx (0,1) and § € [0 o) and that in the limit 6 — 07, expand as a 2-parameter family

75(0; a0, k) = —v5(0; ao, k) + 0(6?),
(113) ﬁ5(07 ao, k) = _7:5(07 ao, k) + %(d(am k) - 3T()_165(a‘07 k)%5(97 ao, k))>

&s(ao, k) = o5(ao, k) + O(6?),
8



where § = 6/(2141/2), v:(0:a and os(ag, k) are the small-0 traveling-wave profiles and speeds of
0 dvsOlnex
KdV-KS described in (T.5) an
dao, k) = 24K*(1 = k*)(G(k))" — a0 (3a0 + 4(G(k))*(2K* — 1)) = v§/2 — ogvy + v

dvprof
is a constant of integration in the limiting KdV traveling-wave ODE (see ( NOIn

For brevity, throughout the paper we shall often leave implicit the dependence on (ag, k) or ag.

Rs%qmrk 1.7. As we will see in the analysis below, the weakly unstable limit for the St. Venant equations

(L.10) is a regular perturbation of KAV, rather than a singular serturbation as in the KdV—K% Gage, A o
fact reflected in the stronger regularity conclusions of Theorem [I.6 as compared to Proposition [I.T.

Our next result concer gi‘%lge spectral stability of the small amplitude periodic traveling wave solutions
constructed in Theorem .6 when subject to arbitrary small localized (i.e. integrable) perturbations on
the line.

Theorem 1.8 (Limiting stability conditions). For each k € P there exists a neighborhood €, C (0,1) of
k and do(k) > 0 such that for any (ag, k,d) € R x €, x (0,60(k)) the non-degeneracy and spectral stability
conditions (H1) and (D1)-(D3) hold for (t,u)s(-; a0, k), along with slope condition (I.I1). In particular,
do(+) can be chosen uniformly on compact subsets of P. igd%nversely for each k € (0,1) such that condition
(A) holds but Ind(k) > 0 (where Ind is defined as in (hﬁ, there exists a neighborhood U, C (0,1) of k
and 6o(k) > 0 such that if (ag, k,8) € R x Qi x (0,00(k)) then (7,u)s(-; ao, k) is spectrally unstable.

From Theorem E.n,nelt follows in particular that our roll waves have asymptotic period ~ 6~! and
amplitude ~ §2 in the weakly u stable el}imit F — 2%; that is, this is a long-wave, sm lé—lanrgpliﬁua%%s
limit. Likewise, u; ~ &% so that ?hﬁTbj!Tl%automatically satisfied for 6 < 1. In Theorems 1.6 and I.8,
rescaling period and amplitude to order one, we find that in this regime existence and stability are indeed
well-described by KdV-KS — KdV: to zeroth opder by KdV, and to first correction by KdV-KS.

Combining Theorem [I.8 with Proposition [[.4, and untangling coordinate changes, we obtain the fol-
lowing essentially complete description of stability of viscous St. Venant roll-waves in the limit F — 27T,

c:stabclass| Corollary 1.9 (Limiting stability region)l. For 0 =/ F — 2 sufficiently small, uniformly for 6 X on com-

pact sets, periodic traveling waves of (sW 0) are stable for (Lagrangian) periods X € %(XI,XT) and
To
unstable for X € vl/2 [Xmin, X;) and X € L/Q(XT,Xmm} where Xmin, X, Xy, Xmax are as in Proposi-

:blake % Tg s

tion Bmparticular, Xmin & 6.284, X; ~ 8.44, X, ~ 26.1, and Xnax ~ 48.3.

1.2.2. Large-Froude number limit F — 400. We complement the above weakly nonlinear analysis by
continuing into the large amplitude regime, beginning with a study of the distinguished large-Froude
number limit ' — 4o00. The description of this limit requires a choice of scaling in the parameters
indexing the family of waves. To this end, we first emphasize that a suitable parametrization, available
for the full range of Froude numbers, is given by (¢, X), where ¢ := —c7 — @ is a constant of integration
in the asso%i:atglg traveling-wave ODE, corresponding to total outflow, and X is the period. As discussed
in Section B.1T below, the associated two-parameter family of possible scalings may be reduced by the
requirements that (i) the limiting system be nontrivial, and (ii) the limit be a regular perturbation, to a
one-parameter family indexed by o > —2, given explicitly via

(1.14) T=aF% wu=bF "% (= F 1732 X =X,F/?%M g =g F 2

where a,b : R — R and ¢g, Xo, qo are real constants. Note, from the relation X = 1/k between period
and wave number k, that we have also k = koF/2152/4,

Under this rescaling, moving to the co-moving frame (z,t) — (k(z — ct),t), we find that X-periodic
traveling wave solutions of (II.10) correspond to Xo-periodic solutions of the rescaled profile equation

(1.15) a’ = (—az/Cngl/)(kEQa,F_3/2_3a/4(C% —1/a®) — 1+ a(qo — coF ~'a)* — 2cokiv(a’)? /a?),

intro_infty

S:per
where b is recovered from a via the identity b = —qo — coF' ~'a; see Section t3[ below for details. Noting
that the behavior of F~3/273¢/4 45 F' — oo depends on whether & = —2 or @ > —2, one finds two

9



different limiting profile equations in the limit /' — oco: a (disguised13) Hamiltonian equation supporting

a selection I:ille(%iple, when a > —2, and a non-Hamiltonian equation in the boundary case a = —2;
see Section %[ below. Further, by elementary phase plane analysis when o > —2 or direct numerical
investigation when o = —2, periodic solutions of the limiting profile equations are seen to exist as 2-

parameter families parametrized by the period X and the discharge rage go. Noting that, by design, the
rescaled profile equation (T'ILFE% is a regular perturbation of the appropriate limiting profile equation for
all a > —2, we readily obtain the following asymptotic description

Theore n 1.10. For sufficiently large F', generically, Xo-periodic profiles of (ﬁ'?fg;), obtained under the
scaling (jln_ﬁfﬁ emerge for each a > —2 Ifg m Xo-periodic solutions of the appropriate limiting profile
equation obtained by taking F — oo in (. and, when o = —2, satisfying a suitable selection principle.

Next, we study the spectral stability of a pair of fixed periodic profiles (@, b) constructed above. One
may readily check that, under the further rescaling F'b = b and F 1/24a/4) = A, the linearized spectral
problems around such a periodic profile (a, b) is given by

Aa — Cok‘oal - koi), =0

pecF->infty| (1.16) F—3/2=3a/4 (AB — cokob’ — ko(a/aS)’) = —2Ftabb — b*a + vk (V'a? + 2cod’a/a’),
where (a,b) denotes the perturbation of the underlying state (@, b). The limiting spectral problems ob-
tained by taking F' — oo again depend on whether & = —2 or o > —2. In particular, we note the spectral
problem is Hamiltonian, and hence possesses a naturg:lsfoel}:%—_fg)}gf mmetry about the real- and imaginary-
axes, when « > —2; see 3.1 below for details. Since (W by design, a regular perturbation of the
appropriate limiting spectral problems for all « > —2 we obtain by standard perturbation methods (e.g.,

the spectral/Evans function convergence results of [PZ04]) the following sufficient instability condition.

. scales rpro .
Corollary 1.11. For all « > —2, under the rescaling (II.14), the profiles of (I.I5§ cogtyf{gz?gfas F— o

to solutions of the appropriate limiting profile equation, as described in Theorem [1.10 are spectrally
unstable if the appropriate limiting spectral problem about the limiting profiles admit L*(R)-spectrum in
A with positive real part.

As clearly discussed in Section Eﬁor «a > —2 the limiting profile equation, associated selection
principle, and limiting spectral problem are independent of the value of a. Thus, the above instability
criterion for F' — 400 can be determined by the study of just two model equations: one for a = —2
and one for any other fixed a > —2. Both regimes include particularly physically interesting choices
since @ = 0 corresponds to holding the outflow ¢ constant as F — 99 un\g%%le a = —2 corresponds to
holding the Eulerian period Z(Xp) constant as F' — oo, In Section mnvestigate numerically the
stability of the limiting spectral problems in both the cases & = —2 and o« = 0. This numerical study
indicates that, in both these cases, all perioﬁi:cl lsncl)slg;c%ons of the appropriate limiting profile equations are
spectrally unstable and hence, by s%ollary 1T, That spectrally stable periodic traveling wave soluti 0s  ison
of the viscous St. Venant system (I.I0) do not exist for sufficiently large Froude numbers; see Figure 6.

Numerical Observation 1. For both o > —2 and o = —2, the limiting eigenvalue equations have

strictly unstable spectra, hence converging profiles are spectrally unstable for F sufficiently large.
ermediate_F . . . . . . mumerical:intermediate .

1.2.3. Intermediate F'. We complete our stability investigation in Section B.3 by carrying out a numerical
study for ' bounded away from the %i%iuinguished values 2 and +oo of the L?(R)-spectrum of the linearized
operator obtained from linearizing (I.10) about a given periodic traveling wave solution. For F' relatively
small (2 < F < 4), we find, unsurprisingly, a smooth continuation of the pic o 7fé>r F — 27, featuring
a single band of stable periods between two concave upward curves; see Fig. &I :c). However, continuing
into the large-but-not-infinite regime (2.5 < F' < 100), we find considerable additional structure beyond
that described in Numerical Observation 1.

B31ndeed, the profile equation in this case is Hamiltonian in the unknown h = i
14 . . o o 1_a _ X _ scales
Here, the Eulerian scaling relation Z = E¢F~ 2~ 4 follows by Z = fo 7(z)dz, (T.14), and convergence of the profile a.
10



:discussion

FIGURE 3. In (a) and (b) we plot a numerical sampling of the (unstable) spectrum cor-
responding to the F' — oo limiting spectral problems for the cases @« = —2 and o > —2,
respectively, for a representative periodic stationary solution of the appropriate limiting
profile equation.

Namely, for o € [—2,0] we see that the stability region is enclosed in a lens-shaped region between
two smooth concave upward curves corresponding to the lower stability boundary and an upper high-
frequency instability boundary, pinching off at a special value g*g %)eafter which, consistent with Numerical
Observation 1, stable roll waves no longer exist; see Figure A{a) for the case @« = —2. Examining these
curves further for different values of «, Ef%eﬁ?%d that they obey a remarkably simple power-law description
in terms of F, ¢, a, and X; see Figure or an example log-log plot in the case a = —2. The general
description of this power-law behavior is provided by the following.

Numerical Observation 2. Both lower and upper stability boundaries appear for F > 1 to be
governed by universal power laws c; log F'+c3 log g+c3 log % =d, independent of parameters —2 < a < 0,
v > 0, where for the lower boundary, c; = 0.692, co = —3.46, c3 = 6ﬁmd d = 0.3, and for the upper
boundary, c; = 0.791, co = —1.73, c3 = 1, and d = 6.22: see Figure mues a > 0 were not computed.

Together with the small-F description of Theorem i.8, these observations give an, Weessentially complete
description of stability of periodic roll wave solutions of the St. Venant equations (I.T), for —2 < a < 0.

Stability Boundaries Stability Boundaries Stability Boundaries
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GURE 4. Lower and upper stability boundaries for a = —2, v = 0.1, and, motivated by
. Solid dots show numerically observed boundarles Pale dashes

, scaling ¢ = 0.4F 2

1nd1(:ate approximating curves given by (a) (upper) X = e%087F188 and (lower) X =
e~ 297283 (b) (upper) log(X) = 1.881og(F) + 0.087 and (lower) log(X) = 2.83log(F) —
2.97. Pale dotted curves (Green in color plates) indicate theoretical boundaries as F' — 2.
(¢) Small- to large-F' transition.

1.3. Discussion and open problems. There have been a number of numerical and analytical studies
of viscous roll waves in certain small- arnphtu %1%tébﬁ%p%cpéﬁr5f%£}z’l ﬁ&dVBKS equations governing
formally the weakly unstable limit F' — 2 ES I'S6, CD02, CDK93, BNJ5, E]MR93 PSU07, BJNT13,
JNRZ15, Barl4]. However, to our knowledge, the present study represents the first systematic investi-
gation of the stability of arbitrary amplitude roll wave solutions of the viscous St. Venant equations for

inclined thin film flow.
11
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(f) 0 50 100 150 200
X

F1cURE 5. Convergence to Dressler waves: We plot 7(x) with pale solid curves and 7/ (z)
with dark dashed curves (green and blue respectively in color plates). Here a = —2,
v=01,¢=04F2 and (a) F =5, X =~ 6.25, (b) F = 10, X ~ 33.3, (c) F = 15,
X ~ 107, (d) F =5, X = 20.8, () F =10, X =~ 83.3, (f) F =15, X ~ 205.

Our main mathematical contribution is the rigorous validation of the formal KdV-KS — KdV limit
as a description E%bﬁp%ﬁh% in the small Froude number/weakly unstable limit F' — 2. This, together
with the works ) 5, JNRZ15, Barl4] on KdV-KS—KdV, gives a complete classification of
existence and stability of viscous St. Venant roll waves in the weakly unstable regime. We note again that
KS-KdV—KdV is a canonical weakly unstable limit for the type of long-wave instabilities arising in thin
film flow, in the same way that the (real and complex) Ginzburg-Landau equations are canonical models
for finite-wavelength “Turing-type” instabilities. However, its analysis, based on singular perturbations
of periodic KdV solutions, is essentj llpfzgﬂé'gferent from that of the finite-wavelength case based on regular
perturbation of constant solutions %Ileg?a, Mie97b, Sch96].

From a practical point of view, the main point is perhaps the numerically-obtained description of
behavior in the passage from small-amplitude to large-amplitude behavior. In particular, the universal
scaling law of Numerical Observation 2 gives an unexpected global, simple-to-apply description of stability

£ig30t

that seems potentially of use in biological and engineering applications, for which the St. Venant equatiowf. islands

appear to be the preferred ones in current use. (Compare with the very complicated behavior in Fig.
as 0 is varied away from the small-§ limit.) This adds new insight beyond the qualitative picture afforded
by the canonical KAV-KS—KdV limit. In particular, our numerical results indicate a sharp transition
at F' =~ 2.3 from the quantitative predictions of the small-amplitude theory to the quite different large-F'
prediction of ’Eéuglrelrigra& phég&%ig&qg. As hydraulic engineering applications typically involve values
2.5 < F < 20 [Jef2b, Bro6Y, Bro70, AeM91, RG12, RG13, FSMAO03], this distinction appears physically
quite relevant.

A very interesting open problem, both from the mathematical and engineeri P&nt of view, is to
rigorously verify this numerically-observed rule of thumb. As noted above (see Fig. #); the upper and lower
sta Sitlzi;cyegooundaries described in Numerical Observation 2 obey different scalings from those prescribed
in (T.12), as F — oo, with period growing faster than X ~ F~1/2-5a/4 by a factor F1/2-c1tole2/2+5/4)
that is > 1 for a < a4 ~ 1.54: in particular, for the two main physical values of interest « = —2 and
a = 0, corresponding to constant (Eulerian) period and constant inflow, respectively. Indeed, given the
large values of F' to which the stability region extends, this may be deduced by Numerical Observation 1,
which implies that all such waves of period O(F~1/2-5%/4) are necessarily unstable for F > 1.

An important consequence is that, rescaling viscosity v so that the resulting period Xv after standard
invariant scaling remains constant, we find that v — 0. Hence, the limiting behavier ggbstable waves is
described by the joint inviscid, large-Froude number limit v — 0, F — 4o00. Figure b,gdeipicting periodic

profiles at the upper and lower stability boundaries for values F' = 5, 10, 15, clearly indicate convergence
12



as F' increases to inviscid Dressler Waves%g%)relm], alternating smooth portions and shock discontinuities.
This agrees with recent observations of [BL05] that large-amplitude roll waves are experimentally well-
predicted by a simplified, asymptotic version of the inviscid theory. We conjecture that our lower (low-
frequency) stability boundary, corresponding tg loss of hyperbolicity of associated Whitham equations,
agrees with the inviscid threshold suggested by [Nob06, Theorem 1.2],'® while the upper (high-frequency)
stability boundary, corresponding to appearance of unstab spectra far from the origin, arises through a
homoclinic, or “large-X,” limit similar to that studied in [Gar97, SS01] for reaction diffusion, KdV and
related equations.

We note that both analysis and ggumerics are complicated in the large-X limit by the appearance,
differently from the case treated in [SS01] of essential spectra through the origin of the limiting solitary
wave profile at X = 400, along with the usual zero eigenvalue imposed by translational invariance.
Whereas point spectra of a solitary wave are approximated as X — 400 by individual loops of Floquet
spectra, curves of continuous spectra are “tiled” by arcs of length ~ X1 4 é%%d(iang to the plethora of
zero-eigenvalues (marked as pale dots, red in color plates) visible in Fig. %%EF?H% The large number
of roots as X — oo leads to numerical difficulty for both Hill’s method and numerical Evans function
techniques, making the resolution of the stability region an extremely delicatse: computation, requiring 40
days on IU’s 370-node Quarry supercomputer cluster to complete (Appendix [C). e asymptotic analysis
of this region is thus of considerable practical as well as theoretical interest.

Another very interesting open questio o1k s‘rﬂe elarge—F regime is nonlinear stability of spectrally stable
wave, in the absence of slope condition ?17[)7)%2mi$ < F72, where 7 den the background profile.
This condition was used in two ways in the nonlinear stability analysis of [JZN11]: first, to carry out
high-frequency resolvent estimates used to obtain linearized stability estimates, and second, to carry out
“nonlinear d ing” type estimates used to close the nonlinear iteration yielding nonlinear modulational
stability. In N11], both were carried out by closely-related energy estimates. However, in the linear
case, applying more delicate linear ODE techniques like, those of Section mne finds that the needed
high-frequency resolvent bounds require not that (hﬁ%ﬁold pointwise but only on average. A Qs
periodic, the resulting averaged condition is 0 < F~2, hence always sat‘gﬁgs o éI‘hus, condition %TT;&
seems superfluous for linearized stability. This strongly suggests that (T.1 I% may be dropped in the
nonlinear analysis as well, either by a pseudodifferential analysis paralleling that of the linea gase, or by
an energy estimate with strategically-chosen (periodic) exponential weight analogously as inﬁ%ZumO?] for
viscous shocks.

Finally, recall that, just as the KdV-KS—KdV limit is derived formally from the viscous St. Venant
equations in the weakly unstable limit, the viscous St. Venant equations are derived formally from
the more fundamental free-boundary Navier—Stokes equations in the shallow water limit. Alternatively,
the KdV-KS—KdV limit may be derived directly from the Navier—Stokes equations in a formal weakly
unstable/shallow water limit. Rigorous verification of this formal limit, directly from the free-boundary
Navier—Stokes equations, is perhaps the fundamental open problem in the theory.

s:existence
1.4. Plan of the paper. In Section bWaH the formal derivation of KdV-KS from the viscous St.
Venant system and establish Theorem Fﬁﬁoncerning the existence of small amplitude roll-waves. These
calculations will serve as a guideline for the subsequent analysis: indeed, we wj é?llow the general s rategy
for the proof of spectral stability for KdV-KS periodic waves presented in Z15]. In Section 2.2, we
begin studying the stability of these small amplitude roll-waves by computing a priori estimates on possible
unstable eigenvalues for their associated linearized (Bloch) operators: energy estimates provide natural
O(1) bounds (as 6 = vV F —2 — 0) whereas an approximate diagonalization process is needed to obtain
the sharper bound O(8%). At this stage, we recover, after a suitable rescaling and up to some negligible
terms, tlg‘(;a 1??%%“;%15 Pol;loblem associated t, . glV—KS obtained after the Fenichel’s transformations. In
Section bBW%he—nﬁ)llow the proof in Z15] to complete the spectral stability analysis: for any
fixed non-zero Bloch number, possible unstable eigenvalues \(§) for the linearized St. Venant system as
§ — 0% are expanded as A(6;&, \g) = 6% Ao + 64A1(€, Xo) + O(8°), where \g € iR is an explicit eigenvalue

5For fixed 4 < F? < 90, this states that waves are stable for fixed velocity/period and inclination angle 6 sufficiently
small: equivalently (by rescaling), for fixed inclination angle and period X sufficiently large.
13



s:existence

associated with the linearized (Bloch) operator for the KdV equation and the corrector A1 (&, \o) is ezactly
the corrector thfqgcziln the analogous study oés the is,;cability of KdV-KS wavetrains in the singular limit
§ — 0%: see [Barl4, JNRZ15] and Section above. In particular, there it was prove mgtelilirough
numerical evaluation of integrals of certain elliptic functions) that Ind(k) < 0, as defined in (IB—.Q)_for all
k € P corresponding to periods X = X (k) in an open interval (X,,,, X3s) with X,,, ~ 8.44 and X s ~ 26.1.
On the other hand, in the regime 0 < |A|/63+|¢] < 1 a further expansion of the Evans function j pegded.
There, we show that modulo a rescaling of A by §° this expansion is exactly ﬁhflone derived in 715]
for the singular KdV limit of the KdV-KS equation. From the results of Z15], this concludes the
proof ofsertllgm description of spectral stability in the small-Froude nu%%iimit F — 27, Finally, in
Section Wcarry out a numerical analysis similar to the one in 13] where for the KdV-KS
equation the full set of model parameters was explored: here we consider the influence of 2 < F' < 0o on
the range of stability of periodic waves, as parametrized by period X and discharge rate q.

Authors Note: Since the completion of our analysis, it has been shown that the technical slope condi-
tion (IT. may indeed be dropped, as an assumption to establish the nonlinear modulational stability of
diffusively stable roll-waves; see [RZ].

2. EXISTENCE AND STABILITY OF ROLL-WAVES IN THE LiMIiT F — 2%

In this section, we rigorously analyze in the weakly unstable limit F* — 27 the spectral stability of
periodic traveling wave solutions of the St. Venant equations (T.10) to small localized (i.e. integrable)
perturbations. We begin by studying the existence of such solutions and determining their asymptotic
expansions. In particular, we sho (;Vh%ts such waves exist and, up to leadi Qreder, are described by
solutions of the KAV-KS equation \ai{FZW the singular limit 6 — 0 (Theorem

2.1. Existence of small-amplit de roll-waves: proof of Thm. 1 The goal of this section is to
establish t SWfesul‘c of Theorem -6, 6. “To begin, notice that traveling wave solutions of the shallow-water
equations (I[.T0) with wave speed c are stationary solutions of the system

—2
(2.1) T — Gx(u + CT) =0, oru + Oy <2F2 — cu) =1 T’LL2 + v, (T_anu)

of PDE’s. In particular, from the first PDE it follows that u = ¢ — ¢7 for some constant of integration
q € R and hence 7 must satisfy the profile ODE

-2
2 -2
(2.2) Oz <2F2 +c 7') =1—7(q— 1)’ — cwd, (T7°0,7).

more, linearizing the profile ODE out 7 = 1 yields, after rearranging, the ODE

—3/2 —3/2
T, 2—c T
my t (¢ =) 7 (%)TZO’ “=TF
0

Considering the eigenvalues of the above linearized equation as being indexed by the parameters ug, c,
and q it is straightforward to check that a Hopf bifurcation occurs when

-3/2
To

F
This verifies that as the Froude number F' crosses through F' = 2 the equilibrium solutions (7,u) =

— 1:t
Clearly then, we have that (7,u) = (1p, {Qel/ 2) is an equilibrium solution of (5‘71 ) fh?rvany 7o > 0. Further-
( a

and F > 2.

c=cs =

(10,79 1 2), corresponding to a parallel flow, becomes Shrllearly unstable through a Hopf bifurcation, and
hence nontrivial periodic traveling wave solutions of (I.10) exist for F' > 2. Moreover, at the bifurcation
point the limiting period of such waves is given by X = %” where w = 73/41/_1/2\/[7 — 2.

With the above preparation in mind, we want to examine the small-amplitude periodic profiles gener-

ated in the weakly-nonlinear limit F' — 27. To this end, we set § = v/F — 2 and notice that by rescaling
14



_ 1
space and time in the KdV-like fashion Y = §(z — cot)/v'/? and S = §3t/v'/2, with ¢o = 7, 3/2/2, (SW 0)
becomes

—2

rav-rescale| (2.3) 82091 — Oy (u+ cor) =0, 830gu + 60y <2FQ

— cou> = yl/? (1 — Tu2) + 12820y (7728yu) .

We now search for small-amplitude solutions of this system of the form (7, u) = (79,7, Y %)+ 62(7, @) with
wave speed cg in the limit F' — 27. The unknowns 7 and @ satisfy the system

62057 — Oy (i + ¢oT) = 0

_ 0 + 027) 72 _
5385u + (561/ <(0252F2) — Cou)

= 012572 (1= (ry + 0%7)(ry 2+ 6%0)%) + 01 /26%0y (0 + 0%F) 20y @)

Defining the new unknown @ = 62 (@ + co7) and inserting @ = —co7 + 0% above yields
OsT —Oyw =0
5 _ T0 + 827 — 72 4 2773627 — 3746472 3\ . 374 B
8305w + 6 1<9y<( 0 )~ 02<52F20 0 + c%—% T—|—2F9252 72 — 2¢00%0

= /2 <<27’0_1/260 — )72 — 273/271) — 6070_23)/3/? + 6%G(7, W, 6))
+ 12152620y y b + v 2620y (F(F,0)0y (6% — coT))
for some smooth functions §,7. Expanding F~2 = i (1 — 52) + O(6*) reduces the above system to
O0sT — Oyw =0
T 3

o ~2 -3/2 ~ 52 5
4753 * 87’0 g’ To W f(T )>

3
— 2 2 —21/2~— 8yy7+5g(7'w5)
47‘8 27 7/2

+ 12752520y v + y1/252ay (7(7,8)dy (6% — coT))

53051 + 60y (

for some smooth function f. Rescaling the independent and dependent variables via
(Y, S, 7, 0) s (T§/4Y, Lrtg gty 12712 ) ,

we arrive at the rescaled system

O0sT — Oyw =0

LI W
e:w_reduced | (2.4) 87’01/41/1/2 st 27.3/4V1/2 Y7

= %%2 — b — Byy T + 6%g(F,,0) + %(528)/)/@ + 6%y (r(7,0)0y (6% — coF))

72—+ 82 f (7, 5))

N =

for some smooth functions f, g, and r. ]

We now search for periodic traveling waves of the form (7,w)(Y — é&S) in the rescaled system (BW
Changing to the moving coordinate frame (Y — &S, 5), in which the S-derivative becomes zero, and
integrating the first equation with respect to the new spatial variable Y — ¢ 5. We e%%geghat w={q—cT
for some constant ¢. Substituting this identity into the second equation in (;.45, also expressed in the

15
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moving coordinate frame (Y — ¢S, 5), gives
_ 8 ey + <(1 LOF 4 LRy 82 5)>/
87'&/41/1/2 27&/4u1/2 2 ’
=—q+ %%2 + &7 + 6°G(7,8) — (1 + 6°B(7,0))7")’

for some smooth functions G and B. Next, introducing the near-identity change of dependent variables

(2.5) T=- <% + 52/ B(x,é)dx)
0
gives, finally, the reduced, nondimensionalized profile equation

1. . - - 1\ s s < J
"oSa2 s = _ 7?2 2 / = —
(2.6) T" + 2T T —g J ((c—i— T 2T ) +6*m(T,T7,0), 0: 27-01/41/1/2

for some smooth functigp m. B
It is well known (seej%D(D] for instance) that the limiting 6 = 0 profile equation

1
(2.7) T + 5TO2 —¢To=4g

selects for a given (¢, q), up to translation, a one-parameter subfamily of the cnoidal waves of the KdV
equation u; + uuy + Uze, = 0, which are given given given explicitly as a three-parameter family by

To(z; a0, k, k) = ag+ 12k*k%* cn® (kz, k),
where cn(+, k) is the Jacobi elliptic cosine function with elliptic modulus k& € (0,1), x > 0 is a scaling

parameter, and ag is an arbitrary real constant related to the Galilean invariance of the KdV equation,
with the parameters (ag, k, k) being constrained by (¢, ¢) through the relations

¢ = ag+4r% (2K - 1),
q = 24k*(1 — k*)k"* — ao (Rao + 4k* (2k* — 1)).
Note that these cnoidal profiles are 2K (k)/x periodic, where K (k) is the complete elliptic integral of the
first kind.
:red:f
Now, noting that (E% ; “cat be written as
1/1,- 1o €- N\ S
=TV 4+ T3 - =TT ) =T (- e+ 1)T — =T?
(g - 51 - E+ T - L
H
standard arguments in the study of regular perturbations of planar Hamiltonian systems (see, e.g., }'FGHQO,

Chapter 4]) imply that, among the above-mentioned one-dimensional family of KdV cnoidal waves Ty,
only those satisfying

2K (k)/k 1 /
(2.8) / T ((6 + 1T — 2T02) dz =0
0

~ eq:red:f
can %)eri%i&%%nfor 0<d<1into a family of periodic solutions of (b%)rm that, further, simple zeros of
(2. o inde ed :C%I&‘:cifnue for small ¢ into a unique, up to translations, three-parameter family of periodic
solutions of (% eis:, g%r: ieach fixed 0 < § < 1 we find, up to translations, a two-parameter family of
periodic solutions of (2%; fﬁeps%a elggig)rzllrametrized by ag and k. The observation that, in the present
case, the selection principle (Emoﬁ_det T inesla unique wave ‘E z%trigfa simple zero, follows directly

/

+om(T, T/,S)) ,

nexpan r:selection

from the proof of Proposition [[.T (see Remark [[.2) since equation (2.7) implies
2K (k) /k 1 / 2K (k) /k / 2K (k) /K
/ T ((&+ DTy — 2T02> dr = / Ty (To+ 1Y) do = —/ To (Ty + Ty") de,
0 0 0

in agreement with the KdV-KS case. This shows that the profile expansion agrees to order O(d) with the
KdV-KS expansion. Indeed, further computations show that the expansion of the profile coincides with
16
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the KdV-KS expansion up to order 0(52). To complete the proof of Theorem 1.6 we need only observe
that, instead of fixing the speed as above and letting the period vary, one may alternatively fix the period
and vary the velocity.

Remark 2.1. Viewed from a standard dynamical systems point of view, the I — 27 limit may be recog-
nized as a Bogdanev—Takens, or saddle-node bifurcation; see, e.g é:he corresponding bifurcation analysis
carried out for an artificial viscosity version of Saint Venant in }%TICES?]. The unfolding of a Bogdanev—

kens point proceeds, similarly as above, by rescaling/reduction to a perturbed Hamiltonian system
%HQO, Section 7.3].

2.2. Estimate on possible unstable eigenvalues. Next, we turn to analyzing the spectral stability
(tol g%llged perturbations)!® of the asymptotic profiles of the St. Venant equation constructed in Theo-

rem [1.6. To begin, let (75, u5)(x — Cst) denote a periodic traveling wave solution of the viscous St. Venant
equation (I.10), as given by heorem II.6 for d = VF—2 € (0,60). More explicitly, in terms of the
expressions given in Theorem [I.6, The periodic profiles are
5/4 5/4
_ or - [Ty O _ oun~ [ To O

(29) B0) = o + P ( v 9) C ( i72 9)
and the period X;, wave speed ¢s, and constant of integration gs = s + €575 are expressible via

V1/2 52 52
(2.10) Xs = X, Cs = ¢+ ——=Cs, qs = ug+ CsT0+ —=¢,

705/4(5 473/2 12701/2

_ swl
with 79, ug constant, ¢ = 7 3/Q/F, and 6 = x — ¢st. Linearizing (hO) about (73, 4s) in the co-moving
coordinate frame!” (z — ét,t) leads to the linear evolution system

=3
(211) 07— Op(u+er) =0, Owu— 0y <cu - <TFQ - 2r3u’> r) = 0T — 207 + v0, (T 20,u)

governing the perturbation (7,u) of (7,u). Seeking time-exponentially dependent modes leads to the
spectral problem

(u+er) =,

3 3 /
(2.12) v(F ) = (A + 2a7)u — <<TFQ — 2%‘311’) '+ Eu') + <a2 — (TF2 — 2%‘312’) > T

where primes denote differentiation with respect to z. In particula .. Lotice that (Ekf%} is an ODE
.previous
spectral problem with Xs-periodic coefficie its; AS) described in Sectionﬁlff;aboTe, Floquet theory implies
that the L?(R) spectrum associated with (2. 1s comprised entirely of esse ;cizea% spectrum and can be
smoothly parametrized by the discrete eigenvalues of the spectral problem (2. considered with the
quasi-periodic boundary conditions (7,u)(z + X5) = €*(7,u)(z) for some value of the Bloch parameter
¢ € [-m/Xs,m/Xs). The underlying periodic solution (7, u) is said to be (diffusively) spectrally stable
provided conditions (D1)-(D3) introduced in the introduction hold. Reciprocally, the solution will be
spectrally unstable if there exists a £ € [—m/Xs, 7w/ X5) such that the associated Bloch operator has an
eigenvalue in the open right half plane.

In this section, we_provide a priori estimates on the possible unstable Bloch eigenvalues of the above
eigenvalue problem (2.12]. As a first step, we carefully examine the hyperbolic-parabolic structure of the
eigenvalue problem and demonstrate that, as I — 27 or, equivalently, as § — 07, the unstable Bloch
eigenvalues of this system are ) %2 Next, we prove a simple consistent splitting result that establishes all
unstable Bloch eigenvalues of (; I 2% converge to zero as § — 0. We can then bootstrap these estimates to
perform a more refined analysis of the eigenvalue problem demonstrating that such unstable eigenvalues

are necessarily O(6%) as § — 0.

16The strongest kind of spectral stability, in the sense that it implies spectral stability to co-periodic perturbations,
subharmonic perturbations, side-band perturbations, etc.
17Henceforth7 we suppress the dependence of 7, @ ¢, and ¢ on §.
17
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ciently large unstable eigenvalues for ( Setting Z := (7,u, 7 2u/)T, and recalling that @ = q — &7

2.2.1. Unstable eigenvalues converge ti zeecrg) as § — 0. We begin by ruhng out the existence of suffi-
. S
for some constant g € R, we first write (bEIZ% as a first order system

(2.13) Z'(x) = A(z,\) Z(x),
where
Ne 0 —72/e
(2.14) Az, \) = 0 0 72 . as=T7 3 (FE 4 2e07).
(q—e7)%—az—a)/c A+27(q—eT) —critar?/ec
v v v

AE 000
Setting B(x,\) := 0 0 72 | and noting that A — B is O(1) as |A| = oo, we expect that

ax/c

evangl v 0

the spectral problem (b '3 is governed by the principal part B(z, A) for |\| sufficiently large. A direct

inspection shows that the eigenvalues of B are given by % and +7 %, so that the eigenvalues of B

have two principal growth rates as |A| — oco. In the following we keep track of both of these spectral
scales by a series of carefully chose (’J%Qrdinate transformations preserving periodicity; for details of these
transformations, see Section 4.1 of Z11]. cpect

With the above preliminaries, we begin by verifying that the unstable spectra for the system (}‘ZPTZ’) are
O(1) for ¢ sufficiently small. Throughout, we use the notation ||u||? = fOX‘S |u(z)|?dz. Note that although
we focus on uniformity in ¢ in the forthcoming estimates of the unstable spectra, the norms || - || do
depend on ¢ through the period Xj.

Le ma 2.2. Let (7s,us) be a family of periodic traveling wave solution of hO defined as in Theo-
rem For all § = VE —2 € (0,60) for some 6y > 0 sufficiently small. Then, there exist constants
Ro,n >0 and 0 < 01 < (50 such that, for all 6 € (0,61), the spectral problem (2. has no L*°(R)
eigenvalues with R(A\) > —n and |A| > Ry.

Proof. Suppose that A is an L>°(R) eigenvalue for the spectral problem (EEf%} and let (7,u) be a cor-
responding eigenfunction satisfying (u, 7,7 )(X(;) = e®(u, 7,7 N(Q) fqr some & € [-m/X5, 7/ X5). Ay

—2u)T allows us to yyri te (X as the first order system (b.lSi,
(g 4. B

described above, setting Z := (7,u, 7 “u
where the coefficient matrix A(z, )\) is given Dﬁ)gicitly in y performing a series of Xgs-periodic
change of variables, carried out in detail in }BTTRZH, Section 4.1], we find there exists a Xj-periodic

change of variables W (-) = P(-; \,0)Z(-) that transforms the above spectral problem into
(2.15) W'(z) = (Dx + N)(z, )W (),

supplemented with the boundary condition W (Xs) = € W (0), where the matrices Dy, N are defined as

(2.16) Dy(-,\) = diag (A + 6o + \f f) CTVQ,

Amatri
@ as in (}‘ZIFaIZIi,lxand N = NSH %gig ) with Np p a 2 x 2 matrix. Here, N(-,\) is an Xj-periodic

matrix and, moreover, the individual blocks of the matrix N(-, \) expand as
Npp(,A) = Npp+ /\_%N]lD,D +AT'ND

(2.17) Npu(nA) = N§y+A"2N}b
Nup(,A) = NI%,D+)‘_%N11{,D+)‘71N12{,D+)‘_%N§LD ;

. j . . . - . . . @ﬂ
with |N{ .| bounded uniformly in 6 < 1. Explicit formulae for N; lgl and 0, are given in Appendix [A.
18
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Now, a crucial observation is that, by Theorem 1.6, 6 fogether with the scalings (b 9)— E%.I(H, we have

S1/2
lim 6 = 9 >
6—1>r(r)l+ o(@) 2v -

It follows that 6y is strictly positive and uniformly bounded away from zero, for all § > 0 sufficiently
small. Thus, there exists 0,01 > 0 sufﬁciently small and Ry > 0 sufficiently large such that if |A\| > Ry and
R(A) > —n, then the quantity §R( + 6y + ) is strictly positive and bounded away from zero, uniformly

in § for 0 < § < d;. Likewise, by choosing §; smaller if necessary, the quantity |A|*/ 2%(%\/5) may be

taken to be strictly positive and bounded away from 0, uniformly in § in the same set of parameters.
Finally, under the same conditions, taking Ry possibly larger and decomposing

W= Wy, Wp, Wp )T,

observing that |Wg|, |Wp 4| and |Wp _| are Xs-periodic functions, it follows by standard energy esti-
mates tatk l!%the real part of the complex L2[0, X;]-inner product of each W; against the Wj-coordinate
of (2. i5) ig I {) using the above-demonstrated coercivity (nonvanishing real part) of the entries of the
leading-order diagonal term D), and rearranging, that there exists a constant C' > 0 independent of Ry
such that, for all 0 < § < d1, R(\) > —n and |A| > Rp, we have

—1/2
Wil < C(1Wp, |l + |Wp,-[) [Wa|| and [Wp 4|2+ [Wp,— | < CRG > (1Wp,+ || + [Wp,- ) [Wall

Thus, |Wh|| < C(|[Wp 4|+ [Wp,—|l) < C'QR_l/zHWHH, yielding a contradiction for Ry sufficiently
large. O

Next, we rescale the spatial variable x as y = 0 x, nptin that since 6X5; = vY/2r -5/4 X, the period
is then mdependent of §. Then the first-order system (E iIBT; can be rewritten as

(2.18) 5Z(5) = (A(N) + 62 Ai(y: A 0)) Z(y)
coupled with the boundary condition Z(§ Xs) = € Z(0) for some & € [~7/5Xs,7/6Xs), where

2)\7'3/2 —2)\7'5’/2 0
Ap(A) = O 0 Tg v
A—2ym 2 0
is constant and A;(-; A, d) is uniformly bounded (for A and § in any compact set). More precisely, for any
d in a compact subset of [0, dy), we have

0N O 0
AN = 0 0 on
o@1) 0(1) o)

By analyzing the eigenvalues of Ag(\), we now show that the possible unstable eigenvalues for (ng%
converge to the origin as § — 0.

Le ma 2.3. Let (T5,U§) be a family of periodic traveling wave solution of ( h_TO ) defined as in Theo-
rem 1.6 Jor all § = VF —2 € (0,00) for some 6y > 0 sufficiently sma ohhen, for every € > 0, there
em’sts a 01 € (0,00) such that for all 6 € (0,61), the spectral problem (ﬁZPTZj has no L*(R) eigenvalues
with R(X) >0 and [N > ¢.

zeqn

lemmal
Proof. By Lemma mis sufficient to consider A on a compact set £ < |A| < Ry, RA > 0, whence (2.13),
d — 0% represents a uniform family of semiclassical limit problems, wit Aoy 4y varying in compact sets.
By standard WKB-type estimates (see, e.g., the “Tracking Lemma” of }(}298 ZH98, PZ04]), these have
no bounded solutions for 0 < § < &g sufficiently small, so long as Ag satisfies consistent splitting, meaning
that its eigenvalues have nowhere-vanishing real parts: equivalently, Ap(\) has no purely imaginary
eigenvalue for ®A > 0 and ¢ < |A] < Rp. Indeed, it is easy to see using convergence as 6 — 0 of
the associated periodic Evans function of Gardnerd}%car%} (following from continuous dependence on
parameters of solutions of ODE), the correspondence between bounded solutions and zeros of the Evans
19



function, and analyticity of the Evans function together with properties of limits of analytic functions,
. . . . . ze n . .
that Ag(A) has a pure imaginary eigenvalue, ie., the § = 0 version of (2.18) has a bounded solution, if
and only if there are bounded solutions of (2.I8) for a sequence A\s — A as § — 0.
To prove the lemma therefore, we establish consistent splitting of Ay for A € A := {A: e < |\, R\ > 0}.
The eigenvalues (\) of the matrix Ag(\) are the solutions of the equation

(2.19) VP =222 = aardu Ty 4+ 203 P sl = .

. .. . charAQ
Suppose that v = i) € Ri is an eigenvalue of Ag(A) for some A € A. From (b.lQ% it follows that A must
be a root of the quadratic equation

(2.20) 22272yt 2 (2 4+ @202 - 2o t) - i — 0.

By Lemma %jnm—gll’)ove, if  is sufficiently large then the roots of (%%%atisfy R(N) <9, else, by the
discussion surrounding the Evans function, above, there would be bounded solutions of %) for RA > 0,
|A| large, a cé mglaz}rbi‘gléagily small, a contradiction. (Alternatively, one may repeat the steps of the proof
of Lemma %.2 for (bﬁ) with 0 = 0.) Increasing 2 then from the supposed value corresponding to
an eigenvalue of Ay, and tracking the corresponding root A ofanZUAf e see that eventually this root
must cross, th ojnaginary axis in moving from A > 0 to RA < 0. Thus, it is su icient $o search for
roots of jTZU%f the form A = i© for some © € R. Substituting this ansatz into (2. and grouping

real and imaginary parts implies that {2 and © satisfy the system of equations © (7 320 _ Q) = 0 and
270/20 = Q x 0?/[02 + 20~ '7)"?], from whicly it gasily follows that @ = © = 0. It follows that for all
Q # 0, the real parts of the roots \;(€) of (2 ave constant signs, so that, for each € > 0, Ag()\)

indeed has consistent splitting in the region A, and the lemma immediately follows.
O

2.2.2. Unstable eigenvalues are O(5%). Next, we bootstrap the estimates of Lemma l(.emand emﬁggénf%
provide a second energy estimate on the reduced “slow”, or KdV, block of the spectral problem ( in
the limit 6 — 0". Notice that this result relies heavily on the fact that the corresponding spe {ral problem .
for the linearized KdY sequation about a cnoidal wave To(; ao, k,G(k)) described in Theorem % 8 has been
explicitly solved in W9, Spe88| using the associated completely integrable structure, and in particular
has been found to be spectrally stable!'® for all k € (0, 1).

Proposi 10n92 4. Let (7'5,U5) be a family of periodic traveling wave solution of ( hO ) defined as in
Theorem or all 6 = F —2¢€(0,d) for some oy > 0 sufficiently small.
hgg there exist positive constants Cy, Co and 61 € (0,0¢) such that for all § € (0,91) the spectral problem
(212) has no L™ (R) eigenvalues with R(A) > C16* or (R(N) > 0 and |\ > C282).

lemmal spec

1lemma2
Proof. By Lemma and Lemma }T?)_fhe possible unstable eigenvalues for the spectral problem (b%?%
converge to the origin as 6 — (%* nTo analyze the behavior of these possible unstable eigenvalues further,
we rescale the unknown Z in (be) to W = (Z1,\*/3Z5, \1/323)T, A1/3 denoting the principle third root,
yielding the system

SW'(y) = (Bo(\) + A7 Bi(y: A 0)) W(y)
with boundary conditions W (8§ X5) = e®W (0) for some & € [~7/6 X5, m/6Xs), where

2)\2/37'3/2 —27'3/2 0

—\l/3 0 0 2 -1
By(A) = A 0 0 TV
A—2y70 2213 0

181 the Hamiltonian sense, meaning the linearization about Ty of the KdV equation has purely imaginary spectrum.
20



and Bj(+; A, ) is uniformly bounded for (A,0) in any compact subset of C x [0,dp). More precisely, for
any J in a compact subset of [0, dp), we have

O()\2/3) O()\Q/?)) 0
B\ =] 0 0 O\
O(\3)  0(1) O(\/3)

To track the most dangerous terms we write the above system as

(221)  oW(y) = (NP My + (20 + 22XV B(y)) My + ARo(A) + 6% Ri(y; 1,6)) W(y),

where
0 -2 0 000
My = 0 0 v ], My=10 0 0],
—270 0 0 010

and the function () is some explicit periodic function expressed in terms of 79, v and asymptotic
KdV profiles, while the ; matrices are uniformly bounded fu nctions of A and § on compact subsets of
C x [0,dp). The goal is to now reduce the first-order problem (;ZTE—to a constant coefficient problem at
a sufficiently high order in A and ¢.

To begin, we diagonalize My by defining the matrices

1 0 0 1 0 0
0 Ko 0 1 1 1 1 1 1 1 0,3/2
Py = 273/2 1 w w?], PO_1 =3 1 w? w 0 =5 0
v K2 2 2 0 7/2
0 O — 27—(,)7/02 1 w w 1 w w 0 0 _ VT%(%

. 2
where Ky = 41/37'3‘/%*1/3 and w = e¥™/3, Setting Y'(-) = Py 'W(-), the system (beYZanl “can be written in
equivalent form

2 ~ ~
(2.22)  0Y'(y) = (W?’ Dy — 3;700 223 + XT3 B(y) Q1 + ARo(N) + 0% Ru(y: A, 5)) Y(y)
where
~Ky 0 0 1 w w?
DO = 0 —K()w Ql = w w2 1 s
0 0 —Kow? w1l w

and R; ire upiformly bounded in (A, §) on compact subsets of C x [0,dp). This effectively diagonalizes
system (2.21) to leading order.
Aiming at reducing (%22%50 a constant-coefficient problem at a higher order, we choose ¢(-) satisfying

2
q'(-) = 55 (B() = (BO)),
where (-) denotes average over one period. Notice that the periodicity of 5(-) implies that ¢ is (§ X;)-

periodic. Now, since the matrix (I3 + 62X~ /3¢(-)Q1) is invertible for 62A~1/3 sufficiently small, for such
parameters we can make the change of variables

U() = L3+ 62" q() Q1) Y (),
with U(-) satisfying the first-order system

2
T _
SU'(y) = (A\/3Dy — igyg(o 2AY3 4+ S2ATY3(B())
FAR (s N 0) + 2 Ri(y: A\, 6) + 3 A723 Ro(y; A, 6)) U(y),

with R; uniformly bounded in (), ) on compact subsets of C x [0, o).
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Next, we diagonalize the system at a higher order. Since Dg has distinct eigenvalues, we may choose a
constant matrix P; such that the commutator [P;, Dy| equals the off-diagonal part of ). Then provided
that A and 62A=2/3 are small enough we may change the unknown to

S() = <13+ i(QAI/?’ + 02N <ﬁ(')>)P1) U()

31/K0
with S(-) satisfying the first-order system
(2.23) §8'(y) = (Dl(/\,é) + ARo(y; M, 0) + 02 Ri(y; A, 6) + &* xlﬁzz(y;A,(S)) S(y)

where Rj are uniformly bounded in (), d) on compact subsets of C x [0,dp) and D;(A,d) is a constant-
coefficient diagonal matrix whose diagonal entries are

2
70

Ho(A,0) = =Ko AP — =0 (2027 + 62 A7V (B()))
0
7’20.12 _
s (N 8) = —Kow A3 — o 2N 4+ 2 XT3 (B()))
2
_ 24,13 ToW 2/3 2,-1/3 )
(A 0) = —Kguw? A e (A2 + 2 ATVE(B()).

In particular, we find

R0 ) = — (Ko 57862 2 50 ) ) - 76 2O
s ) = — (Ko + 578 N2 (30 ) ) — 78 2RO,
Ru-(1.8)) = — (Ko 57857 W2 50 ) Rwas) - o8 m(ﬁff/?l/g)a
so that, when ®()\) > 0 and A and 62 |\|72/3 are sufficiently small,
R(uo(X,8)) < ~CIA?,
R(p+ (X, 6) > {CM;{/? I( ?f SV =0 ,
C (@ + ) i SO <0
R (0, 8)) > {C‘A;i’ sy o )=
C (i + i) it S 20

1 1
Using an energy estimate as in the proof of Lemma b?Zm:eganBO ve, it follows for €,0; > 0 sufficiently small
and R > 0 sufficiently large that for 0 < § < §; system (b?l?)%has no bounded solutions provided that

(2.24) RO 20, A <e, RO+ SOV = Ro*.

In particular, this shows that as § — 0% the unstable eigenvalues satisfy |\| = O(62/%).
Next, we refine the above bognedc Dby using spectral stability of the limiting cnoidal wave. To do so, we
scale unknowns of the system (bETZ) according to

5/4 5/4 3

_ 527 T 0 = §2u T 0 = 0

(2.25) 7(0) = 6°%a ( i 9) , u(f) = 6°%b ( 73 9) ; A= PEVZREY
0

Our goal is to prove that the rescaled system obtained from (E%% has no unstable eigenvalues A with
|A| sufficiently large. To this end, notice that by (2.24) the possible unstable eigenvalues A must satisfy
the estimate

(2.26) R(A) >0, R(A)AM + §[S(A)] AP = 01),
22
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so that, in particular, we already know that A = 0(5_3/ ®). Rewriting the eigenvalue system (2. in
terms of the unknown V(Y) = (6 2(b(Y) +ca(Y)),a(Y),d' (Y)) results in the system

(2.27) VI(Y) = (Agav(Y;A) +ASB+6C(Y)+ R(Y; A, 0)) V(Y)

with!

0 A 0
Agav(5A) = | 0 0 1],
-1 o9—To(-) O

1 0 0 0 1 0 0 0
2’ 12 \o 1 0 200"V 2 \0 T —Tu() —14To(-) — oo

and

0 0 0
R(:;A,0) = 0 0 0 .
O(A8) +0(6%) O(AS8) +0(6%) O(AS?) +0O(6?)
To make use of known results about KdV we rewrite the above spectral problem in a more standard
way by introducing the unknown W (-) = (Va(-), V3(-), =Vi(-) + (60 — To(+)) Va(-))*. This leads to

(2.28) W/(Y) = (Ho(Y;A) + A6 Hy + 6 Hy(Y) + R(Y; A, 6)) W(Y)
with
0 1 0
(2.29) Ho(+A) = 0 o 1],
—A=Ty() o0—=To(-) 0
1 0 0O 1 0 0 0
(230) Hy = —0—— |1 0 0, Hy() = —r— | To()—Ta() —1+Tp(:)—00 O],
2”12 \0 0 0 212 \ ™" g 0 0
and

0 0 0

The leading order “KdV” part may now be changed to a diagonal constant-coefficient matrix through an
explicit periodic Floquet change of variable P(-; A) such that

1 0 0 11 1
P(5A) = (o AL/3 o) ((1 w w2)+O(A2/3)),
0 0 A?3 1 W w
1 11 1 0 0
(3( w? w)+O(A2/3)) (0 A3 0 )
w W 0 0 A2B

Indeed, using that A = O(6-3/5), replacing W with Y (-) = P(-; A)"'W(-) leads to the system
(2.31) Y = (D(A) FAYB5Q + R(-;A,&)) Y

po(A) 0 0 ) 1 1 1
D(A) = 0 p+(A) 0 = 14 19 w? w? W,
0 0 p—(A) 67" 12 \w w w

19We don’t need here the exact form of C' but we specify it for latter use.
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R(+A,5) = (O(A63)+0(62) O(A5%) + 0(5?) O(A53)+O(52)>.
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and R(;A,0) = O(d), where the pup and pt are smooth functions of A. In particular, we know that
when R(A) > 0 we have

R(po(A) 20, R(py(A) <0, R(p-(A) <0,

and
po(A) = AY3(1+0(A73)

pr(d) = APw+0(A7)

po(d) = AP +O(A)

Next, provided that A'/3§ is sufficiently small, which is guaranteed for § su cient small since A =
O(63/%), we can use a near-identity change of variables to diagonalize the system (2. o order O(A?/35),
resulting in the system

Z/(Y) = (Di(A,0) + O 6% + 0()) Z(Y),
where D1 (A, J) is a constant-coefficient diagonal matrix whose diagonal entries are

1
po(A,8) = po(A) + —7——A>?4,

67'01/41/1/2
(A, 6) = pe(A) + —2p235
M+ (A, = M+ 67 1/4 172 )
— % A2/8
,U,_(A,(S) ,u'-‘r(A) + 6 1/4 1/2A 0.

Hence, when R(A) > 0, A is large, and & |A[Y/? is small,

R(po(A,0)) > CIAM3
R(ur(A,0) < —C (RA)A]723 4+ 5]A[P3)
<

R(p—(A,0)) —C (R(A)IA[ + §|AP3),
which, when co ;bminl‘leld with previous exclusions, is sufficient to prove by an energy argument similar to
that in Lemma % 2 above that if §; € (0,0p) is sufficiently small and R > 0 is sufficiently large there are
no eigenvalues of (2.31) when 0 < § < 41 and
R(A) 2
R(A) > AP? > R.

In particular, it follows that any unstable eigenvalue A of the original spectral problem (Epf%} must
satisfy the estimates [\ = O(63) and R(\) = O(6%) as § — 0, by |A| < R3? and R(A) < RS|A]>/? < Rg,

together with the scaling A = ¢§>A, with ¢ > 0 a real constant. O
Propil

2.3. Connection to the KdV-KS index Iproof of Thm. 1 It follows from Proep sition i at,

in order to complete the proof of Theorem it remains to study the eigenvalues of (b}iff? supplemented

with the appropriate Bloch quasi-periodic boundary conditions, of the form A\ = AJ3 w Jlth Alconﬁned

t
to a compai}; supset of C and 0 < § < 1. More precisely, using the rescaling (b 2§eicfrl:)am the proof of

Proposition and setting (o, 8) = (6 2(b+ ¢a), a), we must study the spectral problem

AB—d =0

S(B+7B+B—a) = 7B+E8—a—F"+0(%)f(a,8,8),

for some smooth function f, supplemented with the boundary condition (o, 3, 8')(X) = €*(a, 8, 5)(0)

for some ¢ € [-n/X,7n/X). Here, § = 7 “1/4-1/25 i3 as in Theorem Fhﬁmd the bounds in O(---) are
uniform as A varies on compact subsets of C.
To study the above one-parameter family of eigenvalue problems, parametrized by the Bloch fre-
quency &, we can define a periodic Evans function, a complex analytic function whose zeros, for each
24
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ﬁéer(gsé,af&{_es% grclt;(ggation and algebraic multiplicity with the eigenyalues of the boundary value problem

Yo
(2.32). (’e!‘ ngggé:reﬁq,s évg(figrst recall, from the proof of Propos%t\i’glrll 2.4, that the spectral problem under

scaling may be written as the dynamical system (Eq. ( )
W) = (Ho(Y:A)+ A6 Hy 45 Ha(Y) +0() W(Y)

: -HO le: -H12
for W = (8,8, —a + (00 — Tp) B)T, where Hy, Hy, Hy are given by (E.ZeQV; and (E.g(v);. SImfroducing the
new dependent variables Z = (Wy, Wa, W3 + §((A — T4 — Ty)W1 + (=1 + Ty + 09)Wa2))T, the differential
system becomes

0 1 0\ 0 0 0 )
caled-evans| (2.33) 2’ = 0 0 1| +96 0 0 0 +0(0%) | Z.
—A—Té oo—Tp O Tél—Tll 2T6—T1—|—A To—14 09

~ X . . . . le:rescaled-evans
Let ®(-,A,0) denote the associated 3 x 3 fundamental solution matrix?® associated with (2:33). It is an

easy consequence gfe‘g,hesregularity with respect to parameters of the flow associated with the differential
system (2. af o -éé&bé)_s})segg%%lytic with respect to A € C and §. Moreover, for any fixed (&,0),
eigenvalues A of (2.32) agree in location and algebraic multiplicity with roots of the Evans function

(2.34) Esv (¢, 8) = det (®(X, A,8) - ¢¥1d) ;

see Ff‘GarQES] for details. To complete the proof of Theorem iéSl?swe must study the roots of the function
Esy(+,£,9) on compact subsets of C for all £ € [-7n/X,7/X) and 0 < § < 1.

aine

In order to connect the stability properties of the small amplitude roll-waves described by 1 hﬁgreni F]r,l.b’
. . . . . . . :kdvsolnexXpand
to those of the associated leading order approximating KdV-KS waves given in Proposition I.T, we also

define an Evans function Frqy_gs(A,§,0) for the eigenvalue boundary value problem

tral-KdvV-KS| (2.35) Az+ ((Ts —o0s)2) +2"+6("+2") =0
with (z,2,2",2")(X) = e X (z,2/,2",2")(0). The next result shows that the Evans function Exgy_xs
is faithfully described, to leading order, by the St. Venant Evans function Egy for 0 < < 1.

evansexpand | Proposition 2.5. Uniformly on compact sets of A € C, the Fvans function Exqy_Ks can be erpanded
for0<d <1 as

V-to-KdV-KS| (2.36)

Brcar-ses(0,6:8) = X1+ 00 exp (5 ) (Bav(A. &)+ OGP + I6) + O (1Al + [e)).

NRZ1
Proof. A similar expansion has been obtained for Exqy_gg in El NRZ15, Propositions 3.7 & 4.1]. Our
proof parallels the arguments there but in a slightly more precise way in order to equate leading order
terms with t.hose O.f E:SV to NRZ1 . e:spectral-KdV
The starting point is, as in the proof of EIN RZ15, Propositions 3.7], that the spectral problem (b.Sgi
may be equivalently written, through a series of variables transformations with Jacobian of size 1+ O(9),

as
0 1 0 0 0 0
Z = 0 0 1] +46 0 0 0 Z + 0(6%)g1(Z,w)
—A—Té oo—Tp O Tél—Tll 2T6—T1—|—A To—1+4 o9
w = —jw + 0(8)g2(Z,w)

NRZ1
for some smooth functions g1, gos; see EIN RZ15, Propositions 3.7] for details. To obtain the expected
homogeneity in (A, &) we also use that the above system supports a conservation law

AZy = [(To=o0—1+Tf+A+0(Ty+ ] +T§ — Ty + 00 +1)) Z1

(2.37)

F(To— 00 — 1+ 8(T1 + 2T, + M) Zo) + (=1 = 6(To — 00 — 1)) Z3 + O(82)[Z, w]|

201, particular, this guarantees that ®(0, A, 5) =Id.
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kdvsolnexpand
and that the derivative v} of the profile built in Proposition E’W@Tspecial solution of the system
when A = 0. Elaborating on this, manipulations on lines and columns of t determlnant usually
performed to validate at the spectral level averaged (or “Whitham”) equations er05] then yield that
the Evans function Frqyv_rs(A, &, 5) may be written as

(2.38) Erav—rs(A,€,8) = —X(1+ 0(5)) exp <§> det (M(A,g,S) +M(A, €, 5)) ,
where
N 8 O(|A] + [¢]) 0(1) 0(1)
M(A€,0) = 0 N(A,6) = O(|Al+ [€]) O(1) 0(1) ,
000 1 O(IAI* + [A[lE])  O(Al+[¢])  O(A] + I¢])
and . - - -
O(O*(|Al +1€])) 0(5?) 0(5?) 0(6?)
V(AL £.5) = 0~(52(|A|+!§|)) ) 0(5?) ) 0(6?) 0((52)
(*|AI(JAT+1€D)  O*(IAl +[€]))  O(S*(JAl+1€]) O(6?)
O(3A]) 0(9) 0(d) 0(3)

Again, see {l V]RZ15 Propositions 3.7] for details. o: rescaled—ev o: rescaled-evans
Now, returning to the St. Venant spectral problem (2.33), we Totice that (2.33) also supports a con-

servation law in form (2.37) and, furthermore, the space derivative of the traveling-wave profile provides
a special solution when A = (). Us nglc%égu@tlons completely analogous to those described above for the

KdV-KS spectral problem (E.Bsgeic 1t Tollows that we can write

Esy(A,€,8) = (14 O(6)) det (N(A,g,S) +N(AE, 5)) ,

where N is ezactly the same matrix as above?! and
O (IA] + I€1) 0(5) 0(5)
N(AE8) = | O@*(Al+¢]) 0(5) 0(5)
O(2[AI(JAl +[€])) O (1Al +1€D) OG> (IA] + [€D)
The expansion (%%ﬁﬁ%onvemenﬂy by expanding the determinant det(M + M) in (E%%%& O

FIH :kdvstHRZ1

The proof of Theorem II. how follows immediately from the proof of Propositi Jl;ﬁ in Ei %RZ15] for
the stability of KdV-KS waves in the KdV limit § — 0%. Indeed, the proof in Z15] followed by
studying the renormalized KdV-KS Evans function

Frcar—xs(0,638) = e €X(1+ 0(5)) exp (—f) Exav-xs(A &5,

and using the asymptotic description of Erav_rs(A &€ 0) up to OB2(|A]2 + €]2)) + O(3(|A] + |€])).
E 5 implies th

Since Proposition at
Esv(A,€,0) = Exav-ks(A,€,0) + O (|AP + 1€1)) + O(8°(JA] + [€]))

it follows that the same arguments can be applied without modification to the Evans function Egy (A, &, 5)
For completeness, we briefly sketch the details.

For k € (0,1) such that condition (A) holds, all the non-zero Bloch eigenvalues of the St. Venant
linearized operator admit a smooth expansion in § for 0 < é < 1. In particular, to each pair (&, Ao)
such that Ag € Ri is a non-zero eigenvalue of the KdV Bloch operator L¢[Tp] there is a unique root of

Esy (A€, 5) for 0 < § < 1 that can be expanded in § as
A(05€, Mg) = Ao+ 6M1 (€, Ag) + O(5?)

2INot just in order of magnitude, but by component-wise identification of the coefficients.
26
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where A;(+,-) is the function already involved in definition (W see %‘N‘RZM, Corollary 3.8]. As this
expansion is uniform in (§, Ag) when (&, Ag) varies in a compact set that does not contain (0, 0), it follows
that for any neighborhood U of 0 in the spectral plane the condition k& € P provi g5 when é is sufficiently
small a negative upper bound on the real part of the spectrum in C\ {0}; see 715, Corollary 3.10]
for details.
On the other hand, when § = 0 the origin is an eigenvalue of the KAV Bloch operator £y [To] of algebraic
multiplicity three and ge gfric multiplicity two. To unfold the degeneracy for 0 < & < 1 we directly
Rl%l%/ the arguments in 1% ectlon 4]. By studying the three rlnptotlc regions 0 < § < €
%‘N’RZL% Lemma 4.4], § ~ [£| 715, Lemma 4.6], and 0 < [¢] < 6 715, Lemma 4.7] separately
it follows that the condltlon k € P implies that a set of “subcharacteristic condltlons” hold which, in
turn, are shown to imply that all the roots of Egy(A,£,0), with 0 < [(A,€)] < 1 and 0 < § < 1 all
have negative real parts. More precisely, under these conditions it is shown that the (diffusive) spectral
stability conditions (D1)-(D3) and the non-degeneracy hypothesis (H1) are satisfied when ¢ is Sﬁiﬁ(zgently

small. Fin el.lﬁélweemote as in the ntrqd duction that, by the description of profiles in Theorem slope
condition (i.ZI) (or, equivalently, ( 1s always satlsﬁed This completes the proof of Theorem

3. STABILITY OF LARGE AMPLITUDE ROLL-WAVES

dv-ks
In the previous section, we rigorously justified the KdV-KS equation (T.2Z] as a correct description

for the weak hydrodynamic instability in inclined thin film flow. In particular, in the weakly nonlinear
regime F' — 27 we saw that the KdV-KS equation accurately pr%(élgcts the stability of the associated
small amplitude roll-wave solutions of the shallow-water equations (II.T). We now complement this study
by continuing our analysis into the large amplitude regime, far from the weakly-unstable limit F — 27,
performing a systematic stability analysis for roll-waves with Froude number on the entire range of
existence F' > 2, including the distinguished limit F' — oco. We begin by considering the limit F' — oo,
identifying a one-parameter family of limiting systems approachable by various scaling choices in the
shallow-water equations. We will then numerically study the influence of intermediate Froude numbers
2 < F < oo on the range of stability of periodic waves.

3.1. Scaling as ' — oco. In our F' — oo studies, we nyestigate the stability of periodic traveling wave
solutions of some asymptotic systems obtained from (IT.10) Jia scaling arguments. To begin, performing
the change of variables (z,t) — (Z,t) = (k(z — ct),t) in (I.10) and erasing tildes yields the equivalent
system

-2

-
T —kcOym —kOu=0, Ju—kcOyu+ko, <2F2

) =1 —7u? + vk*0,(1720,u).

To prepare for sending F' — oo above, we first scale the dependent quantities independently via 7 = F7 q,
u=F%b k= F%kyand c = F* ¢y. This transforms the above shallow-water system to

FY 0a — kocg Fortaktac O,a — ko Faquakaxb —
(3.1) Fo b — kocog P Tkt g.b + ko For—2720r g,

= 1 Fort2uqp? 4 pfg Fout2en—207 9 (q=29,b).

. . Lo . swl:profileF->inft
Seeking stationary 1-periodic solutions of (3.2) leads to an E system

— o Fortoey — Py = 0,

N
_9_ a _ _
koci Fortant2ae o/ 4 Ly pow—2-207 <2 ) = 1 — Fort2ougp? _ pkkcq P27 (g7 24/)

1
governing the traveling wave solutions of (EEIO) in the appropriate moving frame. Note that, by its

expression as fOX 7(x)dx, the period in the physical Eulerian variables scales as F'*7~“ under the above
transformations. To balance the terms of the “elliptic-constant” right-hand side above, we choose now
27
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to impose a; + 2a,, = 0 and a, + 2ax — o = 0. This effectively leaves two free parameters, say a = «
and 8 = oy, with o, = —/2 and a. = a — 2. Under this choice, the above profile system now reads

—coFgo‘_wa'—b' = 0,

(32) a,Q /

kocg F3a=38 ¢! 4 g P27 2048 (2> = 1—ab?®— l/kig co (a_2a')' .
The first equation may be integrated to yield b = gg— F 3a-28 co a where qq is a constant of integration.
Substituting this into the second equation above, the rescaled profile system is reduced to the scalar

equation

-2 /
(3.3)  kocg FP* 738 + kg P27 204 <a2> = 1—a(g—F2*Pcya)? — vk co(a2d) .

In order to ensure that the “elliptic part” (a=2a’)’ is not asymptotically negligible as F' — oo, we restrict

ourselves to the parameter regimes where ga <pB<2a+2, >a In particulaémtb:igséggg _>(ilﬁ9%%e

requires a > —2. With the above choices, the full rescaled shallow-water equations (8.1) now read as

FYa — koco F2* P d,a — ko FP=2/20,b = 0,
(3-4) F=20 — koco F** P 0,0+ ko F22049 9, (25

= 1—ab®+ vk} F?-52/29,(a"20,b),
which is a two-parameter family of sgvs&(?%%%,c ﬁ%@%%@?&d by a > —2 and %a <pB<2a+2.
|sw]§i:%%c1> i,lxéizh_grilﬁ%gding F — oo in (B3.4), we balance the first-order terms of the reduced profile equation
(8:2) by requiring 3o — 33 = —2 — 2a + f3, i.e. that 8 = % + 5a /4, effectively reducing our scalings to a
one parameter family indexed by o > —2. In particular, under this choice the full one-parameter family
of rescaled shallow-water systems reads as

FYOa — koo F3/* Y2 9,0 — ko FY/23/49,p = 0,
—2

(3.5) F=28,b — koco F3¢/4129,b  + ko F3/2730/4 5, (GT

= 1—ab®+vk3 F,(a20,b),

and the associated rescaled profile system is equivalent to b = gy — F ' ¢g a, qo constant and

—2\/
(3.6) F3/2—3a/4 (kocg a + ko ((12> ) = 1—a(g—F lega)? —vkdco(a™2d") .

i X |swl:profileF->infty i L. Lo pprofileF->inftyFinal
By the discussion above E% {!sz; the Fulerian period of the periodi¢ profiles satisfying (3.6) scale as
" a/i—1/2 - pprofitef=>inftyFina ) rprof * ) ) )
Fo/ . Notice that (3.6) 1s equivalent to the profile equatign (.15} claimed in the introduction.

As mentioned in the introduction, taking F' — oo in (E%.B) produces glﬁerent limiting profile equations
depending on whether @« = —2 or if & > —2. Next, we discuss both limiting profile equations and the

spectral problems governing the stability of the profiles.

. . . . X |[swl:profileF->infty
3.1.1. Case o = —2. Taking a = —2 in the above discussion corresponds to rescaling (3.2) via

r=F2a, uw=Fb k=kF 2 c¢=cF?

Note that in this casgr‘% (il]gﬂy@lrlil%{lypi%gfd of the profile is held constant as F' — oo. With this choice,
the profile equation (3.6) reads as

_o\/
(3.7) (kocg a’ + ko <(12> ) = 1—a(q—F coa)® —vkgeo (a2a’),

28
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and b = g0 — F~ " ¢y a, qo constant. Linearizing (3.5) with @ = —2 about such an Xy-periodic profile (a, b)

yields the associated rescaled spectral problem
F2\a— koco F%a — ko F7'W = 0
eval2| (3.8) FAb — koco F '3k (a3 a)’
= —ab* —2ab+ vki F (—2ab a +a2t')

to be considered for (a,b) satisfying suitable Bloch boundary conditions. Sending F' — oo above, it
follows that the profile equation is a regular perturbation of the limiting system

—2\/
rofile_crit| (3.9) <k06% a’ + ko <a2) ) = 1—aq —vkicy(a2d),

while the above spectral problem is a regular perturbation of
Aa — ]{(]Coal — koi)/ = 0,

g

eval 3.10 . . .
(3-10) b — kocob! — ko(ala) = —aqd + kiv(a 2t + 2cpalal, a),
— . . rofile_crit . — . ~
where (G0, boo ), necessarily so utions ocfrgES.g %, denote the limiting profiles of (a,b) as F' — oo, and b = F'b.
The limiting profile equation (3.9) is numerically seen to admit periodic orbits existing in a two parameter

family, parametrized by the period Xy and the discge%ge rate gqg. The stability of the%@: E)gglfril]tes may then

be investigated by means of the spectral problem (3.10): this is discussed in Section 3.2 below.

s:size o ] ) profileF->inftyFinal
3.1.2. Case a > —2. When « > —2, it is readily seen that the profile equation (3.6) 1s a regular pertur-

bation of the ODE
ile-hamorig| (3.11) 0 = 1—qla—vkicy(a2d),

which is Hamiltonian in the unknown 1/a. Indeed, denoting h := ¢y 2471 and rescaling space via z =
s/\/ukocoqg, the above ODE reads as
profile-ham| (3.12) 0=1-h"t+n"

where / denotes differentiation with respect to s. This is clearly seen to be Hamiltonian and, upon
integrating, is equivalent to

i 0

1

5 (h/)2,
. . X . rofile-ham

where p is a constant of integration. Elementary phase plane analysis shows that (F% IZ% admits a one-

arameter an{alrl]%ly of periodic orbits parametrized by the constant p. Indeed, for each p > 1 equation
(E.Bi aaml%s a unique (up to spatial translations) periodic solution h,, whose period we denote X,,.

Returning to ft}i% _%%P{:Ll variables then, we see that, choosing kg to satisfy ykgcoquﬁ = 1, the profile
equation (El I & admits a three parameter family of periodic orbits with upg;u@gglil(ggopprametrized by w,

i lﬁ_ieggﬁgflgaﬂxhﬁ necessary condition for such a 1-periodic orbit of (E%l I % to pers1s% as a solution of
(E%G& ifor F>1is th

at the (a-independent) orthogonality condition

1 / o\ /
1
0 = / <) X (kgc% a’ + ko <a> ) dx
0 a 2
be satisfied. Note that this yields a selection principle for the wavespeed via

1 1 1
—1y/ —2y/ -5 "2 -1 —1\\2
1/0(a ) % (a™%)'dx /Oa x (a')*dx /Oa X ((a ))dx

ile-hamquad| (3.13) w=nh—1In(h) +

c%:—f = =

2 /0 1(cfl)' x d'dx /0 Lt (d)2dz /0 1((a*1)’)2dx

. . . . . . . . s:existence

Generically zeros of the above selection function are simple and, in this ca €035, hSa%cotrlgn b.l 1t follows

fron} element.ary. blfurgatlon analyS{s that the Hamiltonian prgﬁle equat.lon. (E I.; admifs atwo-parameter

family of periodic orbits, parametrized by p and gg that persist as periodic orbits of (156) for FF> - th
29




s:numinf

particular, note that for a > —2, the specific value of o does not enter into either the limiting profile
equation nor the selection prin%g}e..r escaleF->inftyFinal
Finally, taking F_— oo in Qj_ o)iswe see that the spectral stability of the 1-periodic traveling wave
. B [swl:rescalet=> ina . .
solutions (@, qo) of (B.5) constructed above are determined via the spectral problem

nfty

Aa — kio i)/ == 0,
0 = —aqi+vkd(2coaa a+a 2ty

where here (a,b) denotes perturbation, A = F'/2)\, and b = Fb. The former system may also be written
as
Aa — k‘o B, = 0,
0 = —aqg+Avkicp(a2a) — vkicy(@?2a)".

Therefore, in this case we investigate the spectral problem

(3.14) 0=nh"a—Ada +a".

for A= (X,)'Aand a(-) = ¢ (@2 a) ((Xu)~'+) where h, and X, are associated to a as described
above. As above, we point out that for a« > —2, the spectral problem governing the spectral stability
of the limiting F' = oo profiles is independent of the value of a. As a consequence, spectral instability
of the limiting periodic traveling wave solut%g&lif: sonstructed. @Lﬁgﬁglimplies spectral instability of the

(a-dependent) large-F profiles of the system (3.5) for any a > —2.

3.2. Numerical investigation as ' — oo. With the above preparations, we report our numerical
results concerning the existence and spectral stability of the profiles introduced in the previous section
for the limiting systems in the F' — oo limit.

In the case a > —2, elementary phase plane analysis indicates that for each h_ € (0, 1) there exists a
unique (up to translations) periodic solution with h(0) = h_. These profiles were numerically computed
for 1000 equally spaced values of h_ in [0.05,0.95] using the Matlab functions bvp5c and bvp6e, with
absolute and relative error tolerances both set to 10~ in the bvp solver. To this end, we utilized a

bisection method to approximate the value Ay > h_ such that hy —log(h4) = p and then approximated

the corresponding period by computing \/if:_*jll(?__;; (b—x+ log'(m))fl/2 dx.

As a first attempt to study the L?(R)-spectrum associated to (e.1 ?We utilized a Galerkin truncation
method known as Hill’s method. For each § € [—7/X,,7/X,), Hill’'s method proceeds by expanding
both the unknown @ as well as the background wave h, in the associated Bloch eigenvalue problem as a
Fourier series, and then truncating all expansions at some finite order to reduce the proble s‘g(go{élnn(liei%,d
for each £ € [-m/X,,7/X,) the eigenvalues of a finite-dimensional matrix; see Appendix [B for more
cclgr‘gaaill:sl.sglor each of the profiles numerically constructed above, unstable spectra were. present; see Figure
%(a‘hmn example. In addition, we verified the existence of unstable spectra of (% numerically
computing winding number for the associated periodic Evans function on a closed contour in the open
right half complex plane verifying ‘ﬁ}:lﬁmglggbwinding number is indeed greater than zero for some Bloch

firs%qugpoc%lél:_@%%)ying Theorem [I.TT, his study suggests that all periodic trayeling wave solutions of
(B.2) are spectrally unstable for F > 1. Note, in our study of spectral problem (%3 iZE via Hill’s method,

we used 41 Fourier modes and 1000 Floquet parame OIS 1o crit
Concerning the case a = —2, the profile equation (3.9) was solved by using the Matlab functions bvpbc

and bvpbe, where we treated cg as a free parameter in the bvp solver and used numerical continuati%%%o
solve the profile as kg was varied. Our numerical investigation of the associated spectral problem (3.10)
covered g € [1.6,2.2] for v = 2 and ¢y € [1.2,2.7] U [0.3,0.45] for v = 0.1 with step size 0.1 in gp and
varying, but smaller, steps in ko in the region where we could. solve profiles numericall)%m{fx%%;rslé e found

CO 1S
that all these waves have unstable spectra; see Figure [6(c) for an example.. In Figure 6, we also plot the
spectrum as determined using the “a = —2” scaling given in Section % .1 ané show that in this scaling

the spectrum is unstable for large F' as well as in the F' = oo eigenvalue problem (3.10). Instability in the
F = oo case was thus confirmed by multiple numerical checks, providing strong evidence of instability.
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FIGURE 6. In (a) and (b) we plot, re éﬁ)e tively for ' = 38 and F' = 100, the spectrum
corresponding to eigenvalue problem ( Wlthla = —2, and in (c) the spectrum corre-
sponding to the limiting spectral problem .10). Here v = 0.1, g9 = 0.4, X = 437.6,
¢ = 84.0, and (a) Xo = 0.303, (b) Xy = 0.044. In (d), we plot a numerlcal sampling ..
(via Hill’s method) of the unstable spectrum corresponding to the spectral problem 3.T4,

ﬁo%ggsi)g_%cai}nng to the case o > —2, for a representative periodic stationary solution of

In conclusion, our numerical calculations strongly indicate S}%&t for I sufficiently large, spectrally stable
periodic traveling wave sol tions of tl%g St. Venant system (I[.10) do not exist. This justifies Numerical
Observation 1 described in T.2.2.

3.3. Numerical investigation for 1n£cermed1ate F. In order to better understand the stability of
periodic traveling wave solutions of (IT.10) away from the distinguished limits F' — 2% and F — oo, we
also carried out a numerical investigation for some mter]greo%lﬁtee Froude numbers.

To solve the profile equation numerically, we expand (2.2) o obtain the profile ODE equation,

_ 2 !
(3.15) o= () (20 g - 1l e -2 )
cV T

and then proceed the same way as described in the studies of the limiting F' — oo systems described
above, this time usin aerelative error tolerance between 1078 and 10719 in the bvp solver. Checking the
slope condition (%&ross numerically determined profiles, we found that it is satisfied for profiles with
F £ 3.5 but violated for those with larger F'.

~ spec

To study the spectrum, we worked with the orjginal (unrescaled) eigenvalue system (b%?}, associating
parameters with those under the rescaling (I.14). We found that the results for Hill’ Sc%]leécglod were
more accurate using these original coordinates as opposed to the rescaled coordinates (T'Iﬂﬁ even for
large F'. For qp = 0.4, ky ranging in the parameter space where profiles could be solved, and for F
ranging from 10 to either 20 or 30 by 1, we examined, via Hill’s method and the Taylor expansion of the
Evans function, the cases « = —0.7,—1,—-1.4,—1.5,—-1.6, —1.7, —1.8, —1.9, —2. We used 201-3000 Fourier
modes and 21-31 Floquet parameters in Hill’s method and 33-201 Chebyshev nodes for the integral in
the Taylor expansion. For each value of «, we found that a lower stability boundary curve and an upp :
high-frequency instability curve meet at some value F*(«) after which no waves are stable. See Figures 4.
In addition, we find that the upper and lower stability bo n%ges appear to have a linear relationship of
the form log(X/y) = by log(F') + bz log(q) + bs; see Figure FTEWE used a combination of Hill’s method and
Evans function computations to determine stability or instability. However, as the period X increases,
a small loop of spectra parameterized by the whole interval of Floquet parameters £ € [—7/X,7/X)
shrinks until eventually neither the Evans function nor Hill’s method can definitively determine small
frequency stability at which point we rely on Hill’s method for the overall behavior of the spectrum; in
this region, analytic verification of the stability regions as F' — oo would be beneficial. However, for the
lower intermediate F' region where the period is smaller, the stability picture appears clear. In particular,
for « = —2 our yical study, though not a numerical proof, strongly suggest the stability region
shown in Figure %%E?
with Hill’'s method as the spectrum approaches that of the limiting system given in equation (3.
Figure %%or an illustration. For F' = 38, we examined the full set of periods corresponding to
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As F continues to increase, it becomes easier again to compute the spec TR o
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those examined in Figure h, and found no stability region, confirming that by this point the upper and
lower stability boundaries have met.
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Ficure 7. In (a) and (b), black dots mark the computed boundary and pale dots (red
in color plates) mark the best least curve fit. (a) Lower stability boundary. We have
log(X) ~= by log(F) + balog(q) + bz where by = —0.692, by = 3.46, and b3 = 0.3. Here
a = —1.6,—-1.8,-1.9,—2. The maximum error is 0.200 and the maximum relative error
is 0.056. The average relative error is 0.012 and the average absolute error is 0.041. (b)
High frequency stability boundary. We have log(X) =~ by log(F') + by log(q) + bs where
b1 = —0.791, by = 1.73, and b3 = 3.92. Here a = —1.6,—1.8,—1.9, —2. The maximum
error is 0.228 and the maximum relative error is 0.052. The average relative error is 0.024

and the average absolute error is 0.103. figl6:
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FiGURE 8. Plot of spectra for the intermediate eigenvalue problem. We plot the ap-
proximations returned by Hill’s method with black dots and those obtained by Taylor
expanding the Evans function with light dashes. We plot the spectra corresponding to
Floquet parameter zero with a pale star (red in color plates). The solid line indicates the
imaginary axis. In all cases, « = —2, v = 0.1, and g9 = 0.4. Other parameters are (a)
F=6,X=783,(b) F=6, X =878, (c) F =10, X =76.9, (d) F =10, X =90.9. shows]
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APPENDIX A. NOTATION FOR HIGH FREQUENCY BOUNDS
1emmal

S CVgzZero
The proof of Lemma %%Z[Il{‘n Section 2. relied heavily on computations previously carried out in
detail in Section 4.1 of Z11]. There, the authors were concerned with the stability analysis of
traveling solitary wave solutions of the viscous St. Venant equation (I.10), i.e. those traveling wave
solutions that decay exponentially fast to zero as * — ¢t — 4oo. By a straightforward adaptation
of this analysis to the periodic case,?? it follows that, for each k € P, there exists an Xj-periodic
change of variables W(-) = P(:;\,0)Z(-) that transforms the spectral problem (Eﬁinto an equiv-
alent system of the form W'(z) = (D(x,\) + ©(x,\)) W(x), supplemented with the boundary condi-
tions W(Xs) = e“W(0) for some ¢ € [—m/Xs,7/Xs), where the 3 x 3 matrix-valued D is defined

via D(-,\) = diag <g + 00+ %, %\@, —T\/§> , where fy = & and f) = — WS B 2 i

v W V3
a = 773(F~242¢ev7"). Moreover, the 3 x 3 matrix ©(z, A) has the block structure © = < g++ g+_ > ,
_+ _—

where O is a 2x 2 matrix. The individual blocks of the matrix © can be expanded as cubic polynomials
in A\™Y/2 with matrix valued coefficients. More precisely, they expand as

Ori(HN) =00, +a7120l 4 a7tel, +a32e3
O+-(A) =0%_ + V20l aTtel 4 a32e3

() =0, +aT2el  paTle? e,
() =00 a2l ale? | 4 2ed

with

v T 2v Vv 3/2
=/ =3 ~ _
o 0 ~Z 4 2 (E+0)
++ = = =2 F2(g—eT ~ =3 )
T ((q—cr) —i—coz%) Tl 4 gt

@
—+ N
+
I

27'3(51*3") _7—3((1707-)2 _ca 7t
Gl 72(g—cr)? N CHIE v3/2 N
2v + 2V 372 0
0 a7 7 or? 2 _ 72 (g— 3
67+ = (azT F CT ’ 67+ (0 e (qQVCT) + 2%#) )
7 _ 7__2 =2( == 7_3 =/ 2
ol, = (ﬁ ((q —cr)” + CO‘?) s (?ﬁCT) y3/2> ’ ol_ = <T? - CQTI/) ’

22Namely, using formally identical coordinate changes depending on the profile and its derivatives.
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Nmatrix
From this, the matrices Np p, Ng,p, Np,g in (bl ( ) are obtained through the identification
@++ @+_ _ 0 NH,D
O_, O6__ Npu Npp )’

APPENDIX B. COMPUTATIONAL METHODS

where Npp is a 2 X 2 matrix.

For completeness, we Verfymbrleﬂéf descf’rlrlr)ne dth% computational methods utilized in our inve ‘51“%@2 jons
reported in Section b 2 and 3.3 above. For more details, the interested reader is referred to 13]
where an analogous numerical study is performed on the generalized Kuramoto-Sivashinsky equation.

B.1. Hill’s method. To determine the global picture of spectrum of a linear X-periodic operator L,
we use Hill’s method. The liK%?(ar operator L takes the form L;; = Z Y fikg( )% where the f; 1 o(2 )
are X periodic. Following CKO07], we represent the coefficient functlons fjk.q(x) as a Fourier series
fikq(x) = Z;’i_oo ¢j,k,qei2”j‘”/ X We use Matlab’s fast Fourier Transform to determine the coefficients

qgjyk,q. The generalized eigenfunctions are represented as®? v(z) = e%® PR i I/ X | where € €
[-7/2X,7m/2X) is the Floquet exponent. Upon substituting the Fourier expansions into the eigenvalue
problem, ﬁxmg £, and equating the coefficients of the resulting Fourier series, we arrive at the eigenvalue
problem L8 = Mo where L¢ is an infinite dimensional matrix. The spectrum of the operator L is given
by 0(L) = Uge[—r/2x,r/2x) 7(Le). Truncating the Fourier series at N terms leads to a finite dimensional

eigenvalue problem L?V@ = A0. The matrix L?\/ is of the for ei]\4 _nlf/y[l where M0 = AMsv is the
original eigenvalue problem. Typically My is the identity, but in r&"ﬁ%ﬁWg is diagonal with jth diagonal
entry i(j + &), hence we avoid £ = 0 in that case so that M, is invertible. We compute O‘(L?V) on a
mesh to approximate the spectral curveg of L. For our numerical studies, we used the implementation
ig H].]B]KS ﬂethod bu]llt into STABLAB Z). For discussion of Hill’'s method and its convergence, see
?C]jIU ‘DK06, JZ12

B.2. Evans function. Our results for Hill’s method are augmented by use, of th ¢ Jivans function. To
this end, note all the spectral problems we study, such as theone given in k’f%ﬁimay be written as a
first order system of the form W’(x) = A(x; \)W(x) and that, further, A € C belongs to the essential
spectrum of the associated linearized operator L if and only if this 1st order system admits a non-trivial
solution satisfying
Y(z+ X;0\) =Y (2;)), VzeR

where here X denotes the period of the coefficients of L. Following Gardner thar93], the Evans function
is defined as D(X, &) := det (¥(X,\) — %) where the matrix ¥(z,\) satisfies 9,¥(z,\) = AU(z,\)
and ¥(0,\) = Id. By construction then, the roots of D(-;{) agree in location and algebraic multiplicity
with the eigenvalues of the associated &-dependent spectral problem. Unfortunately, the Aps,Junction
as described here is poorly condijtioned for numerical computation. To remedy this, as in IB;I NT13], we
use the observation of Gardnerci(flcar%] that

DX, &) := det(¥(X) — e*X1d) = det <\I!(X) eisxld) |

Id Id

to express the Evans function as an exterior product of solutions of

Y\ (AGNY
a) 0 ’
i&X
with data (Id,Id)” at = = O and (e"*1d Jd)T at @ = X; for details see BL]N 13]. We then use the

i)lar coordinate method of 06 to evolve the solutions. Th1 %]Zgorlthm is numerlcally well-conditioned
%umOQ]. All computations were carried out using STABLAB 7).

23Mark that in the standard implementation of Hill’s method a periodic wave is treated as a periodic function of twice
its fundamental period. As recalled in %{odl& Section 3.1, p.67], this is originally motivated by the fact that in applications
to self-adjoint second-order scalar operators, the Floquet-zero spectrum will then provide edges of spectral bands.
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As mentioned above, Hill’s method is ideal for obtaining a global picture of the spectrum and the Evans
function can be evaluated on contours and the winding number evaluated to determine the presence of
zeros. However, neither method determines definitively whether unstable spectra of arbitrarily small size
exist, due to numerical error. In particular, such methods can not be used to determine the spectrum of
the associated linearized operators in a sufficiently small neighborhood of the origin, i.e. they can not
resolve the modulational instability problem. A strategy é% Zigorpusly computing stability, which we
utilize in our intermediate F' numerical studies 6RO ted in 3.3 above, involves a Taylor expansion of the
Evans function as we now briefly describe; see 13] for details. o 7M. INRZO.R

Due to the presence of a conservation law in the governing system (see fSJeTOBJ,_J'ZWﬁ, JNRZ14, Rod13])
the Evans function has a double root at the origin when & = 0. As such, the Taylor expansion of the
Evans function about the origin (), £) = (0, 0) takes the form D(\, &) = cagA? + c11AE + ¢ 262 + 3,073 +
21 A2 + 12082 + 0383 + O(JA* + [€]*) where the coefficients ¢y ; may be determined via Cauchy’s
integral formula,

1 kel i
(B.1) Chj = —2yf f DA ONTFLeI=1aN de
4% Jap(o,r) JoB(o,r)
. . . —c1,1+(=1)311, /e | —4cea 000, 3 2 :
with > 0 sufficiently small. Setting o; = i oy Lo B = —63’0%+2052’1002;C:1’21%+CO’37 one

readily checks that the roots of the Evans function near (X, £) = (0,0) may be continued for [{| < 1 as

53 1
N(€) = g€+ B+ 3 [ (1= 9)"A] (s€)ds.
0
The spectral curves at the origin are thu oximated by a;{+5;¢ 2 with spectral stability corresponding
to the case oj € Ri and R(5;) < 0; see 13] for details.

In practice, to compute the Taylor expansion coeﬂicien‘uc%e alx;cllcler than compute the Evans function on
the contour integral in the variable A for fixed & given in (%%ﬁve interpolate with Zszo ehr (K =3 is
the largest power of ¢® that appears) and then use the Taylor expansion €% = 14 (ik€x)+(ikéx)? )2+ ...
yielding D(X, §) = > 32, c&¥, from which the contour integral can be determined simply by reading off
the corresponding coefficient. Calling the quantity just determined D, we see

1 D()‘) d\ 1 " D(Rew) 1 /1 D(Reiﬂ'e)efimﬁde
2Rk |, ’

which we compute by approximating the integrand with Chebyshev interpolation and integrating.

210 Jixj=r, A7 2 J_. Rreir?

APPENDIX C. COMPUTATIONAL EFFORT

C.1. Computational environment. In carrying out our numerical investigations, we used a MacBook
laptop with 2GB memory and a duo core Intel processor with 2GHz processing speed, a 2009 Mac Pro
with 16GB memory and two quad-core intel processors with 2.26 GHz processing speed, and Quarry, a
supercomputer at Indiana University consisting of 140 IBM HS21 Blade servers with two 2GH quad-core
Intel Zeon 5335 processors per node and delivering 8.96 teraflops processing speed. All computations
were done using Matlab and the Matlab based stability package STABLAB.

C.2. Computational time. We begin by providing computational statistics for the representative pa-
rameter set « = —2, qo = 0.4, F = 10, and X = 50. We compute the Evans function, D(),§), on a semi-
circular contour, 2, of radius R = 0.2 with 42 evenly spaced Floquet parameters ¢ € [—7/X, —7/(10X)]U
[7/(10X), 7/ X]. We require the relative error between contour points of the image contour, Ye, D(-,§) :
1 = Y, not exceed 0.2 so that Rouché’s theorem implies the winding number of Y, corresponds to the
number of roots of D(-,£) in 2. We use 277 points in 2, chosen adaptively, to achieve 0.2 relative error
in each Y¢ at a computational cost of 56.0 seconds using 8 Matlab workers on Quarry to determine the
winding number is zero. Computing the Taylor expansion of the Evans function at the origin requires
61.7 seconds on Quarry, while computing the spectrum via Hill’s method using 603 Fourier modes and
21 Floquet parameters comes at a computational cost of 143 seconds.
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As the period X increases or as F' increases, the number of Fourier modes needed in Hill’s method
increases. Using 600 Fourier modes typically takes around 3 minutes on the Mac Pro, while using 1600
Fourier modes takes 10}3_};677 minutes, and using 3000 Fourier modes requires approximately 8 hours.

In creating Figure g fa) it took 4.36 days of computation time to evaluate the Taylor coefficients and
34.5 days to compute the spectrum using Hill’s method, while the Evans function required an estimated
58 hours. A typical profile requires only a few seconds to compute, but we must use continuation whereby
we use a nearby profile as an initial guess in the boundary value solver, so that computing the profiles
also required a great computational effort. Overall, taking into account the use of parallel computing and
all values of « investigated, we estimate that total computational time for the project exceeds a year.
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