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Résumé

On sait que toutes les solutions de I’équation de Navier-Stokes dans R? dont le
tourbillon est intégrable convergent lorsque t — oo vers un écoulement autosimilaire
appelé tourbillon d’Oseen. Dans cet article, nous donnons une estimation du temps
nécessaire a la solution pour atteindre un voisinage du tourbillon d’Oseen a partir
d’une donnée initiale arbitraire, mais bien localisée en espace. Nous obtenons ainsi
une borne supérieure sur le temps de vie de la turbulence bidimensionnelle libre, en
fonction du nombre de Reynolds de la donnée initiale. Deux cas particuliers sont
discutés plus en détail : celui des solutions a tourbillon positif, et celui des petites
perturbations d’un tourbillon d’Oseen.

1 Introduction

On s’intéresse au comportement des solutions de 1’équation de Navier-Stokes incompres-
sible dans le plan R?. On note u(z,t) € R? la vitesse du fluide au point x € R? & I'instant
t, et w(x,t) = Oyug(x,t) — dhus(x,t) € R le tourbillon associé. Sous des hypotheses tres
générales qui seront toujours vérifiées dans la suite, le champ de vitesse peut étre recons-
truit a partir du tourbillon par la loi de Biot-Savart :

wet) = o [ 0wy, 1)

27 R?2 \x—y\

ott 2t = (21,29)F = (—z2,21). Notons que la formule (1) incorpore la relation d’incompres-
sibilité div u := 01u1 + Osus = 0. L’évolution temporelle du tourbillon est déterminée par
I’équation

Ow(z,t) + u(z,t) - Vw(z,t) = vAw(z,t) , (2)
ol v > 0 est un parametre représentant la viscosité cinématique du fluide.

Il est bien connu que, pour toute donnée initiale wy € L'(R?)NL>®(R?), le systeme (2),
(1) possede une solution globale unique w € C°([0, 4+ oo[,L*(R?)) N C°(]0, + o[, L°(R?))



[2, 3]. On sait aussi que cette solution converge lorsque ¢ — oo vers un écoulement
autosimilaire appelé tourbillon d’Oseen et donné par les formules suivantes :

w(xt) = %G<\/iy_t> , u(z,t) = a\/va<\/iy_t> : (3)

ol @ € R est un parametre sans dimension (le nombre de Reynolds de circulation) et

1

G(E) = g, (g

1 &t 2
= %E?Q_G_IH /4) , £€R?. (4)

Plus précisément, on a le résultat suivant [6]:

Théoreme 1.1 Pour toute donnée initiale wy € L'(R?), la solution w(z,t) du systéme

(2), (1) vérifie

o x
li 1) — =G| —= = 0, 5
i w(zt) t <\/1/t> LL1(R?) ®)
ou )
a = —/ wo(z)dx . (6)
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Cet énoncé simple et élégant a I'inconvénient de ne fournir aucune estimation du temps
nécessaire a la solution pour atteindre un voisinage du tourbillon d’Oseen a partir d’une
donnée initiale (intégrable) quelconque. La démonstration proposée dans [6] est d’ailleurs
non constructive, car elle repose en partie sur un argument de compacité. Il est cepen-
dant souhaitable de préciser le temps nécessaire pour atteindre le régime asymptotique
autosimilaire, en particulier si I'on envisage d’établir un résultat du méme type pour des
écoulements en domaine borné. Dans ce cas, il est clair en effet que le comportement de
la solution ne pourra étre décrit par le tourbillon d’Oseen que pour des temps inférieurs a
L?/v, ou L désigne la taille caractéristique du domaine. Le régime autosimilaire ne pourra
donc étre observé que de facon transitoire, et a condition qu’il s’établisse suffisamment
rapidement.

On se convainc aisément qu’il n’est pas possible de préciser la vitesse de convergence
dans (5) sans hypothese de confinement sur la donnée initiale. Nous supposons dans toute
la suite qu'il existe 79 € R? et ¢y > 0 tels que la quantité suivante soit finie:

1 |z — 202
D= - ———)d . 7
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Cette hypothese assez restrictive peut évidemment étre assouplie, mais nous l'adoptons
ici car elle nous permettra d’utiliser directement les estimations tres précises obtenues par
E. Carlen et M. Loss pour ce type de solutions [4]. On associe a la donnée initiale wy un
nombre de Reynolds défini classiquement comme suit :

R = l/R2 lwo(x)| da . (8)

v

Nous pouvons a présent énoncer le résultat principal de cet article:



Théoreme 1.2 [ existe des constantes strictement positives Cy, Cs et p telles que, pour
toute donnée initiale wy € L'(R?) remplissant la condition (7), la solution du systéme
(2), (1) vérifie ’estimation

Cl SCQRQD
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pour tout t > 0, ou « est donné par (6) et R par (8).
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Remarques:

1. Les constantes C, Cs, et p sont universelles. En particulier, elles ne dépendent pas de
la viscosité v > 0. Les deux membres de (9) sont par ailleurs invariants d’échelle.

2. Comme |a| < R et comme la norme L' du tourbillon w(-,t) est une fonction décroissante
du temps, l'inégalité triangulaire montre que le membre de gauche de (9) est toujours
inférieur a 2R. L’estimation (9) n’est donc intéressante que pour des temps suffisamment
grands. Ceci dit, elle n’est nullement optimale dans la limite ¢ — oo: une étude locale
au voisinage du tourbillon d’Oseen montre en effet que le membre de gauche de (9)
converge vers zéro comme ¢t~ /2, et méme comme ¢! lorsque z, est le centre de masse de
la distribution de vorticité wq, cf. section 4.

3. Bien entendu, I'estimation (9) implique en particulier (5). A noter que, dans (5), on
a choisi sans perte de généralité xg = 0, to = 0. Dans le théoreme 1.2, on a avantage a
choisir 2o € R? de facon a minimiser la quantité D (une bonne solution consiste souvent
a prendre o comme le centre de masse de la distribution |wg]|). Le choix de tg > 0 est plus
délicat, car ce parametre intervient non seulement dans D mais aussi au dénominateur
du membre de droite de (9). Cette question sera discutée plus en détail, dans un cas
particulier, a la section 3.

4. Le régime asymptotique décrit par le tourbillon d’Oseen est laminaire, dans la mesure
ou les effets de transport sont négligeables devant la dissipation visqueuse (cf. la preuve
de la proposition 4.1). Le théoreme 1.2 fournit donc une borne supérieure sur le temps
de vie de la turbulence bidimensionnelle libre en fonction du nombre de Reynolds de la
donnée initiale. Cette estimation explose hélas comme exp(exp(CR?)) lorsque R — oo,
et n’est certainement pas optimale. On dispose toutefois d'une bien meilleure borne pour
les solutions a tourbillon positif, cf. section 3.

Dans le cas particulier des solutions a moyenne nulle (o = 0), le théoreme 1.2 est
démontré dans l'article de Carlen et Loss [4, Theorem 7. Comme nous le montrons dans la
section 2, le cas général s’obtient en combinant de fagcon appropriée la méthode d’entropie
relative utilisée dans [6] avec les estimations de recouvrement établies dans [4]. Dans la
section 3, nous rappelons que la méthode d’entropie fournit un résultat bien meilleur que
(9) dans le cas des solutions a tourbillon positif, et nous discutons sur cet exemple le
choix optimal des parametres o € R? et t, > 0. Afin de présenter une vision complete
du probleme, nous incluons dans la section 4 les estimations optimales de décroissance
temporelle pour les petites perturbations du tourbillon d’Oseen.

Remerciements: Nous remercions chaleureusement C. Villani de nous avoir proposé
ce probleme, et de nous avoir aiguillé vers sa solution en nous suggérant la lecture du
remarquable article de Carlen et Loss.



2 Estimation du temps de vie

Ce chapitre est consacré a la preuve du théoreme 1.2. On suppose donc que w(z,t) est
une solution de I’équation (2) dont la donnée initiale wy € L'(R?) vérifie (7) pour un
xo € R? et un ty > 0. Sans perte de généralité, on peut supposer que la quantité a définie
par (6) est strictement positive. En effet, si o = 0, I'estimation (9) est établie dans [4,
Theorem 7]. Si @ < 0, on peut remplacer w(xy,z9,t) par —w(zq,z1,t) qui est encore une
solution de (2), et on est ainsi ramené au cas ot a > 0.
En suivant [5], nous introduisons les variables autosimilaires
r — Tg

i B 10g<1+%> , (10)

Vit +to)

et nous exprimons le tourbillon w et le champ de vitesse u dans ces nouvelles variables en
posant

w(zt) = titow(ﬁ,log(ué)), (11)

u(z,t) = 1/ﬁ(_@(ﬁ}(\/%,10g(1—|—%>>. (12)

Notons que les variables &,7 ainsi que les fonctions transformées d’échelle w,v sont sans
dimension. L’évolution du tourbillon w(&,7) est donnée par 1'équation

Orw(&7) +v(&7) - Vew(§,7) = Lw(ET) (13)

ou L est 'opérateur de Fokker-Planck

E=A§+g'V§+1. (14)

En outre, la vitesse v(£,7) est encore reliée au tourbillon w(§,7) par la loi de Biot-Savart
(1). Par construction, ce dernier vérifie la condition initiale w(&,0) = wy(§), o wy(§) =

towo(xo + £y/vty). En particulier,

1
o = —/ wo(z)dr = / wo (&) d¢
V Jr2 R2
et de méme R = v !||lwo||zr = ||wo|lz:. Par ailleurs,
V JRr2 8Vt0 R2

On énumere a présent quelques estimations a priori sur les solutions de (13) qui
résultent directement des bornes correspondantes pour ’équation originale (2):

1. Pour tout 7 > 0, on a ||w(-,7)||z: < ||wol|1-

2. Pour tout 7 > 0, on a

1
lw(-m)l[ee <

> 47ra(7') HwOHLl ) (15)
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oua(r) =1—e 7, cf. [4, Theorem 1]. Par la loi de Biot-Savart, on en déduit [4, Theorem 2] :

o6l < (Zhe oot ole) € el (10

3. Pour tout 5 € ]0,1] on a I’estimation ponctuelle

_neT/2)2
wien) < 20 [ (a2 Yl an, (17)

pour tout £ € R? et tout 7 > 0, ot C3(R) = exp(%%), cf. [4, Theorem 3]. Si on choisit
ont

[ERS H,l [, alors un calcul direct & partir de (17) montre que, pour tout 7 > 0,

w(€,r)| e/ _Cs(R) ox Bln|*e" w
[ wtennerag < SEU e ( 20 D ulay
= ﬁof(f/)z /R lwo(©)] e de (18)

Dans la seconde inégalité, on a utilisé le fait que § > 1/2 et que a(7) =1—€e"7 < 1.

Nous arrivons a présent a I’étape principale de la démonstration, qui consiste a décom-
poser la solution w(&,7) de (13) en une somme wy (§,7)+ws(§,7), ot wy(+,7) est a moyenne
nulle et wq(+,7) est positive. Plus précisément, on décompose la donnée initiale wgy en une
somme wyg + wyg avec, par exemple,

wy(§) = aG(§), wie(§) = wo(§) —aG(§),
puis on définit w;(&,7) pour ¢ = 1,2 comme la solution du probleme
drwi(§,7) +v(€,7) - Vwi(§,7) = Lwi(§,7) , wi(§,0) = win(§) - (19)

Noter que, si 'on consideére le champ de vitesse (total) v(£,7) comme donné, I’équation
(19) est identique a (13). Il s’ensuit en particulier que les estimations a priori (15)—(18)
restent valables pour les solutions wq,ws de (19). Avec notre choix de données initiales,
on trouve Ry = ||wypllrr = a < R, et donc Ry = [Jwyl||zr < 2R. De méme, comme
Dy = [e lwao(§)] /5 d¢ = 2a, on a

D1 = / |U)10(§)|6|§|2/8d§ S D+20é S 3D .
R2

La solution wq(+,7) étant & moyenne nulle, on peut lui appliquer le résultat de Carlen
et Loss [4, Theorem 7] qui avec nos notations:

Proposition 2.1 I existe des constantes strictement positives C'3, Cy et v telles que
[wio] 1

{1 + WK(R)T(%JI“Y}W :

pour tout T > 1, ot K(R) = Cye @R

[wr (7)< (20)



La démonstration de cette proposition repose sur l'idée suivante. Etant donné que
la solution wy(+,7) est & moyenne nulle, on peut 'écrire comme la somme d’une partie
positive et d'une partie négative qui évoluent toutes deux selon I’'équation de transport-
diffusion (19). Les supports de ces deux solutions sont initialement disjoints, mais le
principe du maximum fort implique qu’ils se recouvrent pour tout 7 > 0, ce qui entraine
une diminution de la norme L' de w;(-,7). Cette perte peut étre quantifiée si 'on dispose
d’une borne inférieure sur le noyau intégral de 'opérateur d’évolution associé a ’équation
(19), ainsi que d’'une estimation de la forme (18) garantissant que la solution reste bien
localisée pour tous les temps. On obtient ainsi la borne (20), et les constantes (universelles)
Cs, Cy, v peuvent étre déterminées explicitement. Par exemple, on peut prendre

e+1 )
= 5(2D) - -
e—1 tanh(1/2)
On supposera dans la suite que C3 < 1/2, de sorte que K(R) < 1/2.

I reste a montrer que la partie positive ws(£,7) dans la décomposition de w(&,7)
converge vers aG(§) lorsque 7 — oo. On applique pour cela la méthode d’entropie relative
introduite dans ce contexte dans I'article [6]. Si w € S(R?) est une fonction strictement
positive telle que [g, w(&) d§ = a, on note

Hw) = [ wle) 1og(%(%) & 1w = [ w(é)\vmg(%%) fag. @
On a alors les estimations suivantes [1]
scllw—aGl: < Hw) < 1), 2

qui montrent en particulier que H(w) > 0 avec égalité si et seulement si w = aG. La
borne inférieure sur H dans (22) est 'inégalité de Csiszar-Kullback, alors que la borne
supérieure est une variante de 1'inégalité de Sobolev logarithmique.

L’idée est maintenant d’étudier 1'évolution temporelle de la quantité H(ws(-,7)). Un
calcul direct [6] montre que

d 1
SH(m) = Tl + 5 [ (€ u(er)ualen) de
dr 2 R2
1
< SHw()+p [ @ uEnuend, @
R2
ou vy (£,7) désigne le champ de vitesse obtenu & partir de wq(&,7) par la loi de Biot-Savart.
Outre (22), on a utilisé ici le fait que [g,(&-v2(€,7))w2(€,7) d€ = 0, ce qui est 'observation-
clef permettant d’appliquer la méthode d’entropie relative a I’équation de Navier-Stokes.
Comme H(wy) = H(aG) = 0, I'inégalité (23) s’integre facilement et conduit a l’estima-

tion
1

Hluwa() < 5 [ e Cll=llghuate.lsy ds (24)

Or, les bornes a priori rappelées ci-dessus montrent que

Ca(s) V2 ||lwyl[zr si 0<s<2,

ool < { G Tl o0 25 25)
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ou ||wi(-,s — 1)||z: se majore a I'aide de la proposition 2.1. Par ailleurs, en utilisant les
bornes ponctuelles établies dans [4, Theorem 3|, on vérifie sans peine que

llglwa (€)Ml < e *2llelwa(@)ly + C(L+ R)a(s)!*|lwaollr < Ca(l+R).  (26)

En remplagant (25), (26) dans (24), et en utilisant la proposition 2.1 ainsi que le lemme
élémentaire ci-dessous, on arrive a l’estimation

Ca(l + R) Jwro]l

H(MQ('7T)) S 1/ - (27)
[wioll1 \ 717
Lemme 2.2 Si0< K <1/2etvy>0, ona
7 1 1+ 2
(=) © s < — " tout T >0 .
/0 e (1—}—7[(3)1/7 s < (1+7K7)1/V , pour tout T >
Démonstration : On a d’une part
e 1 e /2 1
—\T—s d < —(7—s d < —T <
/o C UKs) S—/o e (e S N
car (1 4+~yK7)"Y7 > e K7 > ¢77/2 D’autre part,
T 1 1 21/
/ e~ ds < < ,
-2 (L+yKs)tr = (L+yK7/2)V7 = (L4 K)o
ce qui conclut la preuve. O

Il est maintenant facile de terminer la démonstration du théoréme 1.2. Etant donné
que w(&,7) = wy(§,7) + we(§,7), on a

[w(-7) = G| s [wr ()l et + [lwa (1) = oGl

<
< “wl('vT)HLl + \/%H(MQ(WT))I/Q )

ou la derniere inégalité résulte de (22). En utilisant (20), (27) et en procédant a quelques
simplifications, on trouve pour tout 7 > 1:

Dy (1+R)V2D{*  C:D(1+R)
. —_ 1 < _— < .
hetm) =Gl < @y s T O GR@mm T S K@

On peut supposer bien stir que C5 > 2, auquel cas cette inégalité reste vraie pour tout
7 > 0 car on sait par ailleurs que ||w(-,7) — aG||;r < R+ a < 2R. En retournant alors
aux variables originales et en se souvenant que K(R) = Cse % on obtient (9) avec
p =1/(2v). Ceci conclut la preuve du théoreme 1.2. O



3 Relaxation des tourbillons positifs

L’estimation générale donnée par le théoreme 1.2 peut étre considérablement améliorée
si 'on se restreint aux solutions dont le tourbillon w(x,t) est positif. Dans ce cas, en
introduisant les variables autosimilaires (10) comme dans le chapitre précédent, on trouve
que lentropie relative H(w(-,7)) qui mesure la “distance” entre la solution w(-,7) et le
point d’équilibre aGG obéit a 'inégalité différentielle

%H(w(-,r)) = —I(w(-7) < —H(w(-7), 7>0.

Ainsi H(w(-,7)) < e "H(wp) pour tout 7 > 0. En revenant aux variables originales, on
obtient I'inégalité suivante, valable pour tout xo € R? et tout to > 0:

H<w0 | agwo,to("o)) , t2 0 ) (28)

ou H(f1 | f2) désigne 'entropie de la distribution f; par rapport a fs:

H(fil f2) = /R2 fl(x)log(ﬁgg)dx,

et Gy 1, est le tourbillon d’Oseen centré au point x5 € R? et issu du temps —t:

1 T — Xg
Groo(:t) = t + to G(m) '

Rappelons que le membre de gauche de (28) controle la distance de la solution w(-,t)
au tourbillon aG,, 4 (-,t) en vertu de I'inégalité de Csiszar-Kullback

1
—Osz("t) - agmo,to("7t)’|%1 < H(w<'7t> | O‘gwo,to('at)) :

D’autre part, le membre de droite de (28) s’écrit explicitement :

to 4 |z — 202
fott /R2 wo(x){10g<g> + log(towo(x)) + Tto} dz . (29)

Cette expression est suffisamment simple pour qu’on puisse chercher a I’optimiser par un
choix approprié de zq et ty. Quels que soient ¢ et ¢, il est évident que la quantité (29)
est minimale lorsque 2o € R? est le centre de masse de la distribution de vorticité wy. On
fera donc toujours ce choix dans la suite. Il est plus délicat, en revanche, de minimiser
(29) par rapport a ty car le résultat dépend en général du temps d’observation ¢. Il y a
cependant au moins deux choix naturels :

1. On peut minimiser (29) pour ¢ = 0, ce qui revient a choisir ¢y > 0 de fagon a minimiser
I’entropie relative de la donnée initiale. Le minimum est atteint pour ty = 1, ou

_ 2
wo [ ARl
R2

av 4y




2. Si 'on s’intéresse au comportement a grand temps, on peut remplacer le préfacteur
to/(to + t) dans (29) par ty/t. Le minimum de I’expression ainsi obtenue est atteint pour
to = to, ou ty > 0 est déterminé par la relation

/R2 wo(x){l +10g<%> + log(t2w0(g;))} dr = 0 .

Il n’est pas difficile de vérifier que 0 < t5 <y, et que ty = t; si et seulement si la fonction
wp est une gaussienne centrée en x.
Avec ces deux choix du parametre ¢y, I'estimation (28) fournit les inégalités suivantes :

log (t—l) (30)

to

H(w(-,t) ’ Oégxo,t1('>t)) S oV tl +¢

t — ty
to+t

H(w("t) | agaﬂo,t2('7t>) < av (31)
L’estimation (30) est optimale pour ¢t = 0, alors que (31) est optimale dans la limite
t — o0o. On notera qu’il existe des données initiales pour lesquelles t5 < t;. Par exemple,
si v =1 et si wy est la fonction indicatrice de 'union de deux disques de rayon 1 dont
les centres sont séparés d’une distance d > 2, on trouve que t; = (2 + d?)/16 alors que
to = 1/(2e).

Une troisieme possibilité, qui fournit une borne particulierement simple, consiste a
prendre la limite ty — 0 dans (28), (29):

M) 0Guo4) < 7 [ wola)

t

t

2
de:au—. (32)
t

4
En appliquant I'inégalité de Csiszar-Kullback, on obtient donc le résultat suivant :

Proposition 3.1 Soit wy € L'(R?) une fonction positive telle que [, wo(x)|z]* dz < co.
Si w(-,t) est la solution de (2) pour la donnée initiale wy, on a pour tout Ty € R? et tout

t>0:
2 _ 2 1/2
< (—O‘ / wO(x)de> . (33)
L%(RQ) 14 R2 4Vt

Pour les données initiales positives a support dans un domaine borné fixé, ’estima-
tion (33) montre que le temps nécessaire pour atteindre un petit voisinage du tourbillon
d’Oseen est (au pire) proportionnel au carré du nombre de Reynolds R défini par (8). On
a donc dans ce cas un résultat bien meilleur que celui du théoreme 1.2, qui fournit une
borne en exp(exp(C R?)).

ot « est donné par (6).

4 Etude locale au voisinage d’un tourbillon d’Oseen

Le but principal de cet article est d’estimer le temps nécessaire & une solution de (2)
dans L'(R?) pour s’approcher d'un tourbillon d’Oseen a partir d’une donnée initiale
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“quelconque”. On peut aussi se demander — mais c¢’est une question différente — a quelle
vitesse la solution converge vers le tourbillon d’Oseen une fois qu’elle se trouve dans un
voisinage de celui-ci. Dans cette optique, I'estimation (9) n’est de loin pas optimale: on
sait en effet que les petites perturbations du tourbillon d’Oseen décroissent comme ¢~/2
lorsque t — oo, et méme comme ¢! lorsque le point xy € R? est placé au centre de masse
de la distribution de vorticité wy [5, 6].

Dans ce chapitre, par souci de complétude, on rappelle brievement comment sont
obtenus ces résultats optimaux. On travaille sur la formulation (13) en variables au-
tosimilaires, et on suppose comme précédemment que le tourbillon w(&,7) décroit tres
rapidement lorsque || — oco. Cette hypothese simplifie la démonstration, mais peut étre
assouplie [6]. On introduit l'espace de Hilbert

X ={w:R* - R|G Y?we L*(RY)},

muni du produit scalaire

(wiws)x = | GTH wi(Ewa(€) dE

R2

ou G est donné par (4). On définit également les sous-espaces fermés

X, = {weX‘/sz(g)dg:o},
X, = {wEXO‘ £iw(£)d£:Op0uri:1,2}.
R2

Il n’est pas difficile de vérifier que 'espace X s’injecte dans LP(R?) pour tout p € [1,2].
En outre, on peut montrer que I’équation (13) est globalement bien posée dans X [7], et
que les sous-espaces Xy, X; sont laissés invariants par ’évolution. Il en va de méme, pour
tout o € R, des sous-espaces affines oG + X, et aG + X;.

Proposition 4.1 Il existe une constante strictement positive § telle que, pour tout o € R
et pour toute donnée initiale wy € aG + Xy telle que |jwy — aGl|x < 9§, la solution w(&,T)

de (13) vérifie
|lw(-,7) —aGllx < ||wo— aG||x min(1,2¢7""), 7>0, (34)
ot k=1 siwy—aG € Xy et k=1/2 sinon.

En termes des variables originales, la proposition 4.1 implique le résultat suivant. Si
la donnée initiale wq est telle que

to wo(z) — EG(U — IO) )2 exp<M> dr < 67,

V Jr2

olt 7y € R? to > 0, et @ € R est donné par (6), la solution de I'équation (2) vérifie

l/ wo(x) — a G( S )‘dxgciﬁié, t>0,
v Jre t+ o v(t + to) (L+t/to)"
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ou k = 1 si xg est le centre de masse de wy, et £ = 1/2 sinon.

Démonstration : L’équation vérifiée par la perturbation w(§,7) = w(§,7) —aG(§) s’écrit
o-w(&T)+ (&) V() = (L —aN)w(,T) , (35)

ou 9(&,7) est le champ de vitesse obtenu a partir de w(§,7) par la loi de Biot-Savart, £
est 'opérateur différentiel (14), et A est 'opérateur intégro-différentiel défini par

A = 0% -V +19-VG .

L’intérét de travailler dans 'espace de Hilbert X est que 'opérateur £ y est auto-adjoint,
avec L < —1/2 sur le sous-espace Xy et L < —1 sur X; [5]. En outre, opérateur A est
antisymétrique dans le méme espace X [6].

Pour controler 1’évolution de la perturbation w(&,7), on utilise 'estimation d’énergie

2

sPCIx = |

-

(o) Lty = [ GOa(EnE) - Ve de
(o) Lt + 1 [ GHOE denyaen? e, (36)

4R2

£

ol la seconde ligne s’obtient en intégrant par parties et en utilisant le fait que VG~! =
(£/2)G~'. Fixons 7 > 0 et notons f(&) = G~Y2(&)w(&,7). Alors || f||2 = ||w(-,7)||x et

1 1
E(f) = IV fllze + 35 MElAIIze = 51122 = =(@(7), £ab(7))x

Comme w(-,7) € X, par hypotheése, on a donc E(f) > x| f||7. avec k = 1 si w(-,7) € X3
et k = 1/2 sinon. Il s’ensuit en particulier qu’il existe C' > 0 tel que

E(f) = CUIVFIZ2 + Mg + IF1IZ2) -
D’autre part,

[ e senaenra < [ e aeniera
o L7 el s - (37)

Par la loi de Biot-Savart, on a ||0]| 4+ < C||@|| 43 < C||w||x, donc le membre de droite de
(37) est borné par C||w(-,7)||xE(f). Par conséquent, il existe C7 > 0 tel que

d%uw(.ﬁ)ug( < 2B(f)(1 = Crl|w(-,7)]x)

< =26]@(,7)% (1 = Crllw(,7)llx) (38)

IN

A

ol la seconde inégalité est vraie tant que Cr||w(-,7)||x < 1. Si I'on suppose maintenant
que |[w(-,0)||x < § = (2C;)71, l'inégalité différentielle (38) implique que ||w(-,7)||x <
|w(-,0)||x pour tout 7 > 0 et que

atols o0l .y
1= Crflo(m)lx = 1= Crllw(-0)l[x
d’ott 'on déduit que ||@(-,7)||x < 2[[w(-,0)||x e *". Ceci conclut la démonstration. O
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