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Résumé

On sait que toutes les solutions de l’équation de Navier-Stokes dans R
2 dont le

tourbillon est intégrable convergent lorsque t → ∞ vers un écoulement autosimilaire

appelé tourbillon d’Oseen. Dans cet article, nous donnons une estimation du temps

nécessaire à la solution pour atteindre un voisinage du tourbillon d’Oseen à partir

d’une donnée initiale arbitraire, mais bien localisée en espace. Nous obtenons ainsi

une borne supérieure sur le temps de vie de la turbulence bidimensionnelle libre, en

fonction du nombre de Reynolds de la donnée initiale. Deux cas particuliers sont

discutés plus en détail : celui des solutions à tourbillon positif, et celui des petites

perturbations d’un tourbillon d’Oseen.

1 Introduction

On s’intéresse au comportement des solutions de l’équation de Navier-Stokes incompres-
sible dans le plan R2. On note u(x,t) ∈ R2 la vitesse du fluide au point x ∈ R2 à l’instant
t, et ω(x,t) := ∂1u2(x,t) − ∂2u1(x,t) ∈ R le tourbillon associé. Sous des hypothèses très
générales qui seront toujours vérifiées dans la suite, le champ de vitesse peut être recons-
truit à partir du tourbillon par la loi de Biot-Savart :

u(x,t) =
1

2π

∫

R2

(x − y)⊥

|x − y|2 ω(y,t) dy , (1)

où x⊥ = (x1,x2)
⊥ = (−x2,x1). Notons que la formule (1) incorpore la relation d’incompres-

sibilité div u := ∂1u1 + ∂2u2 = 0. L’évolution temporelle du tourbillon est déterminée par
l’équation

∂tω(x,t) + u(x,t) · ∇ω(x,t) = ν∆ω(x,t) , (2)

où ν > 0 est un paramètre représentant la viscosité cinématique du fluide.
Il est bien connu que, pour toute donnée initiale ω0 ∈ L1(R2)∩L∞(R2), le système (2),

(1) possède une solution globale unique ω ∈ C0([0, +∞[,L1(R2)) ∩C0(]0, +∞[,L∞(R2))
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[2, 3]. On sait aussi que cette solution converge lorsque t → ∞ vers un écoulement
autosimilaire appelé tourbillon d’Oseen et donné par les formules suivantes :

ω(x,t) =
α

t
G
( x√

νt

)

, u(x,t) = α

√

ν

t
vG
( x√

νt

)

, (3)

où α ∈ R est un paramètre sans dimension (le nombre de Reynolds de circulation) et

G(ξ) =
1

4π
e−|ξ|2/4 , vG(ξ) =

1

2π

ξ⊥

|ξ|2
(

1 − e−|ξ|2/4
)

, ξ ∈ R2 . (4)

Plus précisément, on a le résultat suivant [6] :

Théorème 1.1 Pour toute donnée initiale ω0 ∈ L1(R2), la solution ω(x,t) du système
(2), (1) vérifie

lim
t→∞

∥

∥

∥

∥

ω(x,t) − α

t
G
( x√

νt

)

∥

∥

∥

∥

L1
x(R2)

= 0 , (5)

où

α =
1

ν

∫

R2

ω0(x) dx . (6)

Cet énoncé simple et élégant a l’inconvénient de ne fournir aucune estimation du temps
nécessaire à la solution pour atteindre un voisinage du tourbillon d’Oseen à partir d’une
donnée initiale (intégrable) quelconque. La démonstration proposée dans [6] est d’ailleurs
non constructive, car elle repose en partie sur un argument de compacité. Il est cepen-
dant souhaitable de préciser le temps nécessaire pour atteindre le régime asymptotique
autosimilaire, en particulier si l’on envisage d’établir un résultat du même type pour des
écoulements en domaine borné. Dans ce cas, il est clair en effet que le comportement de
la solution ne pourra être décrit par le tourbillon d’Oseen que pour des temps inférieurs à
L2/ν, où L désigne la taille caractéristique du domaine. Le régime autosimilaire ne pourra
donc être observé que de façon transitoire, et à condition qu’il s’établisse suffisamment
rapidement.

On se convainc aisément qu’il n’est pas possible de préciser la vitesse de convergence
dans (5) sans hypothèse de confinement sur la donnée initiale. Nous supposons dans toute
la suite qu’il existe x0 ∈ R2 et t0 > 0 tels que la quantité suivante soit finie :

D =
1

ν

∫

R2

|ω0(x)| exp
( |x − x0|2

8νt0

)

dx < ∞ . (7)

Cette hypothèse assez restrictive peut évidemment être assouplie, mais nous l’adoptons
ici car elle nous permettra d’utiliser directement les estimations très précises obtenues par
E. Carlen et M. Loss pour ce type de solutions [4]. On associe à la donnée initiale ω0 un
nombre de Reynolds défini classiquement comme suit :

R =
1

ν

∫

R2

|ω0(x)| dx . (8)

Nous pouvons à présent énoncer le résultat principal de cet article :
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Théorème 1.2 Il existe des constantes strictement positives C1, C2 et ρ telles que, pour
toute donnée initiale ω0 ∈ L1(R2) remplissant la condition (7), la solution du système
(2), (1) vérifie l’estimation

1

ν

∥

∥

∥

∥

∥

ω(x,t) − α

t + t0
G
( x − x0
√

ν(t + t0)

)

∥

∥

∥

∥

∥

L1
x(R2)

≤ C1 eC2R2

D
(

log(1 + t/t0)
)ρ , (9)

pour tout t > 0, où α est donné par (6) et R par (8).

Remarques :

1. Les constantes C1, C2, et ρ sont universelles. En particulier, elles ne dépendent pas de
la viscosité ν > 0. Les deux membres de (9) sont par ailleurs invariants d’échelle.

2. Comme |α| ≤ R et comme la norme L1 du tourbillon ω(·,t) est une fonction décroissante
du temps, l’inégalité triangulaire montre que le membre de gauche de (9) est toujours
inférieur à 2R. L’estimation (9) n’est donc intéressante que pour des temps suffisamment
grands. Ceci dit, elle n’est nullement optimale dans la limite t → ∞ : une étude locale
au voisinage du tourbillon d’Oseen montre en effet que le membre de gauche de (9)
converge vers zéro comme t−1/2, et même comme t−1 lorsque x0 est le centre de masse de
la distribution de vorticité ω0, cf. section 4.

3. Bien entendu, l’estimation (9) implique en particulier (5). A noter que, dans (5), on
a choisi sans perte de généralité x0 = 0, t0 = 0. Dans le théorème 1.2, on a avantage à
choisir x0 ∈ R2 de façon à minimiser la quantité D (une bonne solution consiste souvent
à prendre x0 comme le centre de masse de la distribution |ω0|). Le choix de t0 > 0 est plus
délicat, car ce paramètre intervient non seulement dans D mais aussi au dénominateur
du membre de droite de (9). Cette question sera discutée plus en détail, dans un cas
particulier, à la section 3.

4. Le régime asymptotique décrit par le tourbillon d’Oseen est laminaire, dans la mesure
où les effets de transport sont négligeables devant la dissipation visqueuse (cf. la preuve
de la proposition 4.1). Le théorème 1.2 fournit donc une borne supérieure sur le temps
de vie de la turbulence bidimensionnelle libre en fonction du nombre de Reynolds de la
donnée initiale. Cette estimation explose hélas comme exp(exp(CR2)) lorsque R → ∞,
et n’est certainement pas optimale. On dispose toutefois d’une bien meilleure borne pour
les solutions à tourbillon positif, cf. section 3.

Dans le cas particulier des solutions à moyenne nulle (α = 0), le théorème 1.2 est
démontré dans l’article de Carlen et Loss [4, Theorem 7]. Comme nous le montrons dans la
section 2, le cas général s’obtient en combinant de façon appropriée la méthode d’entropie
relative utilisée dans [6] avec les estimations de recouvrement établies dans [4]. Dans la
section 3, nous rappelons que la méthode d’entropie fournit un résultat bien meilleur que
(9) dans le cas des solutions à tourbillon positif, et nous discutons sur cet exemple le
choix optimal des paramètres x0 ∈ R2 et t0 > 0. Afin de présenter une vision complète
du problème, nous incluons dans la section 4 les estimations optimales de décroissance
temporelle pour les petites perturbations du tourbillon d’Oseen.

Remerciements : Nous remercions chaleureusement C. Villani de nous avoir proposé
ce problème, et de nous avoir aiguillé vers sa solution en nous suggérant la lecture du
remarquable article de Carlen et Loss.
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2 Estimation du temps de vie

Ce chapitre est consacré à la preuve du théorème 1.2. On suppose donc que ω(x,t) est
une solution de l’équation (2) dont la donnée initiale ω0 ∈ L1(R2) vérifie (7) pour un
x0 ∈ R2 et un t0 > 0. Sans perte de généralité, on peut supposer que la quantité α définie
par (6) est strictement positive. En effet, si α = 0, l’estimation (9) est établie dans [4,
Theorem 7]. Si α < 0, on peut remplacer ω(x1,x2,t) par −ω(x2,x1,t) qui est encore une
solution de (2), et on est ainsi ramené au cas où α > 0.

En suivant [5], nous introduisons les variables autosimilaires

ξ =
x − x0

√

ν(t + t0)
, τ = log

(

1 +
t

t0

)

, (10)

et nous exprimons le tourbillon ω et le champ de vitesse u dans ces nouvelles variables en
posant

ω(x,t) =
1

t + t0
w
( x − x0
√

ν(t + t0)
, log

(

1 +
t

t0

))

, (11)

u(x,t) =

√

ν

t + t0
v
( x − x0
√

ν(t + t0)
, log

(

1 +
t

t0

))

. (12)

Notons que les variables ξ,τ ainsi que les fonctions transformées d’échelle w,v sont sans
dimension. L’évolution du tourbillon w(ξ,τ) est donnée par l’équation

∂τw(ξ,τ) + v(ξ,τ) · ∇ξw(ξ,τ) = Lw(ξ,τ) , (13)

où L est l’opérateur de Fokker-Planck

L = ∆ξ +
ξ

2
· ∇ξ + 1 . (14)

En outre, la vitesse v(ξ,τ) est encore reliée au tourbillon w(ξ,τ) par la loi de Biot-Savart
(1). Par construction, ce dernier vérifie la condition initiale w(ξ,0) = w0(ξ), où w0(ξ) =
t0 ω0(x0 + ξ

√
νt0). En particulier,

α =
1

ν

∫

R2

ω0(x) dx =

∫

R2

w0(ξ) dξ ,

et de même R = ν−1‖ω0‖L1 = ‖w0‖L1 . Par ailleurs,

D =
1

ν

∫

R2

|ω0(x)| exp
( |x − x0|2

8νt0

)

dx =

∫

R2

|w0(ξ)| e|ξ|
2/8 dξ .

On énumère à présent quelques estimations a priori sur les solutions de (13) qui
résultent directement des bornes correspondantes pour l’équation originale (2) :

1. Pour tout τ ≥ 0, on a ‖w(·,τ)‖L1 ≤ ‖w0‖L1 .

2. Pour tout τ > 0, on a

‖w(·,τ)‖L∞ ≤ 1

4πa(τ)
‖w0‖L1 , (15)
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où a(τ) = 1−e−τ , cf. [4, Theorem 1]. Par la loi de Biot-Savart, on en déduit [4, Theorem 2] :

‖v(·,τ)‖L∞ ≤
( 2

π
‖w(·,τ)‖L∞‖w(·,τ)‖L1

)1/2

≤ 1√
2πa(τ)1/2

‖w0‖L1 . (16)

3. Pour tout β ∈ ]0,1[ on a l’estimation ponctuelle

|w(ξ,τ)| ≤ Cβ(R)

4πa(τ)

∫

R2

exp
(

−β
|ξ − η e−τ/2|2

4a(τ)

)

|w0(η)| dη , (17)

pour tout ξ ∈ R2 et tout τ > 0, où Cβ(R) = exp( β
1−β

R2

2π2 ), cf. [4, Theorem 3]. Si on choisit

β ∈
]

1
2
,1
[

, alors un calcul direct à partir de (17) montre que, pour tout τ > 0,

∫

R2

|w(ξ,τ)| e|ξ|2/8 dξ ≤ Cβ(R)

β − a(τ)/2

∫

R2

exp
( β|η|2 e−τ

8β − 4a(τ)

)

|w0(η)| dη

≤ Cβ(R)

β − 1/2

∫

R2

|w0(ξ)| e|ξ|
2/8 dξ . (18)

Dans la seconde inégalité, on a utilisé le fait que β > 1/2 et que a(τ) = 1 − e−τ < 1.

Nous arrivons à présent à l’étape principale de la démonstration, qui consiste à décom-
poser la solution w(ξ,τ) de (13) en une somme w1(ξ,τ)+w2(ξ,τ), où w1(·,τ) est à moyenne
nulle et w2(·,τ) est positive. Plus précisément, on décompose la donnée initiale w0 en une
somme w10 + w20 avec, par exemple,

w20(ξ) = αG(ξ) , w10(ξ) = w0(ξ) − αG(ξ) ,

puis on définit wi(ξ,τ) pour i = 1,2 comme la solution du problème

∂τwi(ξ,τ) + v(ξ,τ) · ∇wi(ξ,τ) = Lwi(ξ,τ) , wi(ξ,0) = wi0(ξ) . (19)

Noter que, si l’on considère le champ de vitesse (total) v(ξ,τ) comme donné, l’équation
(19) est identique à (13). Il s’ensuit en particulier que les estimations a priori (15)–(18)
restent valables pour les solutions w1,w2 de (19). Avec notre choix de données initiales,
on trouve R2 = ‖w20‖L1 = α ≤ R, et donc R1 = ‖w10‖L1 ≤ 2R. De même, comme
D2 =

∫

R2 |w20(ξ)| e|ξ|2/8 dξ = 2α, on a

D1 =

∫

R2

|w10(ξ)| e|ξ|
2/8 dξ ≤ D + 2α ≤ 3D .

La solution w1(·,τ) étant à moyenne nulle, on peut lui appliquer le résultat de Carlen
et Loss [4, Theorem 7] qui avec nos notations :

Proposition 2.1 Il existe des constantes strictement positives C3, C4 et γ telles que

‖w1(·,τ)‖L1 ≤ ‖w10‖L1

{

1 + γK(R)τ
(

‖w10‖L1

D1

)γ}1/γ
, (20)

pour tout τ ≥ 1, où K(R) = C3 e−C4R2

.
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La démonstration de cette proposition repose sur l’idée suivante. Etant donné que
la solution w1(·,τ) est à moyenne nulle, on peut l’écrire comme la somme d’une partie
positive et d’une partie négative qui évoluent toutes deux selon l’équation de transport-
diffusion (19). Les supports de ces deux solutions sont initialement disjoints, mais le
principe du maximum fort implique qu’ils se recouvrent pour tout τ > 0, ce qui entrâıne
une diminution de la norme L1 de w1(·,τ). Cette perte peut être quantifiée si l’on dispose
d’une borne inférieure sur le noyau intégral de l’opérateur d’évolution associé à l’équation
(19), ainsi que d’une estimation de la forme (18) garantissant que la solution reste bien
localisée pour tous les temps. On obtient ainsi la borne (20), et les constantes (universelles)
C3, C4, γ peuvent être déterminées explicitement. Par exemple, on peut prendre

γ = 5
(e + 1

e − 1

)

=
5

tanh(1/2)
.

On supposera dans la suite que C3 ≤ 1/2, de sorte que K(R) ≤ 1/2.
Il reste à montrer que la partie positive w2(ξ,τ) dans la décomposition de w(ξ,τ)

converge vers αG(ξ) lorsque τ → ∞. On applique pour cela la méthode d’entropie relative
introduite dans ce contexte dans l’article [6]. Si w ∈ S(R2) est une fonction strictement
positive telle que

∫

R2 w(ξ) dξ = α, on note

H(w) =

∫

R2

w(ξ) log
( w(ξ)

αG(ξ)

)

dξ , I(w) =

∫

R2

w(ξ)
∣

∣

∣
∇ log

( w(ξ)

αG(ξ)

)∣

∣

∣

2

dξ . (21)

On a alors les estimations suivantes [1]

1

2α
‖w − αG‖2

L1 ≤ H(w) ≤ I(w) , (22)

qui montrent en particulier que H(w) ≥ 0 avec égalité si et seulement si w = αG. La
borne inférieure sur H dans (22) est l’inégalité de Csiszár-Kullback, alors que la borne
supérieure est une variante de l’inégalité de Sobolev logarithmique.

L’idée est maintenant d’étudier l’évolution temporelle de la quantité H(w2(·,τ)). Un
calcul direct [6] montre que

d

dτ
H(w2(·,τ)) = −I(w2(·,τ)) +

1

2

∫

R2

(ξ · v(ξ,τ))w2(ξ,τ) dξ

≤ −H(w2(·,τ)) +
1

2

∫

R2

(ξ · v1(ξ,τ))w2(ξ,τ) dξ , (23)

où v1(ξ,τ) désigne le champ de vitesse obtenu à partir de w1(ξ,τ) par la loi de Biot-Savart.
Outre (22), on a utilisé ici le fait que

∫

R2(ξ ·v2(ξ,τ))w2(ξ,τ) dξ = 0, ce qui est l’observation-
clef permettant d’appliquer la méthode d’entropie relative à l’équation de Navier-Stokes.
Comme H(w20) = H(αG) = 0, l’inégalité (23) s’intègre facilement et conduit à l’estima-
tion

H(w2(·,τ)) ≤ 1

2

∫ τ

0

e−(τ−s)‖v1(·,s)‖L∞‖|ξ|w2(ξ,s)‖L1

ξ
ds . (24)

Or, les bornes a priori rappelées ci-dessus montrent que

‖v1(·,s)‖L∞ ≤
{

Ca(s)−1/2‖w10‖L1 si 0 < s ≤ 2 ,
C‖w1(·,s − 1)‖L1 si s ≥ 2 ,

(25)
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où ‖w1(·,s − 1)‖L1 se majore à l’aide de la proposition 2.1. Par ailleurs, en utilisant les
bornes ponctuelles établies dans [4, Theorem 3], on vérifie sans peine que

‖|ξ|w2(ξ,s)‖L1

ξ
≤ e−s/2‖|ξ|w20(ξ)‖L1

ξ
+ C(1 + R)a(s)1/2‖w20‖L1 ≤ Cα(1 + R) . (26)

En remplaçant (25), (26) dans (24), et en utilisant la proposition 2.1 ainsi que le lemme
élémentaire ci-dessous, on arrive à l’estimation

H(w2(·,τ)) ≤ Cα(1 + R)‖w10‖L1

{

1 + γK(R)τ
(

‖w10‖L1

D1

)γ}1/γ
, τ ≥ 0 . (27)

Lemme 2.2 Si 0 ≤ K ≤ 1/2 et γ > 0, on a

∫ τ

0

e−(τ−s) 1

(1 + γKs)1/γ
ds ≤ 1 + 21/γ

(1 + γKτ)1/γ
, pour tout τ ≥ 0 .

Démonstration : On a d’une part

∫ τ/2

0

e−(τ−s) 1

(1 + γKs)1/γ
ds ≤

∫ τ/2

0

e−(τ−s) ds ≤ e−τ/2 ≤ 1

(1 + γKτ)1/γ
,

car (1 + γKτ)−1/γ ≥ e−Kτ ≥ e−τ/2. D’autre part,

∫ τ

τ/2

e−(τ−s) 1

(1 + γKs)1/γ
ds ≤ 1

(1 + γKτ/2)1/γ
≤ 21/γ

(1 + γKτ)1/γ
,

ce qui conclut la preuve. 2

Il est maintenant facile de terminer la démonstration du théorème 1.2. Etant donné
que w(ξ,τ) = w1(ξ,τ) + w2(ξ,τ), on a

‖w(·,τ) − αG‖L1 ≤ ‖w1(·,τ)‖L1 + ‖w2(·,τ) − αG‖L1

≤ ‖w1(·,τ)‖L1 +
√

2α H(w2(·,τ))1/2 ,

où la dernière inégalité résulte de (22). En utilisant (20), (27) et en procédant à quelques
simplifications, on trouve pour tout τ ≥ 1 :

‖w(·,τ) − αG‖L1 ≤ D1

(γK(R)τ)1/γ
+ Cα

(1 + R)1/2D
1/2
1

(γK(R)τ)1/2γ
≤ C5D(1 + R)

K(R)1/γτ 1/2γ
.

On peut supposer bien sûr que C5 ≥ 2, auquel cas cette inégalité reste vraie pour tout
τ > 0 car on sait par ailleurs que ‖w(·,τ) − αG‖L1 ≤ R + α ≤ 2R. En retournant alors
aux variables originales et en se souvenant que K(R) = C3 e−C4R2

, on obtient (9) avec
ρ = 1/(2γ). Ceci conclut la preuve du théorème 1.2. 2
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3 Relaxation des tourbillons positifs

L’estimation générale donnée par le théorème 1.2 peut être considérablement améliorée
si l’on se restreint aux solutions dont le tourbillon ω(x,t) est positif. Dans ce cas, en
introduisant les variables autosimilaires (10) comme dans le chapitre précédent, on trouve
que l’entropie relative H(w(·,τ)) qui mesure la “distance” entre la solution w(·,τ) et le
point d’équilibre αG obéit à l’inégalité différentielle

d

dτ
H(w(·,τ)) = −I(w(·,τ)) ≤ −H(w(·,τ)) , τ ≥ 0 .

Ainsi H(w(·,τ)) ≤ e−τH(w0) pour tout τ ≥ 0. En revenant aux variables originales, on
obtient l’inégalité suivante, valable pour tout x0 ∈ R2 et tout t0 > 0 :

H(ω(·,t) |αGx0,t0(·,t)) ≤ t0
t0 + t

H(ω0 |αGx0,t0(·,0)) , t ≥ 0 , (28)

où H(f1 | f2) désigne l’entropie de la distribution f1 par rapport à f2 :

H(f1 | f2) =

∫

R2

f1(x) log
(f1(x)

f2(x)

)

dx ,

et Gx0,t0 est le tourbillon d’Oseen centré au point x0 ∈ R2 et issu du temps −t0 :

Gx0,t0(x,t) =
1

t + t0
G
( x − x0
√

ν(t + t0)

)

.

Rappelons que le membre de gauche de (28) contrôle la distance de la solution ω(·,t)
au tourbillon αGx0,t0(·,t) en vertu de l’inégalité de Csiszár-Kullback

1

2να
‖ω(·,t) − αGx0,t0(·,t)‖2

L1 ≤ H(ω(·,t) |αGx0,t0(·,t)) .

D’autre part, le membre de droite de (28) s’écrit explicitement :

t0
t0 + t

∫

R2

ω0(x)
{

log
(4π

α

)

+ log(t0ω0(x)) +
|x − x0|2

4νt0

}

dx . (29)

Cette expression est suffisamment simple pour qu’on puisse chercher à l’optimiser par un
choix approprié de x0 et t0. Quels que soient t0 et t, il est évident que la quantité (29)
est minimale lorsque x0 ∈ R2 est le centre de masse de la distribution de vorticité ω0. On
fera donc toujours ce choix dans la suite. Il est plus délicat, en revanche, de minimiser
(29) par rapport à t0 car le résultat dépend en général du temps d’observation t. Il y a
cependant au moins deux choix naturels :

1. On peut minimiser (29) pour t = 0, ce qui revient à choisir t0 > 0 de façon à minimiser
l’entropie relative de la donnée initiale. Le minimum est atteint pour t0 = t1, où

t1 =

∫

R2

ω0(x)

αν

|x − x0|2
4ν

dx > 0 .
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2. Si l’on s’intéresse au comportement à grand temps, on peut remplacer le préfacteur
t0/(t0 + t) dans (29) par t0/t. Le minimum de l’expression ainsi obtenue est atteint pour
t0 = t2, où t2 > 0 est déterminé par la relation

∫

R2

ω0(x)
{

1 + log
(4π

α

)

+ log(t2ω0(x))
}

dx = 0 .

Il n’est pas difficile de vérifier que 0 < t2 ≤ t1, et que t2 = t1 si et seulement si la fonction
ω0 est une gaussienne centrée en x0.

Avec ces deux choix du paramètre t0, l’estimation (28) fournit les inégalités suivantes :

H(ω(·,t) |αGx0,t1(·,t)) ≤ αν
t1

t1 + t
log
(t1

t2

)

(30)

H(ω(·,t) |αGx0,t2(·,t)) ≤ αν
t1 − t2
t2 + t

. (31)

L’estimation (30) est optimale pour t = 0, alors que (31) est optimale dans la limite
t → ∞. On notera qu’il existe des données initiales pour lesquelles t2 ¿ t1. Par exemple,
si ν = 1 et si ω0 est la fonction indicatrice de l’union de deux disques de rayon 1 dont
les centres sont séparés d’une distance d > 2, on trouve que t1 = (2 + d2)/16 alors que
t2 = 1/(2e).

Une troisième possibilité, qui fournit une borne particulièrement simple, consiste à
prendre la limite t0 → 0 dans (28), (29) :

H(ω(·,t) |αGx0,0(·,t)) ≤ 1

t

∫

R2

ω0(x)
|x − x0|2

4ν
dx = αν

t1
t

. (32)

En appliquant l’inégalité de Csiszár-Kullback, on obtient donc le résultat suivant :

Proposition 3.1 Soit ω0 ∈ L1(R2) une fonction positive telle que
∫

R2 ω0(x)|x|2 dx < ∞.
Si ω(·,t) est la solution de (2) pour la donnée initiale ω0, on a pour tout x0 ∈ R2 et tout
t > 0 :

1

ν

∥

∥

∥

∥

ω(x,t) − α

t
G
(x − x0√

νt

)

∥

∥

∥

∥

L1
x(R2)

≤
(

2α

ν

∫

R2

ω0(x)
|x − x0|2

4νt
dx

)1/2

, (33)

où α est donné par (6).

Pour les données initiales positives à support dans un domaine borné fixé, l’estima-
tion (33) montre que le temps nécessaire pour atteindre un petit voisinage du tourbillon
d’Oseen est (au pire) proportionnel au carré du nombre de Reynolds R défini par (8). On
a donc dans ce cas un résultat bien meilleur que celui du théorème 1.2, qui fournit une
borne en exp(exp(CR2)).

4 Etude locale au voisinage d’un tourbillon d’Oseen

Le but principal de cet article est d’estimer le temps nécessaire à une solution de (2)
dans L1(R2) pour s’approcher d’un tourbillon d’Oseen à partir d’une donnée initiale
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“quelconque”. On peut aussi se demander – mais c’est une question différente – à quelle
vitesse la solution converge vers le tourbillon d’Oseen une fois qu’elle se trouve dans un
voisinage de celui-ci. Dans cette optique, l’estimation (9) n’est de loin pas optimale : on
sait en effet que les petites perturbations du tourbillon d’Oseen décroissent comme t−1/2

lorsque t → ∞, et même comme t−1 lorsque le point x0 ∈ R2 est placé au centre de masse
de la distribution de vorticité ω0 [5, 6].

Dans ce chapitre, par souci de complétude, on rappelle brièvement comment sont
obtenus ces résultats optimaux. On travaille sur la formulation (13) en variables au-
tosimilaires, et on suppose comme précédemment que le tourbillon w(ξ,τ) décrôıt très
rapidement lorsque |ξ| → ∞. Cette hypothèse simplifie la démonstration, mais peut être
assouplie [6]. On introduit l’espace de Hilbert

X = {w : R2 → R |G−1/2w ∈ L2(R2)} ,

muni du produit scalaire

(w1,w2)X =

∫

R2

G−1(ξ)w1(ξ)w2(ξ) dξ ,

où G est donné par (4). On définit également les sous-espaces fermés

X0 =
{

w ∈ X
∣

∣

∣

∫

R2

w(ξ) dξ = 0
}

,

X1 =
{

w ∈ X0

∣

∣

∣

∫

R2

ξiw(ξ) dξ = 0 pour i = 1,2
}

.

Il n’est pas difficile de vérifier que l’espace X s’injecte dans Lp(R2) pour tout p ∈ [1,2].
En outre, on peut montrer que l’équation (13) est globalement bien posée dans X [7], et
que les sous-espaces X0, X1 sont laissés invariants par l’évolution. Il en va de même, pour
tout α ∈ R, des sous-espaces affines αG + X0 et αG + X1.

Proposition 4.1 Il existe une constante strictement positive δ telle que, pour tout α ∈ R

et pour toute donnée initiale w0 ∈ αG + X0 telle que ‖w0 −αG‖X ≤ δ, la solution w(ξ,τ)
de (13) vérifie

‖w(·,τ) − αG‖X ≤ ‖w0 − αG‖X min(1 , 2 e−κτ ) , τ ≥ 0 , (34)

où κ = 1 si w0 − αG ∈ X1 et κ = 1/2 sinon.

En termes des variables originales, la proposition 4.1 implique le résultat suivant. Si
la donnée initiale ω0 est telle que

t0
ν

∫

R2

∣

∣

∣
ω0(x) − α

t0
G
(x − x0√

νt0

)∣

∣

∣

2

exp
( |x − x0|2

4νt0

)

dx ≤ δ2 ,

où x0 ∈ R2, t0 > 0, et α ∈ R est donné par (6), la solution de l’équation (2) vérifie

1

ν

∫

R2

∣

∣

∣
ω0(x) − α

t + t0
G
( x − x0
√

ν(t + t0)

)∣

∣

∣
dx ≤ C6δ

(1 + t/t0)κ
, t ≥ 0 ,
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où κ = 1 si x0 est le centre de masse de ω0, et κ = 1/2 sinon.

Démonstration : L’équation vérifiée par la perturbation w̃(ξ,τ) = w(ξ,τ)−αG(ξ) s’écrit

∂τ w̃(ξ,τ) + ṽ(ξ,τ) · ∇w̃(ξ,τ) = (L − αΛ)w̃(ξ,τ) , (35)

où ṽ(ξ,τ) est le champ de vitesse obtenu à partir de w̃(ξ,τ) par la loi de Biot-Savart, L
est l’opérateur différentiel (14), et Λ est l’opérateur intégro-différentiel défini par

Λw̃ = vG · ∇w̃ + ṽ · ∇G .

L’intérêt de travailler dans l’espace de Hilbert X est que l’opérateur L y est auto-adjoint,
avec L ≤ −1/2 sur le sous-espace X0 et L ≤ −1 sur X1 [5]. En outre, l’opérateur Λ est
antisymétrique dans le même espace X [6].

Pour contrôler l’évolution de la perturbation w̃(ξ,τ), on utilise l’estimation d’énergie

1

2

d

dτ
‖w̃(·,τ)‖2

X = (w̃(·,τ) ,Lw̃(·,τ))X −
∫

R2

G−1(ξ)w̃(ξ,τ)ṽ(ξ,τ) · ∇w̃(ξ,τ) dξ

= (w̃(·,τ) ,Lw̃(·,τ))X +
1

4

∫

R2

G−1(ξ)(ξ · ṽ(ξ,τ))w̃(ξ,τ)2 dξ , (36)

où la seconde ligne s’obtient en intégrant par parties et en utilisant le fait que ∇G−1 =
(ξ/2)G−1. Fixons τ > 0 et notons f(ξ) = G−1/2(ξ)w̃(ξ,τ). Alors ‖f‖L2 = ‖w̃(·,τ)‖X et

E(f) := ‖∇f‖2
L2 +

1

16
‖|ξ|f‖2

L2 − 1

2
‖f‖2

L2 = −(w̃(·,τ) ,Lw̃(·,τ))X .

Comme w̃(·,τ) ∈ X0 par hypothèse, on a donc E(f) ≥ κ‖f‖2
L2 avec κ = 1 si w̃(·,τ) ∈ X1

et κ = 1/2 sinon. Il s’ensuit en particulier qu’il existe C > 0 tel que

E(f) ≥ C(‖∇f‖2
L2 + ‖|ξ|f‖2

L2 + ‖f‖2
L2) .

D’autre part,

∣

∣

∣

∫

R2

G−1(ξ)(ξ · ṽ(ξ,τ))w̃(ξ,τ)2 dξ
∣

∣

∣
≤

∫

R2

|ξ · ṽ(ξ,τ)|f(ξ)2 dξ

≤ ‖ṽ(·,τ)‖L4 ‖f‖L4 ‖|ξ|f‖L2 . (37)

Par la loi de Biot-Savart, on a ‖ṽ‖L4 ≤ C‖w̃‖L4/3 ≤ C‖w̃‖X , donc le membre de droite de
(37) est borné par C‖w̃(·,τ)‖XE(f). Par conséquent, il existe C7 > 0 tel que

d

dτ
‖w̃(·,τ)‖2

X ≤ −2E(f)(1 − C7‖w̃(·,τ)‖X)

≤ −2κ‖w̃(·,τ)‖2
X(1 − C7‖w̃(·,τ)‖X) , (38)

où la seconde inégalité est vraie tant que C7‖w̃(·,τ)‖X ≤ 1. Si l’on suppose maintenant
que ‖w̃(·,0)‖X ≤ δ = (2C7)

−1, l’inégalité différentielle (38) implique que ‖w̃(·,τ)‖X ≤
‖w̃(·,0)‖X pour tout τ ≥ 0 et que

‖w̃(·,τ)‖X

1 − C7‖w̃(·,τ)‖X

≤ ‖w̃(·,0)‖X

1 − C7‖w̃(·,0)‖X

e−κτ , τ ≥ 0 ,

d’où l’on déduit que ‖w̃(·,τ)‖X ≤ 2‖w̃(·,0)‖X e−κτ . Ceci conclut la démonstration. 2
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