
Summary of the thesis

The index theorem of Atiyah and Singer, discovered in 1963, is a striking result which relates
many different fields in mathematics going from the analysis of partial differential equations to
differential topology and geometry. To be more precise, this theorem relates the dimension of
the space of some elliptic partial differential equations and topological invariants coming from
(co)homology theories, and has important applications. Many major results from different fields
(algebraic topology, differential topology, functional analysis) may be seen as corollaries of this
result, or obtained from techniques developed in the framework of index theory. On another
side, zeta functions associated to pseudodifferential operators on a closed Riemannian manifold
contain in their analytic properties many interesting informations. For instance, the Weyl theorem
on the asymptotic number of eigenvalues of a Laplacian may be recovered within the residues
of the zeta function. This gives in particular the volume of the manifold, which is a geometric
data. Using the framework of noncommutative geometry developed by Connes, this idea may
be pushed further, yielding index theorems in the spirit of the one of Atiyah-Singer. The interest
in this viewpoint is to be suitable for more delicate geometrical situations. The present thesis
establishes results in this direction.

The first chapter of the thesis aims at obtaining a general local index formula for "abstract
elliptic operators". These formulas are derived from a cyclic cocycle expressed in terms of zeta
functions residues, constructed by combining zeta functions renormalization techniques together
with the excision property in cyclic cohomology. The formula also applies when the zeta function
has multiple poles. We then relate this cocycle to the Chern-Connes character.

Chapters 2 and 3 establish index theorems for hypoelliptic operators in the Heisenberg calcu-
lus on foliations. We first get a result for these operators on Rn. The idea is to retract the cocycle
obtained in Chapter 1 to a cocycle depending only on the principal symbol of the operators. We
give two ways of constructing this : one uses once more excision, the other one relies on the
algebra cochains theory of Quillen. In the following, we extend this result to the more general si-
tuation of a discrete group acting on a foliation by foliated diffeomorphisms, in a joint work with
D. Perrot. As a corollary, we give a new solution to a problem given by Connes and Moscovici,
raising the question of computing the Chern character of the transverse fundamental class on a
foliation.

The last chapter discusses some results on manifolds with conic singularities, and illustrates
the results of Chapter 1 in the case where the zeta function exhibits double poles. Nevertheless, it
should be noted that the index formula is no more local due to the singular situation considered.
This phenomena is analogous to the apparition of the eta invariant in the case of Dirac operators,
but may be developed for more general pseudodifferential operators.

KEYWORDS. Noncommutative geometry, index theory, foliations, conical manifolds,K-theory,
cyclic (co)homology, hypoelliptic operators.
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Introduction

1. Some historical points on index theory

The point of departure of index theory is the Atiyah-Singer theorem, proved in 1963 in [2].
The strength of this result lies in its interdisciplinary nature, relating many different mathematical
fields (analysis, geometry, topology), by yielding equalities of the type

analytic term = topological term.

Historically, one may find many other instances of "index theorems" of that kind, giving an equa-
lity between terms of different nature. We shall first review some important examples of such
results, and their consequences.

Gauss-Bonnet theorem (1848). Given a closed oriented Riemannian surface (M,g), the Gauss-
Bonnet theorem consists in the following formula :

χ(M) =
1

2π

∫
M

kg(x)dx,

where χ(M) denotes the Euler characteristic of M, and kg the Gauss curvature of (M,g). The
number χ(M) is a invariant of the global topology of M, whereas kg is a geometric data. Indeed,
the Theorema Egregium of Gauss implies that kg depends only on the metric g and is therefore
invariant under local isometries. Surprisingly, the theorem says that χ(M) is recovered by summa-
tion of kg over all points of M. In other words, we have an equality between terms of different
nature through a local formula.

This formula puts interesting constraints on the geometry of the surface. For example, let M
be the 2-dimensional torus. The genus ofM is 1 and χ(M) = 2− 2 · genus(M), whence∫

M

kg(x)dx = 0

As a consequence, there is no metric of positive Gauss curvature on the 2-torus. Combinations
of vanishing theorems with index theorems offer some tools allowing to generalize this kind of
arguments for the positive scalar curvature problem. In the same spirit as the Gauss-Bonnet theorem,
we may think about the Lichnerowicz theorem for closed spin manifolds, see for example [3] for
more details. Noncommutative geometry allows to push this reasoning even further, for example
through the Baum-Connes conjecture and coarse index theory. For more details, one may consult
the surveys of Schick [37] and Yu [40].

Fritz Noether theorem (1931). Let us now look at an example from operator theory, where
the word "index" appears explicitely. Let S1 ⊂ C be the unit circle in the complex plane, L2(S1)
be the space of square summable functions on S1 and

H2(S1) =

z 7−→ ∑
n>0

anz
n ;
∑
n>0

|an|
2 <∞


be the Hardy space on S1. Let P denote the orthogonal projection from L2(S1) onto H2(S1). The
space C1(S1) of differentiable functions on the circle acts by multiplication on L2(S1). If u ∈
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C1(S1) nowhere vanishes on S1, then PuP is invertible modulo compact operators, and is there-
fore a Fredholm 1 operator on H2(S1). Fritz Noether’s theorem computes its index :

Ind(PuP) = −Winding(u, 0) = −
1

2πi

∫
S1

u−1du.

We observe the left-hand-side is purely analytic, whereas the right-hand-side is completely to-
pological. This formula is the first step of Brown-Douglas-Fillmore theory and K-homology [5],
which is of considerable importance for (noncommutative) index theory. We shall come back to
this later in the memoir. For the moment, let us just mention that as an application of Brown-
Douglas-Fillmore theory, we get a complete classification of essentially normal operators obtai-
ned as a compact perturbation of a normal operator on Hilbert spaces (see for example [20]).
One relevant point here is the application of algebraic topology techniques to solve a problem of
functional analysis.

Hirzebruch signature theorem (1956). We come back to differential geometry with a last
example. Let M be a closed oriented manifold of dimension n = 4k. The intersection form of M is
the following bilinear form on the de Rham cohomology :

H2k(M,R)×H2k(M,R) −→ R, (α,β) 7−→ ∫
M

α∧ β

The signature ofM is defined as the number Sign(M) = p− q, where (p,q) is the signature of the
bilinear form above, and is a homotopy invariant. Then, Hirzebruch discovered that

Sign(M) = 〈[M],L(M)〉
where L(M) is the L-genus of Hirzebruch, which may be expressed as a polynomial on the Pon-
tryagin classes of M. An interesting insight on this story is [22]. One important application of
this theorem concerns the exotic spheres discovered by Milnor [26], i.e manifolds homeomor-
phic, but non diffeomorphic to the euclidean sphere S7 of dimension 7. Let us give the idea of
the construction allowing to distinguish these differentiable structures. One constructs a mani-
fold with boundary N of given intersection form (and thus signature), with boundary ∂N = Σ7

homeomorphic to S7, but not diffeomorphic. If it were, a smooth manifold M = N tΣ D8 could
be constructed by gluing N and an 8-disk along Σ7. The signature theorem would then give

Sign(M) =

∫
M

1

45
(7p2 − p

2
1)

where the pi ∈ H4i(M,Z) denote the Pontryagin classes of M. A contradiction arises for a subi-
table choice ofN such that the right-hand-side is not an integer, taking into account that Pontrya-
gin classes are integral.

Partial differential equations. In the sixties, Gel’fand suggested in [16] that the Fredholm
index of an elliptic operator D, should be expressible in purely topological terms, arguing on its
homotopy invariance. This idea was strengthened by Bott periodicity, which exhibits a periodicity
in the higher homotopy groups of the classical groups. Indeed, if we take for instance

D =

n∑
i=1

ai∂xi

1. An operator T : H → H ′, where H and H ′ are Hilbert spaces, is Fredholm if its kernel KerT and cokernel
CokerT = H ′/ImT are finite dimensional. A theorem of Atkinson asserts that this is equivalent to the invertibility of T
modulo compact operators. The index of T is then defined as the integer

Ind(T) = dim Ker(T)− dim Coker(T).
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a differential operator of order 1 on the torus Tn with constant matrix coefficients ai ∈ MN(C),
its symbol

σD(ξ) =

n∑
i=1

aiξi

is invertible for every ξ ∈ Rnr{0}, and defines an element of the homotopy group πn−1(GLN(C)).
Moreover,

πn−1(GLN(C)) =
{

Z if n is even,
0 otherwise.

In particular, the topological K-theory of Atiyah and Hirzebruch makes its first appearance. The
question is then to know if the two different sources of integrality given above are related. The
confirmation comes from the Atiyah-Singer theorem. It states that if M is a closed manifold, and
D : C∞(M,E) → C∞(M, F) is a (pseudo)differential operator on M, with E and F being complex
vector bundles over M, then D is Fredholm 2, and its index is given by a topological formula
which depends only on its principal symbol σD. More precisely, Ind(D) is the evaluation of a
specific cohomology class on the fundamental class in homology [T∗M] ∈ H•(T∗M,C) ofM :

Ind(D) = 〈[T∗M], ch0[σD] ∪ Td(TM⊗ C)〉
Let us explain the different terms of the formula. The leading symbol σD defines an isomorphism
π∗E → π∗F outside a neighbourhood of the zero section, hence an element [σD] = [π∗E,π∗F,σD]
of theK-theory groupK0(T∗M). Moreover, ch0 : K0(T∗M)→ Heven(M,C) denotes the even Chern
character and Td(TM⊗ C) the Todd class of the complexified cotangent bundle.

We may also give an odd version of the theorem. This requires E = F. Let S∗M denote the
cotangent sphere of M and π : S∗M→M denote the canonical projection. By ellipticity, σD is an
isomorphism of π∗E on S∗M, and thus defines an element [σD] of the K-theory group K1(S∗M) =

π0(GL(C
∞(S∗M)). Atiyah-Singer formula restates as follows

Ind(D) = 〈[S∗M], ch1[σD] ∪ π∗TdC(T
∗M)〉

where ch1 : K1(S∗M)→ Hodd(M,C) is the odd Chern character. We may retrieve the even version
from the latter with Bott periodicity.

To illustrate the breakthrough this result made, let us mention that all the results given ear-
lier in the Introduction are special cases of the Atiyah-Singer theorem. Gauss-Bonnet and Hir-
zebruch’s signature theorems are respectively recovered from the even case with the following
operators :

D = d+ d∗ : Ωeven(M) −→ Ωodd(M),

where d is the de Rham differential and d∗ its adjoint with respect to the metric onΩ•(M), and

D = d− ∗d∗ : Seven −→ Sodd

where ∗ is the Hodge star, which induces a Z2-graduationΩ•(M) = Seven⊕Sodd. For more details,
the reader may consult [3], [15] or [17].

Noether theorem is obtained from the odd case when M = S1 : the Toeplitz operator may
be written as an elliptic pseudodifferential operator of order 0. This point will be reviewed as a
direct application of Chapter 1.

Nevertheless, many geometric situations leads to the necessity of developing index theory in
more general settings. For example, the study of transverse situations on foliations gives index

2. as a bounded map Hs+ord(D)(M) → Hs(M) between Sobolev spaces, for every s ∈ R. The index does not
depend on s.
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problems for operators which are no more elliptic. The work of Atiyah and Singer does not ap-
ply directly here, but Noncommutative Geometry provides a framework allowing to extend their
methods.

2. Towards Noncommutative Geometry

Atiyah quickly remarked that the analytic index may be interpreted as the result of an ac-
curate pairing between K-theory and its "dual theory", called K-homology. To realize concretely
this theory, Atiyah uses a description involving "abstract pseudodifferential operators" [1]. These
ideas will be extended later with extensions of C∗-algebras by Brown-Douglas-Fillmore [5], and
culminates with Kasparov’s theory [24].

2.1. Fredholm modules and K-homology.

DEFINITION 1. An odd Fredholm module on an associative ∗-algebra A is given by :

(i) a ∗-representation of A as bounded operators on a (complex) Hilbert space H,

(ii) a self-adjoint operator F : H → H such that for every a ∈ A, a(F2 − 1) and the commutator
[F,a] are compact operators.

An even Fredholm module on A consists of similar datas, withH endowed with a Z2-graduation
ε, i.e ε2 = 1. Elements of A are represented as even operators (i.e they commute with ε), and F is
odd (i.e it anticommutes with ε).

REMARK 2. We may actually reduce to the case with F2 = 1, modulo the equivalence relation
defined in Kasparov’s theory. See for example [7], Appendix 2.

The operator F is precisely the thing called "abstract pseudodifferential operator of order 0"
by Atiyah. In the concrete case of a closed manifold M, let F be a pseudodifferential operator of
order 0 and f ∈ C∞(M), then the commutator [F, f] has pseudodifferential order 6 −1, hence it is
a compact operator.

We now consider the projection P = 1+F
2

. In these conditions, if u ∈ A is invertible, one easily
sees that

PuP : PH→ PH

is invertible modulo compacts, and is consequently a Fredholm operator. We then get a group
morphism between algebraic K-theory and Z :

(1) IndF : K
alg
1 (A)→ Z, [u] 7→ Ind(PuP)

There are also pairings of even Fredholm modules with Kalg
0 (A). Let (A,H, F) be an even

Freholm module. Note H = H+ ⊕H− its decomposition with respect to the Z2-graduation ε. Let
e be an idempotent of A, then the operator

eFe : eH+ −→ eH−

is also Fredholm, giving rise to another group morphism :

(2) IndF : K
alg
0 (A) −→ Z, [e] 7−→ Ind(eFe : eH+ → eH−)

EXAMPLE 3.

(i) The triple (C∞(S1),L2(S1), F = D|D|−1), where D = 1
i
d
dt

and F is extended by 1 on Ker(D),
defines the Fredholm module corresponding to the Noether theorem : the projection P =
1+F
2

is precisely the orthogonal projection of L2(S1) onto the Hardy space H2(S1).
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(ii) More generally, one may replace S1 by any closed manifold M and D by any pseudodiffe-
rential operator D.

(iii) An important example of even Fredholm module is (C∞(M),L2(M,S), F = D|D|−1), where
M is a closed spin manifold, S the bundle of spinors and D a Dirac operator.

We shall need an additional assumption for Fredholm modules. For p > 0, recall that the p-th
Schatten class `p(H) on H is the two-sided ideal of the algebra B(H) of bounded operators on H

`p(H) = {T ∈ B(H) ; Tr |T |p <∞}.

DEFINITION 4. A Fredholm module (A,H, F) is said finitely summable if there exists p > 0

such that for any a ∈ A, [F,a] belongs to `p(H).

REMARK 5. In that case, for every a0, . . . ,ak ∈ A with k > p,

[F,a0] . . . [F,ak]

is a trace-class operator on H.

EXAMPLE 6. The Fredholm module (C∞(S1),L2(S1), F) of the example above is p-summable
for all p > 1. It also holds for p = 1 but this is not generic : a Fredholm module associated to a
closed manifoldM is p-summable in general for p > dimM.

In [7], Connes observed that given an odd Fredholm module (A,H, F), where A is not a C∗-
algebra, the formula

φ2k+1(a0, . . . ,a2k+1) = Tr(a0[F,a1] . . . [F,a2k+1])

where k is an integer such that 2k + 1 > p, a0, . . . ,a2k+1 ∈ A, defines a cyclic cocycle 3 on A,
giving rise to the following index formula :

(3) Ind(PuP : PH→ PH) =
(−1)k+1

22k+1
φ2k+1(u

−1,u, . . . ,u−1,u)

where P = 1+F
2

, and u is an invertible in A.

For an even Fredholm module (A,H, F), one considers the following cyclic cocycle

φ2k(a0, . . . ,a2k) = Tr(εa0[F,a1] . . . [F,a2k])

with k integer such that 2k > p, a0, . . . ,a2k+1 ∈ A, leading to :

(4) Ind(eFe : eH+ → eH−) = (−1)kφ2k(e, . . . , e)

where e is an idempotent in A.

When A is a C∗-algebra, we adopt the terminology K-cycle rather than Fredholm module.
Considering a certain equivalence relation that we do not describe here, the set of odd K-cycles
on a C∗-algebra A form a group K1(A) called odd K-homology group of A. There is also an even
K-homology group K0(A), formed by even K-cycles. For more details, the reader may consult for

3. A cyclic p-cocycle on A is a (p+ 1)-linear formφ such that

(i) φ(a0, . . . ,ap) = (−1)pφ(ap,a0, . . . ,ap−1), ∀a0, . . . ,ap ∈A

(ii) bφ = 0, where b is the Hochschild coboundary.

The space of cyclic cocycles on A endowed with the Hochschild coboundary forms a differential complex, its cohomology
is the cyclic cohomology HC•(A) of A.
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example [20]. Though, cyclic (co)homology is not suitable for C∗-algberas 4. That’s why we shall
focus on relevant dense subalgebras in the thesis.

When A is a dense subalgebra in a C∗-algebra A, the pairings (1)-(2) and (3)-(4) may be
extended, in certain cases, to the topologicalK-theoryKtop

1 (A) of theC∗-algebra. The case where A
is stable by holomorphic functional calculus is the most simple, as the injection of A ⊂ A induces
an isomorphism in K-theory.

In general, the problem of extending the pairings is difficult, but important for applications.
We have in mind the papers [9] or [10], where such considerations are refined with the Novi-
kov conjecture as a target. Another application concerns the transverse fundamental class of a
foliation [6] and its geometric corollaries.

2.2. Cyclic (co)homology and (B,b)-bicomplex. K-homology is in some sense the stage of
noncommutative topology. Connes developed noncommutative differential geometry in [7]. Some of
the main tools introduced are periodic cyclic homology and cohomology, which are respectively
the noncommutative analogue of the de Rham cohomology and homology.

Let A be an associative algebra (possibly non unital) over C. The algebra of universal differential
forms (ΩA, d) on A, is the algebra generated by a ∈ A, and symbols da, a ∈ A with d linear in a
and saisfiying the Leibniz rule

d(a0a1) = a0 · da1 + da0 · a1
for every a0,a1 ∈ A. We have a filtration,

ΩA =
⊕
k>0

ΩkA,

whereΩkA = {a0da1 . . . dak ; a0, . . . ,ak ∈ A}. As vector spaces, there is a natural isomorphism

ΩkA
'−→ A+ ⊗A⊗k

a0da1 . . . dak 7−→ a0 ⊗ a1 ⊗ . . .⊗ ak
da1 . . . dak 7−→ 1⊗ a1 ⊗ . . .⊗ ak

where A+ is the unitalization of A.

The universal differential d is extended toΩA by setting

d(a0da1 . . . dak) = da0da1 . . . dak
d(da1 . . . dak) = 0

One then defines two differentials on ΩA : the Hochschild boundary b : Ωk+1A → ΩkA given by
the formula

b(a0da1 . . . dak+1) = a0a1da2 . . . dak+1 +
k∑
i=1

(−1)ia0da1 . . . d(aiai+1) . . . dak+1

+ (−1)k+1ak+1a0da1 . . . dak

and the differential B : ΩkA→ Ωk+1A defined by

B(a0da1 . . . dak) = da0da1 . . . dak + (−1)kdanda0da1 . . . dak−1

+ . . . + (−1)kkda1 . . . dakda0

4. Cyclic theory is poor in that case. For example if A is nuclear, HP1(A) = 0 et HP0(A) is the space of traces on
A. This is the same for entire cyclic cohomology. An alternative is the local cyclic cohomology of Puschnigg, but this point
of view is not suitable for concrete calculations.
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As we have b2 = B2 = Bb+ bB = 0, we may consider the (B,b)-bicomplex in homology

...
...

...

. . . Ω2A Ω1A Ω0A

. . . Ω1A Ω0A

. . . Ω0A

b

b

b

b

b

b

BBB

BB

B

Let Ω̂A denote the direct product
∏
kΩ

kA. The periodic cyclic homology HP•(A) of A is the homo-
logy of the 2-periodic complex

Ω̂evenA Ω̂evenA
B+ b

B+ b

where

Ω̂evenA =
∏
k>0

Ω2kA, ΩoddA =
∏
k>0

Ω̂2k+1A

The reason why we use the direct product instead of the direct sum is that the latter always gives
0 in homology. Therefore, there is only an even and an odd periodic cyclic homology group,
denoted HP0(A) and HP1(A).

For k > 0, let CCk(A) be the dual of ΩkA, that is, the space of (k + 1)-linear forms on A+

verifying φ(a0, . . . ,ak) = 0 if ai = 1 for at least one i > 1. In an obvious way, we can construct
a (B,b)-bicomplex in cohomology by taking the dual of the one given in homology above. The
(continous) dual of Ω̂A (for the filtration topology) is the direct sum :

CC•(A) =
⊕
k>0

CCk(A)

The periodic cyclic cohomology HP•(A) of A is the cohomology of the dual 2-periodic complex
giving cyclic homology, or equivalently, the total complex of the (B,b)-bicomplex in cohomology

CCeven(A) CCodd(A)
B+ b

B+ b

where

CCeven(A) =
⊕
k>0

CC2k(A), CCodd(A) =
⊕
k>0

CC2k+1(A)

REMARK 7. Sometimes, some authors use B− b instead of B+ b.

A cyclic p-cocycle φp naturally yields a (B,b)-cocycle (0, . . . , 0,φp, 0, . . .), where φp is in
(p
2
+ 1)-th position for p even, and in p+1

2
-th position if p is odd. Such (B,b)-cocycles are said

homogeneous. On the contrary, we say it is inhomogeneous.

Let us now give a fundamental example of cyclic cohomology.
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EXAMPLE 8. LetM be a closed manifold and A = C∞(M) endowed with its Fréchet topology.
A theorem of Connes [7] states that if one restricts to continuous (B,b)-cochains for the Fréchet
topology, one recovers the de Rham homology ofM :

HP0cont(A) ' H0(M)⊕H2(M)⊕ . . .

HP1cont(A) ' H1(M)⊕H3(M)⊕ . . .

In the dual way, the periodic cyclic homology of A endowed with its Fréchet topology also yields
de Rham cohomology. Note that we have to use a projective tensor product in the definition of
ΩA.

REMARK 9. Considering only the non periodic cyclic cohomology of degree n does not yield
the de Rham homology of same parity truncated at order n. Indeed,

HC2kcont(A) ' H0(M)⊕ . . .⊕H2k−2(M)⊕ Ker(d : Ω2k(M)→ Ω2k−1(M))

HC2k+1cont (A) ' H1(M)⊕ . . .⊕H2k−1(M)⊕ Ker(d : Ω2k+1(M)→ Ω2k(M))

where Ω•(M) is the space of de Rham currents, so that the cyclic cohomology functor HC• does
not verify homotopy invariance. One then understands the necessity to "stabilize" HC• for killing
the error term, which is the role of the (B,b)-bicomplex.

As the examples may suggest, cyclic homology is the receptacle of the noncommutative Chern
character. The odd and even versions are respectively defined as follows :

ch1 : K
alg
1 (A) −→ HPodd(A), u 7−→∑

k>0

(−1)k k! · tr
(
u−1du(du−1du)k

)
(5)

ch0 : K
alg
0 (A) −→ HPeven(A), e 7−→ tr(e) +

∑
k>1

(−1)k
(2k)!

k!
tr
(
(e−

1

2
)(de)2k

)
(6)

where tr denotes the trace of matrices.

We may now come back to the cyclic cocycles associated to a Fredholm module constructed
by Connes.

THEOREM 10. (Connes, [7]) Let (A,H, F) be an odd Fredholm p-summable, k be an integer such
that 2k+ 1 > p and a0, . . . ,a2k+1 ∈ A. Then, the periodic cyclic cohomology class of the cyclic cocycle

ch2k+1(H, F)(a0, . . . ,a2k+1) = −
1

22k+1 · k!
Tr(a0[F,a1] . . . [F,a2k+1])

does not depend on k. The (B,b)-cocycle ch(H, F) is called the odd Chern-Connes character of the
Fredholm module (A,H, F).

To prove this theorem, it suffices to introduce the cyclic cochain γ

γ2k(a0, . . . ,a2k) =
1

22k+1 · k!
Tr(a0F[F,a1] . . . [F,a2k]).

One easily checks that φ2k+1 − φ2k−1 = (B+ b)γ2k.

THEOREM 11. (Connes, [7]) Let (A,H, F) be an odd Fredholm p-summable, k be an integer such
that 2k > p and a0, . . . ,a2k ∈ A. Then, the periodic cyclic cohomology class of the cyclic cocycle

ch2k(H, F)(a0, . . . ,a2k) =
k!

(2k)!
Tr(εa0[F,a1] . . . [F,a2k])

does not depend on k. The (B,b)-cocycle ch(H, F) is called the even Chern-Connes character of the
Fredholm module (A,H, F).
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The proof is similar to the odd case, introducing the (B,b)-cochain γ

γ2k−1(a0, . . . ,a2k−1) =
k!

(2k)!
Tr(εa0F[F,a1] . . . [F,a2k−1]).

The index formulas (3) and (4) now reinterpret respectively as follows :

Ind(PuP) = 〈ch2k+1(H, F), ch1(u)〉, Ind(eFe) = 〈ch2k(H, F), ch0(e)〉,

the restrictions being understood. Conceptually, we manage to state a noncommutative index
theorem as an equality between

(i) A pairing of K-theory with a dual theory (Fredholm modules or K-homology depending
on the nature of the algebra) in the left-hand-side,

(ii) A pairing between cyclic cohomology and homology in the right-hand-side, similar to
the pairing between de Rham homology and cohomology in the Atiyah-Singer theorem.

Unfortunately, a problem occurs because the formulas defining ch(H, F) are non-local : As
they involve the operator trace, they are sensitive to compact perturbations of the operator F.
Though, it can be shown that their periodic cyclic cohomology class does not depend on these
perturbations. This non-local behaviour then introduces difficulties to derive concrete index for-
mulas directly from the Chern-Connes character ch(H, F).

2.3. Spectral triples (unbounded Fredholm modules). The non-locality of the formula which
defines the Chern-Connes character led Connes and Moscovici to introduce the notion of spec-
tral triple in [11]. They were aiming at very general formula covering the Atiyah-Singer index
formula, with applications to other and more intricate situations in mind.

Spectral triples are an unbounded version of Fredholm modules. We shall focus on the odd
case. To adapt the theory to the even case, one proceeds to the same modifications as those done
for bounded Fredholm modules.

DEFINITION 12. A spectral triple (or unbounded Fredholm module) is a triple (A,H,D)

consisting of the following datas :

(i) an associative ∗-algebra A over C, ∗-represented as bounded operators on a Hilbert space
H,

(ii) an unbounded operator D on H, such that

(a) For every a ∈ A, a(λ−D2)−1 is compact, for every λ in the resolvent set ofD2 (in other
words, D has a locally compact resolvent))

(b) For every a ∈ A, [D,a] is defined on domD, and extends to a bounded operator on H.

A spectral triple (A,H,D) is regular if A, [D,A] are contained in
⋂
n>1 dom δn, where δ is the

unbounded derivation ad |D| = [|D|, . ] sur B(H).

EXAMPLE 13. LetM be an odd dimensional closed spin manifold,D the associated Dirac ope-
rator acting on the spinor bundle S. Then (C∞(M),L2(S),D) is a regular spectral triple. Connes
gives a reconstruction theorem [8], which says under additional assumptions, all "commutative"
spectral triples are of that form. Then, one can think of spectral triples as noncommutative Rie-
mannian manifolds.

If we assume A to be unital, the hypothesis (ii) allows to perform holomorphic functional
calculus on ∆ = D2, thanks to a Cauchy integral. In particular, complex powers ∆−z, for z ∈ C
may be defined as follows

(7) ∆−z =
1

2πi

∫
λ−z(λ− ∆)−1dλ
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where the integration contour may for example be taken as a vertical line pointing downwards,
which separates 0 and the spectrum of ∆. This converges for the operator norm when Re(z) > 0.
To make sense of this when Re(z) 6 0, one writes ∆−z = ∆−z−k∆k, for k ∈ N large enough.

REMARK 14. This works well for the spectral triple of Exemple 13, because ∆ has here a com-
pact resolvent. However, we shall also be interested in non-unital cases, where this no more holds
in general. For example for the spectral triple (C∞c (M),L2(M),D), withM as a non compact com-
plete Riemannian manifold, we shall construct the complex powers ∆−z as properly supported
pseudodifferential operators (modulo smoothing operators), reasonning directly at the level of
symbolic calculus by replacing the (λ− ∆)−1 in the integral is replaced by a parametrix.

We need some more axioms to define zeta functions. For this, let us recall the case of zeta
functions on a Riemannian manifold M of dimension n. Let ∆ be a Laplace-type operator on
M, and P be a (pseudo)differential operator of order d on M with compact support. A theorem of
Minakshisundaram and Pleijel [27] asserts that the zeta function of P

ζP(z) = Tr(P∆−z)

is holomorphic on the half-plane Re(z) > n+d
2

, and extends to a meromorphic function on the
complex plane C, with at most simple poles at the integers {n+d

2
, n+d−1

2
, . . .}. This leads to the

following definition.

DEFINITION 15. A spectral triple (A,H,D) has the analytic continuation property if for every P
belonging to the smallest subalgebra generated by δnA, δn[D,A], n > 0, the zeta function

ζP(z) = Tr(P∆−z)

exists for Re(z) � 0, and extends to a meromorphic function on C. We say that (A,H,D) has
simple dimension spectrum if it has the analytic continuation property, and if the poles of all zeta
functions given above are at most simple.

The locality, in the sense defined before, comes from Wodzicki’s results [39], showing that the
functional

(8)
∫
−P = Resz=0Tr(P∆−z)

defines the unique trace on the algebraΨcl,c(M) of classical pseudodifferential operators with com-
pact support on M vanishing on regularizing operators. Wodzicki also shows that the residue of
P ∈ Ψcl,c(M) is given by a formula involving only its symbol σ−n of order −n,

(9)
∫
−P =

1

(2π)n

∫
S∗M

ιL

(
σ−n(x, ξ)

ωn

n!

)
where L is the generator of the dilations (x, λξ)λ∈R on T∗M, which writes locally L =

∑
i ξi∂ξi

,
ω is the standard symplectic form on T∗M and ι the interior product. The definition of

∫
− always

makes sense in the abstract framework developed by Connes and Moscovici, which led them to
the local residue index formula.

THEOREM 16. (Connes-Moscovici, [11]) Let (A,H,D) be a regular spectral triple with simple di-
mension spectrum, and denote ∆ = D2. For every non-zero p ∈ N, one defines a functional on Ap+1

by

φp(a0, . . . ,ap) =
∑

k1,...,kp>0

cp,kResz=0Tr
(
a0[D,a1](k1) . . . [D,a1](kp)∆−p

2
−|k|−z

)



2. TOWARDS NONCOMMUTATIVE GEOMETRY 13

where |k| = k1 + . . . + kp, X(ki) = ad(∆)ki(X) =
[
∆,
[

. . . , [∆,X]
]]

, et

cp,k =
(−1)k

k!

Γ(|k|+ p
2
)

(k1 + 1)(k1 + k2 + 2) . . . (k1 + . . . + kp + p)
.

Then, φ = (φp)p∈2N+1 is a (B,b)-cocycle cohomologous in the (B,b)-bicomplex to the Chern-Connes
character ch(H,D|D|−1) associated to the Fredholm module (A,H,D|D|−1). For that reason, we denote
φ = ch(A,H,D).

Connes and Moscovici first obtained the Residue cocycle as a limit of the JLO cocycle [23] :

JLOp(a0, . . . ,ap) = tp/2
∫
∆n+1

Tr
(
a0e

−t0D
2

[D,a1]e−t1D
2

. . . [D,ap]e−tpD
2
)
dt

A more direct way is given by Higson [19] (Appendix B), using Quillen’s theory of cochains.

EXAMPLE 17. Applying this result to the spectral triple (C∞(M),L2(S),D) of Example 13
yields (up to a multiplicative constant) the following :

φn(a0, . . . ,ap) =
∫
M

Â(M)∧ a0da1 . . .dap

where Â is the A-genus of M. The idea is to perform a Mellin transform to boil down to the heat
kernel, and to use a rescaling technique found by Getzler [3]. For details, the reader may consult
the paper [33] of Ponge.

2.4. Foliations, Heisenberg calculus and transverse geometry. Before giving the applica-
tions of these results to the transverse geometry of foliations, it is necessary to have some insight
on the Heisenberg calculus on foliations.

Let M be a foliated manifold of dimension n, and let V be the integrable sub-bundle of the
tangent bundle TM of M which defines the foliation. Denote v the dimension of the leaves and
h = n− v their codimension.

The fundamental idea of the Heisenberg calculus is that longitudinal vector fields (with res-
pect to to the foliation) have order 1, whereas transverse vector fields have order 6 2. We shall now
describe the symbolic calculus allowing to do so, following Connes and Moscovici [11].

Let (x1, . . . , xn) a foliated local coordinate system of M, i.e, the vector fields ∂
∂x1

, . . . , ∂
∂xv

(locally) span V , so that ∂
∂xv+1

, . . . , ∂
∂xn

are transverse to the leaves of the foliation. Then, we set

|ξ| ′ = (ξ41 + . . . + ξ4v + ξ
2
v+1 + . . . + ξ2n)

1/4

〈α〉 = α1 + . . . + αv + 2αv+1 + . . . 2αn

for every ξ ∈ Rn, α ∈ Nn.

DEFINITION 18. A smooth function σ(x, ξ) ∈ C∞(Rnx ×Rnξ ) is a Heisenberg symbol of orderm ∈
R if over any compact subset K ⊂ Rnx and for every multi-index α,β, there exists C = CK,α,β > 0

satisfying following estimate

|∂βx∂
α
ξσ(x, ξ)| 6 CK,α,β(1+ |ξ| ′)m−〈α〉

We shall focus on the smaller class of classical Heisenberg symbols. For this, we first define the
Heisenberg dilations

λ · (ξ1, . . . , ξv, ξv+1, . . . , ξn) = (λξ1, . . . , λξv, λ2ξv+1, . . . , λ2ξn)

for any non-zero λ ∈ R and non-zero ξ ∈ Rn.
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Then, a Heisenberg pseudodifferential σ of order m is said classical if its symbol σ has an
asymptotic expansion when |ξ| ′ →∞
(10) σ(x, ξ) ∼

∑
j>0

σm−j(x, ξ)

where σm−j(x, ξ) are Heisenberg homogeneous functions, that is, for any non zero λ ∈ R,

σm−j(x, λ · ξ) = λm−jσm−j(x, ξ)

The Heisenberg principal symbol is the symbol of higher degree in the expansion (10).

To such a symbol σ of orderm, one associates its left-quantization as the linear map :

P : C∞c (Rn)→ C∞(Rn), Pf(x) =
1

(2π)n

∫
Rn

eix·ξσ(x, ξ)f̂(ξ)dξ

where f̂ denotes the Fourier transform of the function f. We shall say that P is a classical Heisenberg
pseudodifferential operator of order m. If P is properly supported, then it maps C∞c (Rn) into itself.
We denote byΨmH (Rn) the vector space of such properly supported operators and byΨmH,c(Rn) its
subspace of compactly supported operators. Since properly supported operators can be composed,
the unions of all-orders operators

ΨH(Rn) =
⋃
m∈R

ΨmH (Rn) , ΨH,c(Rn) =
⋃
m∈R

ΨmH,c(Rn)

are associative algebras over C. The ideals of regularizing operators

Ψ−∞(Rn) = ⋂
m∈R

ΨmH (Rn) , Ψ−∞
c (Rn) =

⋂
m∈R

ΨmH,c(Rn)

correspond respectively to the algebras of operators with properly and compactly supported
smooth Schwartz kernel.

If P1,P2 ∈ ΨH(Rn) are Heisenberg pseudodifferential operators of symbols σ1 and σ2, P1P2 is
a Heisenberg pseudodifferential operator whose symbol σ is given by the star-product of symbols :

(11) σ(x, ξ) = σ1 ? σ2(x, ξ) ∼
∑
|α|>0

(−i)|α|

α!
∂αξσ1(x, ξ)∂αxσ2(x, ξ)

Note that the order of each symbol in the sum is decreasing while |α| is increasing.

We define the algebra of Heisenberg formal classical symbols SH(Rn) and its compactly supported
subalgebra SH,c(Rn) as quotients

SH(Rn) = ΨH(Rn)/Ψ−∞(Rn) , SH,c(Rn) = ΨH,c(Rn)/Ψ−∞
c (Rn)

Their elements are formal sums given in (10), and the product is the star product (11). Note that
the ∼ can be replaced by equalities when working at a formal level.

A Heisenberg formal symbol is said Heisenberg elliptic (orH-elliptic for short) if it is invertible
in SH(Rn). This is equivalent to say that its Heisenberg principal symbol is invertible on Rnx ×Rnp r
{0}. These symbols are generally no more elliptic in the usual sense. Nonetheless, when M is
compact, the corresponding pseudodifferential operators are hypoelliptic, and remain Fredholm
operators when acting on Sobolev space suitably defined for this context (cf. for example [18]).

EXAMPLE 19. (Sub-elliptic Laplacian) This is the differential operator,

∆H = ∂4x1 + . . . + ∂4xv − (∂2xv+1
+ . . . + ∂2xn)

It has Heisenberg principal symbol σ(x, ξ) = |ξ| ′4, and is therefore Heisenberg elliptic. However,
its usual principal symbol, as an ordinary differential operator, is (x, ξ) 7→ ∑v

i=1 ξ
4
i , so ∆H is

clearly not elliptic.
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To finish, Heisenberg pseudodifferential operators are compatible with foliated coordinate
changes. Therefore, the Heisenberg calculus can be defined globally on foliations by using a par-
tition of unity. Then, for a foliated manifold M, we denote by ΨH(M) the algebra of properly-
supported Heisenberg pseudodifferential operators on M, and by ΨH,c(M) its subalgebra of
compactly-supported operators.

For a (Z2-graded) complex vector bundle E over M, one defines similarily the algebra of
Heisenberg pseudodifferential operators ΨH(M,E) and its compact support version acting on
the smooth sections C∞(M,E) of E. Note that for a ∈ SH(M,E), (x, ξ) ∈ T∗xM, we have a(x, ξ) ∈
End(Ex).

Wodzicki residue on ΨH(M). We have results analogous to those of Minakshisundaram-Pleijel
and Wodzicki in this context. By means of a partition of unity, one can construct a sub-elliptic sub-
laplacian ∆ from the flat Example 19. Its complex powers ∆−z are defined as properly-supported
Heisenberg pseudodifferential operators, using the parametrix (λ − ∆)−1 and an appropriate
Cauchy integral

∆−z =
1

2πi

∫
λ−z(λ− ∆)−1 dλ

where the contour is a vertical line pointing downwards.

THEOREM 20. (Connes-Moscovici, [11]) Let (M,V) be a foliated manifold of dimension n, where
V ⊂ TM is the integrable sub-bundle defining the foliation, v be the dimensions of the leaves, h their
codimension, and P ∈ ΨmH,c(M) be a compactly-supported Heisenberg pseudodifferential operator of order
m ∈ R. Then, for any sub-elliptic sub-laplacian ∆, the zeta function

ζP(z) = Tr(P∆−z/4)

is holomorphic on the half-plane Re(z) > m+ v+ 2h, and extends to a meromorphic function of the whole
complex plane, with at most simple poles in the set

{m+ v+ 2h,m+ v+ 2h− 1, . . .}

The meromorphic extension of the zeta function given by this theorem allows the construc-
tion of a Wodzicki-Guillemin trace on SH,c(M) = ΨH,c(M)/Ψ−∞

c (M).

THEOREM 21. (Connes-Moscovici, [11]) The Wodzicki residue functional∫
− : SH,c(M) −→ C, P 7−→ Resz=0Tr(P∆−z/4)

is a trace. If dimM > 1, this is the unique trace on SH,c(M), up to a multiplicative constant. Moreover
we have the following formula, only depending on the formal symbol σ of P up to a finite order :

(12)
∫
−P =

1

(2π)n

∫
S∗
HM

ιL

(
σ−(v+2h)(x, ξ)

ωn

n!

)
Here, S∗HM is the Heisenberg cosphere bundle, that is, the sub-bundle

S∗HM = {(x, ξ) ∈ T∗M ; |ξ| ′ = 1}

of the tangent bundle TM of M, L is the generator of the Heisenberg dilations given locally by
the formula

L =

v∑
i=1

ξi∂ξi
+ 2

n∑
i=v+1

ξi∂ξi

ι stands for the interior product andω denotes the standard symplectic form on T∗M.



16 INTRODUCTION

All these results still hold for Heisenberg pseudodifferential operators acting on sections of
a vector bundle E overM : In this case, the symbol σ−(v+2n)(x, ξ) above is at each point (x, ξ) an
endomorphism acting on the fibre Ex, and (12) becomes :∫

−P =
1

(2π)n

∫
S∗
HM

ιL

(
tr(σ−(v+2n)(x, ξ))

ωn

n!

)
where tr denotes the trace of endomorphisms.

Transverse geometry of foliations. Using these results to construct a regular spectral triple asso-
ciated to the transverse geometry of a foliation (Z,F), which is not the one we shall deal with !

Choosing a transversal W of the foliation, Connes and Moscovici reduced the problem to
the study of the crossed product C∞c (W)oG, where G is a discrete (pseudo)group of diffeomor-
phism G ⊂ Diff(W), which translates the holonomy of the foliation. A first problem occuring is
that we are in a "type III" situation. Indeed, G does not preserve any measure on M in general,
and even less a Riemannian metric, so that G-invariant elliptic operators does not exist, even at
the leading symbol level. To cope with this matter, one boils down to a "type II" situation by a
Thom isomorphism, using the following trick from [6]. We pass to the bundle of Riemannian
metrics M = F/On(R) over W, where F is the frame bundle of W. This fibration is in particular
a foliation, the leaves being the fibers. This will be the foliation of interest for us. The action of G
on W lifts to M preserving the fibration, so that the sub-bundle V ⊂ TM tangent to the fibers is
G-equivariant. One may endow V with a G-invariant metric since the fibers of M are symmetric
spaces GLn(R)/On(R). Besides, the quotient N = TM/V is isomorphic to the pull-back p∗TW,
then every point ofM defines a G-invariant metric on N.

Connes and Moscovici then construct a signature operator D almost invariant under the G-
action, in the sense that the leading symbol ofD is G-invariant. Their operator acts on sections of
the bundle

E = Λ•(V∗ ⊗ C)⊗Λ•(N∗ ⊗ C)

which is isomorphic Λ•(T∗M ⊗ C), but in a non-canonical way since this requires the choice of
a connection. Though, this isomorphism is canonical at the level of volume forms (that is the
top degrees). This explains why we cannot have better than an almost G-invariant operator in
general. Roughly, the construction of D is as follows : we first define

Q = (dH + d∗H)± (dVd
∗
V − d∗VdV)

which is morally the sum of a horizontal and a vertical signature operator 5. The Heisenberg
symbol of Q is (x, ξ) 7→ |ξ| ′4, and D is finally defined by the formula Q = D|D|. We are at this
stage arrived at a well-defined index problem.

That this operator is not elliptic could at first sight raise problems. Actually, this does not mat-
ter : While constructing the transverse fundamental class in K-homology, Hilsum and Skandalis
show in [21] that K-cycles may be obtained using hypoelliptic operators. Connes and Moscovici
refined this observation to their context.

THEOREM 22. (Connes-Moscovici, [11]) (C∞c (M)oG,L2(M,E),D) is a regular spectral triple of
simple dimension spectrum.

REMARK 23. As a matter of fact, the theorem is stated more generally for G-invariant trian-
gular structures on a manifoldM, which means we have an integrable sub-bundle V ⊂ TM of the
tangent bundle ofM, such that V and TM/V carries G-invariant Riemannian metrics.

5. Connes and Moscovici indeed construct dVd∗V −d∗VdV as a deformation of the vertical signature operator dV +

d∗V
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Thus, the residue formula directly applies to the hypoelliptic signature operatorD. However,
we cannot directly derive a characteristic class formula as in Example 17, calculations provides
thousands of terms only in codimension 1 ... To overcome this matter in higher codimensions,
Connes and Moscovici developed the cyclic cohomology of Hopf algebras [12]. They defined
such an algebra H, which acts like a symmetry group allowing to reorganize the calculations,
and built a characteristic map

χ : HP•Hopf(H) 7−→ HP•(C∞c (M)oG)

THEOREM 24. (Connes-Moscovici, [12]) The Chern-Connes character of the transverse spectral
triple (C∞c (M)oG,L2(M,E),D) is contained in the image of the characteristic map χ.

In some sense, the group HP•Hopf(H) contains the geometric cocycles : Connes and Moscovici
found that it is isomorphic to the Gel’fand-Fuchs cohomology H•(WSOn), which contains e.g
characteristic classes, so χmay be viewed as of the noncommutative analogue of the Chern-Weil
map from Gel’fand-Fuchs cohomology to equivariant cohomology (cf. Bott [4]). Then, reaching
an index theorem amounts to finding the geometric preimage of the Chern-Connes character by
χ. Connes and Moscovici finally state the following result :

The preimage of the Chern-Connes character by χ is contained in the polynomial ring generated Pon-
tryagin classes

Explicit calculations are made in [12] in codimension 1, giving (twice) the transverse funda-
mental class of [6]. In codimension 2, the authors show that the coefficient of the first Pontryagin
class does not vanish.

The result of Chapter 3 in this thesis allows to make the calculations in any codimension. We
shall take an alternative road summed up in the diagram below,

H•(EG×G S∗HM)
equivariant cohomology

HP•(C∞c (S∗HM)oG) HP•(C∞c (M)oG)
Φ

Connes [6]

π∗

π : S∗HM → M being the canonical projection, which does not make use of Hopf algebras. This
was given by Connes for the problem of the transverse fundamental class.

2.5. General approach with extensions. The approach we adopt in this thesis is strongly
related to the work of Cuntz and Quillen, showing that the excision property holds in periodic
cyclic (co)homology [13]. We consider "abstract index problems". Let A be an associative algebra
over C, possibly without unit, and I an ideal in A, and consider the following extension

0→ I→ A→ A/I→ 0

Let Ind and ∂ denote respectively the excision map in algebraic K-theory and periodic cyclic
homology. We then have the following diagram,

(13) K
alg
1 (A/I)

Ind //

ch1

��

K
alg
0 (I)

ch0

��
HP1(A/I)

∂ // HP0(I)

The vertical arrows are respectively the odd and even Chern character in K-theory, given by
formulas (5) and (6).

Nistor shows in [29] that this diagram commutes. We still denote ∂ : HP0(I)→ HP1(A/I) the
excision map in cohomology. If [τ] ∈ HP0(I) and [u] ∈ K1(A/I), then one has the equality :

(14) 〈[τ], ch0Ind[u]〉 = 〈∂[τ], ch1[u]〉
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One should have in mind that the left hand-side is an analytic index, and think about the
right hand-side as a topological index. Nistor recovers with this approach the index theorem
for covering spaces of Connes-Moscovici in [29], and the Atiyah-Patodi-Singer theorem on ma-
nifolds with cusps in [28]. We will see in the sequel how to choose adapted pseudodifferential
extensions giving rise to local index formulas. For the moment, let us end the paragraph with the
two following examples.

EXAMPLE 25. Let us sketch the construction of ∂[τ] when τ is a hypertrace on I, i.e a linear
form on I satisfying τ([A, I]) = 0. One "renormalizes" τ to a linear map τR : A → C, which
coincides with τ when restricted to I. This is not a trace, but we may then consider the following
cyclic cocycle :

φ(a0,a1) = bτR(a0,a1) = τR([a0,a1])

This cocycle descends to the quotient A/I and gives a representative of ∂[τ].

EXAMPLE 26. Let (A,H, F) be an odd p-summable Fredholm module. Let `p(H) denote the
p-th Schatten class. As usual, let P = 1+F

2
. We have the following extension

0 −→ `p(H) −→ `p(H) + ρ(A) −→ A/Ker(ρ) −→ 0

where ρ(a) = PaP. The cyclic cocycle `p(H)

τ(x0 . . . xp−1) = Tr(x0 . . . xp−1)

yields a generator [τ] of HP0(`p(H)) ' C. One can show that its image ∂[τ] by excision is precisely
the Chern-Connes character. A similar interpretation exists for the even case. For more details,
the reader may consult Cuntz’s paper in [14], Sections 3.3 et 3.4.

3. Main results of the thesis

We shall now give a detailed plan of the thesis, and announce its main results. We decided
not to gather the preliminairies (other that those given in Introduction) in a single paragraph, but
to introduce them in the required chapters as we go along. We hope the reader will be guided
more efficiently in this way.

Chapters 1, 2 and 4 are extracted from the paper [35], except for the last section which comes
from [32]. The rest, up to some minor changes and corrections, is similar. Chapter 4 comes from
[32].

3.1. Chapter 1. Local index formula for abstract elliptic operators. The goal of this chap-
ter is to establish a local index formula for "abstract elliptic operators", combining a suitable zeta
function renormalization and excision in periodic cyclic cohomology. Let us present briefly the
framework developed by Higson [19], which allows to make sense of this statement.

Let H be a (complex) Hilbert space and ∆ a unbounded, positive and self-adjoint operator
acting on it. We denote by H∞ the intersection :

H∞ =
⋂
k>0

dom(∆k).

DEFINITION. An algebra D(∆) of abstract differential operators associated to ∆ is an algebra of
operators on H∞ fulfilling the following conditions

(i) The algebra D(∆) is filtered,

D(∆) =
⋃
q>0

Dq(∆)
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that is Dp(∆) · Dq(∆) ⊂ Dp+q(∆). We shall say that an element X ∈ Dq(∆) is an abstract
differential operator of order at most q.

(ii) There is a r > 0 ("the order of ∆") such that for every X ∈ Dq(∆), [∆,X] ∈ Dr+q−1(∆).

To state the last point, we define, for s ∈ R, the s-Sobolev space Hs as the subspace dom(∆s/r)

of H, which is a Hilbert space when endowed with the norm

‖v‖s = (‖v‖2 + ‖∆s/rv‖2)1/2

(iii) Elliptic estimate. If X ∈ Dq(∆), then, there is a constant ε > 0 such that

‖v‖q + ‖v‖ > ε‖Xv‖ , ∀v ∈ H∞
This formalism is motivated by important properties fulfilled by differential operators on

a manifold. One interest of this is to unify diverse situations in a framework which is flexible
enough to develop a notion of pseudodifferential calculus. In the cases of interest for us, the
classical pseudodifferential calculus on a manifold and the Heisenberg calculus on a foliation are
covered in this formalism.

Let Ψ(∆) be an algebra of pseudodifferential operators associated to an algebra of abstract
differential operators D(∆). We note

Ψ−∞(∆) = ⋂
m∈R

Ψm(∆)

the ideal of "regularizing operators". This yields a pseudodifferential extension :

(15) 0 −→ Ψ−∞(∆) −→ Ψ(∆) −→ S(∆) = Ψ(∆)/Ψ−∞(∆) −→ 0

where S(∆) may be seen as an algebra of abstract formal symbols. The operator trace Tr on H is
defined on Ψ−∞, giving rise to a cyclic cohomology class [Tr] ∈ HP0(Ψ−∞(∆)). To obtain a local
index formula, we therefore calculate its image by excision ∂[Tr] ∈ HP1(S(∆)), following the
recipe given in Introduction, Section 2.5. This is the moment zeta functions come into play.

Assume that there exists d > 0 such that for every P ∈ Ψm(∆), the operator P∆−z extends to
a trace-class operator on H, for z ∈ C with Re(z) > m+d

r
, so that the zeta function of P

ζP(z) = Tr(P∆−z/r)

is defined. Suppose also that for every P ∈ Ψm(∆), ζP is holomorphic in the half-plane Re(z) >
m+ d, and that it extends to a meromorphic function on C with at most simple poles in the set

{m+ d,m+ d− 1, . . .}

We may then lift Ψ−∞(∆) to a linear form τR on Ψ(∆) using a zeta function renormalization :

τR(P) = Pfz=0Tr(P∆−z/r)

where Pf is the constant term in the Laurent expansion of ζP around z = 0. This allows to compute
a representative of ∂[Tr], given in the following result.

THEOREM I. (THEOREM 1.13 Suppose that for every P ∈ Ψ(∆), the pole at 0 of the zeta function
is of order p > 1. Then, the image ∂[Tr] ∈ HP1(S) of the operator trace [Tr] ∈ HP0(Ψ−∞) by excision in
periodic cyclic cohomology is represented by the following cyclic 1-cocycle, that we call the generalized
Radul cocycle :

c(a0,a1) =

1∫
−a0δ(a1) −

1

2!

2∫
−a0δ

2(a1) + . . . +
(−1)p−1

p!

p∫
−a0δ

p(a1)
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where δ(a) = [log∆1/r,a] and δk(a) = δk−1(δ(a)) are defined by induction, for all a ∈ Ψ(∆),

k∫
−P = Resz=0zk−1Tr(P∆−z/r)

This formula generalizes the Radul cocycle [34], obtained in the case where Ψ is the algebra
of classical pseudodifferential operators on a closed manifold. It was introduced in the context of
Lie algebra cohomology.

If p = 1,
∫
−
1 is the usual Wodzicki residue. In general, the

∫
−
k are not traces on Ψ(∆) except

for k = p.

Therefore, excision transfers the non-local cocycle on Ψ−∞(∆) represented by the trace to the
Radul cocycle, which is local. To this effect, this may be compared with the formula of Connes
and Moscovici through the use of residues. Let us mention that the techniques of computations
performed to get our formula are mainly their doing.

There is also one evident difference at first : our cocycle is defined direcly on an algebra of
pseudodifferential operators, whereas the Chern-Connes character is defined on the algebra of
the spectral triple. Actually, it turns out the generalized Radul cocycle retracts on the latter when
D(∆) is associated to a spectral triple (more precisely its Fredholm module).

Indeed, let (A,H, F) be a p-summable odd Fredholm module. In addition, let Ψ = Ψ(∆) be an
algebra of abstract pseudodifferential operators such that

(1) Ψ0 is an algebra of bounded operators on H containing the representation of A,

(2) Ψ−1 is a two-sided ideal composed of p-summable operators on H,

(3) F is a multiplier of Ψ0 and [F,Ψ0] ⊂ Ψ−1.

We then consider the following abstract principal symbol exact sequence :

(16) 0 −→ Ψ−1 −→ Ψ0 −→ Ψ0/Ψ−1 −→ 0

which is easily compared with the extension (15). Let P = 1
2
(1 + F), and ρF be the algebra homo-

morphism

ρF : A −→ Ψ0/Ψ−1 , ρF(a) = PaP mod Ψ−1.

THEOREM II. (THEOREM 1.17) The Chern-Connes character of the Fredholm module (H, F) is
given by the odd cyclic cohomology class over A

ch(H, F) = ρ∗F ◦ ∂([Tr])

where [Tr] ∈ HP0(Ψ−1) is the class of the operator trace, ∂ : HP0(Ψ−1)→ HP1(Ψ0/Ψ−1) is the excision
map associated to extension (16), and ρ∗F : HP1(Ψ0/Ψ−1) → HP1(A) is induced by the homomorphism
ρF.

The formula obtained gives directly a local index formula for abstract elliptic operators after
pairing with K-theory. As a simple application which will be detailed in the corresponding chap-
ter, the case where D(∆) is the algebra of differential operators on the circle S1 yields directly
the Noether index theorem. This is because the Wodzicki residue of a classical pseudodifferential
operator depends only on its symbol of order −1, and this makes the computations easy. Howe-
ver, for an arbitrary closed manifold M of dimension n, one has to compute its symbol of order
−n, which is impossible to achieve directly. The same problem raises in the case whereM is folia-
tion of codimension h, where we have to compute the symbol of order −(v+ 2h), with v = n−h.
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Plan of the chapter. Section 1 of the chapter recalls the formalism developed by Higson [19] on
abstract differential operators, and the corresponding pseudodifferential calculus introduced by
Uuye in [38]. We shall also give some notions we need for our local index formula.

Section 2 establishes the index formula announced in Theorem I.

Section 3 relates the generalized Radul cocycle constructed and the Chern-Connes character
by proving Theorem II.

3.2. Chapter 2. The flat case. This part aims at understanding on a toy model example how
we may overcome the difficulties raised by the concrete computation of the Radul cocycle, in the
case of foliations. We shall focus on Rn viewed as a trivial foliation Rv×Rh of leaves Rv. The alge-
bra D(∆) of abstract differential operators considered is the algebra of differential operators, en-
dowed with the order of the Heisenberg calculus. The operator ∆ is the sub-elliptic sub-laplacian
from Example 19. Let Ψ0H,c(Rn) be the algebra of Heisenberg pseudodifferential operator of or-
der 0 with compact support on Rn = Rv × Rh, and S0H,c(Rn) be the algebra of Heisenberg formal
symbols of order 0 with compact support. By Theorem 20, zeta functions have simple poles, and
the Radul cocycle on SH,c(Rn) writes

φ(a0,a1) =
∫
−a0[log∆1/4,a1],

where
∫
− is the Wodzicki residue, and is given by integration of the symbol of order −(v+ 2h) of

the operator on the Heisenberg cotangent sphere S∗H(Rn) (cf. Theorem 21).

The general idea is to construct a (B,b)-cocycle of higher degree cohomologuous to the Radul
cocycle in the (B,b)-bicomplex, which involves only residues of symbols of order −(v+ 2h). This
allows to reduce matters at the Heisenberg principal symbol level,

σ : S0H(Rn) −→ C∞(S∗HRn),
and to pass from a noncommutative formula (star-product of symbols) to a commutative one
(multiplication of principal symbols) for the Radul cocycle.

THEOREM III. (THEOREM 2.5) The Radul cocycle φ is (B,b)-cohomologous to the cyclic cocycle ψ
on S0H(Rn) defined by

ψ2n−1(a0, . . . ,a2n−1) = −
1

(2πi)n

∫
S∗
HRn

σ(a0)dσ(a1) . . .dσ(a2n−1)

We give two constructions leading to the cocycle. The first one invokes once more excision
in periodic cyclic cohomology : one transfers cyclic cocycles on Ψ−∞(Rn), very similar to that
of Connes (Theorem 11), to (B,b)-cocycles on S0H(Rn). The second construction uses the cochain
theory of Quillen (i.e X-complex for coalgebras), which allows to construct (a variant) of the
cocycles by a "non commutative Chern-Weil" process. The interest of this construction is to be
purely algebraic, and this allows to bypass the step which consists in working with regularizing
operators at first. Refinements of this technique will also give the relevant cocycles leading to the
general theorem of Chapter 3.

In both cases, an essential ingredient for the construction of the intermediate cochains bet-
ween the Radul cocycle and the one of the theorem above, is a particular operator that we shall
denote F, which acts on symbols so that its commutator [F,a] with a symbol a ∈ SH(Rn) gives
the differential da. The notation will become clear in the sequel.

The pairing with K-theory, together with formula (14), gives the following theorem.

THEOREM IV. (THEOREM 2.12) Let P ∈MN(Ψ
0
H,c(Rn)+) be a H-elliptic operator of formal sym-

bol u ∈ GLN(S0H,c(Rn)+), and [u] ∈ K1(S0H,c(Rn)+) its K-theory class. Then, the Fredholm index of P
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is given by the formula :

Ind(P) =
(−1)n(n− 1)!

(2πi)n(2n− 1)!

∫
S∗
HRn

tr(σ(u)−1dσ(u)(dσ(u)−1dσ(u))n−1)

Despite its simplicity, this example will be important to guide the understanding of the ge-
neral case in Chapter 3. This gives some ideas on the objects we have to introduce, and a first
insight on how the computations work.

Plan of the chapter. Section 1 gives the general context and introduces the main tools (especially
the operator Fmentioned above) we shall need for the constructions.

Section 2 proves Theorem III using excision.

Section 3 gives the construction involving the algebra cochains formalism of Quillen.

Section 4 ends the computations, leading to the index theorem.

The two last sections are appendices for Sections 2 and 3.

3.3. Chapter 3. Equivariant index theorem for H-elliptic operators. In this chapter, we prove
a general index theorem on foliations, generalizing the one from the previous chapter. The result
presented gives a new solution to the problem of Connes and Moscovici on the computation of
the Chern-Connes character of the transverse fundamental class recalled in Introduction, Section
2.4.

Let (M,V) be a foliated manifold (possibly non compact), andG ⊂ Diff(M) be a discrete sub-
group of diffeomorphisms of M preserving the leaves of M, acting from the right. No additional
assumptions are required. We then consider the following pseudodifferential extension

0 −→ Ψ−∞
c (M)oG −→ Ψ0H,c(M)oG −→ S0H,c(M)oG −→ 0,

which is the equivariant version of the one in the Heisenberg calculus. Though, note that the
representation of elements in Ψ0H,c(M) o G as operators on C∞c (M) does not yield Heisenberg
pseudodifferential operators. Indeed, an element P ∈ Ψ0H,c(M)oGwrites

P =
∑
g∈G

Pg ⊗Ug

and is represented (not faithfully) by the operator

P =
∑
g∈G

Pg ⊗Ug : C∞(M) −→ C∞(M)

where Ug : C∞(M) → C∞(M) is the shift operator Ug(f)(x) = f(x · g) = (f ◦ g)(x), for every
x ∈ M. Such operators belongs to the larger class of Fourier integral operators. We can always
develop their index theory, at least in the sense of extensions in the spirit adopted in the thesis. It
turns out that when M is compact, the work of Savin and Sternin [36] shows that such operators
whose formal symbol in S0H(M)o G are Fredholm. Adapting the general formula of Chapter ??,
we may determine the Radul cocycle associated to the above extension. Let Tr[1] be the trace on
Ψ−∞
c (M)oG obtained from the usual trace on Ψ−∞

c (M) by localization at the unit of G :

Tr[1]

∑
g∈G

KgUg

 = Tr(K1)

THEOREM V. (THEOREM 3.33) The boundary of the localized trace ∂[Tr[1]] ∈ HP1(SH,c(M)oG)
is represented by the equivariant Radul cocycle

φ(a0,a1) =
∫
−
(
a0[log∆1/4H ,a1]

)
[1]
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where ∆1/4H is the sub-elliptic sub-laplacian (Example 19) associated to M. The subscript [1] denotes the
term localized at the unit.

This cocycle may also be viewed at the level of the (Heisenberg) principal symbolC∞(S∗HM)o
G through the extension

0 −→ Ψ−1
H,c(M)oG −→ Ψ0H,c(M)oG −→ C∞c (S∗HM)oG −→ 0,

which may be easily compared to the extension above. For details, the reader is referred to the
body of the thesis. The main result is the geometric realization of the equivariant Radul cocycle.
To simplify matters for the Introduction, we identify ∂[Tr[1]] to the corresponding element of
HP1(C∞c (S∗HM)oG).

THEOREM VI. (THEOREM 3.34) Let M be a foliated manifold and G be a discrete group of foliated
diffeomorphisms. Let EG be the universal bundle over the classifying space BG de G. Let

0 −→ Ψ−1
H,c(M)oG −→ Ψ0H,c(M)oG −→ C∞c (S∗HM)oG −→ 0

be the equivariant Heisenberg pseudodifferential extension. Then, the image of the localized trace at the
unit ∂[Tr[1]] ∈ HP1(C∞c (S∗HM)oG) by excision is given by

∂([τ]) = Φ(π∗Td(TM⊗ C))

where Φ : Hev(EG ×G S∗HM) → HP1(C∞c (S∗HM) o G) is Connes’ characteristic map from equivariant
cohomology to cyclic cohomology, Td(TM ⊗ C) is the equivariant Todd class of the complexified tangent
bundle ofM and π : S∗HM×G EG→M×G EG is the canonical projection.

To prove this result, the idea is to give an explicit homotopy between the Radul cocycle and
the one given above. In the framework of cyclic cohomology, a recipe to obtain automatically
transgression cochains between two representatives of a given cohomology class is to use a JLO
formula. A first observation (already mentioned previously) is that our cocycles are not defined
on algebras of functions, as it the usual JLO setting, but on pseudodifferential operators. Thus,
we have to find an appropriate context, consisting in the points below :

(1) Having operators acting on symbols (which in some sense, replace the Hilbert space in
the original setting for the JLO formula, Fredholm modules ...),

(2) A notion of "heat kernel" (more precisely, a "Laplacian on symbols")

(3) A related trace,

(4) A notion of "Dirac operator", in the sense that for a ∈ SH,c(M), [D,a] gives the differen-
tial da of the symbol a (up to some details),

(5) A way of computing things (in classical index theory, there are Mehler’s formula and
Getzler rescaling),

(6) Carry all this to the equivariant case.

We find an answer to these points by adapting the formalism developed by Perrot in [30]
and [31] to the Heisenberg calculus. This formalism is a global version of the flat case exposed in
Chapter 2 : For example, the operator F is a "toy model" of Dirac operator. As we shall go along
in the chapter, we shall try to make remarks emphasizing these analogies which might facilitate
the reading. The constructions are not easy but really flexible because the use of residues has the
consequence that these are purely algebraic. Besides, this applies to operators which are not of
Dirac type, and more generally to cases where Getzler rescaling does not apply. Though, it should
be noted that this Dirac operator is only an intermediary, contrary to the classical JLO situation
where it is the object of study. Another crucial feature of Perrot’s formalism is to be invariant under
diffeomorphisms.
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These steps accomplished, we compute the JLO cocycle for two different Dirac operators, the
first one gives the Radul cocycle of the pseudodifferential extension, the second one gives the
Poincaré dual of the equivariant Todd class. The usual homotopy arguments from the original
JLO formula borrows verbatim there, thus giving the theorem.

As a corollary, we obtain a new solution to the index problem of the transverse signature
operator. For this, we combine the relation between the Radul cocycle and the Chern-Connes
character found in Chapter 1 (Theorem II), together with the above theorem. We keep the same
notations as in Theorem VI.

THEOREM VII. (THEOREM 3.34) Let G be a discrete group acting by orientation preserving diffeo-
morphism on a manifold W. Let M be the bundle of metrics of W and A = C∞c (M) o G. If the actions
of G has no fixed points, then the Chern-Connes character of the Fredholm module (H, F) associated to the
hypoelliptic signature operator of Connes and Moscovici is

ch(H, F) = π∗ ◦Φ(L ′(M)) ∈ HP1(A),

where L ′(M) is the modified L-genus of Hirzebruch.

Plan of the chapter. Section 1 recalls the X-complex formalism developed by Cuntz and Quillen
for cyclic homology.

Section 2 computes the excision map corresponding to the equivariant pseudodifferential
extension (16) and proves Theorem VI.

Sections 3, 4, 5 achieves the steps (1), (2), (3) et (4) given above to construct an algebraic JLO
formula on symbols.

Section 6 introduces the required objects to carry all this to the equivariant setting. In par-
ticular, we recall the point of view we need to construct Connes’ characteristic map from the
equivariant cohomology H•(M×G EG) to the periodic cyclic cohomology of the crossed product
HP•(C∞(M)oG). The X-complex is used there.

Section 7 finally gives the JLO formula, leading to Theorem VI.

Section 8 shows how to obtain Theorem VII from Theorem VI.

3.4. Chapter 4. Discussion on conic manifolds. This chapter is a discussion on manifolds
with (isolated) conic singularity, and spectral triples associated. The motivation of this work was
to apply the results of Chapter 1 in cases where zeta functions exhibits multiple poles. The first
work in this direction is due to Lescure in [25], where such spectral triples are constructed. Howe-
ver, the algebra considered in the spectral triple is that of smooth functions vanishing to infinite
order in a neighbourhood of the conic point, with a unit adjoined. Thus, many informations are
lost in the differential calculus, e.g the abstract algebra of differential operators associated to the
spectral triple cannot contain all the conic differential operators. Therefore, it is natural to ask if
one can refine the choice of the algebra. Unfortunately, we shall see that the analytic properties
of the zeta function in this context gives an obstruction to do better, and that obtaining a regular
spectral triple on such spaces inevitably leads us to erase the singularity, as Lescure does. Ho-
wever, looking at this example gives a good picture of what happens when the regularity of the
spectral triple is lost. The abstract Radul cocycle of Chapter 1, and thus the index formulas are
no more local, because the terms killed by the residue in presence of regularity cannot be neglec-
ted in that case. We refer the reader to the concerned chapter for the different definitions and
notations.

THEOREM VIII. Let M be a conic manifold, i.e a manifold with boundary endowed with a conic
metric, and let r be a boundary defining function. Let ∆ be the "conic laplacian" of Example ??. Then, the
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Radul cocycle associated to the pseudodifferential extension of Melrose’s b-calculus :

0→ r∞Ψ−∞
b (M)→ r−ZΨZ

b(M)→ r−ZΨZ
b(M)/r∞Ψ−∞

b (M)→ 0

is given by the following non-local formula :

c(a0,a1) = (Tr∂,σ + Trσ)(a0[log∆,a1]) −
1

2
Tr∂,σ(a0[log∆, [log∆,a1]])+

+ Tr∂

(
a0

N∑
k=1

a
(k)
1 ∆−k

)
+

1

2πi
Tr
(∫
λ−za0(λ− ∆)

−1a
(N+1)
1 (λ− ∆)−N−1

)
dλ

pour a0,a1 ∈ ΨZ
b(M)/r∞Ψ−∞

b (M) and N large enough.

Trσ is the extension to M of the Wodzicki residue in the interior of M. Tr∂,σ measures its
default to be a trace on r−ZΨZ

b(M). Both are given by a local formula. The second line of the
formula is the non-local part : Tr∂ is the conic version of the b-trace, obtained as a regularization
of the usual trace on regularizing operators, and the integral, which vanishes under the residue
when dealing with regular spectral triples, has a non-zero contribution here.

This approach yields another point of view on the eta invariant, the notable fact is that it is
suitable also for pseudodifferential operators, and not only for Dirac operators. It might be an
interesting problem to compare the formulas obtained with the usual eta invariant.

Plan of the chapter. Sections 1, 2 and 3 recall some facts on Melrose’s b-calculus, related notions
of residues and heat kernel expansions in this context.

Section 4 explains why the conic zeta function gives an obstruction to get a more refined
spectral triple as the one given by Lescure.

Section 5 explains Theorem VIII.
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